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Abstract—The recent developments in wearable devices and the
Internet of Medical Things (IoMT) allow real-time monitoring
and recording of electrocardiogram (ECG) signals. However,
continuous monitoring of ECG signals is challenging in low-
power wearable devices due to energy and memory constraints.
Therefore, in this article, we present a novel and energy-efficient
methodology for continuously monitoring the heart for low-
power wearable devices. The proposed methodology is composed
of three different layers: 1) a noise/artifact detection layer to
grade the quality of the ECG signals; 2) a normal/abnormal beat
classification layer to detect the anomalies in the ECG signals;
and 3) an abnormal beat classification layer to detect diseases
from ECG signals. Moreover, a distributed multioutput convolu-
tional neural network (CNN) architecture is used to decrease the
energy consumption and latency between the edge–fog/cloud. Our
methodology reaches an accuracy of 99.2% on the well-known
MIT-BIH Arrhythmia Data Set. Evaluation on real hardware
shows that our methodology is suitable for devices having a
minimum RAM of 32 kb. Moreover, the proposed methodology
achieves 7× more energy efficiency compared to state-of-the-art
works.

Index Terms—Arrhythmia, electrocardiogram (ECG), heart
monitoring, Internet of Medical Things (IoMT), wearable
systems.

I. INTRODUCTION

E
LECTROCARDIOGRAM (ECG) signals are widely used

to detect cardiovascular diseases, which are the leading

cause of death globally [1]. Moreover, according to the American

Heart Association, the early detection of these diseases is crucial

for patients’ health [2]. Clinical ECG is the primary tool for

monitoring cardiac activity. However, it can only be used for

a limited time, and continuous monitoring of the patients’

condition is still required outside clinical hours. Traditionally,

ambulatory ECG devices are used to monitor the cardiac activity

for a long duration to be further investigated by clinicians. For

example, the Holter [3], a battery-operated portable device,

is used to record and store long-term ECG signals. However,

these devices cannot provide real-time feedback to users, and

cardiologists need to analyze long-term recordings, which is a

very time consuming and expensive process.
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To solve this issue, several heart monitoring devices and

solutions have been proposed and developed both in academia

and industry [4], [5], thanks to rapid development on the

Internet of Medical Things (IoMT) and smart health care

systems. These heart monitoring devices or systems can be

categorized into two different groups according to their meth-

ods. The first group [6], [7] analyzes long-term recorded

ECG signals offline by using remote cloud servers. The uti-

lized algorithms in the cloud provide a powerful classification

performance. However, they cannot be implemented on the

edge node due to their memory requirements and high energy

consumption. Moreover, since all computing occurs in the

cloud, the latency of the system increases, which weakens

the user experience [8]. The latency is an essential factor for

heart monitoring applications because the rapid detection of

cardiovascular diseases is critical for people’s lives. The sec-

ond group [9], [10] provides a real-time solution by doing

computation on the edge side rather than the cloud; however,

the amount of time the device is monitoring the cardiac activ-

ity is limited due to constraints on battery life, which is the

most valuable resource for the edge of the network [11].

Due to these problems, many people live for years unaware

of their illness [12]. Some cases reported that deaths due

to cardiovascular disease could have been prevented if the

disease was detected earlier [13]. Therefore, continuous real-

time ECG monitoring can be a vital solution for people with

cardiovascular diseases.

The main challenge of designing a continuous real-time

monitoring system is adhering to the devices’ energy and

memory constraints since processing requires lots of memory

and is computationally intensive. To overcome this problem,

existing works have proposed performing the computation at

the proximity of data generation sources, which are the edge

devices in this case, using fog or edge–cloud [14]–[16] archi-

tectures by transferring real-time signals to these nodes of

network. However, this transfer operation requires tremendous

communication power, which decreases the device’s battery

life and makes it difficult to sustain continuous monitoring

over long periods. This kind of the IoMT system requires

significant energy resources on the edge device, and is vul-

nerable to privacy issues [17], [18]. Several methods have

been proposed to encrypt the ECG signals. However, they

require additional energy and memory at the edge [19], [20].

Moreover, the transferred ECG signals might be contami-

nated with noise or artifacts caused by the users’ mobility,

which results in further unnecessary energy consumption. In
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summary, the key research challenges associated with con-

tinuous heart monitoring are: 1) developing resource-efficient

algorithms on the edge and 2) detecting abnormalities in ECG

signals as fast as possible to minimize latency.

