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Abstract—The recent developments in wearable devices and the
Internet of Medical Things (IoMT) allow real-time monitoring
and recording of electrocardiogram (ECG) signals. However,
continuous monitoring of ECG signals is challenging in low-
power wearable devices due to energy and memory constraints.
Therefore, in this article, we present a novel and energy-efficient
methodology for continuously monitoring the heart for low-
power wearable devices. The proposed methodology is composed
of three different layers: 1) a noise/artifact detection layer to
grade the quality of the ECG signals; 2) a normal/abnormal beat
classification layer to detect the anomalies in the ECG signals;
and 3) an abnormal beat classification layer to detect diseases
from ECG signals. Moreover, a distributed multioutput convolu-
tional neural network (CNN) architecture is used to decrease the
energy consumption and latency between the edge—fog/cloud. Our
methodology reaches an accuracy of 99.2% on the well-known
MIT-BIH Arrhythmia Data Set. Evaluation on real hardware
shows that our methodology is suitable for devices having a
minimum RAM of 32 kb. Moreover, the proposed methodology
achieves 7x more energy efficiency compared to state-of-the-art
works.

Index Terms—Arrhythmia, electrocardiogram (ECG), heart
monitoring, Internet of Medical Things (IoMT), wearable
systems.

I. INTRODUCTION

LECTROCARDIOGRAM (ECG) signals are widely used
Eto detect cardiovascular diseases, which are the leading
cause of death globally [1]. Moreover, according to the American
Heart Association, the early detection of these diseases is crucial
for patients’ health [2]. Clinical ECG is the primary tool for
monitoring cardiac activity. However, it can only be used for
a limited time, and continuous monitoring of the patients’
condition is still required outside clinical hours. Traditionally,
ambulatory ECG devices are used to monitor the cardiac activity
for a long duration to be further investigated by clinicians. For
example, the Holter [3], a battery-operated portable device,
is used to record and store long-term ECG signals. However,
these devices cannot provide real-time feedback to users, and
cardiologists need to analyze long-term recordings, which is a
very time consuming and expensive process.
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To solve this issue, several heart monitoring devices and
solutions have been proposed and developed both in academia
and industry [4], [5], thanks to rapid development on the
Internet of Medical Things (IoMT) and smart health care
systems. These heart monitoring devices or systems can be
categorized into two different groups according to their meth-
ods. The first group [6], [7] analyzes long-term recorded
ECG signals offline by using remote cloud servers. The uti-
lized algorithms in the cloud provide a powerful classification
performance. However, they cannot be implemented on the
edge node due to their memory requirements and high energy
consumption. Moreover, since all computing occurs in the
cloud, the latency of the system increases, which weakens
the user experience [8]. The latency is an essential factor for
heart monitoring applications because the rapid detection of
cardiovascular diseases is critical for people’s lives. The sec-
ond group [9], [10] provides a real-time solution by doing
computation on the edge side rather than the cloud; however,
the amount of time the device is monitoring the cardiac activ-
ity is limited due to constraints on battery life, which is the
most valuable resource for the edge of the network [11].

Due to these problems, many people live for years unaware
of their illness [12]. Some cases reported that deaths due
to cardiovascular disease could have been prevented if the
disease was detected earlier [13]. Therefore, continuous real-
time ECG monitoring can be a vital solution for people with
cardiovascular diseases.

The main challenge of designing a continuous real-time
monitoring system is adhering to the devices’ energy and
memory constraints since processing requires lots of memory
and is computationally intensive. To overcome this problem,
existing works have proposed performing the computation at
the proximity of data generation sources, which are the edge
devices in this case, using fog or edge—cloud [14]-[16] archi-
tectures by transferring real-time signals to these nodes of
network. However, this transfer operation requires tremendous
communication power, which decreases the device’s battery
life and makes it difficult to sustain continuous monitoring
over long periods. This kind of the IoMT system requires
significant energy resources on the edge device, and is vul-
nerable to privacy issues [17], [18]. Several methods have
been proposed to encrypt the ECG signals. However, they
require additional energy and memory at the edge [19], [20].
Moreover, the transferred ECG signals might be contami-
nated with noise or artifacts caused by the users’ mobility,
which results in further unnecessary energy consumption. In
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summary, the key research challenges associated with con-
tinuous heart monitoring are: 1) developing resource-efficient
algorithms on the edge and 2) detecting abnormalities in ECG
signals as fast as possible to minimize latency.

