Introduction

Electron and scanning probe microscopy techniques have
become a mainstay of research in materials science, con-
densed-matter physics, biology, and nanotechnology.' Electron
microscopy (EM) has made atomic resolution imaging,” the
mapping of plasmon and phonon excitations,’ the probing of
the chemical states of individual atoms,* and atomic assembly’
a reality. Similarly, scanning probe microscopy has enabled
mapping of individual chemical bonds, probing of quasipar-
ticles and superconducting order parameters,® as well as the
exploration of tip-induced reactions and atomic manipula-
tion.” These instrumental capabilities have provided insight
into atomic structures and functionalities of materials ranging
from superconductors and ferroelectrics to macromolecules.
However, the reams of data generated by modern imaging and
hyperspectral imaging tools surpass the current infrastructure
for storage and analysis, limiting our ability to derive action-
able physics, chemistry, and materials insights.

Until recently, most imaging techniques have relied on
semiqualitative analysis, where human experts interpret
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two-dimensional (2D) images or individual one-dimensional
(1D) spectra. However, data collected by electron and probe
microscopes are often intrinsically quantitative but encoded
across various modalities and dimensionalities. This charac-
teristic requires subsequent extraction of features and corre-
lations at various length and time scales. This includes infor-
mation regarding the relative positions of atoms and bonding
networks directly related to the thermodynamics and kinetics
of materials synthesis. Minute symmetry-breaking distortions
contain information concerning structural and polar-order
parameters. Spatial maps of plasmonic and phonon interac-
tions contain information about the dielectric function, con-
voluted with shape effects. Correspondingly, the second chal-
lenge for microscopy is learning the fundamental physics and
chemistry of the studied materials from imaging and spectral
data.

Finally, the third challenge is inherently linked to the capa-
bility of electron and scanning probe microscopes to modify
materials in a controllable fashion. The last note left by Rich-
ard Feynman on his blackboard was “What I cannot make,
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I cannot understand.” From this perspective, local probes’
capability to visualize and manipulate matter on the atomic
level is the next frontier for nanoscience and nanotechnology.
Active learning methods under the guise of machine learning
offer a pathway to harness imaging data streams, derive physi-
cal insights into the chemistry and physics of materials, and
assemble them at the nano- and atomic scales.

Learning more from data
Since the early days of van Leeuwenhoek, the power of micros-
copy lays in its ability to visualize objects on progressively
smaller length scales. For electron and scanning probe micros-
copies, an additional step involves the conversion of interactions
between the electron or scanning probe and the object to form
images. However, data interpretation has been largely driven by
human insights. This includes identifying features in images or
spectra and qualitative interpretation, in some cases followed by
quantitative analysis, ultimately connecting results to physical
models and prior knowledge. This approach is inherently limited
by human perception and bias. For example, the human eye is
remarkably good at identifying well-localized objects, but strug-
gles to detect the emergence of correlated signatures in different
parts of the image field or to detect small or gradual changes in
periodicity. Furthermore, the eye is extremely sensitive to color
scales and can regularly be deceived by the perception of con-
trast. Even more importantly, interpretation of the data in terms
of relevant physics is highly dependent on prior knowledge.
Machine learning (ML) methods offer an opportunity
to change this paradigm. While neural networks have been
known since the early 1950s, the lack of training algorithms
and sufficiently powerful computational tools have led to slow
progress, with ebbs and flows. This situation has changed in
the last decade.® The explosive development of ML tools
in computer vision, medicine, and robotics has created the
knowledge base and enabling infrastructure that allows its
extension to the physical sciences. Next, we identify some of
the applications enabled by classical supervised ML methods
and new opportunities enabled by unsupervised and physics-
driven ML.

What is in the image: Supervised learning

Artificial intelligence-guided knowledge extraction from raw
experimental data streams is a challenge across all materi-
als science, chemistry, and physics disciplines.”'” In electron
and scanning probe microscopy specifically, we are often con-
cerned with determining key microstructural descriptors that
encode atomic-scale properties and processes.'! These descrip-
tors are challenging to define rigorously but are essential as a
key step in transforming raw data into actionable metrics for
high-throughput and automated decision-making. The most
common characterization modalities for scanning transmission
electron microscopy (STEM), scanning electron microscopy
(SEM), and scanning probe microscopy (SPM) are various
forms of 2D imaging, as shown in Figure 1. For TEM, most
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measurements compress the signals measured from a three-
dimensional (3D) sample volume into a projected 2D image.
SEM and SPM are primarily sensitive to material surfaces
and, thus, are also well suited for 2D imaging. Fortunately,
2D image analysis is also the sub-domain of deep learning
(DL) that has received the most attention, due to immense
online image databases in medicine and biology, astronomy,
and social media.

