SAGE: A Split-Architecture Methodology for Efficient
End-to-End Autonomous Vehicle Control

ARNAV MALAWADE, MOHANAD ODEMA, SEBASTIEN LAJEUNESSE-DEGROOT, and
MOHAMMAD ABDULLAH AL FARUQUE, University of California Irvine, USA

Autonomous vehicles (AV) are expected to revolutionize transportation and improve road safety significantly.
However, these benefits do not come without cost; AVs require large Deep-Learning (DL) models and powerful
hardware platforms to operate reliably in real-time, requiring between several hundred watts to one kilowatt
of power. This power consumption can dramatically reduce vehicles’ driving range and affect emissions. To
address this problem, we propose SAGE: a methodology for selectively offloading the key energy-consuming
modules of DL architectures to the cloud to optimize edge, energy usage while meeting real-time latency con-
straints. Furthermore, we leverage Head Network Distillation (HND) to introduce efficient bottlenecks within
the DL architecture in order to minimize the network overhead costs of offloading with almost no degrada-
tion in the model’s performance. We evaluate SAGE using an Nvidia Jetson TX2 and an industry-standard
Nvidia Drive PX2 as the AV edge, devices and demonstrate that our offloading strategy is practical for a wide
range of DL models and internet connection bandwidths on 3G, 4G LTE, and WiFi technologies. Compared
to edge-only computation, SAGE reduces energy consumption by an average of 36.13%, 47.07%, and 55.66%
for an AV with one low-resolution camera, one high-resolution camera, and three high-resolution cameras,
respectively. SAGE also reduces upload data size by up to 98.40% compared to direct camera offloading.

CCS Concepts: « Computer systems organization — Embedded and cyber-physical systems; - Hard-
ware — Power and energy; « Networks — Cyber-physical networks;

Additional Key Words and Phrases: Energy optimization, edge computing, computation offloading, deep learn-
ing, autonomous vehicles

ACM Reference format:

Arnav Malawade, Mohanad Odema, Sebastien Lajeunesse-DeGroot, and Mohammad Abdullah Al Faruque.
2021. SAGE: A Split-Architecture Methodology for Efficient End-to-End Autonomous Vehicle Control. ACM
Trans. Embedd. Comput. Syst. 20, 5s, Article 75 (September 2021), 22 pages.

https://doi.org/10.1145/3477006

A. Malawade and M. Odema contributed equally to this research.

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2021.

This work was partially supported by the National Science Foundation (NSF) under award CMMI-1739503 and Graduate
Assistance in Areas of National Need (GAANN) under award P200A180052. Any opinions, findings, conclusions, or rec-
ommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the funding
agency.

Authors’ addresses: A. Malawade, M. Odema, S. Lajeunesse-DeGroot, and M. A. Al Faruque, University of California Irvine,
Irvine, USA; emails: {malawada, modema, slajeune, alfaruquj@uci.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).
1539-9087/2021/09-ART75
https://doi.org/10.1145/3477006

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

75:2 A. Malawade et al.

1 INTRODUCTION AND RELATED WORK

Advances in deep learning, hardware design, and modeling over the past decade have enabled the
dream of autonomous vehicles (AVs) to become a reality. AVs are expected to improve road safety,
passenger comfort, and mobility significantly. The core task of an AV is to perceive the state of the
road and safely control the vehicle in place of a human driver. The difficulty in achieving this goal
lies in the fact that road scenarios can be highly complex and dynamic, presenting a wide range of
potential challenges and obstacles (e.g., rain, snow, construction zones, animals, etc.). To address
this challenge, AV algorithms rely heavily on (i) large deep learning (DL) models to capture this
high degree of complexity and (ii) high-performance edge, hardware to reduce processing latency
and ensure passenger safety at higher speeds.

As a result, AVs require significant computational power to operate reliably and safely in the
real world. However, as AV computing capabilities have scaled up, so have their power and en-
ergy requirements. For example, the Nvidia Drive PX2, used in 2016-2018 Tesla models for their
Autopilot system [1], can achieve 12 Tera Operations Per Second (TOPS) with a Thermal Design
Power (TDP) of 250 Watts (W). Following the PX2 was the Nvidia AGX Pegasus, which was built
for level 5 autonomy; it can achieve 320 TOPS with a TDP of 500 W [33]. What’s more, the next
generation hardware platform using the Nvidia AGX Orin SoC is expected to be capable of 2000
TOPS with a TDP of 800 W [2]. Although AV hardware platforms are becoming more efficient in
terms of TOPS/W, the baseline energy demands continue to increase as more advanced DL models
and hardware platforms are developed. The increased power demands of these systems also in-
crease the heating, ventilation, and air conditioning (HVAC) system’s thermal load. The combined
computational and thermal loads of these platforms can reduce an AV’s driving range by up to
11.5% [28], which is especially detrimental for electric vehicles due to their limited range and long
recharge times.

Researchers attempting to address this problem for AVs as well as other cyber-physical sys-
tems have proposed several approaches for reducing energy consumption, including application-
specific hardware design, cloud/fog server offloading, or model simplification/pruning [3, 26, 28,
32, 35, 39]. Although solutions like Application-Specific Integrated Circuits (ASICs) can reduce
energy consumption through hardware optimization, they are prohibitively expensive to develop.
Furthermore, with ASIC designs, all model specifications and contingencies need to be accounted
for at design time, meaning there is little to no support for adding new features, fixing algorithmic
errors, or modifying model architectures. Costly development stages will need to be repeated for
every revision to the model. The next logical choice is to attempt model simplification/pruning
without changing hardware platforms; however, it is difficult to significantly reduce energy con-
sumption by pruning without adversely affecting the AV’s performance and safety. To address the
limitations of the previous two approaches, some works propose offloading some or all AV tasks to
the cloud for processing to reduce the energy consumption of the AV without changing the hard-
ware or algorithms. Unfortunately, current offloading approaches have significant scalability and
latency issues, as will be discussed in the next paragraph. In contrast, we propose a cloud server
offloading methodology that is efficient, safe, and practical for current networking infrastructure.

A naive solution to the problem of edge, energy consumption is to offload self-driving tasks to a
cloud server or a Mobile Edge Computing (MEC) server [13]. These ‘direct offloading’ approaches
involve sending images or sensor inputs directly to the server, which processes the data before
returning the desired control outputs to the vehicle. However, the real-time latency constraints of
autonomous driving and the limitations of current wireless network infrastructure significantly im-
pact this solution’s feasibility; to drive and react effectively, AVs must be able to process each input
within 100 milliseconds [28]. This bound comes from the fact that the fastest attainable reaction

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

A Split-Architecture Methodology for Efficient End-to-End Autonomous Vehicle Control 75:3

by a human when driving falls within the range of 100-150 ms, meaning that for efficient AV
navigation, AVs need to at least perform at the same level as the human driver counterpart. Addi-
tionally, most real-world AVs, such as those from Tesla [1], Baidu Apollo [20], and Argo AI[21], use
multiple high-definition cameras and sensors and would require very high network bandwidths
to offload data within the latency constraints. In some cases, the energy needed to transmit and
receive data from the cloud server can even exceed the energy consumed by edge-only processing.
Together, these factors make direct offloading infeasible in most real-world autonomous driving
scenarios. Currently, most of the literature has proposed solving this problem by improving net-
work robustness and throughput via solutions such as 5G C-V2X [34] and WAVE [12], or even
by placing sensors on the roads themselves [26]. However, implementing these solutions would
require significant investments in the networking infrastructure to become realistically feasible.
Several works have proposed methods for offloading some or all AV tasks. For example, [10]
proposed a technique for reducing AV processing latency by offloading sub-tasks of LIDAR SLAM
to the cloud depending on network conditions. Although they demonstrate good performance,
their approach is limited since it only considers LiDAR data, which is significantly smaller than
camera data. Additionally, they developed a distributed SLAM algorithm that allowed task-level
parallelism; this sort of optimization will need to be applied for every part of a modular AV pipeline
and may not be applicable in some areas. In another work, [36] proposed an offloading strategy
where computations are executed on either an MEC server or a cloud server depending on network
conditions. However, their method requires all sensor input data and internal state information
to be sent to the server for processing. Since they only evaluated a micro-car transmitting IMU
data (position, velocity, yaw), their approach is not scalable to real-world AVs that would need to
offload multiple high-definition camera inputs. The work in [41] proposes a hierarchical approach
for offloading in which AVs can offload to road-side units (RSUs) when MEC servers are overloaded,
but this work does not consider network bandwidth constraints. Moreover, none of these works [10,
36, 41] considered edge, energy consumption in their evaluation, which significantly constrains
direct offloading approaches. The authors in [42] evaluated the energy consumption for offloading
to MEC servers; however, they do not assess this approach’s practicality for large upload data sizes,
which are typical for AVs with multiple high-resolution input cameras. In summary, the problem
of offloading large data sizes while meeting latency and energy constraints on current network
infrastructure is exceedingly challenging and is currently unsolved by existing methods.

1.1 Research Challenges
For efficient AV offloading, the following key research challenges need to be addressed:

(1) Offloading AV tasks without exceeding safety-critical latency constraints or increasing AV
energy consumption.

(2) Adapting AV deep learning architectures to support dynamic offloading depending on the
corresponding network conditions.