To address the above-mentioned challenges, this article
proposes a novel heart monitoring methodology on a hybrid
edge—fog/cloud IoMT. In this article, we define “edge” as the
computing platform where the data acquisition is performed,
and “fog” is defined as the device possessing further comput-
ing and network resources along the path between data sources
and cloud data centers, e.g., a smartphone. Throughout this
article, “edge—fog/cloud” is used since the proposed method-
ology is a solution for any two-tiered systems employing edge-
cloud, edge—fog, or fog—cloud architectures. The proposed
methodology delivers a layered software pipeline architecture
by distributing the layers between edge and fog/cloud. The first
layer running on the edge is designed to detect Noise/Motion
artifacts. This detection aims to conserve energy resources
through avoiding unnecessary artifacts transmission. The sec-
ond layer, running as well on edge, classifies normal, and
abnormal beats in the ECG. If the beats are classified as nor-
mal, the classification is considered complete, and only the
heart rate value of that beat is transmitted instead of the raw
signal. Else, the beats are classified as abnormal and are sent
to the next layer in the hierarchy, which could be a fog or
cloud, to be further classified. Moreover, these first two-layers
can further reduce the energy consumption of the edge device
through controlling the data sampling rate. If the signal is not
classified as clean or the recorded ECG signal has no abnormal
beats, the control unit changes the sampling rate to the degree
that both classifiers still maintain high-performance classifica-
tion. The last layer, running on fog or cloud, is a distributed
multioutput convolutional neural network (CNN) to classify
several cardiovascular diseases.

A. Motivational Example

We have done several experiments to show the advantages
of the proposed methodology for continuous heart monitor-
ing. In Case I, the 1-h raw ECG, which are acquired digital
signals from sensors, are transferred to the fog/cloud server
without any investigation or operation on the edge for noise
and artefacts. Then, the energy consumption of these transfer
operations is calculated for four different communication tech-
nologies: 1) Wi-Fi; 2) LTE; 3) 3G; and 4) BLE. For Case II,
the 1-h ECG record is partitioned into two parts: 1) a 50-min
segment of clean ECG which has no artifacts with just regular
beats and 2) a 10-min segment of the ECG signal, simulated as
a noisy signal. The required communication energy for trans-
ferring this record is calculated again. Finally, in Case III the
ECG signal is divided into three parts: 1) a 40 min regular
beats segment; 2) a 10 min noisy signal; and 3) 10 min of the
recording including several arrhythmias. The energy consump-
tion for all cases’ transfer operation is shown in Fig. 1. While
calculating the energy consumption of these cases, we have
followed the wl/bit values given in [23] for the Wi-Fi, LTE,
and 3G. For BLE protocol energy consumption, we performed
the profiling for data exchange on an EFR32BG13 Blue Gecko
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Bluetooth Low Energy SoC which has 32 bit ARM Cortex-M4
core with a 40-MHz maximum operating frequency.

Since the raw ECG data is transmitted without any classi-
fication on edge in Case I, its communication energy is the
highest among the three cases regardless of the communication
methods as shown in Fig. 1. However, when we applied our
proposed methodology to detect the normal and noisy beats
in the ECG signal and filtered out them before transmitting
to the fog/cloud node (Cases II and III), the communication
power can be decreased by 1000x and 3x for Cases II and III,
respectively. Also, to make a fair comparison with different
cases, we measure the additional computational energy con-
sumption of our proposed methodology to detect the artifacts
and abnormal beats in the ECG signals for Cases II and III.
We observe that the algorithm’s energy consumption approx-
imately 1.5 J for an hour, which makes Cases II and III still
much more energy-efficient than Case I. Moreover, it is known
that arrhythmias are not as frequent in people like Case III
(10 min of an hour), so Case II will be more common for
most of the people. Therefore, we observe that detecting the
normal and noisy ECG beats in edge devices could save energy
and time while reducing the communication channel usage and
fog/cloud server load.

B. Novel Contributions

The novel contributions of this article are as follows.

1) A real-time continuous heart monitoring system that
runs on a hybrid edge—fog/cloud architecture while being
energy and memory efficient.

2) A novel layer-wise distributed multioutput CNN archi-
tecture that is optimized for decreasing the energy
consumption and latency between edge and fog/cloud.
To the best of our knowledge, we are the first to
investigate the signal’s physiology in distributing the
computational complexity of architecture between the
different nodes of a network.

3) Evaluation of our proposed methodology on the well
known MIT-BIH data sets [22], and PhysioNet/CinC
(PICC) 2011 challenge [21], [25]. It shows that, our
proposed methodology reaches or outperforms the cur-
rent state-of-the-art works in terms of classification
performance [26], [27], [34]-[36].
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Fig. 2. Overview of our proposed methodology.

