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Deep learning for electron and scanning 
probe microscopy: From materials 
design to atomic fabrication
Sergei V. Kalinin,* Maxim Ziatdinov, Steven R. Spurgeon, Colin Ophus, 
Eric A. Stach, Toma Susi, Josh Agar, and John Randall

Machine learning and artificial intelligence (ML/AI) are rapidly becoming an indispensable 
part of physics research, with applications ranging from theory and materials prediction to 
high-throughput data analysis. In parallel, the recent successes in applying ML/AI methods for 
autonomous systems from robotics through self-driving cars to organic and inorganic synthesis 
are generating enthusiasm for the potential of these techniques to enable automated and 
autonomous experiment in imaging. In this article, we discuss recent progress in application 
of machine learning methods in scanning transmission electron microscopy and scanning 
probe microscopy, from applications such as data compression and exploratory data analysis 
to physics learning to atomic fabrication.

Introduction
Electron and scanning probe microscopy techniques have 
become a mainstay of research in materials science, con-
densed-matter physics, biology, and nanotechnology.1 Electron 
microscopy (EM) has made atomic resolution imaging,2 the 
mapping of plasmon and phonon excitations,3 the probing of 
the chemical states of individual atoms,4 and atomic assembly5 
a reality. Similarly, scanning probe microscopy has enabled 
mapping of individual chemical bonds, probing of quasipar-
ticles and superconducting order parameters,6 as well as the 
exploration of tip-induced reactions and atomic manipula-
tion.7 These instrumental capabilities have provided insight 
into atomic structures and functionalities of materials ranging 
from superconductors and ferroelectrics to macromolecules. 
However, the reams of data generated by modern imaging and 
hyperspectral imaging tools surpass the current infrastructure 
for storage and analysis, limiting our ability to derive action-
able physics, chemistry, and materials insights.

Until recently, most imaging techniques have relied on 
semiqualitative analysis, where human experts interpret 

two-dimensional (2D) images or individual one-dimensional 
(1D) spectra. However, data collected by electron and probe 
microscopes are often intrinsically quantitative but encoded 
across various modalities and dimensionalities. This charac-
teristic requires subsequent extraction of features and corre-
lations at various length and time scales. This includes infor-
mation regarding the relative positions of atoms and bonding 
networks directly related to the thermodynamics and kinetics 
of materials synthesis. Minute symmetry-breaking distortions 
contain information concerning structural and polar-order 
parameters. Spatial maps of plasmonic and phonon interac-
tions contain information about the dielectric function, con-
voluted with shape effects. Correspondingly, the second chal-
lenge for microscopy is learning the fundamental physics and 
chemistry of the studied materials from imaging and spectral 
data.

Finally, the third challenge is inherently linked to the capa-
bility of electron and scanning probe microscopes to modify 
materials in a controllable fashion. The last note left by Rich-
ard Feynman on his blackboard was “What I cannot make, 
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I cannot understand.” From this perspective, local probes’ 
capability to visualize and manipulate matter on the atomic 
level is the next frontier for nanoscience and nanotechnology. 
Active learning methods under the guise of machine learning 
offer a pathway to harness imaging data streams, derive physi-
cal insights into the chemistry and physics of materials, and 
assemble them at the nano- and atomic scales.

Learning more from data
Since the early days of van Leeuwenhoek, the power of micros-
copy lays in its ability to visualize objects on progressively 
smaller length scales. For electron and scanning probe micros-
copies, an additional step involves the conversion of interactions 
between the electron or scanning probe and the object to form 
images. However, data interpretation has been largely driven by 
human insights. This includes identifying features in images or 
spectra and qualitative interpretation, in some cases followed by 
quantitative analysis, ultimately connecting results to physical 
models and prior knowledge. This approach is inherently limited 
by human perception and bias. For example, the human eye is 
remarkably good at identifying well-localized objects, but strug-
gles to detect the emergence of correlated signatures in different 
parts of the image field or to detect small or gradual changes in 
periodicity. Furthermore, the eye is extremely sensitive to color 
scales and can regularly be deceived by the perception of con-
trast. Even more importantly, interpretation of the data in terms 
of relevant physics is highly dependent on prior knowledge.