(3) Developing a technique efficient enough to meet latency constraints with data from multiple
high-definition camera inputs on current industry-standard AV hardware.

(4) Producing a cost-efficient, safe solution that can operate within the constraints of current
networking infrastructure.

Instead of altering the AV hardware or the communication network infrastructure, we propose
SAGE: a methodology to significantly reduce the size of the data transmitted over the network
and enable efficient computation offloading. By introducing a bottleneck layer near the beginning
of end-to-end DL control models, the size of the data uploaded to the cloud server is reduced sig-
nificantly, allowing a large portion of the model computation to be offloaded to the server even at

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

75:4 A. Malawade et al.

150 All-Cloud @8 All-Edge @B SAGE (Ours) All-Cloud @mE All-Edge @E8 SAGE (Ours)
0.6
Z 100 a
z z 04
5 2
3 50 & 0
0 0.0
1 5 10 1 5
Effective Data Rate (Mbps) Effective Data Rate (Mbps)

Fig. 1. A comparative analysis demonstrating the of the overall latency (left) and energy consumption (right)
for the All-Cloud, All-Edge, and SAGE (Ours) execution strategies given three typical effective data rate values
attainable through a 4G LTE connection. The red line indicates the AV processing latency deadline of 100 ms.

low network bandwidths. This benefit is especially valuable in multi-camera offloading due to the
significant bandwidth requirements and edge, energy consumption of multi-camera models. Fur-
thermore, it was shown in [30] that, with a particular training strategy, the model’s performance
after introducing the bottleneck remains nearly the same.

1.2 Motivational Example

We provide a brief example to demonstrate the merit of our approach in Figure 1. Here, we com-
pare three possible execution strategies for an end-to-end AV control model: executing locally on
the edge, (All-Edge), offloading the entirety of execution to the cloud (All-Cloud), and our proposed
split approach (SAGE). Our analysis is conducted at three distinct data rate values typical for 4G
LTE connections, and the evaluations are performed on a Jetson TX2 for a ResNet-50 model [15]
adapted for end-to-end AV control. In terms of latency, it is clear that the All-Cloud approach is
impractical at low data rate values as it fails to meet the 100 ms processing latency constraint of
the AV. On the other hand, performing all the processing locally in the All-Edge approach keeps
the latency unaffected by the state of the network. However, the downside is that the edge, de-
vice is fully operational and consumes sizeable amounts of power for longer periods, leading to
higher energy consumption in theory than the All-Cloud approach at the more favorable data rates.
SAGE offers to leverage the best of these both approaches. In brief, SAGE entails replacing an
early computational block from the model architecture with a more efficient encoder-decoder-like
structure. Then, this modified architecture is divided between the edge, and cloud at the encoder
output. The encoder, acting as a bottleneck, projects the input data into a low-dimensional rep-
resentation that is more suited to be transmitted to the cloud over the wireless medium. On the
other hand, the decoder component is situated as part of the cloud to receive the encoder’s out-
put data and map it into a representation analogous to the output of the original computational
block from the unaltered model architecture. This structural modification results in significantly
lower: (i) local execution latency than the All-Edge, and (ii) transmission latency than the All-
Cloud. Moreover, these improvements are reflected in the energy consumption as the edge, device
is only required to perform computations for a much shorter interval within the 100 ms time
window, which is beneficial for the edge, device itself in terms of performance efficiency. More
details about the proposed SAGE methodology and how resource-efficiency is promoted across
the edge, and cloud while maintaining the same degree of accuracy shall be described in detail in
Section 3.

1.3 Novel Contributions

Our paper presents the following contributions.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

A Split-Architecture Methodology for Efficient End-to-End Autonomous Vehicle Control 75:5

(1) We propose a novel split-network architecture methodology that allows for a significant
reduction in the energy consumption of AV on-board processing units by dynamically of-
floading part of the model’s computations to the cloud.

(2) We demonstrate that introducing bottlenecks into deep end-to-end AV control models re-
duces energy consumption significantly with little to no performance loss.

(3) We show that SAGE reduces network throughput requirements significantly compared to
conventional cloud server offloading techniques, enabling it to meet latency constraints even
at low network bandwidths on 3G, 4G LTE, and WiFi.!

(4) We demonstrate that SAGE is scalable to practical AV use cases by evaluating its performance
with three high-definition camera inputs, typical for real-world AVs [1, 16, 20, 21].

(5) We demonstrate the practicality and feasibility of our technique by evaluating its perfor-
mance on the Nvidia Jetson TX2, as well as the industry-standard Nvidia Drive PX 2 au-
tonomous driving platform, used in all 2016-2018 Tesla models for their Autopilot system [1].

1.4 Paper Organization

The remainder of the paper is organized as follows. In Section 2, we discuss our system model and
problem formulation. In Section 3 we elaborate on SAGE’s design methodology. In Sections 4 and 5
we present and discuss our experimental results. Finally, in Section 6 we present our conclusions.

2 SYSTEM MODEL

This section aims to provide a generalized model of how an AV edge, device may complete pro-
cessing a task either through local computation or collaboration with a cloud server. Mainly, the
modeling comprises the communication and computation costs that the AV edge, device would
incur until the task is finished. Our model comprises a direct link between a vehicle i, requiring
computation for its designated task, and a cloud server j to whom tasks can be offloaded.

2.1 Communication Model

As the AV runtime optimization solution spans multiple levels in the system architectural hierarchy
(i.e., edge, and cloud), a communication model is needed to identify the cost of transferring data
between entities of different levels. These costs can be represented through transmission latency
and energy. More formally, the task to be offloaded can be represented as t; = {a;, b;, ¢;}, where
a;, b, and ¢; correspond to the size of data to be transmitted, size of data to be received back
from the server, and the number of CPU cycles required to complete the task, respectively. To
estimate the communication overhead, we will need to determine the upload and download data
rates, rlU] and rl.l?j, experienced at vehicle i’s edge, device when transmitting data to cloud server
Jj. Although the data rate can be determined theoretically through Shannon’s law, this resembles
an optimistic estimate, not taking into consideration potential errors or packet losses. Instead, we
are more interested in the ’effective’ data rates by which we mean the actual data transfer speeds
experienced at the edge, device when accounting for errors and re-transmissions. These values
can be measured at the target device and accordingly, the upload and download latencies can be
given as:
ai b;
' =—. Th=— (1)

Tij Tij

'We did not evaluate 5G C-V2X and WAVE in this work because these technologies are currently not widespread and
require significant infrastructure changes to be viable. Also, comparable real-world power models for 5G are not available
yet in the literature. However, SAGE will be scalable to these emerging technologies.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

75:6 A. Malawade et al.

Thus, the total communication overhead encountered by at vehicle i in terms of latency and energy
for offloading task execution to computing server j is given by:

comm _ U D RTT
L =T+ T+ T @)

By =pi T + pi T (3)

where p!, pR and Tf]TT represent vehicle i’s transmitting power, receiving power, and the round-
trip time between vehicle i and server j, respectively.

2.2 Computation Model

Assuming that any task requested by vehicle i consists of several sequential sub-tasks, i.e., as in
an end-to-end control pipeline or layers in a DL model, let C; = {c;1, ¢i2, . . ., cix } denote the set of
K clock cycles required to execute each sub-task. Thus, potential execution times (local or remote)
and the energy needed to execute sub-task k locally are:

Cik
T, = =X (4)
k
i f;l
Cik
T = 7 ®)
Efk = dicik (6)

where fil, f{ and &; represent the operational frequency at vehicle i, operational frequency at the
remote server, and a coefficient denoting energy consumed per CPU cycle at vehicle i. However,
since offloading some or all sub-tasks is a viable option in this scheme, the total computational
latency and energy consumption for vehicle i can be written as:

kp K

T = Z Tilk + Z Tk ()
k=1 k=kp+1
kP

E;™ =) Bl +E() ®)
k=1

where kj, is the execution partitioning point after which execution is assigned to the remote server,
and Efdle(t) is the energy consumed by vehicle i waiting for the remote server’s results as a func-
tion of the idle time t. Note that when k, = K, Tl.comp reflects the local execution case without any
form of offloading as the second summation becomes an empty sum.

2.3 Problem Formulation

From the previous model derivations, the offloading problem for vehicle i can be formulated as:
min w] (I (k, # K) x TE™™ + T + w (I (k, # K) x E{o™™ + E;°™) 9)
P
st. (I (k, # K) x TEO™™ + TF™) <= 100 ms

where w] and wF € [0, 1] represent user-defined weights associated with the latency and energy
metrics, and 7 (k, # K) is an indicator function becoming 0 in the case of local execution. As pre-
sented earlier, the 100 ms constraint is the window within which the AV must finish its processing
task [28]. Note that as k,, varies, so will the values associated with the offloaded task a; and c;.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

A Split-Architecture Methodology for Efficient End-to-End Autonomous Vehicle Control 75:7

Head edge) '.u g Ia_il ((’dg(‘) (.-:._:Ti\’ebrm:h é’} AV Control
:_ | : Img o'p =
_ | l
S b,
1
AR ‘ . >
A b3 4 | T
Bottleneck] : pireed W D acn(:al L R
xecute | _| ot rake cc.
| Tail!(cloud) control ‘ v
. | | Tl |
or
| /
offload?|| | Il Img o/p i d
| A Cnd
) [A
| S@¢)
| : ’ aT ' I |
Speed (:‘ ’:\ Speed reading is | Same Layers on ot
= % processed later edge and cloud pe — D

Fig. 2. An illustration of how systems developed through SAGE support end-to-end AV control. The tail
component is replicated on both the edge, and the cloud. At runtime, a decision is to be made whether the
tail should be executed locally or in the cloud. Final results are applied as inputs to the AV control system.