4) Evaluation on real hardware shows that each layer
of the proposed methodology achieves up to 7x
more energy efficiency compared to the state-of-the-art
works [34]-[36].

The remainder of this article is organized as follows. In
Section II, we review related works for heart monitoring
systems. Section III describes the proposed methodology.
Section IV shows the experimental setup. Section V discusses
the results. Finally, a conclusion is drawn in Section VII.

II. RELATED WORK
A. Quality Assessment of ECG

Signal quality assessment (SQA) is the critical first step
in continuous heart monitoring since it eliminates the noisy
signals before the classification. Mostly, SQA methods grade
ECG into two groups: 1) acceptable and 2) unacceptable.
Existing methods extracted several features from the ECG
signals and graded them using heuristic rules [26] or
machine learning-based classifiers such as Support Vector
Machine [27], [28]. For example, Clifford ef al. [27] proposed
extracting six different features based on time and frequency
domains, whereas the extraction of these features depends
on the accurate and reliable detection of the QRS com-
plex in noisy ECG signals, which is a challenging task. To
avoid detection of QRS complex, Satija et al. [26] exam-
ined three main causes of noise in ECG: 1) abrupt change;
2) signal absence; and 3) high-frequency noise. Since the
authors do not detect the QRS complexes in ECG signals, they
investigated the 10-s windows based on time and frequency.
However, since the number of samples increases with a longer
duration of ECG recording, the feature extraction-related algo-
rithms’ computation requirements increase, especially when
the frequency-domain features are used. Since these SQA
algorithms run in the proximity of data sources (edge of
the networks) during acquisition, they need to be energy and
memory efficient. Therefore, in this article, we proposed a
lightweight SQA which can detect noise and artifact.

B. Heartbeat Classification of ECG Signals

A wide range of automatic heartbeat classification methods
has been proposed, and these existing methods may be catego-
rized into two groups. The first method [7], [9] extracts some
handcrafted features from the ECG signals and feeds them
to a classifier like SVM. For example, Venkatesan et al. [7],
extract six frequency-domain features from the heart rate for

arrhythmic beat classification. Similarly, Tang et al. [9] used
32 time-domain features with linear kernel SVM to classify
heartbeats. However, this feature extraction process increases
the computational complexity and memory. Moreover, these
extracted features may not represent the complete characteris-
tics of the ECG and restrict the performance.

The second method is to directly send the original waveform
to a neural network for classification, known as the end-to-end
classification method to avoid the feature extraction process
since the neural networks do not require feature engineering
as they automatically extract features. For example, in [34],
authors use a combination of the bidirectional recurrent neu-
ral network (BRNN) and CNN model to detect four kinds
of heartbeats. Compared to feature-based classification meth-
ods, this method can reach higher accuracy. However, this
combined architecture has tens of millions of parameters, mak-
ing it unsuitable for the edge node with memory and energy
constraints. Similarly, Wang et al. [36] proposed a two-stage
neural network, which combines a multilayer perceptron and
a CNN. The first stage classifies the ECG beats as normal or
abnormal, and the second stage classifies the abnormal beats to
several arrhythmias. Moreover, their proposed solution uses an
additional classifier for discriminating abnormal beats, which
introduces more parameters and energy consumption to the
system. However, our proposed methodology uses a distributed
multioutput CNN architecture to detect and filter out the regu-
lar beats during run-time without using any additional features
and classifiers.

III. OUR PROPOSED METHODOLOGY

The proposed methodology, shown in Fig. 2, consists
of three main layers and several processing blocks whose
components are detailed in the following section.

A. Processing and Control Units

1) Filtering: We use a fifth-order linear phase bandpass
filler with a Hamming window cut-off frequencies
(fi =1 Hz and f, = 50 Hz).

2) R-Peak Detection: To detect the R-peaks, we have used
the Pan-Tompkins algorithm [29], a real-time QRS
complex-based heartbeat detection approach that has an
accuracy of up to 99.5%.

3) Beat Segmentation: We take F/3 samples before and
F,/2 samples after the R-peak. The highest heart rate
is chosen as 180 beats per minute (BPM) to avoid
overlapping two beats in a window.
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4) Heart Rate Calculation: The heart rate is calculated

using the following equation:
60

(Riy — Ri-1y)/Fs
where HR ;) is the heart rate of the ith heartbeat segment
in BPM. R(; is the location of the R-peak in the ith
heartbeat segment, and Fj is the sampling frequency.