Machine  learning (ML) methods offer an opportunity 
to change this paradigm. While neural networks have been 
known since the early 1950s, the lack of training algorithms 
and sufficiently powerful computational tools have led to slow 
progress, with ebbs and flows. This situation has changed in 
the last decade.8 The explosive development of ML tools 
in computer vision, medicine, and robotics has created the 
knowledge base and enabling infrastructure that allows its 
extension to the physical sciences. Next, we identify some of 
the applications enabled by classical supervised ML methods 
and new opportunities enabled by unsupervised and physics-
driven ML.

What is in the image: Supervised learning
Artificial intelligence-guided knowledge extraction from raw 
experimental data streams is a challenge across all materi-
als science, chemistry, and physics disciplines.9,10 In electron 
and scanning probe microscopy specifically, we are often con-
cerned with determining key microstructural descriptors that 
encode atomic-scale properties and processes.11 These descrip-
tors are challenging to define rigorously but are essential as a 
key step in transforming raw data into actionable metrics for 
high-throughput and automated decision-making. The most 
common characterization modalities for scanning transmission 
electron microscopy (STEM), scanning electron microscopy 
(SEM), and scanning probe microscopy (SPM) are various 
forms of 2D imaging, as shown in Figure 1. For TEM, most 

measurements compress the signals measured from a three-
dimensional (3D) sample volume into a projected 2D image. 
SEM and SPM are primarily sensitive to material surfaces 
and, thus, are also well suited for 2D imaging. Fortunately, 
2D image analysis is also the sub-domain of deep learning 
(DL) that has received the most attention, due to immense 
online image databases in medicine and biology, astronomy, 
and social media.

Most DL applications in image processing target classifica-
tion, with the most common subproblem being segmentation. 
Semantic segmentation is the process of labeling every pixel (or 
voxel) into discrete classes and is the desired output of many 
deep learning routines.12 Segmentation is beneficial for many 
microscopy applications in both TEM13 and SPM studies.14 
Image segmentation examples in electron microscopy include 
separating atomic resolution phases,15 and rapid determination 
of microstructural features.16 Segmentation has also been applied 
to SPM data sets, where it has been used to detect and avoid 
atomic surface defects before patterning17 and detect arbitrarily 
complex features over many length scales.18 Deep learning can 
also produce more profound insights into microscopy experi-
ments by directly extracting relevant properties. SPM examples 
include extracting mechanical properties of copolymers19 and 
automated molecular structure discovery in AFM.20 The field of 
TEM also contains many examples, including measurement of 
carbon nanotube chiral indices21 and automated classification, 
and symmetry determination of atomic structures.22

Given limited prior knowledge of a system or experiment, 
we require models that can generalize to novel situations 
in real-world scenarios. For example, structure determina-
tion in the microscope heavily depends on imaging condi-
tions, aberrations, sample orientation, and detector. Existing 
libraries often poorly capture the resulting variety of poten-
tial image types, spectra, and diffraction patterns. Although 
high-throughput simulations can generate synthetic data for 
network training, these trained networks are typically mate-
rial-specific. They cannot yet approximate the vast number 
of possible real-world imaging conditions. Recent advances 
in few-shot ML may be used for triaging and classification in 
scenarios in which we have very limited prior knowledge.23 
This approach is almost entirely unexplored in the context 
of electron microscopy and analytical characterization more 
broadly. It can allow us to do more with less and inform oth-
erwise intractable novel situations. Motivated by humans’ 
ability, especially children, to rapidly learn novel visual con-
cepts by utilizing what they learned in the past, one-shot or 
few-shot approaches allow human-level performance with 
fewer and less intensively labeled data (i.e., shots). Studies 
leveraging these methods in materials science and microscopy 
are limited,16,24 but are a critical step toward handling large 
data streams with few to no annotations. This concept also 
has significant implications for studying transient behavior 
and unfolding experiments, where decisions must be made 
quickly given limited prior knowledge. Old ways of training 
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and retraining large models on vastly annotated data are not 
well suited to a rapid “discovery” cycle.