3 SAGE DESIGN METHODOLOGY

In this section, we present SAGE and discuss its building blocks in detail. Figure 2 illustrates how
the final system developed through SAGE would support end-to-end AV control. The implemented
DL model is divided into two components: (i) a head deployed on the edge, and (ii) a tail which
is replicated across both the edge, and cloud. The head component contains within its structure a
bottleneck layer, which represents an optimal offloading point compared to other options. Inputs to
the model can come through a camera feed and sensory measurements (e.g., current speed). After
the head portion executes at runtime, it is decided whether tail processing should be done locally
or be delegated to the cloud depending on current network conditions. The tail portion of each
DL model contains the bulk of layers and outputs the control values to the AV.

3.1 Perception

Much like human beings, perception is concerned with how an AV interprets and understands
events occurring in its surrounding environment. To enable perception, AVs are equipped with
sensory capabilities to capture representative data from the environment. This data is then pro-
cessed to extract a comprehensive understanding of the events unfolding around them. Contem-
porary AVs sense their environment via cameras, LIDAR, or radar equipment [14, 25, 27]. After
data acquisition, DL models process the data and estimate the course of action that the AV should
take in the following time-step [8]. Without any loss of generality, our evaluations are based on
the data-intensive image-based perception from a set of cameras capturing the AV’s surroundings.
To implement the perception pipeline, we utilize state-of-the-art DL model architectures, which
are known to achieve high accuracy on image classification tasks, as baselines. This allows us to
leverage these models’ abilities to capture fine-grained features from images for processing cam-
era data as part of an end-to-end AV control architecture. Mainly, we consider DenseNet-169 [18],
ResNet-34 [15] (used for end-to-end multi-camera AV control in [16]), ResNet-50 [15], and Car-
laNet [8] which is implemented specifically as an end-to-end AV control solution.

3.2 Imitation Learning for End-to-End Autonomous Vehicle Control

Next, the baseline models must be adapted to predict AV control outputs from camera input data.
This can be achieved by integrating an Imitation Learning (IL) component at the back-ends of the

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

75:8 A. Malawade et al.

Table 1. Contribution of Perception and IL Components in Terms of the Total Processing (top),
and How Modifying the head Components in SAGE Speeds up Model Executions (bottom)

DenseNet-169 [18] ResNet-50 [15] ResNet-34 [15] CarlaNet [8]

Perception 98.76% 97.74% 97.36% 59.64%
Imitation Learning (IL) 1.24% 2.26% 2.64% 40.36%
Modified head speedup 80.11% 79.97% 67.25% 13.39%
Overall Model speedup 27.01% 41.51% 34.39% 2.65%

baseline models to enable them to mimic a human’s behavior in regard to a particular task. In this
context, the driving algorithm’s core objective is to imitate the vehicle control outputs (steering
angle, brake pedal angle, and accelerator pedal angle) produced by a human driver for a given set
of input images [37]. IL models are typically trained via supervised learning, where the goal is to
map the input features captured at time-step ¢ to the corresponding human control output values.
To effectuate the learning process, a loss function, e.g., Mean Absolute Error (MAE), is used to
evaluate the difference between a model’s predictions and the ground truth values. Take the base-
line ResNet-50 for example, its vanilla network architecture constitutes five main convolutional
blocks, representing the main perception component, followed by a final fully-connected layer for
image classification tasks. To adapt the model for IL, we replace this fully-connected layer with an
IL component developed for end-to-end AV control where the final layer has three separate neu-
rons: one for each control output (steering, accelerator, brake). These outputs are used in both the
loss function for MAE computation and controlling the vehicle during deployment. We follow the
IL implementation in [8] where firstly, the output from the preceding perception component and
the corresponding pre-processed speed measurement at time-step ¢ are concatenated together as
the input to the IL component. Next, one of several processing branches is activated based on the
driver’s command value (e.g., navigation signal). This notion of branching is implemented to as-
sociate unique learning features with different driving intentions. For instance, the second branch
can only be activated whenever the driver issues the “Turn right” navigation signal because this
branch’s parameters were trained to take actions in anticipation of a right turn, dissimilar to what
parameters in other branches learned. The outputs from the active branch are the ones that are
directly applied to the AV control system at that particular time step ¢.

To summarize, a baseline DL-based solution for AV control comprises (i) a perception module,
(ii) a speed measurement processing unit, and (iii) an IL back-end. Henceforth, these DL models
adapted for IL shall have “IL-” preceding their original names, e.g., IL-ResNet-50. Moreover, to give
an idea, of each component’s contribution to the overall processing time, The upper part of Table 1
shows how perception can be the most computationally-intensive component, especially when uti-
lizing state-of-the-art image classification models. Note that the speed processing unit is executed
concurrently with the perception module, which dominates their combined execution time. Thus,
our structural modifications target the perception modules to maximize the performance impact.

3.3 Structural Alterations for Split Computing

Deploying the AV control algorithm on the edge, device is essential for such a mission-critical ap-
plication. However, dynamically assigning some or all of the processing tasks to a more powerful
cloud server if the wireless network conditions are favorable can lead to substantial latency and
energy savings on the edge, device. As was shown in the motivational example, directly offloading
inputs to the cloud can be inefficient at sub-par network conditions: a significant communication
overhead can arise from transmitting the raw input images, resulting in a poorer overall perfor-
mance than that of local execution. Prior work in [40] tries to address this by compressing the

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

A Split-Architecture Methodology for Efficient End-to-End Autonomous Vehicle Control 75:9

input image before transmission, but accuracy degrades significantly. One alternative in [23] pro-
poses scanning each layer within the DL model to identify those which output smaller data sizes
than the input as potential data offloading points in a split computing approach. However, this is
dependent on each architecture’s structure, deeming it ineffective for models that do not shrink
data size enough.

A more tractable alternative is modifying the DL model structure by injecting a bottleneck
amongst the first few layers. This bottleneck layer presents an optimal offloading point very early
in the model because its structure is designed to output exceedingly small-sized data. This idea,
is presented in [29-31], where it is implemented by initially dividing a DL model architecture
into two sections: a head and a tail. The structure of the tail remains unchanged. Whereas, a sim-
pler more efficient version of the head is constructed to mimic the functionality of the original
head section. The merits of constructing this new head model are twofold. Firstly, the new head
is structurally more efficient to run than the original head providing a local execution speedup,
as illustrated in the lower part of Table 1. Secondly, the head contains the bottleneck operating as
an encoder-decoder model rigorously transforming its input to lower dimensions (encoder) before
raising the dimensionality at its output (decoder), making the encoder serviceable as an efficient
data offloading layer. We follow the instructions provided in [30] on how to design a new head
model with a bottleneck from the original head. Structurally, both the bottleneck’s number of out-
put channels and its preceding layers’ complexity should be minimized. However, the modified
model’s accuracy still needs to be maintained by retraining the new head portion, as discussed
in the following subsection. The overhead for creating a bottleneck layer is analogous to that of
creating a small deep learning model manually, which is represented through the human design
effort of performing successive refinements in order to attain the desired degree of performance.
The main difference is the requirement to have an encoder-decoder structure within the overall
architecture to provide the efficient offloading point.

As an example to demonstrate the efficacy of the bottleneck, we compare performances at an
injected bottleneck in DenseNet-169 [18] against offloading at the input or one of the six layers
that provided the smallest output (o/p) sizes in the original DenseNet-169. In this analysis, shown
in Figure 3, we assume a 10 Mbps connection using the 200 x 88 sized images from [8] to calculate
the overall latency with the Jetson TX2 as the edge, device. Layers other than the bottleneck are
displayed according to their position within the DenseNet-169 architecture. The following trend
can be observed from Figure 3: as we go deeper in the network, the size of the output data at
each layer decreases, reducing transmission overheads as we progress. However, to reach those
lower layers, a considerable amount of execution needs to be performed locally. Thus, none of
these deployment options outperform offloading at the input layer. On the contrary, injecting a
bottleneck early in the architecture decreases the output size to a value much smaller than the
input, reducing transmission overhead. Moreover as a result of its early placement, intensive local
processing is not required prior to the bottleneck layer. All in all, offloading at the bottleneck is 14X
faster than offloading at the input. This result would also be reflected in the energy consumption.
From a formal perspective, the bottleneck dominating all other offloading strategies transforms
Equation (9) into a runtime binary decision problem, in which either local execution is selected at
extremely poor network conditions or offloading at the bottleneck is chosen otherwise.

3.4 Head Network Distillation (HND)

Knowledge Distillation (KD), presented in [5, 17], has emerged as an effective training technique
to render a compressed yet accurate version of a deeper, more complex neural network model. The
main reason this technique came about is that shallower neural networks, when trained conven-
tionally, achieve sub-par performance at many tasks compared to deeper networks. Hence, this

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

75:10 A. Malawade et al.