5) Sampling Rate Control: This unit controls the ECG
acquisition sampling rate according to the output of two
different decision units. The first decision unit checks the
ECG signal’s quality. If it detects a noisy ECG signal,
the sampling rate is decreased to the degree that all com-
ponents maintain the high classification performance.
The second decision unit monitors the incoming beats
and classify them as normal and abnormal beats. If the
beats are classified as normal, this unit decreases the
sampling rate to the same degree.

HR(; = (D

B. Noise/Artifact Detection Layer

The ambulatory ECG signals are mostly contaminated with
low-frequency motion artifacts that cannot be removed using
simple filtering. Therefore, the first layer is designed to detect
these artifacts. Since this algorithm runs on the edge, we have
focused on developing a lightweight and robust algorithm to
increase the device’s battery life. We have observed that a rule-
based decision method is superior compared to the classical
machine learning algorithms (SVM, RF) considering energy
efficiency while maintaining the classification performance for
this task. Therefore, a rule-based algorithm is used to clas-
sify signals into two groups acceptable and unacceptable. The
ECG signals are divided into 10-s windows. First, the windows
are normalized with respect to the maximum amplitude value.
The mean of a normalized window is obtained and compared
with a threshold (1) to detect the absence of an ECG signal. If
the mean is lower than the threshold, the window is classified
as unacceptable and the signal is discarded.

The abrupt changes and baseline wander are investigated
using a moving standard deviation of the 10-s ECG signal. In
this method, a window of a specified length (2F;/5) is moved
over the signal with a 70% overlap. The deviation of the signal
(o7) is computed over the data by

N
1
o = m E 1|Xi["] - ,bLi|2 ()
n—=

where o; and w; are the corresponding standard deviation and
mean of the window, respectively. An example of o; wave-
forms is shown in Fig. 3. When the ECG signal has an abrupt
change, the algorithm suppresses the beats and brings the arti-
facts forefront. Finally, to detect the abrupt changes, the mean
of the waveform (o;) is obtained and compared with a thresh-
old, which is set to 0.2 based on acceptable level of noise. If
the mean is higher than the threshold, the signal is classified
as acceptable.

The proposed method has the following advantages: 1) it
is sensitive to abrupt changes and baseline wanders where if
a small portion of the signal is corrupted with an artifact or
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Fig. 3. Acceptable and the Unacceptable ECG signals from PICC [25] and
obtained o; waveforms.

noise, it is detected and ignored and 2) it is energy efficient
since it can run at a low sampling rate of 100-120 Hz without
losing performance, and it does not need complex features to
classify.

C. Normal/Abnormal Beat Classification

While classifying the normal and abnormal beats, we have
followed the Association for the Advancement of Medical
Instrumentation (AAMI) instructions, which are the golden
standard for automatic heartbeats classification. According to
the AAMI standard, heartbeats can be divided into N (normal),
S (supraventricular ectopic beat), V (ventricular ectopic beat),
F (fusion beat), and Q (unclassified beat) [30]. Therefore, the
beats are divided into two groups for that layer. The first
group only contains the normal beats N from the data sets,
and the second group is composed of other types of heart-
beats (S, V, F, and Q), which are the abnormal beats. If a beat
is classified as normal in this stage, it is not transmitted to
the fog/cloud node to save energy. Nevertheless, if a regu-
lar beat is mistakenly classified as abnormal, it can still be
corrected by the next classifier. So, we need to ensure that
the abnormal beats are classified with high sensitivity in that
layer.

It is known that during arrhythmias, the heart rate deviates
from its normal thythm. These heart rate variations are com-
mon in the premature beats; as the name suggests, they occur
when the ventricles or atrial contract too soon, out of sequence
with the normal heartbeat. Moreover, as shown in Fig. 4, the
waveform of the abnormal beats is different from the regular
beats. Therefore, the heart rate variability (HRV) and corre-
lation of the beats are indicators of abnormal beats. We have
used these together with the result of the first output block to
decide whether a beat is normal or abnormal.

If the first output block classifies a beat as abnormal, the
output of the first convolutional is directly sent to the next clas-
sifier to be further examined. However, if a beat is classified
as normal, other indicators just confirm the decision. The first
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indicator is the HRV between three consecutive beats, which
is calculated as

Fs (; - L)‘ )
RR(,'_l) RR;

where RR; is the latest interval and F's is the signal’s sampling
rate. Fig. 5 is the whisker plot for HRV values of different
beats. The threshold value is set to 10 based on variances of
normal and abnormal beats. If the calculated HRV value is
greater than 10, the last beat is classified as abnormal even
though the first block classified it as a regular beat. It is
also observed that most of the normal beats with HRV values
greater than 10 are either before or after abnormal beats.