Discovery via unsupervised learning
The alternative approach for analyzing imaging and spectro-
scopic data is based on unsupervised learning. In this case, an 
ML algorithm seeks to discover common traits and variabili-
ties within the high-dimensional data. One approach to address 
this is to use statistical methods of machine and deep learning 
to disentangle phenomena in high-dimensional space to bring 
important physics into focus. Techniques such as clustering, 
principal component analysis, nonnegative matrix factoriza-
tion, and dictionary learning are highly effective in quickly 
probing structure–property relationships in multidimensional 
imaging but they have an inherent flaw, specifically, probing 
structure–property relationships in microscopy requires con-
sideration of spatiotemporal relationships in data, whereas the 
aforementioned ML approaches consider each dimension as 
independent and uncorrelated. This situation becomes particu-
larly problematic when comparing data translated in space or 
time.

One partial solution to this problem can be achieved by 
using autoencoders. Autoencoders generally refer to a class 
of ML methods aiming to discover low-dimensional repre-
sentations of the data and are composed of the encoder and 
decoder parts represented by neural networks. When trained, 

the encoder learns a compact statistical representation of the 
training data distribution that can be decoded back to the origi-
nal data using the decoder. Because autoencoders are variants of 
deep neural networks, various neural network building blocks 
can be used. This allows for incorporation of local spatial 
dependencies using 2D convolutions and sequential dependencies 
using 1D convolution or recurrent neural networks.

One rapidly developing example is the variational autoen-
coder (VAE). In the encoder part of the network, a data set is 
compressed to a small number of latent variables (latent vec-
tor), which the decoder then aims to decode into original data. 
The training of VAEs balances the reconstruction quality and 
the proximity of the latent variable distributions to a chosen 
(typically Gaussian) prior. The unique aspect of autoencoders 
is that the latent representations of the system often allow one 
to disentangle the representation of the data (i.e., to discover 
the systematic traits and align them with the specific latent 
variables). For example, when disentangling a representation 
of the hand-written digit (MNIST) data set, one of the latent 
representations may correspond to the width of the digit, 
and the other to the tilt. Practically, VAE architectures can 
be modified to represent variables such as rotation, dilation, 
and shift as separate latent vectors. The remaining factors of 
variation can be used to establish order parameters, explore 
structures, and, in special cases, analyze relevant physical 
mechanisms.25
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Figure 1.   Information channels are available in (a) scanning transmission electron microscopy (STEM), and (b) scanning probe microscopy 
(SPM) experiments. Measurement techniques are labeled in pink. Figure courtesy of Colin Ophus.
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Probing structure–property relations
Although mere representation of data is important, a central 
concept in materials science is that of mapping quantitative or 
semiquantitative structure–property relationships. Advances 
in spectroscopic modes such as electron energy-loss spec-
troscopy (EELS) and scanning tunneling spectroscopy (STS) 
allow us to generalize this concept to atomic- and nanometer-
level studies. A variant of scanning tunneling microscopy 
(STM), STS of individual defects, has been known since 
the early 1990s. In electron microscopy, advances in EELS 
allowed the determination of the valence states of the three 
and fourfold-coordinated Si atom in graphene,26 followed by 
P27 and other elements.28 In cases when structural descriptors 
are well defined, this analysis is straightforward. However, in 
many cases, it is not clear what relevant building blocks define 
the structure of a solid.

In these cases, ML can be used as a correlative tool to 
simultaneously simplify the structural and spectral descrip-
tors and establish the relationship between the two. The lin-
ear method of this analysis is canonical correlation analysis 
(CCA), representing the generalization of principal compo-
nent analysis to two data sources. CCA has been applied to 
establish the relationship between structural distortions and 
electron-scattering patterns in graphene with defects.7 How-
ever, in many cases, the image formation mechanisms are 
nonlinear. In this case, the encoder–decoder architectures 
allow building correlative relationships as described for the 
predictability of the plasmon spectra from high-angle annular 
dark-field (HAADF) STEM data29 (Figure 2) and decoding 
relationships between domain structure and functionality in 
ferroelectric materials.30