250
BN OuputSize B Edgelatency [TxLatency =
1251 Layers whose output size > input size 200
are not feasible offloading options. Data Transfer atthe decper layers 2
100 incurs lower tramsmission overhead _
g 150 £
El £
s >
3 \ 100 ms Constraint 00 £
50 ki
% 50
e N\
0 —_—— 0
Tnput TL1_poot _pool DBy \‘\co\'\ TL3_poot ppa_Ixieon® Bottlencek

Fig. 3. A comparison between offloading from: (i) the input, (ii) different perception layers in IL-DenseNet-
169 [18], or (iii) the proposed bottleneck layer. The edge, device is a Jetson TX2, the input is a 200 X 88 sized
image, and the effective data rate is 10 Mbps. The IL-DenseNet-169 layers displayed are the ones which
provided the smallest output data size. Note that the only options that do not violate the 100 ms latency
constraint are offloading at the input or offloading at the bottleneck, with the latter offering a 14X overall
speedup.

technique aims to leverage the deeper network as a teacher to distill its acquired knowledge into
the smaller student model. Consequently, student models trained through KD achieve superior per-
formance relative to their traditionally-trained counterparts [5]. This technique is advantageous
when high-performance neural network solutions are needed for edge, devices with limited re-
sources. Formally, the student’s loss function, which is minimized during training, needs to incor-
porate a distillation component as follows:

Lstudenr = a—l:orig + (1 -a)Lkp (10)

where £, is the conventional loss function using hard labels, whereas Lxp represents the KD
loss component, which can be computed using KL divergence, L2 loss, or logits regression [5].
Through providing a control variable «, the effective weight of each loss component can be fine-
tuned. This works because the student is learning by minimizing the divergence from a vector of
the teacher’s real values, rather than on a single label representation. Hence, the student becomes
more capable of capturing the finer details of how the final decision was reached and attempts
to learn a simple function to minimize the divergence from this vector of values, thus achieving
better generalization.

However, works in [6, 38] discuss how using more complex and accurate teacher models makes
training through KD for the student models more challenging as a result of the capacity mismatch.
In these scenarios, more training heuristics are introduced, and more restrictions are imposed on
the structures of student models. To avoid this in the context of the AV problem, KD is applied
between the original and modified head components rather than the entirety of models, making
them the teacher and student, respectively. This process entails training the learnable parameters
within the modified head model while maintaining the pre-trained tail parameters unchanged from
the original model. Consequently, the loss component for the student-head model can be computed
using the sum of squared difference, as presented in [30]:

Lip(X) = 3 llsn(x) = tr ()11 (1)

xeX

where s;, and tj, represent the output vectors from the head portions of the student and teacher on
an input x, respectively. For this loss function to be attainable, the final layers in both head models
must have the same dimensions. Figure 4 illustrates the Head Network Distillation (HND) process.
Note that although the loss function is computed between the final layers in the head modules, in
the final deployment, any layers succeeding the bottleneck are deployed on the cloud.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

A Split-Architecture Methodology for Efficient End-to-End Autonomous Vehicle Control ~ 75:11

Modified head Loss computed between these 1= 2 ail

0

Tail remains unchanged and its
weight values remain the same

Original head

Fig. 4. The head network distillation process to train the perception component with the bottleneck. Note
that in the final deployment, the bottleneck layer is to be the last layer on the edge, device.

3.5 Offloading Strategy

After training the modified model using HND and deploying it across the edge, and cloud, a run-
time strategy must be implemented to determine, for each time step, whether to continue execution
at the bottleneck or delegate the remaining DL processing tasks to the cloud. The corresponding
network conditions, mainly the effective upload data rate: rgj, govern this decision. Note that the

focusis on rl.Uj because the bulk of the data transmission (tens of kBs) occurs in the uplink, whereas

merely the final values (in bytes) are sent through the downlink. So, the task here is to devise a
policy based on a data rate threshold r;;, where:

(1) if (ril’]j > ryp): the edge, device offloads the result of computation at the bottleneck to the cloud
server where it is processed through the tail part of the model before sending the resultant
control inputs back to the edge, device.

(2) else: execution proceeds locally at the edge, device.

To estimate r;, the 100 ms constraint on AV processing, stated in Equation (9), must be con-
sidered, where all communication- and computation-related tasks must conclude within that time
frame. Moreover, there have to be expected performance gains to justify the offloading decision.
Therefore in our formulation, this decision is dependent on whether or not there exist potential
energy reductions from offloading. Hence, we can denote r,, as:

Upload Data Size d d
I'th = P PR P R —— s.t. (ryp > 0) and (Efomm + Efdlgee < E:aigle) (12)
100 - (Thead + Ttail + Ti,j + Ti,j)

edge
Thead

time between the edge, and cloud, respectively. The sum of Tf(ifl“d and TP represents the time the
edge, device is idle waiting for the cloud server to compute and transmit back the control inputs
for the AV. The r;, > 0 restriction guarantees that the sum of the latency estimates in the denomi-
nator does not exceed the 100 ms time constraint. Furthermore, the sum of the energy required to
edge

idle
than the energy required to execute the tail component of the model (Efjigle) in order to attain a

beneficial offload. Algorithm 1 demonstrates a runtime algorithm implementing this strategy. We
have built this algorithm to promote performance efficiency through offloading whenever the net-
work conditions are benign. Note that lines 12-14 represent a fail-safe mechanism accounting
for the network variability within a single time window, where it is vital to keep room within the
100 ms time window to invoke local tail execution if the result has not received from the cloud

where and Tl.RjTT represent the edge, head component’s execution time and the round-trip

offload the data at the bottleneck and the idle energy consumption (E{°™™ + E_ ") must be less

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

75:12 A. Malawade et al.

Pi€¢—Window Length (100ms) Window Length (100ms)—»t€—Window Length (100ms)—>i<¢
1G> v) r>7e Succdssful Rx oy Taillinvoked

Edge [Heaa (RSN Head % % N[Head T]

Local Comp. Timer|Deadline |Offloadin, Offtoading ™ ‘Y Failed Rx!

Cloud | B Tail [X] W Tait X |

Fig. 5. Three possible execution scenarios: local execution, successful offloading to the cloud, and unsuccess-
ful offloading to the cloud which entails rolling back to edge, computing.

ALGORITHM 1: Runtime Energy Optimization Algorithm

edge cloud pedge pedge
Thead’Ttall Eldle > tail

Input: Upload Data Size,
1 for each time step t do

2 Measure rlUj,rB,and TR.TT // obtain current network parameters
3 CalculateT ,Teh, and El.c"’”'” // using current network parameters
4 x = edge_ head() // execute locally until bottleneck
s | if (U > rep) and (i > 0) and (ES™™ + ES99¢ < ECY9¢) then

6 Tx_data(x) // transmit bottleneck output to the cloud server
7 Timer « reset() // initialize timer
8 edge_state « idle // edge goes to idle mode
9 if rx_event then

10 edge_state < wakeup // edge wakes up to receive server results
11 x = Rx_data()

12 else if Timer > (100 — (T::ge + €)) then

13 edge_state < wakeup // edge wakes up to execute tail model
14 x = edge_tail(x)

15 else

16 | x = edge_tail(x) // execute tail model locally
17 Input_Control(x) // apply control values to the AV

within the expected time limit. This is guaranteed by starting a counter each time window that
wakes the edge, device to resume execution if the remaining time within the window is equiva-
lent to that of the edge, tail model. Also, TR]TT in our case is obtained through averaging multiple
pings to a remote server, which accounted for < 10ms overhead, however, this value may vary de-
pending on the operational scenarios and the capabilities of network components involved in the
communication link. Figure 5 illustrates the three possible outcomes from our runtime strategy.
It should be noted that, since Algorithm 1 has a computational complexity of O(1), its execution
time is negligible compared to executing the DL models. As such, we excluded its execution time
from our calculations.

4 EXPERIMENTS
4.1 Experimental Setup

We evaluate SAGE on two edge, devices with significantly different computational capabilities: the
Nvidia Jetson TX2 (TX2) and the industry-standard Nvidia DRIVE PX2 AutoChauffeur (PX2). The

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

A Split-Architecture Methodology for Efficient End-to-End Autonomous Vehicle Control ~ 75:13

TX2 is capable of 1.33 TeraFlops (TFLOPS) while operating within a power budget of 15 Watts
(W). The more powerful PX2 is designed for real-world autonomous driving use-cases and has
been used in vehicles such as the Tesla Model S [1]. It is capable of 8 TFLOPS within a power
budget of 80 W. To serve as our cloud server, we used a Windows Desktop with an Nvidia 2080
Super, capable of 11.1 TFLOPS. It should be noted that, in a real-world deployment of SAGE, a
more powerful cloud server could be used to increase the benefits of offloading.

In terms of the dataset, we use the CARLA conditional IL dataset from [8]. It contains RGB im-
ages in 200 X 88 resolution and control/sensor values extracted from the CARLA urban driving
simulator [11]. We used the image data as well as the steering, accelerator, brake, and navigational
command information from the dataset for training and evaluating the accuracy of both our orig-
inal IL models as well as their bottlenecked counterparts. We implement and train our models in
PyTorch to assess the difference in error between the original and bottlenecked models. To evalu-
ate the model latency and energy consumption (Ticomp and Efamp from Equations (7) and (8)), we
directly obtained the measurements through the Caffe model timing API for the TX2. For the PX2
and cloud server, we used Nvidia’s TensorRT library to compile and optimize the models for the
hardware. TensorRT is designed to optimize the model architecture automatically (i.e., optimiz-
ing weights, parallelizing computations, combining redundant layers, etc.) to maximize inference
performance on a given platform.