Most DL applications in image processing target classifica-
tion, with the most common subproblem being segmentation.
Semantic segmentation is the process of labeling every pixel (or
voxel) into discrete classes and is the desired output of many
deep learning routines.'? Segmentation is beneficial for many
microscopy applications in both TEM'* and SPM studies.'
Image segmentation examples in electron microscopy include
separating atomic resolution phases,'> and rapid determination
of microstructural features.'® Segmentation has also been applied
to SPM data sets, where it has been used to detect and avoid
atomic surface defects before patterning'” and detect arbitrarily
complex features over many length scales.'® Deep learning can
also produce more profound insights into microscopy experi-
ments by directly extracting relevant properties. SPM examples
include extracting mechanical properties of copolymers'® and
automated molecular structure discovery in AFM.?° The field of
TEM also contains many examples, including measurement of
carbon nanotube chiral indices?' and automated classification,
and symmetry determination of atomic structures.”?

Given limited prior knowledge of a system or experiment,
we require models that can generalize to novel situations
in real-world scenarios. For example, structure determina-
tion in the microscope heavily depends on imaging condi-
tions, aberrations, sample orientation, and detector. Existing
libraries often poorly capture the resulting variety of poten-
tial image types, spectra, and diffraction patterns. Although
high-throughput simulations can generate synthetic data for
network training, these trained networks are typically mate-
rial-specific. They cannot yet approximate the vast number
of possible real-world imaging conditions. Recent advances
in few-shot ML may be used for triaging and classification in
scenarios in which we have very limited prior knowledge.?
This approach is almost entirely unexplored in the context
of electron microscopy and analytical characterization more
broadly. It can allow us to do more with less and inform oth-
erwise intractable novel situations. Motivated by humans’
ability, especially children, to rapidly learn novel visual con-
cepts by utilizing what they learned in the past, one-shot or
few-shot approaches allow human-level performance with
fewer and less intensively labeled data (i.e., shots). Studies
leveraging these methods in materials science and microscopy
are limited,'®?* but are a critical step toward handling large
data streams with few to no annotations. This concept also
has significant implications for studying transient behavior
and unfolding experiments, where decisions must be made
quickly given limited prior knowledge. Old ways of training
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and retraining large models on vastly annotated data are not
well suited to a rapid “discovery” cycle.

Discovery via unsupervised learning

The alternative approach for analyzing imaging and spectro-
scopic data is based on unsupervised learning. In this case, an
ML algorithm seeks to discover common traits and variabili-
ties within the high-dimensional data. One approach to address
this is to use statistical methods of machine and deep learning
to disentangle phenomena in high-dimensional space to bring
important physics into focus. Techniques such as clustering,
principal component analysis, nonnegative matrix factoriza-
tion, and dictionary learning are highly effective in quickly
probing structure—property relationships in multidimensional
imaging but they have an inherent flaw, specifically, probing
structure—property relationships in microscopy requires con-
sideration of spatiotemporal relationships in data, whereas the
aforementioned ML approaches consider each dimension as
independent and uncorrelated. This situation becomes particu-
larly problematic when comparing data translated in space or
time.

One partial solution to this problem can be achieved by
using autoencoders. Autoencoders generally refer to a class
of ML methods aiming to discover low-dimensional repre-
sentations of the data and are composed of the encoder and
decoder parts represented by neural networks. When trained,

the encoder learns a compact statistical representation of the
training data distribution that can be decoded back to the origi-
nal data using the decoder. Because autoencoders are variants of
deep neural networks, various neural network building blocks
can be used. This allows for incorporation of local spatial
dependencies using 2D convolutions and sequential dependencies
using 1D convolution or recurrent neural networks.