To address the above-mentioned challenges, this article

proposes a novel heart monitoring methodology on a hybrid

edge–fog/cloud IoMT. In this article, we define “edge” as the

computing platform where the data acquisition is performed,

and “fog” is defined as the device possessing further comput-

ing and network resources along the path between data sources

and cloud data centers, e.g., a smartphone. Throughout this

article, “edge–fog/cloud” is used since the proposed method-

ology is a solution for any two-tiered systems employing edge-

cloud, edge–fog, or fog–cloud architectures. The proposed

methodology delivers a layered software pipeline architecture

by distributing the layers between edge and fog/cloud. The first

layer running on the edge is designed to detect Noise/Motion

artifacts. This detection aims to conserve energy resources

through avoiding unnecessary artifacts transmission. The sec-

ond layer, running as well on edge, classifies normal, and

abnormal beats in the ECG. If the beats are classified as nor-

mal, the classification is considered complete, and only the

heart rate value of that beat is transmitted instead of the raw

signal. Else, the beats are classified as abnormal and are sent

to the next layer in the hierarchy, which could be a fog or

cloud, to be further classified. Moreover, these first two-layers

can further reduce the energy consumption of the edge device

through controlling the data sampling rate. If the signal is not

classified as clean or the recorded ECG signal has no abnormal

beats, the control unit changes the sampling rate to the degree

that both classifiers still maintain high-performance classifica-

tion. The last layer, running on fog or cloud, is a distributed

multioutput convolutional neural network (CNN) to classify

several cardiovascular diseases.

A. Motivational Example

We have done several experiments to show the advantages

of the proposed methodology for continuous heart monitor-

ing. In Case I, the 1-h raw ECG, which are acquired digital

signals from sensors, are transferred to the fog/cloud server

without any investigation or operation on the edge for noise

and artefacts. Then, the energy consumption of these transfer

operations is calculated for four different communication tech-

nologies: 1) Wi-Fi; 2) LTE; 3) 3G; and 4) BLE. For Case II,

the 1-h ECG record is partitioned into two parts: 1) a 50-min

segment of clean ECG which has no artifacts with just regular

beats and 2) a 10-min segment of the ECG signal, simulated as

a noisy signal. The required communication energy for trans-

ferring this record is calculated again. Finally, in Case III the

ECG signal is divided into three parts: 1) a 40 min regular

beats segment; 2) a 10 min noisy signal; and 3) 10 min of the

recording including several arrhythmias. The energy consump-

tion for all cases’ transfer operation is shown in Fig. 1. While

calculating the energy consumption of these cases, we have

followed the µJ/bit values given in [23] for the Wi-Fi, LTE,

and 3G. For BLE protocol energy consumption, we performed

the profiling for data exchange on an EFR32BG13 Blue Gecko

Fig. 1. Energy consumption of Cases I–III.

Bluetooth Low Energy SoC which has 32 bit ARM Cortex-M4

core with a 40-MHz maximum operating frequency.

Since the raw ECG data is transmitted without any classi-

fication on edge in Case I, its communication energy is the

highest among the three cases regardless of the communication

methods as shown in Fig. 1. However, when we applied our

proposed methodology to detect the normal and noisy beats

in the ECG signal and filtered out them before transmitting

to the fog/cloud node (Cases II and III), the communication

power can be decreased by 1000× and 3× for Cases II and III,

respectively. Also, to make a fair comparison with different

cases, we measure the additional computational energy con-

sumption of our proposed methodology to detect the artifacts

and abnormal beats in the ECG signals for Cases II and III.

We observe that the algorithm’s energy consumption approx-

imately 1.5 J for an hour, which makes Cases II and III still

much more energy-efficient than Case I. Moreover, it is known

that arrhythmias are not as frequent in people like Case III

(10 min of an hour), so Case II will be more common for

most of the people. Therefore, we observe that detecting the

normal and noisy ECG beats in edge devices could save energy

and time while reducing the communication channel usage and

fog/cloud server load.

B. Novel Contributions

The novel contributions of this article are as follows.

1) A real-time continuous heart monitoring system that

runs on a hybrid edge–fog/cloud architecture while being

energy and memory efficient.

2) A novel layer-wise distributed multioutput CNN archi-

tecture that is optimized for decreasing the energy

consumption and latency between edge and fog/cloud.