As a second indicator, we have calculated the correlation
of a template and classified beat. While creating a template,
we have used 20 different regular beats. These regular beats
are aligned according to their R-peak and averaged, then the
correlation is calculated as

_ U QAT = \ (xln] — g
,O(T,x)—N_IZ( - )( - ) “)

n=1

where o7 and ur are the standard deviation and mean of the
template beat (7) and o, and p, are the standard deviation
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TABLE I
MULTIOUTPUT CNN ARCHITECTURE DETAILS

Layer Kernel | Stride | Activation | Output # of
Name Size Size Function Shape | Param.
Input - - - 105x1 0
Conv 1 64 2 ReLU 53x5 325
Pooling 1 2 2 - 27x5 0
Batch Norm. - - 27x5 10
Fc 1 - - Softmax 2x1 272
[ Total Number of Parameters on Edge [ 607 |
Conv 2 32 1 ReLU 27x15 2415
Pooling 2 2 2 - 14x15 0
Batch Norm - - - 14x15 30
Grouped Conv 10 1 - 14x75 825
Pointwise Conv 1 1 Relu 14x5 380
Pooling 3 2 - 7x5 0
Batch Norm - - - 7x5 10
Dropout - - - 7x5 0
Fc 2 - - Softmax 4x1 144
[ Total Number of Parameters on Fog/Cloud [ 3804 |

and mean of the incoming beat, respectively. If the correlation
coefficient is lower than 0.2, the normal beat label is changed
to abnormal and forwarded to the next layer running in the
fog/cloud for further classification.

D. Distributed Multioutput CNN

Our distributed multioutput CNN consists of three convo-
lutions and two output blocks. The first and last convolution
blocks are followed by an output block. Fig. 6 shows the layout
of the designed CNN. The first and third convolution blocks
consist of one convolution layer passed through ReLLU acti-
vation, one max-pooling layer, and one batch normalization
layer. The third convolution block is composed of depthwise
and pointwise convolutions. The depthwise convolution block,
which connects to each feature map, learns frequency-specific
filters. The pointwise convolution block is placed after that to
mix the feature maps. Also, closer inspection of the Table I
shows that the kernel sizes of designed CNN vary from 64 to 1,
which enables the model to learn different features from the
heartbeats. Since the shorter filters can cover limited samples,
they are used to extract more temporary and rapid oscillatory
changes in the ECG, and the longer filters are used to extract
more long-term features such as abnormalities in the T-wave.
Before the second output block, a dropout value of 0.2 is used
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to prevent overfitting during training. Each of the output blocks
consists of one fully connected layer passed through the soft-
max activation. The details of the architecture parameters for
each of the layers are given in Table L.

We design the distributed multioutput CNN considering the
current limitations and resource constraints of the state-of-
the-art works. It is known that the number of parameters and
computational operations increases with the number of layers
which leads to the consumption of more energy and memory
resources. To solve these problems, we have distributed the
CNN layers between edge and fog/cloud so that the introduced
additional energy consumption and memory of the CNN to
the edge are decreased. This fact may be seen from Table I.
The total number of parameters before the second convolu-
tion block is 607, whereas CNN has 3804 more parameters
after that. This clearly shows that by distributing the CNN
over nodes, the memory requirement of the edge node can be
decreased by 87%.

Another advantage of this proposed solution is that
we decreased the communication energy requirements by
~ 1000x using the first output block. The first output block
is designed to classify beats as normal or abnormal during
run-time using the extracted features from the first convolu-
tion block. By adding this block, normal and abnormal beats
can be distinguished without the need to invoke the other two
convolutional blocks. We have observed that this classification,
which uses the first convolution block, can reach up to 95%
accuracy. Therefore, further processing of those regular beats
would be redundant. Through avoiding this redundant opera-
tion, the system’s energy consumption and inference time are
decreased from both communication and computation.

IV. EXPERIMENTAL SETUP
A. Training Distributed Multioutput CNN Classifier

We use data from MIT-BIH Arrhythmia Data Set [22],
which contains 48 half-hours of two-channel ambulatory ECG
recordings, digitized at 360 samples per second, obtained
from 47 subjects, and MIT-BIH Supraventricular Arrhythmia
Database [31] which includes 78 half-hour ECG recordings
with digitized at 120 Hz. We combined these two data sets to
increase the number of abnormal beats. For both data sets, only
the lead-II ECG signals are used for experiments. For a fair
comparison with published results, we follow the evaluation
settings that was most frequent in the state-of-the-art-works.
We have excluded the four paced records (102, 104, 107, and
217) from the MIT-BIH data set [22].