Physical discovery
Ultimately, atomic configurations and property maps reflect 
fundamental information and interactions for atomic assem-
bly. In certain cases, information regarding the processes that 
lead to the formation of a material can be derived. Hence, 
a key task for microscopy is to find out whether these laws 
can be learned from the observational data. A parallel can be 
drawn to sciences such as astronomy, in which physical laws 
of celestial mechanics and subsequently Newton’s Laws were 
derived from the observation of planetary motion. Recently, it 
has been shown that for ferroic materials, including ferroelec-
trics and ferroelastics, mesoscopic-order parameter fields can 
be visualized.31,32 These parameters can be fitted to the Ginz-
burg–Landau theory prediction to learn the corresponding free 
energies, gradient terms, and even flexoelectric constants.33 
This approach can be further extended to the atomistic level to 
learn the Hamiltonians describing atomic interactions.34

Toward automated experimentation
Transformative discoveries in domains such as energy storage, 
quantum information science, and advanced manufacturing 
require novel experimental paradigms beyond highly manual, 

disconnected, and inefficient experiment architectures. Elec-
tron microscopy, a cornerstone of the study of atomic struc-
ture, chemistry, and dynamics, exemplifies this challenge. 
Hardware advances have left us awash with multimodal, high-
volume data, leading us to rethink how to make effective deci-
sions in complex, fast-paced experiments.35 We are now data-
rich but faced with increasingly difficult analysis tasks that 
leave us knowledge-poor. There is presently a transformative 
opportunity to leverage AI and emerging analytics approaches 
to accelerate scientific discovery in electron microscopy, lay-
ing the groundwork for autonomous experimentation.

Self‑driving electron microscopy
Fully automated experiments range from simply repeating an 
(often-debated) “standard recipe” for a given experimental 
method (open-loop experimentation), to data-driven autono-
mous discovery platforms, which can, without intervention, 
optimize measurement or synthesis parameters. Examples of 
the latter may select samples or regions to probe or modify, or 
in some cases even, which experiments to perform or which 
samples to fabricate next (closed-loop experimentation), bal-
ancing exploration, and exploitation. One of the key ingredients 
for the implementation of full automation is tight integration 
between the experimental hardware, software and algorithms, 
and control hardware, as well as the ability to modify both to 
suit experimental needs. Synchrotron beamline experiments are 
typically custom built, and therefore, many have pioneered full 
automation. These light source experiments are supported by a 
range of data science tools, including the Globus data transfer 
ecosystem36 and the Data and Learning Hub for ML-enabled 
modeling.37 These developments lead to the open question of 
how the scanning probe and electron microscopy communities 
will manage the growing volumes of data.

In electron microscopy, the most widespread automation 
tools are those optimized for biological studies, where samples 
are relatively uniform and imaging modalities are standard-
ized. One example is the SerialEM platform, which automates 
EM experiments such as tomographic tilt series collection, as 
well as automating steps such as stage positioning and micro-
scope defocus tuning.38 More complex examples include the 
hardware automation platforms developed for single-particle 
reconstructions in cryo-EM.39 These examples only scratch the 
surface of the possibilities for fully autonomous experiments, 
which could combine multiple signal channels and measure-
ment modalities to perform arbitrarily complex experiments.

To make meaningful progress toward automation of com-
plex experiments in materials EM and SPM, we must be able 
to address several gaps in current experimental AI practice. 
First, we require models capable of analytically enriching 
large, heterogeneous, and complex data  sets in real time 
with minimal human intervention. Such multimodal data are 
highly varied in their dimensionality, feature types, and arti-
facts, motivating the need for more flexible and transferable 
approaches to classification and segmentation, particularly 



Deep learning for electron and scanning probe microscopy: From materials design to atomic fabrication