To the best of our knowledge, we are the first to

investigate the signal’s physiology in distributing the

computational complexity of architecture between the

different nodes of a network.

3) Evaluation of our proposed methodology on the well

known MIT-BIH data sets [22], and PhysioNet/CinC

(PICC) 2011 challenge [21], [25]. It shows that, our

proposed methodology reaches or outperforms the cur-

rent state-of-the-art works in terms of classification

performance [26], [27], [34]–[36].
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Fig. 2. Overview of our proposed methodology.

4) Evaluation on real hardware shows that each layer

of the proposed methodology achieves up to 7×

more energy efficiency compared to the state-of-the-art

works [34]–[36].

The remainder of this article is organized as follows. In

Section II, we review related works for heart monitoring

systems. Section III describes the proposed methodology.

Section IV shows the experimental setup. Section V discusses

the results. Finally, a conclusion is drawn in Section VII.

II. RELATED WORK

A. Quality Assessment of ECG

Signal quality assessment (SQA) is the critical first step

in continuous heart monitoring since it eliminates the noisy

signals before the classification. Mostly, SQA methods grade

ECG into two groups: 1) acceptable and 2) unacceptable.

Existing methods extracted several features from the ECG

signals and graded them using heuristic rules [26] or

machine learning-based classifiers such as Support Vector

Machine [27], [28]. For example, Clifford et al. [27] proposed

extracting six different features based on time and frequency

domains, whereas the extraction of these features depends

on the accurate and reliable detection of the QRS com-

plex in noisy ECG signals, which is a challenging task. To

avoid detection of QRS complex, Satija et al. [26] exam-

ined three main causes of noise in ECG: 1) abrupt change;

2) signal absence; and 3) high-frequency noise. Since the

authors do not detect the QRS complexes in ECG signals, they

investigated the 10-s windows based on time and frequency.

However, since the number of samples increases with a longer

duration of ECG recording, the feature extraction-related algo-

rithms’ computation requirements increase, especially when

the frequency-domain features are used. Since these SQA

algorithms run in the proximity of data sources (edge of

the networks) during acquisition, they need to be energy and

memory efficient. Therefore, in this article, we proposed a

lightweight SQA which can detect noise and artifact.

B. Heartbeat Classification of ECG Signals

A wide range of automatic heartbeat classification methods

has been proposed, and these existing methods may be catego-

rized into two groups. The first method [7], [9] extracts some

handcrafted features from the ECG signals and feeds them

to a classifier like SVM. For example, Venkatesan et al. [7],

extract six frequency-domain features from the heart rate for

arrhythmic beat classification. Similarly, Tang et al. [9] used

32 time-domain features with linear kernel SVM to classify

heartbeats. However, this feature extraction process increases

the computational complexity and memory. Moreover, these

extracted features may not represent the complete characteris-

tics of the ECG and restrict the performance.

The second method is to directly send the original waveform

to a neural network for classification, known as the end-to-end

classification method to avoid the feature extraction process

since the neural networks do not require feature engineering

as they automatically extract features. For example, in [34],

authors use a combination of the bidirectional recurrent neu-

ral network (BRNN) and CNN model to detect four kinds

of heartbeats. Compared to feature-based classification meth-

ods, this method can reach higher accuracy. However, this

combined architecture has tens of millions of parameters, mak-

ing it unsuitable for the edge node with memory and energy

constraints. Similarly, Wang et al. [36] proposed a two-stage

neural network, which combines a multilayer perceptron and

a CNN. The first stage classifies the ECG beats as normal or

abnormal, and the second stage classifies the abnormal beats to

several arrhythmias. Moreover, their proposed solution uses an

additional classifier for discriminating abnormal beats, which

introduces more parameters and energy consumption to the

system. However, our proposed methodology uses a distributed

multioutput CNN architecture to detect and filter out the regu-

lar beats during run-time without using any additional features

and classifiers.

III. OUR PROPOSED METHODOLOGY

The proposed methodology, shown in Fig. 2, consists

of three main layers and several processing blocks whose

components are detailed in the following section.

A. Processing and Control Units

1) Filtering: We use a fifth-order linear phase bandpass

filter with a Hamming window cut-off frequencies

(f1 = 1 Hz and f2 = 50 Hz).

2) R-Peak Detection: To detect the R-peaks, we have used

the Pan–Tompkins algorithm [29], a real-time QRS

complex-based heartbeat detection approach that has an

accuracy of up to 99.5%.