ECG beats in 22 recordings from the MIT-BIH data set are
included to training set. Additionally, beats from MIT-BIH
Supraventricular Arrhythmia Database [31] are added to the
training set. In the training set, 80% of ECG beats are used
for training, and 20% of ECG beats are used for validation
(as shown in Fig. 7). Since the sampling rates of the two data
sets are different, we have resampled them to 130 Hz. The
44 records (22 records from the training set and 22 records
which the model has never seen before) from the MIT-BIH
data set [22] are used as test data. The network was trained
with Glorot initialization of the weights [37], we used the
Adam optimizer [33] with the default parameters 81 = 0.9
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and By = 0.999. The learning rate is initialized to 0.001 and
reduced by a factor of 10 when the validation accuracy stopped
improving for 15 consecutive epochs. The training continues
until 100 successive epochs without validation performance
improvements with a maximum of 500 epochs. The best model
is chosen as the highest accuracy rate on the validation data.
After training the complete CNN architecture, the weights of
the first convolution block are obtained to train the fully con-
nected layer at the first output block. The same training data
is given as input to the first convolution block again. Then, the
output of the first batch normalization layer is fed to the fully
connected layer instead of the second convolution block to
classify beats as normal and abnormal. During backpropaga-
tion, only the weights and biases of the fully connected layer
are calculated from the gradient of classification loss. In other
words, while training the first output block, the parameters of
the first convolutional block are not changed.

B. Target Wearable Device

Our work is designed for low-power and low-memory wear-
able devices. For example, SmartCardialNYU [24] device
is equipped with an ultra-low-power 32-bit microcontroller
STM32L151 containing an ARM Cortex—M3 with a maximum
clock rate of 32 MHz. It has a 48-kb RAM, 384-kb Flash, and
a standard 710-mAh battery. The device captures ECG signals
using a single lead ECG sensor. We have tested our work on
a BLE standalone module similar to [24] with a 32-bit ARM
Cortex-M4 core with 40-MHz maximum operating frequency
and 64 kb of RAM. Our profiling showed that algorithms peak
memory usage do not exceed 30 kb of RAM.

V. RESULTS
A. Performance of Noise/Artifact Detection

First, the MIT-BIH Arrhythmia Data Set is used to evaluate
the performance. The recordings include clinically significant
arrhythmias, which have quite different waveforms from the
normal ECG, so it is essential to classify them as not noisy
ECG signal to validate the algorithm. The performance of the
proposed method is evaluated using four benchmark metrics,
sensitivity (Se), accuracy (Ac), specificity (Sp), and positive
predictivity (PPV) which are defined as follows:

TP
Se=—— )
TP + FN
TN
Sp= —— 6
P = INTFP ©®
TP
PPV = — (7
TP + FP
TP + TN
Ac = (8)
TP + TN + FN + FP
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TABLE II
PERFORMANCE OF THE ALGORITHM IN MIT-BIH FOR DETECTION OF
NOISE/ARTIFACT
Segment  Total # of True False Sp Ac Se PPV
Type Segments  Positives  Negatives % % % %
Clean 5000 4970 30 994 993 992 995
Noisy 5000 4959 41 99.2 993 994 994
TABLE III

PERFORMANCE COMPARISON OF RELATED WORKS IN PICC AND
MIT-BIH DATA SET FOR DETECTION OF NOISE/ARTIFACT

Works Sp Ac Se Dataset Methods Features
94 9974 | PICC Time & Freq.
(261 | 994 . 085 | mrrpiH | Rule Based Domain
965 971 977 PICC Time & Freq.
271 | 978 978 977 | MIT-BIH SVM Domain
963 96 945 PICC Time
Ours | 904 083 992 | mrmBmH | RuleBased | b in
TABLE IV

PERFORMANCE EVALUATION OF THE ALGORITHM IN MERGED MIT-BIH
FOR DETECTION OF NORMAL/ABNORMAL BEATS

Label Total # True False Beat Se Sp Acc
abels Beats Classified Classified Type % % %
Abnormal 18000 17929 71 S,VE  99.6 97 08.5
Normal 15000 14545 455 N 97 99.6 ’

where TP, TN, FP, and FN refer to True Positive, True
Negative, False Positive, and False Negative, respectively.

A total of 10000 segments are obtained from the MIT-BIH
data set. As shown in Table II, the algorithm’s accuracy can
reach 99.3% by wrongly classifying only 71 segments in the
MIT-BIH data set amongst the 10 000 segments.

The PICC 2011 challenge [25] is used as a second data set
to validate our algorithm and compare it with the other related
works. In the PICC, the ECG signals are standard 12-lead, and
the leads are recorded simultaneously for 10 s; each lead is
sampled at 500 Hz.