One rapidly developing example is the variational autoen-
coder (VAE). In the encoder part of the network, a data set is
compressed to a small number of latent variables (latent vec-
tor), which the decoder then aims to decode into original data.
The training of VAEs balances the reconstruction quality and
the proximity of the latent variable distributions to a chosen
(typically Gaussian) prior. The unique aspect of autoencoders
is that the latent representations of the system often allow one
to disentangle the representation of the data (i.e., to discover
the systematic traits and align them with the specific latent
variables). For example, when disentangling a representation
of the hand-written digit (MNIST) data set, one of the latent
representations may correspond to the width of the digit,
and the other to the tilt. Practically, VAE architectures can
be modified to represent variables such as rotation, dilation,
and shift as separate latent vectors. The remaining factors of
variation can be used to establish order parameters, explore
structures, and, in special cases, analyze relevant physical
mechanisms.?
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Figure 1. Information channels are available in (a) scanning transmission electron microscopy (STEM), and (b) scanning probe microscopy
(SPM) experiments. Measurement techniques are labeled in pink. Figure courtesy of Colin Ophus.
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Probing structure-property relations

Although mere representation of data is important, a central
concept in materials science is that of mapping quantitative or
semiquantitative structure—property relationships. Advances
in spectroscopic modes such as electron energy-loss spec-
troscopy (EELS) and scanning tunneling spectroscopy (STS)
allow us to generalize this concept to atomic- and nanometer-
level studies. A variant of scanning tunneling microscopy
(STM), STS of individual defects, has been known since
the early 1990s. In electron microscopy, advances in EELS
allowed the determination of the valence states of the three
and fourfold-coordinated Si atom in graphene,?® followed by
P?” and other elements.?® In cases when structural descriptors
are well defined, this analysis is straightforward. However, in
many cases, it is not clear what relevant building blocks define
the structure of a solid.

In these cases, ML can be used as a correlative tool to
simultaneously simplify the structural and spectral descrip-
tors and establish the relationship between the two. The lin-
ear method of this analysis is canonical correlation analysis
(CCA), representing the generalization of principal compo-
nent analysis to two data sources. CCA has been applied to
establish the relationship between structural distortions and
electron-scattering patterns in graphene with defects.” How-
ever, in many cases, the image formation mechanisms are
nonlinear. In this case, the encoder—decoder architectures
allow building correlative relationships as described for the
predictability of the plasmon spectra from high-angle annular
dark-field (HAADF) STEM data?® (Figure 2) and decoding
relationships between domain structure and functionality in
ferroelectric materials.*’

Physical discovery

Ultimately, atomic configurations and property maps reflect
fundamental information and interactions for atomic assem-
bly. In certain cases, information regarding the processes that
lead to the formation of a material can be derived. Hence,
a key task for microscopy is to find out whether these laws
can be learned from the observational data. A parallel can be
drawn to sciences such as astronomy, in which physical laws
of celestial mechanics and subsequently Newton’s Laws were
derived from the observation of planetary motion. Recently, it
has been shown that for ferroic materials, including ferroelec-
trics and ferroelastics, mesoscopic-order parameter fields can
be visualized.?!*? These parameters can be fitted to the Ginz-
burg-Landau theory prediction to learn the corresponding free
energies, gradient terms, and even flexoelectric constants.’
This approach can be further extended to the atomistic level to
learn the Hamiltonians describing atomic interactions.**

Toward automated experimentation

Transformative discoveries in domains such as energy storage,
quantum information science, and advanced manufacturing
require novel experimental paradigms beyond highly manual,
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disconnected, and inefficient experiment architectures. Elec-
tron microscopy, a cornerstone of the study of atomic struc-
ture, chemistry, and dynamics, exemplifies this challenge.
Hardware advances have left us awash with multimodal, high-
volume data, leading us to rethink how to make effective deci-
sions in complex, fast-paced experiments.>> We are now data-
rich but faced with increasingly difficult analysis tasks that
leave us knowledge-poor. There is presently a transformative
opportunity to leverage Al and emerging analytics approaches
to accelerate scientific discovery in electron microscopy, lay-
ing the groundwork for autonomous experimentation.

Self-driving electron microscopy

Fully automated experiments range from simply repeating an
(often-debated) “standard recipe” for a given experimental
method (open-loop experimentation), to data-driven autono-
mous discovery platforms, which can, without intervention,
optimize measurement or synthesis parameters. Examples of
the latter may select samples or regions to probe or modify, or
in some cases even, which experiments to perform or which
samples to fabricate next (closed-loop experimentation), bal-
ancing exploration, and exploitation. One of the key ingredients
for the implementation of full automation is tight integration
between the experimental hardware, software and algorithms,
and control hardware, as well as the ability to modify both to
suit experimental needs. Synchrotron beamline experiments are
typically custom built, and therefore, many have pioneered full
automation. These light source experiments are supported by a
range of data science tools, including the Globus data transfer
ecosystem®® and the Data and Learning Hub for ML-enabled
modeling.3” These developments lead to the open question of
how the scanning probe and electron microscopy communities
will manage the growing volumes of data.