In our experiments, we evaluated both 1-camera and 3-camera implementations of our IL models.
Our 1-camera experiments aim to demonstrate SAGE for a low-cost AV implementation consisting
of either a TX2 or PX2 as the edge, device equipped with a single forward-facing camera. This
implementation is practical for simple AV tasks such as adaptive cruise control, lane following, etc.
Aligning with this goal, we evaluate the energy consumption and feasibility of SAGE with both
low-resolution (88 x 200) and high-resolution (1280 X 720) camera data.

We also perform 3-camera experiments to demonstrate the feasibility of SAGE on more compre-
hensive AV hardware platforms. Multi-camera platforms are essential for real-world AV use cases
such as urban/highway driving and point-to-point travel. Thus, we evaluated our IL models using
three high-definition 1280 x 720 (720p) camera inputs on the PX2. Here, each model was modified
to include three separate perception modules to process data from each camera. The outputs of
the perception modules were then concatenated before being processed by the IL module, as was
done in [16].

To evaluate the communication power cost needed in Equation (3), we use the transmitting and
receiving power models derived in [19] for 3G, WiFi, and 4G LTE wireless technologies. Note that
5G energy evaluations are not available since we could not find any 5G-specific real-world power
models in the literature as we found for the other technologies. In terms of the computation energy
in Equation (8), we leverage the onboard sensing circuits within the TX2 board for estimating the
execution and idle powers, whereas we use an external power meter for the PX2. We assume
no packet losses in our evaluations, and as mentioned, we demonstrate SAGE’s feasibility with
widespread and currently available network technologies.

4.2 Performance Comparison of Original vs. Bottlenecked IL Models

Recall that the bottleneck acts as an encoder whose main purpose is to reduce the output data size
to attain an efficient data transmission if needed. This data reduction is mainly achieved through
reducing the number of output channels at the bottleneck layer (3 in the experiments). To give
perspective, the output channels for any layer in any of the original DL models discussed here
before introducing our alterations is 32, meaning that there is an ~ 10X reduction in output data
size at least. To ensure that the introduction of a bottleneck into our models does not impact their

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

75:14 A. Malawade et al.

Table 2. Comparison between the Original IL Models and Their Modified Counterparts
With bottlenecks After HND

Model Mean Absolute Error (MAE)
Steering Accelerator Brake

IL-DenseNet-169 0.0177 0.0356 0.0129
IL-DenseNet-169 w/HND 0.0159 (-0.0018) 0.0509 (+0.0153) 0.0195 (+0.0066)
IL-ResNet-34 0.0259 0.0506 0.0199
IL-ResNet-34 w/HND 0.0263 (+0.0004) 0.0545 (+0.0039) 0.0259 (+0.0060)
IL-ResNet-50 0.0260 0.0514 0.0180
IL-ResNet-50 w/HND 0.0266 (+0.0006) 0.0601 (+0.0087) 0.0330 (+0.0150)
IL-CarlaNet 0.0259 0.0546 0.0228
IL-CarlaNet w/HND 0.0204 (-0.0055) 0.0589 (+0.0043) 0.0326 (+0.0098)

Values in parentheses are the differences in error between the models.

Table 3. Hardware Performance Metrics for Processing One 88 x 200 Camera Input

Power (W) Latency (ms) Energy (J)
E2E Head Idle E2E Head Tail E2E Head
Server - - - - 2.238 - -
IL-DenseNet-169 TX2 5.446 5.430 1.659 215.543 8.043 207.5 1.1740 0.0437
PX2 43.58 47.42 40.23 10.420 1.112 9.308 0.4541 0.0527

Network Device

Server - - - - - 0.572 - -
IL-ResNet-34 TX2 595 5221 1.659 65.560 11.612 53.948 0.3901 0.0606
PX2 46.99 47.51 40.23 4.534 0.695 3.839 0.2131 0.0330

Server - - - - - 0.607 - -
IL-ResNet-50 TX2 5682 5.415 1.659 89.231 10.432 78.799 0.5070 0.0565
PX2 46.89 47.17 40.23 7.413 1.195 6.218 0.3476 0.0564

Server - - - - - 0.188 - -
IL-CarlaNet TX2 5391 5.039 1.659 28.795 8.727 20.068 0.1552 0.0440

PX2 4554 46.33 40.23 1.659 0.593 1.066 0.0756 0.0275

E2E = processing the entire model end-to-end on the edge, device. Cloud server power/energy is ignored because this is
not a constraint.

predictive performance, we evaluated the mean absolute error (MAE) of our models both with and
without the bottleneck, shown in Table 2. In the cases with the bottleneck, we used HND to train
the head of the bottlenecked model to mimic the original model’s head, as described in Section 3.4.
The results clearly show that the bottlenecked models perform very similar to the original models,
with only a slight increase in MAE. For context, an MAE increase of 0.01 corresponds to a 1%
increase in error between the model outputs and the outputs provided by the human driver.

4.3 Power, Energy, and Latency Evaluation on Hardware

From this point onwards, all IL models referred to are with bottleneck layers added. In Table 3,
we compare the power consumption, energy consumption, and latency of different parts of the
IL models on each hardware platform. By comparing the end-to-end (E2E) latency of the edge,
devices with the edge, head latency and server tail latency, we see that offloading at the head
provides ample time to account for network transmission latency. Furthermore, the table shows a
significant energy reduction when processing the head model instead of the entire model end-to-
end. These metrics illustrate the feasibility and potential benefits of our model.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

A Split-Architecture Methodology for Efficient End-to-End Autonomous Vehicle Control ~ 75:15

3G LTE WiFi
cT i PR Ed; I “T 7 === IL-DenseNet-169 (TX2)
0 ge-only 1 - -

107 1L-DenseNet-169 1011 computation 101 IL-ResNet-34/50 7, = |~~~ IL-ResNet-34 (TX2)
~ 081 i Ty = 340 Kbps 0841 0s] | 350 Kbps IL-ResNet-50 (TX2)
;;3 1 : 1/ Offloading at : - it-gdrlal\;\? (Té(gz)sz
g 06 H 0.6 ! the bottleneck I — IL-DenseNet-169 (PX2)
m

1 IL-CarlaNet r, = —— IL-ResNet-34 (PX2)
0.4 1 04 1=\ 1 1.02 Mbps IL-ResNet-50 (PX2)
—— IL-CarlaNet (PX2)
. . ————
T T
1 2 3
Effective Data Rate (Mbps) Effective Data Rate (Mbps) Effective Data Rate (Mbps)

Fig. 6. Energy consumption of IL models developed through SAGE while processing a single 88 x 200 camera
input at different data rates with 3G, 4G LTE, and WiFi. The transition point in each line occurs at r;p, which
is when offloading begins at the bottleneck. Before this point, the energy consumption for the edge-only

L edge edge . . Lo edge comm
prt{)icessmg is (B ,,q + E,qi1) After this point, the energy consumption is calculated as (E, ° , + E; +
edge
Eidle)
250
| IL-CarlaNet’s larger === IL-DenseNet-169 (TX2)
- 200 1 /| bottleneck size increases — == IL-ResNet-34 (TX2)
E 1504 data rate requirements IL-ResNet-50 (TX2)
§’ — == IL-CarlaNet (TX2)
£ 100 —— IL-DenseNet-169 (PX2)
= 504 —— IL-ResNet-34 (PX2)
IL-ResNet-50 (PX2)
0 T T L a— 1= ——— [L-CarlaNet (PX2)

0.0 2.5 5.0 7.5 10.0 125 150 17.5 20.0
Effective Data Rate (Mbps)

Fig. 7. End-to-end latency of each model for offloading at the bottleneck for an AV with a single 88 x 200
camera input. The end-to-end latency includes edge, head processing latency, wireless network latency, and
server processing latency at various network data rates. The red line indicates the 100 ms latency constraint.

4.4 Offloading Evaluation

4.4.1 Low Resolution. In Figures 6 and 7, we show results from evaluating models implemented
through SAGE with a single 200x88 resolution camera input using the TX2 and the PX2.

Figure 6 shows the energy consumption of each IL model with each technology type at differ-
ent values of effective data rate rU. Recall that these values are obtained based on the offloading
strategy in Section 3.5, where it is only feasible to offload when (rlUJ > rsp,) and (E7O™™ + Eieji ‘<

Ef:igle). For each model, observe the sharp change in Figure 6 at r;; where the model switches from

edge-only computation to cloud offloading. For IL-DenseNet-169, IL-ResNet-34, and IL-ResNet-50,
this switching point occurs at approximately 350-400 Kbps on both the TX2 and PX2.