The proposed solution to detect the noise and artifacts in the
ECG signals outperforms the other related works in the MIT-
BIH data set (see Table III). This advantage of the algorithm
is crucial since any other method that classifies arrhythmias as
noisy would lead to a rejection of the data. Another advantage
is that our algorithm does not require computationally heavy
features to classify.

B. Performance of Normal/Abnormal Beat Classification

The performance of this layer is evaluated using the AAMI
instructions for beat type classification. However, unclassified
beats (Q) are excluded from the abnormal beat types since they
are very rare in the data set. As shown in Table IV, this layer’s
classification accuracy is 98.5% with a 99.6% sensitivity for
abnormal beats.

The goal in this layer is to achieve high sensitivity for
abnormal beats classification because if a beat is classified
as normal, it would not be transmitted to the fog/cloud node.
Table IV shows that amongst the 18 000 abnormal beats, only
71 of them are misclassified, which indicates a very high
sensitivity for the abnormal beat classification.

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 14, JULY 15, 2022

TABLE V
PERFORMANCE COMPARISON OF RELATED WORKS WITH OURS FOR
ABNORMAL BEAT DETECTION

Works  Methods Se PPV Acc
[7] SVM - - 96
[32] Tree 96.4 92 -
CNN &
Ours Rule based 97 99.6 98.5

Table V compares the performance of related works
with the proposed solution on the MIT-BIH data set. The
proposed algorithm outperforms others in terms of classi-
fication performance. Moreover, these methods use feature-
based classifiers, such as SVM and tree, so they need to
extract different features from the ECG signal. For exam-
ple, Venkatesan et al. [7] extract 14 different time-frequency
domain features from ECG, requiring additional memory and
a computational overhead which does not suit the edge device.
We tried to evaluate the memory and energy consumption of
the state-of-the-art works in our target wearable device, which
is explained in Section IV-B. However, the target device’s
memory overflowed more than 1.5x of its maximum memory
for all algorithms [7], [32] due to huge memory requirements
for the feature extraction and classification. On the other hand,
our proposed solution calculates the correlation between tem-
plate and input beats, checks the heart rate variability; no
additional features are extracted from a beat specific to that
layer. Moreover, unlike the related works, we do not use a
feature-based classifier since the first convolution block is used
to classify the beat types (N, S, V, F) for complete CNN
architecture. The designed first convolution and output blocks
consist of 607 parameters that allow us to run that algorithm
on edge.

C. Performance of CNN Classifier

The overall performance is evaluated according to the sec-
ond output block, which classifies beats into Normal, SVEB
(supraventricular ectopic heartbeats), ventricular ectopic heart-
beats (VEB), and Fusion beat. To make a fair comparison
with other works, the performance of Normal/Abnormal Beat
Classifier is also considered. So, if a beat is misclassified as
normal in that layer, it is not transmitted to further CNN lay-
ers. The classification performance (Acc, Sen, Spe, Ppr) of
VEB and SVEB are also investigated to be consistent with
related works and given in Fig. 8.

Fig. 8 shows that the proposed algorithm’s performance is
the highest for PPV of SVEB; and for the other metrics, it
is 0.4%—1% below from the best one. Also, closer inspection
of the table shows that the performance of [35] reaches more
than 0.999 for three different metrics which is practically hard
to outperform. However, our algorithm’s worst performance
is 97.8% whereas it is 80.2% and 88% for [34] and [36],
respectively. Since the number of normal beats in MIT-BIH
is approximately ten times that of abnormal data, it is easy
for models to achieve high accuracy. However, it is harder to
achieve high performance on all the metrics. Also, the other
models, in general, are not suitable for the edge devices as
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Fig. 8. Performance comparison between the proposed methodology and
related works.
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Fig. 9.
works.

Comparison of computational complexity and memory with related

their architecture has many parameters. To compare models
in terms of memory and energy, we estimated the number
of parameters and multiply accumulate operations (MACs) of
each architecture. Equation (9) is used for the calculation of
MACs

Cin X Cout X Kjp x Ky X Hoye X Woyt
8

where Cj, is the number of input channels, Cqy is the number
of output channels, Hoy and Wy, are the height and width of
the layer’s output, respectively. K x K, is the kernel size of
each convolution, and g is the number of groups if there are
any. When the MACs are calculated for different works, we
observed that the proposed solution has 30000x fewer oper-
ations compared to [34]. Therefore, for better visualization,
Fig. 9 is given in logarithmic form where the two y-axes are
in millions. Fig. 9 shows that the proposed solution is much
more energy and memory-efficient compared to other existing
work. Even the closest CNN architecture performs 7x more
MAC operations and requires 40x more memory compared
to ours.