MRS BULLETIN  •  VOLUME 47  •  SEPTEMBER 2022  •  mrs.org/bulletin               935

as we move toward self-driving instrumentation. Second, we 
require models that can generalize and adapt to novel scenar-
ios, given limited prior knowledge of a system or experiment. 
In contrast to other experimental techniques, the reconstruc-
tion of a structure in the electron microscope heavily depends 
on imaging conditions, aberrations, orientation, and the detec-
tor. The wide variety of potential image types, spectra, and 
diffraction patterns is poorly captured by existing libraries. 
High-throughput simulations can help generate some synthetic 
data for network training, but it is still difficult to approximate 
the vast number of possible real-world imaging conditions. 
Third, we require physically grounded, interpretable models 
from which we can derive actionable metrics for control sys-
tems and automation. As described in the preceding section, 
domain knowledge must be integrated into these models from 
the outset to ensure that meaningful features and behaviors are 
detected, particularly if a control system is to anticipate and 
decide on the next steps of an experiment in a robust man-
ner. Recent efforts in this direction include sparse-data-guided 
electron microscope platforms,40 which leverage a handful of 
user-provided examples to guide automated decision-mak-
ing. These developments show the potential of a flexible and 
domain-aware approach to analytics and control unconstrained 
by a lack of prior knowledge. Finally, we need to consider 
how computational hardware can be co-designed to meet the 
latency and throughput requirements of an experiment, taking 

advantage of both cloud and edge-based computing systems. 
There is also an emerging opportunity to design automation 
for custom hardware solutions that can achieve inference times 
on the order of nanoseconds.41

Realization of autonomous experiments necessitates a defini-
tion of prior knowledge and goals. These considerations, in turn, 
determine the selection of enabling algorithms. For example, 
automated experimentation based on uniform imaging over a 
large grid of points assumes zero prior knowledge and explores 
material everywhere. Similarly, spectroscopic measurements 
at locations with a priori known structures of interest require 
ML methods at the segmentation stage. Conversely, the discov-
ery of specific structural and spectral elements of interest and 
sparse image reconstructions requires more advanced Gaussian 
process-based techniques. Recently, it has been shown that deep 
kernel learning captures a combination of the expressive power 
of the deep convolutional networks and flexibility of Gaussian 
processes to enable discovery of structure–property relation-
ships in scanning probe and electron microscopy.42,43 There is a 
tremendous opportunity for automated experiments that control 
perturbation energy and frequency to capture spatiotemporal 
phenomena associated with specific materials structures.

The unique opportunity opened by the quantitative micros-
copies is the fundamental studies of structure– and compo-
sition–property relationships. Even nominally homogeneous 
materials contain atomic-level fluctuations, thus, encompassing 

a b c

d e

20 nm

Figure 2.   (a) Illustration of the encoder–decoder model and its latent space. The inputs and outputs can be structural image patches and 
1D spectra measured in those patches. In this example, the inputs are high-angle annular dark-field (HAADF) scanning transmission electron 
microscope (STEM) image patches, and the outputs are corresponding electron energy-loss spectroscopy (EELS) spectra. (b) Distinct plas-
monic responses uncovered from the analysis of the latent space and (c) their spatial locations on the HAADF STEM image. (d, e) Prediction 
of EELS spectra from a structural image using a trained encoder–decoder model. Data from K. Roccapriore (Oak Ridge National Laboratory). 
Figure courtesy of M. Ziatdinov.
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the range of local 
chemical composition 
and environments. 
Learning local struc-
ture–property relation-
ships allows for prob-
ing broad regions of 
chemical spaces. This 
approach can be further 
expanded by combin-
ing the local character-
ization and macro- or 
mesoscale combina-
torial libraries. Here, 
the key requirement is 
the instantiation of ML 
methods that contain 
information on possible 
physical mechanisms 
underlying materials 
properties and refine-
ment of them through-
out the experiment.