Although offloading can meet the latency constraint for some rV values, the energy consumed
by the networking components must still be considered. As shown in Figure 7, IL-CarlaNet can
feasibly offload at 1 Mbps on both devices, but on 3G and 4G LTE, offloading consumes more power
than edge-only computation. Thus, we only consider r* values which are greater than r,, at which
offloading saves energy on the edge, device compared to edge-only processing. For IL-CarlaNet on
the TX2, r;p, is 7.7 Mbps on 3G, 3.62 Mbps on 4G LTE, and 1.02 Mbps on WiFi. This is likely because
IL-CarlaNet has a larger data size at the bottleneck than the other models, increasing communica-
tion latency and energy. Interestingly, on the PX2, IL-CarlaNet’s r;; is 13.66 Mbps for WiFi and
there is no 3G or 4G LTE r;, under 100 Mbps for IL-CarlaNet that saves energy compared to edge-
only computation. This is likely a result of the data size and the fact that IL-CarlaNet is a very

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

75:16 A. Malawade et al.

3G LTE WiFi

—— IL-DenseNet-169 (PX2)
IL-ResNet-34/50

5 5 5 —— IL-ResNet-34 (PX2)
“«— Iy = 16.5 Mbps IL-ResNet-50 (PX2)

S 44 y 44 4 —— IL-CarlaNet (PX2)
B [No fefasnb:%thro'ughput — WiFi offloading saves
g, or offloading 5] 3 more energy
= IL-DenseNet-169

24 2 J ry; = 30.5 Mbps 2

1 T T T 1 T T T 1 T T T

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Effective Data Rate (Mbps) Effective Data Rate (Mbps) Effective Data Rate (Mbps)

Fig. 8. Energy consumption of each model for processing a single 1280 x 720 (720p) camera input.

250
Similar latency for ——— IL-DenseNet-169 (PX2)
_ 200 A DenseNet and ResNets —— IL-ResNet-34 (PX2)
£ 150 4 IL-ResNet-50 (PX2)
2 —— IL-CarlaNet (PX2)
5 100
3
50 A
0 T T T T
0 20 40 60 80 100

Effective Data Rate (Mbps)

Fig. 9. End-to-end latency of each model for offloading at the bottleneck at different network data rates for
an AV with a single 1280 X 720 (720p) camera input.

small model and the PX2 has a moderately high idle power consumption (40.23W), meaning that
offloading would consume more power than simply running on the edge. Since IL-DenseNet-169,
IL-ResNet-34, and IL-ResNet-50, are larger models, there is a clear benefit to offloading. Thus, the
1, remains at 320-390 Kbps. The only exception is IL-ResNet-34 using LTE on the PX2, which has
an rp, of 550 Kbps, likely due to the efficiency of the PX2 compared to its idle power consumption
and the network latency at this data rate.

Overall, when offloading at the r;j, for each model and technology, the TX2 and PX2 consume
an average of 49.78% and 22.48% less energy, respectively, compared to edge-only computation.
Interestingly, when running edge-only, the PX2 consumes half as much energy as the TX2; how-
ever, when both offload at r;5, the PX2 consumes ~ 25% more energy than the TX2. This is likely
because the network latency outweighs the efficiency benefit of the PX2 at these low throughputs.
Regardless, both devices significantly reduce edge, energy consumption by offloading.

For all models except IL-CarlaNet, the r;j, is well within the operating range for all three network
technology types. Figure 7 clearly shows that all models can meet the deadline of 100 ms with
network throughputs as low as 320 Kbps. Above 15 Mbps, the benefit of higher data rates is minimal
for this data size.

4.4.2 High Resolution. The previous experiment demonstrated that our approach is feasible
and has significant benefits for low-resolution camera data. However, real-world AVs use high-
definition cameras to improve perception performance and safety [1, 20, 21]. To emulate this ap-
plication, we evaluate SAGE on camera data with a 1280x720 (720p) resolution, the resolution used
for Tesla Autopilot 2.0 systems. We only assessed the PX2 on this application since it is infeasible
for the TX2 to meet the deadline of 100 ms with this input size even when running on the edge,
only. The results of this experiment are shown in Figures 8 and 9.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

A Split-Architecture Methodology for Efficient End-to-End Autonomous Vehicle Control ~ 75:17

The larger input image size increases model sizes and data sizes at the bottleneck (59% larger for
IL-CarlaNet and 47X larger for all other models), increasing the edge, processing latency, commu-
nication latency, and energy consumption significantly. This change is reflected in the figures, as
IL-ResNet-34 and IL-ResNet-50 have an r;; of ~ 16.5 Mbps. This data rate is well within the nor-
mal operating ranges of 4G LTE and WiFi connections. IL-DenseNet-169 has r;; values of 30.53
Mbps and 16.65 Mbps on 4G LTE and WiFi, respectively, but does not have a practical r;, under
100 Mbps for 3G. This is likely because 3G consumes significantly more energy to upload data
than 4G LTE and WiFi. Also, TensorRT better optimized the IL-DenseNet-169 model since it con-
sists of a large number of relatively small layers, reducing its energy consumption significantly
compared to IL-ResNet-34 and IL-ResNet-50. This reduction decreases the potential benefits of of-
floading in this case. Compared to edge-only processing, offloading the models at r;; with 3G, 4G
LTE, and WiFi reduces edge, energy consumption by 48.54%, 41.96%, and 50.72%, respectively.
With high-resolution data, the energy consumption benefit is more than double that of offload-
ing low-resolution data, indicating that offloading is more beneficial for large, demanding edge,
models.

Since the data size at the IL-CarlaNet model’s bottleneck is 3.86% larger than that of other mod-
els, it requires a higher throughput (57.8 Mbps) than the other models to meet the deadline. Also,
IL-CarlaNet’s small model size reduces its edge, energy consumption, meaning that the communi-
cation energy consumption and idle power consumption could outweigh any potential savings. We
found no r;j, below 100 Mbps for any networking technology that reduces the energy consumption
of IL-CarlaNet below that of edge-only processing.

4.5 Multi-camera Evaluation

State-of-the-art AVs use multiple high-definition cameras to capture more information about the
vehicle’s surroundings to improve decision-making, control, and safety [1, 16, 20, 21]. This problem
is highly demanding in terms of energy consumption and network connectivity since the latency
constraint remains the same at 100 ms despite the significant increase in input and model size. To
evaluate SAGE on this application, we provide three 720p camera inputs to our models.

We adapt our models for this task by replicating the original 720p perception pipelines to form
three parallel perception pipelines (one for each camera input). The outputs of these pipelines are
then concatenated and passed to the IL portion of each model. Consequently, each of the paral-
lel perception pipelines contains one bottleneck layer from which data can be offloaded. During
offloading, we assume the data at all three bottlenecks are sent to the cloud simultaneously. To
reduce the maximum throughput requirement in this application, we quantize the values at the
bottleneck from 32-bit precision to either 16-bit or 8-bit precision before transmission. We tested
IL-DenseNet-169 with quantizations of 16-bits and 8-bits at the bottleneck layer and found that
the average difference in MAE compared to the original is just 1.6 X 107, which is impercepti-
ble. Thus, with 16-bit and 8-bit quantization, we reduce our throughput requirements by 50% and
75%, respectively, while having a negligible effect on performance. Once again, we only evaluate
the PX2 in this application since the TX2 cannot meet the deadline of 100 ms with the 3-camera
models.

In this application, all-cloud offloading approaches are entirely infeasible. Given that the in-
put data size (three 720p images) is 8.29 MB total, they would require a minimum throughput
of 664 Mbps to meet the 100 ms deadline. In contrast, the data size offloaded by our model with
16-bit bottleneck quantization is only 264 KB (31X smaller); with 8-bit quantization, this drops to
132 KB (62X smaller). In our experiments, we find that our approach is feasible at throughputs
easily achievable by WiFi and 4G LTE. Our experimental results are shown in Figures 10 and 11.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

75:18 A. Malawade et al.

3G LTE WiFi
15.0 1 15.0 15.0 1 —— IL-DenseNet-169 (PX2 16-bit)
<« 8 bitr | . | —— IL-ResNet-34 (PX2 16-bit)
125 i 125 16-bit IL-CarlaNet | 125 IL-ResNet-50 (PX2 16-bit)
3>: 1004 - iR 10.0 4 8-bit saves —— IL-CarlaNet (PX2 16-bit)
B : th more energy | IL-DenseNet-169 (PX2 8-bit)
g 754 ¢ 7.5 bR E NG 7.5 bbb [IL-ResNet-34 (PX2 8-bit)
: IL-ResNet-50 (PX2 8-bit)
5.0 o 5.0 — IL-CarlaNet (PX2 8-bit)
254 ' """"" p—— ' """"" 2.5 : : ; -..'.'IIZZ.fof:.'.'_'_'_ .'.'.'.".'_'_'_'_'.'.'.'.'.'
25 50 75 100 25 50 75 100 25 50 75 100
Effective Data Rate (Mbps) Effective Data Rate (Mbps) Effective Data Rate (Mbps)

Fig. 10. Energy consumption of each model for processing three 1280 x 720 (720p) camera inputs. Results
are shown for both 16-bit quantization and 8-bit quantization at the bottleneck.

250
8-bit reduces data rate —— IL-DenseNet-169 (PX2 16-bit)
requirement by ~50% —— IL-ResNet-34 (PX2 16-bit)
.\ b IL-ResNet-50 (PX2 16-bit)
150 N —— IL-CarlaNet (PX2 16-bit)

el T T~ | IL-DenseNet-169 (PX2 8-bit)
IL-ResNet-34 (PX2 8-bit)
IL-ResNet-50 (PX2 8-bit)
IL-CarlaNet (PX2 8-bit)

200 A

Latency (ms)

=3
S

v
]

20 40 60 80 100
Effective Data Rate (Mbps)

o

Fig. 11. End-to-end latency of each model for offloading at the bottleneck at different network data rates for
an AV with three 1280 x 720 (720p) camera inputs. Results are shown for both 16-bit quantization and 8-bit
quantization at the bottleneck.