3) Beat Segmentation: We take Fs/3 samples before and

Fs/2 samples after the R-peak. The highest heart rate

is chosen as 180 beats per minute (BPM) to avoid

overlapping two beats in a window.
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4) Heart Rate Calculation: The heart rate is calculated

using the following equation:

HR(i) =
60

(

R(i) − R(i−1)

)

/Fs

(1)

where HR(i) is the heart rate of the ith heartbeat segment

in BPM. R(i) is the location of the R-peak in the ith

heartbeat segment, and Fs is the sampling frequency.

5) Sampling Rate Control: This unit controls the ECG

acquisition sampling rate according to the output of two

different decision units. The first decision unit checks the

ECG signal’s quality. If it detects a noisy ECG signal,

the sampling rate is decreased to the degree that all com-

ponents maintain the high classification performance.

The second decision unit monitors the incoming beats

and classify them as normal and abnormal beats. If the

beats are classified as normal, this unit decreases the

sampling rate to the same degree.

B. Noise/Artifact Detection Layer

The ambulatory ECG signals are mostly contaminated with

low-frequency motion artifacts that cannot be removed using

simple filtering. Therefore, the first layer is designed to detect

these artifacts. Since this algorithm runs on the edge, we have

focused on developing a lightweight and robust algorithm to

increase the device’s battery life. We have observed that a rule-

based decision method is superior compared to the classical

machine learning algorithms (SVM, RF) considering energy

efficiency while maintaining the classification performance for

this task. Therefore, a rule-based algorithm is used to clas-

sify signals into two groups acceptable and unacceptable. The

ECG signals are divided into 10-s windows. First, the windows

are normalized with respect to the maximum amplitude value.

The mean of a normalized window is obtained and compared

with a threshold (λ) to detect the absence of an ECG signal. If

the mean is lower than the threshold, the window is classified

as unacceptable and the signal is discarded.

The abrupt changes and baseline wander are investigated

using a moving standard deviation of the 10-s ECG signal. In

this method, a window of a specified length (2Fs/5) is moved

over the signal with a 70% overlap. The deviation of the signal

(σi) is computed over the data by

σi =

√

√

√

√

1

N − 1

N
∑

n=1

|xi[n] − µi|
2 (2)

where σi and µi are the corresponding standard deviation and

mean of the window, respectively. An example of σi wave-

forms is shown in Fig. 3. When the ECG signal has an abrupt

change, the algorithm suppresses the beats and brings the arti-

facts forefront. Finally, to detect the abrupt changes, the mean

of the waveform (σi) is obtained and compared with a thresh-

old, which is set to 0.2 based on acceptable level of noise. If

the mean is higher than the threshold, the signal is classified

as acceptable.

The proposed method has the following advantages: 1) it

is sensitive to abrupt changes and baseline wanders where if

a small portion of the signal is corrupted with an artifact or

Fig. 3. Acceptable and the Unacceptable ECG signals from PICC [25] and
obtained σi waveforms.

noise, it is detected and ignored and 2) it is energy efficient

since it can run at a low sampling rate of 100–120 Hz without

losing performance, and it does not need complex features to

classify.

C. Normal/Abnormal Beat Classification

While classifying the normal and abnormal beats, we have

followed the Association for the Advancement of Medical

Instrumentation (AAMI) instructions, which are the golden

standard for automatic heartbeats classification. According to

the AAMI standard, heartbeats can be divided into N (normal),

S (supraventricular ectopic beat), V (ventricular ectopic beat),

F (fusion beat), and Q (unclassified beat) [30]. Therefore, the

beats are divided into two groups for that layer. The first

group only contains the normal beats N from the data sets,

and the second group is composed of other types of heart-

beats (S, V, F, and Q), which are the abnormal beats. If a beat

is classified as normal in this stage, it is not transmitted to

the fog/cloud node to save energy. Nevertheless, if a regu-

lar beat is mistakenly classified as abnormal, it can still be

corrected by the next classifier. So, we need to ensure that

the abnormal beats are classified with high sensitivity in that

layer.

It is known that during arrhythmias, the heart rate deviates

from its normal rhythm. These heart rate variations are com-

mon in the premature beats; as the name suggests, they occur

when the ventricles or atrial contract too soon, out of sequence

with the normal heartbeat. Moreover, as shown in Fig. 4, the

waveform of the abnormal beats is different from the regular

beats. Therefore, the heart rate variability (HRV) and corre-

lation of the beats are indicators of abnormal beats. We have

used these together with the result of the first output block to

decide whether a beat is normal or abnormal.