In electron microscopy, the most widespread automation
tools are those optimized for biological studies, where samples
are relatively uniform and imaging modalities are standard-
ized. One example is the SerialEM platform, which automates
EM experiments such as tomographic tilt series collection, as
well as automating steps such as stage positioning and micro-
scope defocus tuning.>® More complex examples include the
hardware automation platforms developed for single-particle
reconstructions in cryo-EM.*° These examples only scratch the
surface of the possibilities for fully autonomous experiments,
which could combine multiple signal channels and measure-
ment modalities to perform arbitrarily complex experiments.

To make meaningful progress toward automation of com-
plex experiments in materials EM and SPM, we must be able
to address several gaps in current experimental Al practice.
First, we require models capable of analytically enriching
large, heterogeneous, and complex data sets in real time
with minimal human intervention. Such multimodal data are
highly varied in their dimensionality, feature types, and arti-
facts, motivating the need for more flexible and transferable
approaches to classification and segmentation, particularly
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Figure 2. (a) lllustration of the encoder—decoder model and its latent space. The inputs and outputs can be structural image patches and
1D spectra measured in those patches. In this example, the inputs are high-angle annular dark-field (HAADF) scanning transmission electron
microscope (STEM) image patches, and the outputs are corresponding electron energy-loss spectroscopy (EELS) spectra. (b) Distinct plas-
monic responses uncovered from the analysis of the latent space and (c) their spatial locations on the HAADF STEM image. (d, €) Prediction
of EELS spectra from a structural image using a trained encoder-decoder model. Data from K. Roccapriore (Oak Ridge National Laboratory).

Figure courtesy of M. Ziatdinov.

as we move toward self-driving instrumentation. Second, we
require models that can generalize and adapt to novel scenar-
ios, given limited prior knowledge of a system or experiment.
In contrast to other experimental techniques, the reconstruc-
tion of a structure in the electron microscope heavily depends
on imaging conditions, aberrations, orientation, and the detec-
tor. The wide variety of potential image types, spectra, and
diffraction patterns is poorly captured by existing libraries.
High-throughput simulations can help generate some synthetic
data for network training, but it is still difficult to approximate
the vast number of possible real-world imaging conditions.
Third, we require physically grounded, interpretable models
from which we can derive actionable metrics for control sys-
tems and automation. As described in the preceding section,
domain knowledge must be integrated into these models from
the outset to ensure that meaningful features and behaviors are
detected, particularly if a control system is to anticipate and
decide on the next steps of an experiment in a robust man-
ner. Recent efforts in this direction include sparse-data-guided
electron microscope platforms,*’ which leverage a handful of
user-provided examples to guide automated decision-mak-
ing. These developments show the potential of a flexible and
domain-aware approach to analytics and control unconstrained
by a lack of prior knowledge. Finally, we need to consider
how computational hardware can be co-designed to meet the
latency and throughput requirements of an experiment, taking

advantage of both cloud and edge-based computing systems.
There is also an emerging opportunity to design automation
for custom hardware solutions that can achieve inference times
on the order of nanoseconds.*!

Realization of autonomous experiments necessitates a defini-
tion of prior knowledge and goals. These considerations, in turn,
determine the selection of enabling algorithms. For example,
automated experimentation based on uniform imaging over a
large grid of points assumes zero prior knowledge and explores
material everywhere. Similarly, spectroscopic measurements
at locations with a priori known structures of interest require
ML methods at the segmentation stage. Conversely, the discov-
ery of specific structural and spectral elements of interest and
sparse image reconstructions requires more advanced Gaussian
process-based techniques. Recently, it has been shown that deep
kernel learning captures a combination of the expressive power
of the deep convolutional networks and flexibility of Gaussian
processes to enable discovery of structure—property relation-
ships in scanning probe and electron microscopy.*>* There is a
tremendous opportunity for automated experiments that control
perturbation energy and frequency to capture spatiotemporal
phenomena associated with specific materials structures.

The unique opportunity opened by the quantitative micros-
copies is the fundamental studies of structure— and compo-
sition—property relationships. Even nominally homogeneous
materials contain atomic-level fluctuations, thus, encompassing
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the range of local

chemical composition
and environments.
Learning local struc-
ture—property relation-
ships allows for prob-
ing broad regions of
chemical spaces. This
approach can be further
expanded by combin-
ing the local character-

ization and macro- or

mesoscale combina-
torial libraries. Here,
the key requirement is
the instantiation of ML
methods that contain
information on possible
physical mechanisms
underlying materials
properties and refine-
ment of them through-
out the experiment.