As shown in Figures 11 and 10, with 16-bit quantization, IL-DenseNet-169, IL-ResNet-34, and
IL-ResNet-50 can all offload at r;, values of 51.57 Mbps, 37.98 Mbps, and 39.05 Mbps, respectively.
With 8-bit quantization, these r;; values drop to 25.79 Mbps, 18.99 Mbps, and 19.53 Mbps, respec-
tively. With 8-bit quantization, most 4G LTE and WiFi connections can easily support the r;; data
rates. Regarding 16-bit quantization, good quality 4G LTE and most WiFi connections should be
able to support the r;, data rates [22]. On 4G LTE and WiFi, these models consume 52.67% and
50.40% less energy, respectively, by offloading at their r,, throughputs. The energy reduction is
much more significant for IL-ResNet-34 and IL-ResNet-50 than IL-DenseNet-169, which we again
attribute to TensorRT’s model optimizations. It should be noted that, during offloading, all models
appear to have very similar energy consumption. Practically, this means that an AV can run much
larger models (e.g., use IL-ResNet-50 instead of IL-ResNet-34) without much difference in energy
consumption provided a network connection with a data rate greater than r,, is available most of
the time.

Once again, there is little benefit for offloading IL-CarlaNet due to the larger data size at the
bottleneck (1.01 MB) and the relatively low energy consumption of the model running on the
edge. With 16-bit quantization, IL-CarlaNet only saves energy on WiFi at a data rate above 99.51
Mbps. However, with 8-bit quantization, offloading becomes feasible for both 4G LTE and WiFi at
49.76 Mbps. Since IL-CarlaNet is a relatively small model, it may be better to run it on the edge,
device most of the time and only offload on WiFi when network throughput is high.

5 DISCUSSION

In this section, we discuss our key findings from our experiments as well as the limitations, feasi-
bility, and cost of SAGE. We also discuss future research directions.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

A Split-Architecture Methodology for Efficient End-to-End Autonomous Vehicle Control ~ 75:19

5.1 Overall Findings

We found that SAGE was feasible for most IL models for all hardware configurations. By offloading
at ryp, SAGE reduced edge, device energy consumption by 36.05% with one low resolution camera,
47.07% with one high-resolution camera, and 55.66% with three high-resolution cameras. More
energy could be saved by offloading at throughputs higher than r;; when possible. Additionally,
our results indicate that SAGE saves more energy by offloading when input data sizes are larger (i.e.,
when using more cameras or higher resolutions). SAGE also reduces upload data size by 96.81%
and 98.40% with 16-bit and 8-bit quantization, respectively, compared to directly offloading three
720p camera inputs. Besides, we found that our introduction of bottleneck layers only increased
mean error by ~ 1% and quantization had a negligible effect on error, meaning that SAGE could
be scaled to even higher camera resolutions easily.

5.2 Limitations

In our experiments, we found that our offloading methodology was not particularly effective for IL-
CarlaNet. With low-resolution data, it required a significantly higher r;;, to provide a benefit than
the other models; with high-resolution data and multiple cameras, there was no r;j, below 100 Mbps
that reduced energy consumption. In its current form, SAGE may not present useful offloading for
small models and models with a proportionally large bottleneck size due to the increased energy
cost of transmitting and receiving data compared to just running the entire model on the edge.

Additionally, although the 100 ms represents a reasonable worst-case bound, the current in-
dustry standard for real-time video processing is 30 frames/second, meaning that practically, the
bound for completing the AV prediction task can be even tighter reaching ~ 33 ms. From our ex-
perimental analysis, SAGE can meet this constraint when offloading the quantized version of the
single full HD image data transformation. However, it fails to satisfy this requirement in the case
of 3 HD camera inputs. Thus, experimentation with respect to AV industry-standard hardware and
5G wireless technology can provide a fair assessment of SAGE’s capability to meet these tighter
bounds.

Although our methodology has shown promise in terms of improving the overall performance
efficiency, several other factors can impact the extent of this improvement given some real-world
situations. It is possible that channel contention between users, packet loss, and channel coher-
ence issues related to vehicle speed and environmental conditions could limit the benefits of our
methodology. These effects are difficult to simulate accurately, so real-world experiments are still
needed to gauge the energy savings offered by our methodology in these situations.

Lastly, we did not evaluate our approach on modular pipelines. However, since modular
pipelines’ perception modules generate the most latency [28], SAGE could be directly applied to
these modules to achieve similar energy benefits. AV hardware platforms also handle other tasks
such as route planning and user interfaces, but these applications constitute a minute part of the
overall AV driving system. [28] has shown that the object detection, tracking, and localization
modules (i.e., components of the modular version of the perception pipeline) comprise over 98%
of the total computation, consuming 1.99 J per input. This proportion is very similar to the results
we show in Table 1. Based on our energy savings with 3-camera offloading, if we introduce a bot-
tleneck to the object detection module and offload the remaining modules to the cloud, we could
reduce energy consumption from 1.99 J to 0.896 J, a savings of 55%.

5.3 Practicality and Cost

Since SAGE does not require any hardware modifications to the AV or network infrastructure, it is
much more cost-efficient and flexible than other solutions such as ASIC design or 5G C-V2X/WAVE

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

75:20 A. Malawade et al.

installation. The only added costs are those associated with hosting a cloud server to run the
offloaded models. However, we demonstrated SAGE’s feasibility with a Desktop PC as the cloud
server, so hosting similar hardware in the cloud would likely be inexpensive. These costs could
even be passed on to consumers, where a vehicle owner could elect to extend their AV driving
range by paying for an offloading service as proposed in [41]. Compared to direct offloading, SAGE
has significantly lower throughput requirements, making it much more practical for real-world
deployment with the current networking infrastructure.

5.4 Future Work

In this work, we demonstrated the performance benefits attainable through the SAGE methodol-
ogy over two NVIDIA hardware platforms, JETSON TX2 and DRIVE PX2. Although our approach
is platform-agnostic, we intend to apply SAGE in our future works on different target hardware
with different capabilities, like the high performance inference Neural Processing Units (NPUs)
developed by ARM [4]. To ensure that our methodology does not introduce additional safety risks,
it would also be prudent to evaluate each model on closed-loop evaluations in future work, such
as judging each model’s success rate at driving point-to-point in a simulator as in other works
[7-9, 11]. Moreover, even though we demonstrated the merit of SAGE using the current prevalent
network technologies, this research area is still relatively new, and problems such as energy op-
timization with multiple servers, modular AV architectures, and 5G networks remain unstudied.
For example, SAGE can be adapted to address a multi-MEC server problem context. In this case,
the action-space would expand from the AVs’ perspective, for they would not only need to make
an offloading decision each time step, but also identify which server should be selected for data
transfer and task delegation. This would also entail additional dynamic factors to be considered,
such as each server’s load. Hence, a more sophisticated approach, like reinforcement learning [24],
would need to be applied to solve the problem each time-step, in which previous connection expe-
riences with the various servers could be leveraged through an in-place policy to guide the MEC
server selection. These problems are left to be addressed in future works.

6 CONCLUSION

Designing AV control algorithms that are both safe and energy-efficient is a complex challenge that
cannot be practically solved using simple direct offloading strategies. In this work, we proposed
SAGE: a methodology for splitting the computation of IL end-to-end control models between the
edge, and the cloud while minimizing network throughput requirements by adding bottleneck lay-
ers to the models. We evaluate SAGE on both large and small IL models and show that adding
bottleneck layers only results in a minor performance impact. Our experiments demonstrate that
SAGE reduces the edge, energy consumption of IL end-to-end control algorithms with both low-
resolution and high-resolution camera data by 36.13% and 47.07%, respectively. Additionally, we
show that SAGE is scalable to AVs that use three high-definition camera inputs, reducing energy
consumption by 55.66%, and can be practically implemented using current state-of-the-art AV
hardware (PX2) and networking infrastructure (3G, 4G LTE, and WiFi). On all three applications,
we demonstrate that the IL models can be offloaded at effective data rates that are well within the
constraints of current network infrastructure while still meeting AV latency deadlines. We also
find that the throughput requirements for offloading reduce by 50% and 75% when quantizing the
bottleneck output to 16-bits and 8-bits, respectively, with a negligible change in model performance.
Overall, we show that SAGE is practical for real-world, end-to-end control applications and can
significantly curtail AV energy consumption.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

A Split-Architecture Methodology for Efficient End-to-End Autonomous Vehicle Control ~ 75:21

REFERENCES

[1] 2016. All new Teslas are equipped with NVIDIA’s new Drive PX 2 Al platform for self-driving-Electrek. https://electrek.
€0/2016/10/21/all-new-teslas-are-equipped- with-nvidias-new-drive-px-2-ai-platform-for-self-driving. (Oct 2016).
[Online; accessed 9. Nov. 2020].

[2] Sam Abuelsamid. 2020. Nvidia cranks up and turns down its drive AGX orin computers. Forbes (Jun 2020). https://www.
forbes.com/sites/samabuelsamid/2020/05/14/nvidia- cranks-up-and-turns-down-its-drive-agx-orin-computers.