If the first output block classifies a beat as abnormal, the

output of the first convolutional is directly sent to the next clas-

sifier to be further examined. However, if a beat is classified

as normal, other indicators just confirm the decision. The first
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Fig. 4. Waveform of normal and abnormal beats.

Fig. 5. HRV values for normal and abnormal beats.

indicator is the HRV between three consecutive beats, which

is calculated as
∣

∣

∣

∣

Fs ×

(

1

RR(i−1)

−
1

RRi

)
∣

∣

∣

∣

(3)

where RRi is the latest interval and Fs is the signal’s sampling

rate. Fig. 5 is the whisker plot for HRV values of different

beats. The threshold value is set to 10 based on variances of

normal and abnormal beats. If the calculated HRV value is

greater than 10, the last beat is classified as abnormal even

though the first block classified it as a regular beat. It is

also observed that most of the normal beats with HRV values

greater than 10 are either before or after abnormal beats.

As a second indicator, we have calculated the correlation

of a template and classified beat. While creating a template,

we have used 20 different regular beats. These regular beats

are aligned according to their R-peak and averaged, then the

correlation is calculated as

ρ(T, x) =
1

N − 1

N
∑

n=1

(

T[n] − µT

σT

)(

x[n] − µx

σx

)

(4)

where σT and µT are the standard deviation and mean of the

template beat (T) and σx and µx are the standard deviation

Fig. 6. Distributed multioutput CNN architecture.

TABLE I
MULTIOUTPUT CNN ARCHITECTURE DETAILS

and mean of the incoming beat, respectively. If the correlation

coefficient is lower than 0.2, the normal beat label is changed

to abnormal and forwarded to the next layer running in the

fog/cloud for further classification.

D. Distributed Multioutput CNN

Our distributed multioutput CNN consists of three convo-

lutions and two output blocks. The first and last convolution

blocks are followed by an output block. Fig. 6 shows the layout

of the designed CNN. The first and third convolution blocks

consist of one convolution layer passed through ReLU acti-

vation, one max-pooling layer, and one batch normalization

layer. The third convolution block is composed of depthwise

and pointwise convolutions. The depthwise convolution block,

which connects to each feature map, learns frequency-specific

filters. The pointwise convolution block is placed after that to

mix the feature maps. Also, closer inspection of the Table I

shows that the kernel sizes of designed CNN vary from 64 to 1,

which enables the model to learn different features from the

heartbeats. Since the shorter filters can cover limited samples,

they are used to extract more temporary and rapid oscillatory

changes in the ECG, and the longer filters are used to extract

more long-term features such as abnormalities in the T-wave.

Before the second output block, a dropout value of 0.2 is used
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to prevent overfitting during training. Each of the output blocks

consists of one fully connected layer passed through the soft-

max activation. The details of the architecture parameters for

each of the layers are given in Table I.

We design the distributed multioutput CNN considering the

current limitations and resource constraints of the state-of-

the-art works. It is known that the number of parameters and

computational operations increases with the number of layers

which leads to the consumption of more energy and memory

resources. To solve these problems, we have distributed the

CNN layers between edge and fog/cloud so that the introduced

additional energy consumption and memory of the CNN to

the edge are decreased. This fact may be seen from Table I.

The total number of parameters before the second convolu-

tion block is 607, whereas CNN has 3804 more parameters

after that. This clearly shows that by distributing the CNN

over nodes, the memory requirement of the edge node can be

decreased by 87%.

Another advantage of this proposed solution is that

we decreased the communication energy requirements by

∼ 1000× using the first output block. The first output block

is designed to classify beats as normal or abnormal during

run-time using the extracted features from the first convolu-

tion block. By adding this block, normal and abnormal beats

can be distinguished without the need to invoke the other two

convolutional blocks. We have observed that this classification,

which uses the first convolution block, can reach up to 95%

accuracy. Therefore, further processing of those regular beats

would be redundant. Through avoiding this redundant opera-

tion, the system’s energy consumption and inference time are

decreased from both communication and computation.