Mesoscopic
and atomic
fabrication
A unique niche for
automated experimen-
tation is the possibility
to not only measure
previously fabricated

Figure 3. Atomic fabrication with scanning probes and electron beams. (a) Hydrogen depassivation
lithography (HDL) with a scanning tunneling microscope (STM) has removed single H atoms and used error
detection and correction, to form dangling bonds to print “150” and a Canadian Maple leaf. Adapted from
Reference 73. (b) HDL with an STM has written a 5 x5 array 20 x 20 atom squares at a pitch of 130 atoms
on a Si (100) 2x 1 H passivated surface (with permission of J.H.G. Owen of Zyvex Labs). (c) Scanning
transmission electron microscope (STEM) image sequence of the electron-beam manipulation of a silicon
heteroatom substitution around one carbon hexagon in freestanding monolayer graphene. Adapted with
permission from Reference 56. (d) Projected STEM image of a triangular pattern of bismuth impurities
manipulated via STEM in a thin slab of bulk silicon. Adapted with permission from Reference 64.

structures, but to also
use the imaging modal-
ity itself as a manipulation tool. Although light-based lithog-
raphy is widely used in semiconductor manufacturing and is
reaching ever-smaller dimensions, the wavelength of light
places a hard limit on the dimensionality. Truly atomic-level
manipulation can only be achieved with atomic-sized probes.
Richard Feynman pointed out more than 60 years ago that noth-
ing in the laws of physics prohibits this ultimate limit of mate-
rials engineering.** It took several decades for technological
developments to catch up, first with the invention of STM in
the early 1980s,* and then with the development of effective
aberration correctors for STEM by the early 2000s.%¢

The power to manipulate individual atoms was established
for the first time by pioneering STM experiments in the early
1990s.” This soon led to the creation of atomic assemblies with
controllable collective quantum properties.*’*® Although STM
is primarily limited to surfaces held at cryogenic temperatures
in ultrahigh vacuum, the technique of hydrogen depassiva-
tion lithography (HDL)* has enabled heteroatom placement
on semiconductor surfaces followed by crystal overgrowth to
pattern subsurface donor atoms>’ and to fabricate solid-state
qubits.’! Despite less widely used, atomic force microscopy
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(AFM) can also be used for atom manipulation/fabrication,
notably in some cases even at room temperature.’?> Despite
many successes, the inherent limitation of SPM techniques to
a slowly scanning physical tip in contact with a surface has
prompted a search for alternatives.

The possibility to manipulate individual atoms using the
A-sized electron probe of an aberration-corrected STEM was
discovered in 2014, alongside a mechanism for the nondestructive
movement of Si impurities in graphene.>? Controlled experiments
for Si in graphene®>*~® and single-walled carbon nanotubes®’
were soon reported, although this proved more challenging for
P8 and the most common dopants in graphene, N and B.* From
2016, increasing attention was drawn to the unique advantages
of STEM in being able to address atoms within bulk crystals,®®®!
alongside the first experimental demonstrations of directed crys-
tallization and amorphization,*> dopant movement,*> and finally,
the controlled manipulation of Bi dopants in bulk silicon,** the
latter exhibiting a novel nondestructive mechanism.%

Although SPM automation is already commonplace, the first
efforts to apply ML and automation to STEM atomic fabrica-
tion are underway, as shown in Figure 3. Critical components,
such as neural network tools to automatically locate the atoms
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of the lattice®®¢” including any impurities, are already operating
with real-time integration into microscope control software,
while automated electron-beam placement and various detector
feedback schemes are being explored.’*®” Overall, the modern
computerized STEM is already an excellent platform for atomic
fabrication,”® and even more, rapid progress is primarily held
back by the difficulty of obtaining high-quality samples with
large impurity concentrations and atomically clean surfaces, as
well as the presence of competing processes including electron-
beam damage”' and uncontrolled chemical modifications.>”->>"2
In summary, broad adoption of ML methods in scanning
probe and electron microscopy offers a clear pathway to
facilitate and automate the analysis of data. These methods
also show promise to guide learning of underpinning physical
mechanisms. Harnessing ML as a part of the experiment holds
promise for enabling automated microscopy experiments, tar-
geting exploration of predefined objects of interest, discovering
structure—property relationships, and ultimately testing multi-
ple physical hypotheses. Finally, ML methods in microscopy
open the pathway toward direct atomic fabrication via scan-
ning probes and electron beams, which is a critical step toward
quantum computing and other serendipitous developments.
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