The proposed CNN has very few parameters and MACs
compared to related works because of two reasons. First, in
the third convolution block of the proposed CNN, the grouped
and pointwise convolutions are performed instead of 1-D
convolutions to mix the high-level features optimally. These
convolution operations are also more efficient compared to
the 1-D convolutions since the number of MACs are decreased

MACs =

9
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TABLE VI
MEMORY AND ENERGY CONSUMPTION ON BLUE GECKO

. Exe. Average Energy | Compatible

Layers Operation ‘ Time (ms) | Power (mW) | (uJ) RAM
Noise/Motion Feature

Artifact Extraction 13.5 143 193.05 2 32KB

Normal/ Template Check
Abnormal beat & HRV 18 3 414 > 8 KB

First ?ﬁgzﬁlunon 20 141 282
CNN - > 32 KB
First Output 12 75 9
Block . )

with increasing groups in convolutions. Second, as we applied
a bandpass filter with cut-off frequencies fi = 1 Hz and
f> =50 Hz at the beginning of the process, the ECG signal’s
sampling rate, which directly affects the input size of CNN,
is downsampled to 130 Hz without losing any information.

D. Memory and Energy Consumption Evaluation

We evaluate the memory footprint and energy consumption
of our proposed methodology on the target device men-
tioned in Section IV-B. Table VI shows the execution time,
energy consumption, and required memory for each layer that
runs on the edge device. When we evaluate the power and
execution time of each layer, we perform multiple experi-
ments to take the average of them. In the end, we observe
+1% mW and £0.5% ms deviation from the average of all
trials. For example, we observe a maximum 20.12-ms exe-
cution time and 14.13-mW average power consumption for
the First Convolutional Block. The model is implemented and
deployed to the target device using MATLAB (MATLAB and
Coder Toolbox Release R2020b, The MathWorks, Inc, USA).

The overall execution time for a heartbeat takes 36 ms
in the edge device with 55-mW power consumption.
Also, our proposed methodology is compatible with any
devices with a minimum RAM of 32 kb. As a result,
our methodology guarantees high classification performance
while maintaining the low-power wearable devices require-
ments of being resource-efficient in terms of energy and
memory.

VI. DISCUSSION AND FUTURE WORK

In this article, we present a novel and energy-efficient
methodology that runs on a hybrid edge—fog/cloud archi-
tecture for continuously monitoring the heart at low-power
wearable devices. To evaluate our methodology’s performance,
we compare our approach with several state-of-the-art meth-
ods that evaluate their classification results on the same data
sets. We show that our proposed methodology reaches or
outperforms the current state-of-the-art works in terms of clas-
sification performance for three different tasks (noise/artifact
detection, normal/abnormal beat detection, and abnormal beat
classification) while being energy and memory efficient.
However, despite these promising results, questions remain
about whether the proposed approach’s performance is excel-
lent. Therefore, it is important to evaluate the limitations of
our methodology.
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First, in our proposed methodology, the abnormal beat
detection and classification layers heavily depend on the R-
peak detection performance. It is observed that when the
detected R-peaks are wrong, the classification performance
decreases severely due to wrong segmentation and HRV cal-
culation. Second, even though the MIT-BIH data set is widely
used in literature, most state-of-the-art works and our proposed
methodology focus on identifying small numbers of cardiac
abnormalities (VEB, SVEB) that do not represent the com-
plexity and difficulty of ECG interpretation. Therefore, we
believe that there is abundant room for further progress in
beat classification in wearable devices. For example, this arti-
cle showed that the HRV is a helpful feature to classify
beats as normal or abnormal. In future investigations, it might
be helpful to use different machine learning structures such
as neural graph learning to integrate HRV features into an
end-to-end model. Since our proposed methodology is a dis-
tributed neural architecture between nodes of the network,
a further study with more focus on federated learning can
be employed to increase performance while preserving pri-
vacy [38]. Also, the performance of the transmission decision
unit (normal/abnormal beat classification) can be further stud-
ied using a more comprehensive ECG data set with different
arrhythmias and abnormalities.

VII. CONCLUSION

This article proposes a methodology for real-time continu-
ous heart monitoring using distributed multioutput CNN. The
neural network layers are distributed between edge—fog/cloud
so as to save energy and time while reducing the communi-
cation channel usage and server load. Moreover, the proposed
methodology requires 40x less memory compared to state-
of-the-art works while maintaining high accuracy. To the
best of our knowledge, our methodology achieves the best
performance on heartbeat classification while being 7x more
energy efficient for devices with a minimum of 32 kb of RAM.
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