IV. EXPERIMENTAL SETUP

A. Training Distributed Multioutput CNN Classifier

We use data from MIT-BIH Arrhythmia Data Set [22],

which contains 48 half-hours of two-channel ambulatory ECG

recordings, digitized at 360 samples per second, obtained

from 47 subjects, and MIT-BIH Supraventricular Arrhythmia

Database [31] which includes 78 half-hour ECG recordings

with digitized at 120 Hz. We combined these two data sets to

increase the number of abnormal beats. For both data sets, only

the lead-II ECG signals are used for experiments. For a fair

comparison with published results, we follow the evaluation

settings that was most frequent in the state-of-the-art-works.

We have excluded the four paced records (102, 104, 107, and

217) from the MIT-BIH data set [22].

ECG beats in 22 recordings from the MIT-BIH data set are

included to training set. Additionally, beats from MIT-BIH

Supraventricular Arrhythmia Database [31] are added to the

training set. In the training set, 80% of ECG beats are used

for training, and 20% of ECG beats are used for validation

(as shown in Fig. 7). Since the sampling rates of the two data

sets are different, we have resampled them to 130 Hz. The

44 records (22 records from the training set and 22 records

which the model has never seen before) from the MIT-BIH

data set [22] are used as test data. The network was trained

with Glorot initialization of the weights [37], we used the

Adam optimizer [33] with the default parameters β1 = 0.9

Fig. 7. Ratio of training and validation samples in training set.

and β2 = 0.999. The learning rate is initialized to 0.001 and

reduced by a factor of 10 when the validation accuracy stopped

improving for 15 consecutive epochs. The training continues

until 100 successive epochs without validation performance

improvements with a maximum of 500 epochs. The best model

is chosen as the highest accuracy rate on the validation data.

After training the complete CNN architecture, the weights of

the first convolution block are obtained to train the fully con-

nected layer at the first output block. The same training data

is given as input to the first convolution block again. Then, the

output of the first batch normalization layer is fed to the fully

connected layer instead of the second convolution block to

classify beats as normal and abnormal. During backpropaga-

tion, only the weights and biases of the fully connected layer

are calculated from the gradient of classification loss. In other

words, while training the first output block, the parameters of

the first convolutional block are not changed.

B. Target Wearable Device

Our work is designed for low-power and low-memory wear-

able devices. For example, SmartCardiaINYU [24] device

is equipped with an ultra-low-power 32-bit microcontroller

STM32L151 containing an ARM Cortex–M3 with a maximum

clock rate of 32 MHz. It has a 48-kb RAM, 384-kb Flash, and

a standard 710-mAh battery. The device captures ECG signals

using a single lead ECG sensor. We have tested our work on

a BLE standalone module similar to [24] with a 32-bit ARM

Cortex-M4 core with 40-MHz maximum operating frequency

and 64 kb of RAM. Our profiling showed that algorithms peak

memory usage do not exceed 30 kb of RAM.

V. RESULTS

A. Performance of Noise/Artifact Detection

First, the MIT-BIH Arrhythmia Data Set is used to evaluate

the performance. The recordings include clinically significant

arrhythmias, which have quite different waveforms from the

normal ECG, so it is essential to classify them as not noisy

ECG signal to validate the algorithm. The performance of the

proposed method is evaluated using four benchmark metrics,

sensitivity (Se), accuracy (Ac), specificity (Sp), and positive

predictivity (PPV) which are defined as follows:

Se =
TP

TP + FN
(5)

Sp =
TN

TN + FP
(6)

PPV =
TP

TP + FP
(7)

Ac =
TP + TN

TP + TN + FN + FP
(8)
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TABLE II
PERFORMANCE OF THE ALGORITHM IN MIT-BIH FOR DETECTION OF

NOISE/ARTIFACT

TABLE III
PERFORMANCE COMPARISON OF RELATED WORKS IN PICC AND

MIT-BIH DATA SET FOR DETECTION OF NOISE/ARTIFACT

TABLE IV
PERFORMANCE EVALUATION OF THE ALGORITHM IN MERGED MIT-BIH

FOR DETECTION OF NORMAL/ABNORMAL BEATS

where TP, TN, FP, and FN refer to True Positive, True

Negative, False Positive, and False Negative, respectively.

A total of 10 000 segments are obtained from the MIT-BIH

data set. As shown in Table II, the algorithm’s accuracy can

reach 99.3% by wrongly classifying only 71 segments in the

MIT-BIH data set amongst the 10 000 segments.