[3] Mohammad Abdullah Al Faruque and Korosh Vatanparvar. 2015. Energy management-as-a-service over fog comput-
ing platform. IEEE internet of things journal 3, 2 (2015), 161-169.

[4] ARM. arm npu Ethos-77. Retrieved April, 2021 from https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-n77.

[5] Lei Jimmy Ba and Rich Caruana. 2014. Do deep nets really need to be deep? In Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2 (NIPS’14). MIT Press, Cambridge, MA, USA, 2654-2662.

[6] Jang Hyun Cho and Bharath Hariharan. 2019. On the efficacy of knowledge distillation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV).

[7] Felipe Codevilla, Antonio M. Lopez, Vladlen Koltun, and Alexey Dosovitskiy. 2018. On offline evaluation of vision-
based driving models. In Proceedings of the European Conference on Computer Vision (ECCV). 236-251.

[8] Felipe Codevilla, Matthias Miiller, Antonio Lopez, Vladlen Koltun, and Alexey Dosovitskiy. 2018. End-to-end driving
via conditional imitation learning. In International Conference on Robotics and Automation (ICRA).

[9] Felipe Codevilla, Eder Santana, Antonio M Loépez, and Adrien Gaidon. 2019. Exploring the limitations of behav-
ior cloning for autonomous driving. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
9329-9338.

[10] Mingyue Cui, Shipeng Zhong, Boyang Li, Xu Chen, and Kai Huang. 2020. Offloading autonomous driving services via
edge computing. IEEE Internet of Things Journal 7, 10 (2020), 10535-10547.

[11] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. 2017. CARLA: An open urban
driving simulator. In Conference on robot learning. PMLR, 1-16.

[12] Stephan Eichler. 2007. Performance evaluation of the IEEE 802.11 p WAVE communication standard. In 2007 IEEE 66th
Vehicular Technology Conference. IEEE, 2199-2203.

[13] Jingyun Feng, Zhi Liu, Celimuge Wu, and Yusheng Ji. 2018. Mobile edge computing for the internet of vehicles: Of-
floading framework and job scheduling. IEEE vehicular technology magazine 14, 1 (2018), 28-36.

[14] Alejandro Gonzalez, Zhijie Fang, Yainuvis Socarras, Joan Serrat, David Vazquez, Jiaolong Xu, and Antonio M. Lopez.
2016. Pedestrian detection at day/night time with visible and FIR cameras: A comparison. Sensors 16, 6 (2016).

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In CVPR
2016. IEEE Computer Society, 770-778.

[16] Simon Hecker, Dengxin Dai, and Luc Van Gool. 2018. End-to-end learning of driving models with surround-view
cameras and route planners. In Proceedings of the european conference on computer vision (eccv). 435-453.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the knowledge in a neural network. In NIPS Deep
Learning and Representation Learning Workshop. http://arxiv.org/abs/1503.02531.

[18] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. 2016. Densely connected convolutional networks. CoRR abs/1608.
06993 (2016).

[19] Junxian Huang et al. 2012. A close examination of performance and power characteristics of 4G LTE networks. In
Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys’12). 225-238.

[20] Kyle Hyatt. 2019. Baidu unveils its camera-based Apollo Lite self-driving suite. Roadshow (Jun 2019). https://www.
cnet.com/roadshow/news/baidu-apollo-lite-camera-based-self-driving.

[21] Kyle Hyatt. 2021. Argo gives its self-driving vehicle hardware a big upgrade. Roadshow (Jan 2021). https://www.cnet.
com/roadshow/news/argo-self-driving-car-hardware-upgrade.

[22] Agbotiname Lucky Imoize, Kehinde Orolu, and Aderemi Aaron-Anthony Atayero. 2020. Analysis of key performance
indicators of a 4G LTE network based on experimental data obtained from a densely populated smart city. Data in
brief 29 (2020), 105304.

[23] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang. 2017. Neuro-
surgeon: Collaborative Intelligence between the cloud and mobile edge. In Proceedings of the Twenty-Second Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’17). 615-629.

[24] M. Khayyat, I. A. Elgendy, A. Muthanna, A. S. Alshahrani, S. Alharbi, and A. Koucheryavy. 2020. Advanced deep
learning-based computational offloading for multilevel vehicular edge-cloud computing networks. IEEE Access 8
(2020), 137052-137062.

[25] Young-Duk Kim, Guk-Jin Son, Chan-Ho Song, and Hee-Kang Kim. 2018. On the deployment and noise filtering of
vehicular radar application for detection enhancement in roads and tunnels. Sensors 18, 3 (2018).

[26] Peng-Yong Kong. 2020. Computation and sensor offloading for cloud-based infrastructure-assisted autonomous vehi-
cles. IEEE Systems Journal 14, 3 (2020), 3360-3370.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

75:22 A. Malawade et al.

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Xiaolu Li, Bingwei Yang, Xinhao Xie, Duan Li, and Lijun Xu. 2018. Influence of waveform characteristics on LIDAR
Ranging Accuracy and Precision. Sensors 18, 4 (2018).

Shih-Chieh Lin, Yungi Zhang, Chang-Hong Hsu, Matt Skach, Md E. Haque, Lingjia Tang, and Jason Mars. 2018. The
architectural implications of autonomous driving: Constraints and acceleration. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and Operating Systems. 751-766.
Yoshitomo Matsubara, Sabur Baidya, Davide Callegaro, Marco Levorato, and Sameer Singh. 2019. Distilled split deep
neural networks for edge-assisted real-time systems. In Proceedings of the 2019 Workshop on Hot Topics in Video Ana-
lytics and Intelligent Edges (HotEdgeVideo’19). Association for Computing Machinery, New York, NY, USA, 21-26.

Y. Matsubara, D. Callegaro, S. Baidya, M. Levorato, and S. Singh. 2020. Head network distillation: splitting distilled
deep neural networks for resource-constrained edge computing systems. IEEE Access 8 (2020), 212177-212193.
Yoshitomo Matsubara and Marco Levorato. 2020. Neural Compression and Filtering for Edge-assisted Real-time Object
Detection in Challenged Networks. (2020). arXiv:cs.CV/2007.15818

Mohanad Odema, Nafiul Rashid, Berken Utku Demirel, and Mohammad Abdullah Al Faruque. 2021. LENS: Layer
distribution enabled neural architecture search in edge-cloud hierarchies. In 2021 58th ACM/IEEE Design Automation
Conference (DAC).

Nate Oh. 2017. NVIDIA Announces Drive PX Pegasus at GTC Europe 2017: Level 5 Self-Driving Hardware, Feat. Post-
Volta GPUs. AnandTech (Oct 2017). https://www.anandtech.com/show/11913/nvidia-announces-drive-px-pegasus-
at-gtc-europe-2017-feat-nextgen-gpus.

Apostolos Papathanassiou and Alexey Khoryaev. 2017. Cellular V2X as the essential enabler of superior global con-
nected transportation services. IEEE 5G Tech Focus 1, 2 (2017), 1-2.

K. Samal, M. Wolf, and S. Mukhopadhyay. 2020. Attention-based activation pruning to reduce data movement in real-
time Al: A Case-Study on Local Motion Planning in Autonomous Vehicles. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems 10, 3 (2020), 306-319.

Kengo Sasaki, Naoya Suzuki, Satoshi Makido, and Akihiro Nakao. 2016. Vehicle control system coordinated between
cloud and mobile edge computing. In 2016 55th Annual Conference of the Society of Instrument and Control Engineers
of Japan (SICE). IEEE, 1122-1127.

Ardi Tampuu, Tambet Matiisen, Maksym Semikin, Dmytro Fishman, and Naveed Muhammad. 2020. A survey of
end-to-end driving: Architectures and training methods. IEEE Transactions on Neural Networks and Learning Systems
(2020).

Gregor Urban, Krzysztof J. Geras, Samira Ebrahimi Kahou, Ozlem Aslan, Shengjie Wang, Rich Caruana, Abdelrahman
Mohamed, Matthai Philipose, and Matt Richardson. 2017. Do Deep Convolutional Nets Really Need to be Deep and
Convolutional? (2017). arXiv:stat. ML/1603.05691

Korosh Vatanparvar and Mohammad Abdullah Al Faruque. 2018. Design and analysis of battery-aware automotive
climate control for electric vehicles. ACM Transactions on Embedded Computing Systems (TECS) 17, 4 (2018), 1-22.
Xiufeng Xie and Kyu-Han Kim. 2019. Source compression with bounded DNN Perception Loss for IoT edge computer
vision. In The 25th Annual International Conference on Mobile Computing and Networking (MobiCom’19). Association
for Computing Machinery, New York, NY, USA, Article 47, 16 pages.

Ke Zhang, Yuming Mao, Supeng Leng, Sabita Maharjan, and Yan Zhang. 2017. Optimal delay constrained offloading
for vehicular edge computing networks. In 2017 IEEE International Conference on Communications (ICC). IEEE, 1-6.
Ke Zhang, Yuming Mao, Supeng Leng, Quanxin Zhao, Longjiang Li, Xin Peng, Li Pan, Sabita Maharjan, and Yan
Zhang. 2016. Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE access 4
(2016), 5896-5907.

Received April 2021; revised June 2021; accepted July 2021

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 75. Publication date: September 2021.