Mesoscopic 
and atomic 
fabrication
A unique niche for 
automated experimen-
tation is the possibility 
to not only measure 
previously fabricated 
structures, but to also 
use the imaging modal-
ity itself as a manipulation tool. Although light-based lithog-
raphy is widely used in semiconductor manufacturing and is 
reaching ever-smaller dimensions, the wavelength of light 
places a hard limit on the dimensionality. Truly atomic-level 
manipulation can only be achieved with atomic-sized probes. 
Richard Feynman pointed out more than 60 years ago that noth-
ing in the laws of physics prohibits this ultimate limit of mate-
rials engineering.44 It took several decades for technological 
developments to catch up, first with the invention of STM in 
the early 1980s,45 and then with the development of effective 
aberration correctors for STEM by the early 2000s.46

The power to manipulate individual atoms was established 
for the first time by pioneering STM experiments in the early 
1990s.7 This soon led to the creation of atomic assemblies with 
controllable collective quantum properties.47,48 Although STM 
is primarily limited to surfaces held at cryogenic temperatures 
in ultrahigh vacuum, the technique of hydrogen depassiva-
tion lithography (HDL)49 has enabled heteroatom placement 
on semiconductor surfaces followed by crystal overgrowth to 
pattern subsurface donor atoms50 and to fabricate solid-state 
qubits.51 Despite less widely used, atomic force microscopy 

(AFM) can also be used for atom manipulation/fabrication, 
notably in some cases even at room temperature.52 Despite 
many successes, the inherent limitation of SPM techniques to 
a slowly scanning physical tip in contact with a surface has 
prompted a search for alternatives.

The possibility to manipulate individual atoms using the 
Å-sized electron probe of an aberration-corrected STEM was 
discovered in 2014, alongside a mechanism for the nondestructive 
movement of Si impurities in graphene.53 Controlled experiments 
for Si in graphene5,54–56 and single-walled carbon nanotubes57 
were soon reported, although this proved more challenging for 
P58 and the most common dopants in graphene, N and B.59 From 
2016, increasing attention was drawn to the unique advantages 
of STEM in being able to address atoms within bulk crystals,60,61 
alongside the first experimental demonstrations of directed crys-
tallization and amorphization,62 dopant movement,63 and finally, 
the controlled manipulation of Bi dopants in bulk silicon,64 the 
latter exhibiting a novel nondestructive mechanism.65

Although SPM automation is already commonplace, the first 
efforts to apply ML and automation to STEM atomic fabrica-
tion are underway, as shown in Figure 3. Critical components, 
such as neural network tools to automatically locate the atoms 

a
b

c d

Figure 3.   Atomic fabrication with scanning probes and electron beams. (a) Hydrogen depassivation 
lithography (HDL) with a scanning tunneling microscope (STM) has removed single H atoms and used error 
detection and correction, to form dangling bonds to print “150” and a Canadian Maple leaf. Adapted from 
Reference 73. (b) HDL with an STM has written a 5 × 5 array 20 × 20 atom squares at a pitch of 130 atoms 
on a Si (100) 2 × 1 H passivated surface (with permission of J.H.G. Owen of Zyvex Labs). (c) Scanning 
transmission electron microscope (STEM) image sequence of the electron-beam manipulation of a silicon 
heteroatom substitution around one carbon hexagon in freestanding monolayer graphene. Adapted with 
permission from Reference 56. (d) Projected STEM image of a triangular pattern of bismuth impurities 
manipulated via STEM in a thin slab of bulk silicon. Adapted with permission from Reference 64.
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of the lattice66,67 including any impurities, are already operating 
with real-time integration into microscope control software,68 
while automated electron-beam placement and various detector 
feedback schemes are being explored.56,69 Overall, the modern 
computerized STEM is already an excellent platform for atomic 
fabrication,70 and even more, rapid progress is primarily held 
back by the difficulty of obtaining high-quality samples with 
large impurity concentrations and atomically clean surfaces, as 
well as the presence of competing processes including electron-
beam damage71 and uncontrolled chemical modifications.57,58,72

In summary, broad adoption of ML methods in scanning 
probe and electron microscopy offers a clear pathway to 
facilitate and automate the analysis of data. These methods 
also show promise to guide learning of underpinning physical 
mechanisms. Harnessing ML as a part of the experiment holds 
promise for enabling automated microscopy experiments, tar-
geting exploration of predefined objects of interest, discovering 
structure–property relationships, and ultimately testing multi-
ple physical hypotheses. Finally, ML methods in microscopy 
open the pathway toward direct atomic fabrication via scan-
ning probes and electron beams, which is a critical step toward 
quantum computing and other serendipitous developments.
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