The PICC 2011 challenge [25] is used as a second data set

to validate our algorithm and compare it with the other related

works. In the PICC, the ECG signals are standard 12-lead, and

the leads are recorded simultaneously for 10 s; each lead is

sampled at 500 Hz.

The proposed solution to detect the noise and artifacts in the

ECG signals outperforms the other related works in the MIT-

BIH data set (see Table III). This advantage of the algorithm

is crucial since any other method that classifies arrhythmias as

noisy would lead to a rejection of the data. Another advantage

is that our algorithm does not require computationally heavy

features to classify.

B. Performance of Normal/Abnormal Beat Classification

The performance of this layer is evaluated using the AAMI

instructions for beat type classification. However, unclassified

beats (Q) are excluded from the abnormal beat types since they

are very rare in the data set. As shown in Table IV, this layer’s

classification accuracy is 98.5% with a 99.6% sensitivity for

abnormal beats.

The goal in this layer is to achieve high sensitivity for

abnormal beats classification because if a beat is classified

as normal, it would not be transmitted to the fog/cloud node.

Table IV shows that amongst the 18 000 abnormal beats, only

71 of them are misclassified, which indicates a very high

sensitivity for the abnormal beat classification.

TABLE V
PERFORMANCE COMPARISON OF RELATED WORKS WITH OURS FOR

ABNORMAL BEAT DETECTION

Table V compares the performance of related works

with the proposed solution on the MIT-BIH data set. The

proposed algorithm outperforms others in terms of classi-

fication performance. Moreover, these methods use feature-

based classifiers, such as SVM and tree, so they need to

extract different features from the ECG signal. For exam-

ple, Venkatesan et al. [7] extract 14 different time-frequency

domain features from ECG, requiring additional memory and

a computational overhead which does not suit the edge device.

We tried to evaluate the memory and energy consumption of

the state-of-the-art works in our target wearable device, which

is explained in Section IV-B. However, the target device’s

memory overflowed more than 1.5× of its maximum memory

for all algorithms [7], [32] due to huge memory requirements

for the feature extraction and classification. On the other hand,

our proposed solution calculates the correlation between tem-

plate and input beats, checks the heart rate variability; no

additional features are extracted from a beat specific to that

layer. Moreover, unlike the related works, we do not use a

feature-based classifier since the first convolution block is used

to classify the beat types (N, S, V, F) for complete CNN

architecture. The designed first convolution and output blocks

consist of 607 parameters that allow us to run that algorithm

on edge.

C. Performance of CNN Classifier

The overall performance is evaluated according to the sec-

ond output block, which classifies beats into Normal, SVEB

(supraventricular ectopic heartbeats), ventricular ectopic heart-

beats (VEB), and Fusion beat. To make a fair comparison

with other works, the performance of Normal/Abnormal Beat

Classifier is also considered. So, if a beat is misclassified as

normal in that layer, it is not transmitted to further CNN lay-

ers. The classification performance (Acc, Sen, Spe, Ppr) of

VEB and SVEB are also investigated to be consistent with

related works and given in Fig. 8.

Fig. 8 shows that the proposed algorithm’s performance is

the highest for PPV of SVEB; and for the other metrics, it

is 0.4%–1% below from the best one. Also, closer inspection

of the table shows that the performance of [35] reaches more

than 0.999 for three different metrics which is practically hard

to outperform. However, our algorithm’s worst performance

is 97.8% whereas it is 80.2% and 88% for [34] and [36],

respectively. Since the number of normal beats in MIT-BIH

is approximately ten times that of abnormal data, it is easy

for models to achieve high accuracy. However, it is harder to

achieve high performance on all the metrics. Also, the other

models, in general, are not suitable for the edge devices as
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Fig. 8. Performance comparison between the proposed methodology and
related works.

Fig. 9. Comparison of computational complexity and memory with related
works.

their architecture has many parameters. To compare models

in terms of memory and energy, we estimated the number

of parameters and multiply accumulate operations (MACs) of

each architecture. Equation (9) is used for the calculation of

MACs

MACs =
Cin × Cout × Kh × Kw × Hout × Wout

g
(9)

where Cin is the number of input channels, Cout is the number

of output channels, Hout and Wout are the height and width of

the layer’s output, respectively. Kh × Kw is the kernel size of

each convolution, and g is the number of groups if there are

any. When the MACs are calculated for different works, we

observed that the proposed solution has 30 000× fewer oper-

ations compared to [34]. Therefore, for better visualization,

Fig. 9 is given in logarithmic form where the two y-axes are

in millions. Fig. 9 shows that the proposed solution is much

more energy and memory-efficient compared to other existing

work. Even the closest CNN architecture performs 7× more

MAC operations and requires 40× more memory compared

to ours.

The proposed CNN has very few parameters and MACs

compared to related works because of two reasons. First, in

the third convolution block of the proposed CNN, the grouped

and pointwise convolutions are performed instead of 1-D

convolutions to mix the high-level features optimally. These

convolution operations are also more efficient compared to

the 1-D convolutions since the number of MACs are decreased

TABLE VI
MEMORY AND ENERGY CONSUMPTION ON BLUE GECKO

with increasing groups in convolutions. Second, as we applied

a bandpass filter with cut-off frequencies f1 = 1 Hz and

f2 = 50 Hz at the beginning of the process, the ECG signal’s

sampling rate, which directly affects the input size of CNN,

is downsampled to 130 Hz without losing any information.

D. Memory and Energy Consumption Evaluation

We evaluate the memory footprint and energy consumption

of our proposed methodology on the target device men-

tioned in Section IV-B. Table VI shows the execution time,

energy consumption, and required memory for each layer that

runs on the edge device. When we evaluate the power and

execution time of each layer, we perform multiple experi-

ments to take the average of them. In the end, we observe

±1% mW and ±0.5% ms deviation from the average of all

trials. For example, we observe a maximum 20.12-ms exe-

cution time and 14.13-mW average power consumption for

the First Convolutional Block. The model is implemented and

deployed to the target device using MATLAB (MATLAB and

Coder Toolbox Release R2020b, The MathWorks, Inc, USA).

The overall execution time for a heartbeat takes 36 ms

in the edge device with 55-mW power consumption.

Also, our proposed methodology is compatible with any

devices with a minimum RAM of 32 kb. As a result,

our methodology guarantees high classification performance

while maintaining the low-power wearable devices require-

ments of being resource-efficient in terms of energy and

memory.

VI. DISCUSSION AND FUTURE WORK

In this article, we present a novel and energy-efficient

methodology that runs on a hybrid edge–fog/cloud archi-

tecture for continuously monitoring the heart at low-power

wearable devices. To evaluate our methodology’s performance,

we compare our approach with several state-of-the-art meth-

ods that evaluate their classification results on the same data

sets. We show that our proposed methodology reaches or

outperforms the current state-of-the-art works in terms of clas-

sification performance for three different tasks (noise/artifact

detection, normal/abnormal beat detection, and abnormal beat

classification) while being energy and memory efficient.

However, despite these promising results, questions remain

about whether the proposed approach’s performance is excel-

lent. Therefore, it is important to evaluate the limitations of

our methodology.
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First, in our proposed methodology, the abnormal beat

detection and classification layers heavily depend on the R-

peak detection performance. It is observed that when the

detected R-peaks are wrong, the classification performance

decreases severely due to wrong segmentation and HRV cal-

culation. Second, even though the MIT-BIH data set is widely

used in literature, most state-of-the-art works and our proposed

methodology focus on identifying small numbers of cardiac

abnormalities (VEB, SVEB) that do not represent the com-

plexity and difficulty of ECG interpretation. Therefore, we

believe that there is abundant room for further progress in

beat classification in wearable devices. For example, this arti-

cle showed that the HRV is a helpful feature to classify

beats as normal or abnormal. In future investigations, it might

be helpful to use different machine learning structures such

as neural graph learning to integrate HRV features into an

end-to-end model. Since our proposed methodology is a dis-

tributed neural architecture between nodes of the network,

a further study with more focus on federated learning can

be employed to increase performance while preserving pri-

vacy [38]. Also, the performance of the transmission decision

unit (normal/abnormal beat classification) can be further stud-

ied using a more comprehensive ECG data set with different

arrhythmias and abnormalities.

VII. CONCLUSION

This article proposes a methodology for real-time continu-

ous heart monitoring using distributed multioutput CNN. The

neural network layers are distributed between edge–fog/cloud

so as to save energy and time while reducing the communi-

cation channel usage and server load. Moreover, the proposed

methodology requires 40× less memory compared to state-

of-the-art works while maintaining high accuracy. To the

best of our knowledge, our methodology achieves the best

performance on heartbeat classification while being 7× more

energy efficient for devices with a minimum of 32 kb of RAM.
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