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Abstract—Edge computing is to be widely adopted for au-
tonomous systems (AS) applications as compute-intensive pro-
cessing tasks can be offloaded to compute-capable servers located
at the edge of the network infrastructure. Given the critical na-
ture of numerous AS applications, their tasks are mostly governed
by strict execution deadlines to alleviate any safety concerns
from delayed responses. Although wireless link uncertainty has
prompted recent works to designate redundant local execution
as an offloading fail-safe to ensure these deadlines are met,
frequent invocation of such fail-safe mechanisms can potentially
undermine the extent of performance gains from offloading. In
this paper, we thoroughly analyze how redundant execution over-
heads can influence the overall performance. Then, we present
TESTUDO, a methodology to optimize the energy consumption
for latency-sensitive AS applications employing collaborative edge
computing. Primarily, our methodology encompasses two main
stages: (i) Designing processing pipelines supporting optimal
offloading points and fail-safe integration using modular design
techniques, and (ii) Developing a context-aware adaptive runtime
solution based on Deep Reinforcement Learning to adapt the
mode of operation according to the wireless network status. QOur
experiments for end-to-end control and object detection use-cases
have shown that TESTUDO achieved energy gains reaching up to
31% and 13.4% (15.9% and 5.3% on average) for the former
and latter, respectively, while incurring little-to-no degradation in
prediction scores (< 1% change) from state-of-the-art strategies.

Index Terms—Edge Computing, Collaborative Intelligence,
Latency-Critical, Autonomous Systems,

I. INTRODUCTION AND RELATED WORKS

He wide-scale deployment of autonomous systems (AS)

is edging ever closer to becoming reality given the mas-
sive prospect of benefits from applications such as autonomous
driving and unmanned aerial vehicles (UAV). Hence, machine
learning — and deep neural networks (DNNs) in particular —
has been at the forefront of algorithmic techniques applied for
primary processing given their exceptional performances on
crucial autonomy-related tasks. However, the challenge has al-
ways been to map these compute-intensive algorithms onto the
relatively resource-constrained AS computing platforms. For
instance, the continuously growing computational demands
has led the newer generation of autonomous driving systems
(ADS) hardware platforms, the Nvidia AGX Orin, to incur
a thermal design power (TDP) rating of 800 Watts [1] — a
3.2x increase from its predecessor, the Nvidia Drive PX2 [2],
which can reduce a vehicle’s driving range by a factor up to
11.5% [3]. In the case of UAVs, physical form constraints can
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limit hosting powerful computing platforms, and consequently
limiting their applications’ scope [4].

To address this, edge computing has been presented as
promising solution for processing burden of compute-intensive
tasks can be delegated to compute-capable servers located
at the edge of the network infrastructure. Albeit similar
to conventional cloud computing [5]-[8], the rationale be-
hind adopting edge computing hinges on having the com-
pute servers positioned within close proximity from where
the data is initially generated, firmly mitigating the effects
of propagation delays [9]. To further bound the impact of
transmission overheads, researchers have proposed to shrink
the data prior to transmission, most prominently through the
application of in-model compression techniques that map the
high-dimensional raw input data to low scale representations
before the offloading point with little-to-no impact on the
performance accuracy [10], [11]. What’s more, the promise of
higher bandwidths from the forthcoming V2X and 5G wireless
technologies is poised to further diminish the effect of added
transmission latencies.

Despite all these efforts, the volatile nature of wireless
links can cause additional delays that can compromise the
operational integrity of such latency-critical autonomous sys-
tems. Specifically, abrupt interruptions and micro-scale delays
from a multitude of dynamic factors such as path propagation
losses, network congestion, server queuing delays, and even
the motion characteristics of the AS itself, can accumulate
to cause a notable impact on the overall processing latency,
especially precarious for autonomous systems control appli-
cations whose nominal safety relies on providing outputs
within tens of milliseconds [12]. Inspired by the redundancy
policies of safety-critical systems [13], recent edge computing
works have embraced a similar idea to address response time
uncertainty through redundant execution schemes, in which an
additional execution pipeline — usually on the local platform
— is activated whenever server response time is predicted to
peak due to wireless channel impairments, which we denote
here by offloading fail-safe mechanisms [4], [14]-[16]. Unlike
conventional fail-safe approaches that apply redundancy for
functional safety, that is, to ensure a system is immune of
software bugs and/or hardware failures [12], [17], offloading
fail-safe are more concerned with safety from a nominal sense,
in which correct and timely outputs are to be provided every
time-step even if the wireless channel is impaired.

On the same subject, although fail-safe techniques target
handling extreme rare cases of operation in which deviation
from normal operation can occur, divergent cases in wireless
networks are more likely to occur considering the highly
dynamic environment of mobile autonomous systems employ-
ing edge computing, which makes the offloading fail-safe
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subclass liable to more frequent triggering compared to others.
Specifically, navigation mechanics and wireless links’ fragility
can combine to introduce subtle additional delays that can
accumulate faster than channel quality estimates are updated
at the AS, possibly causing sub-optimal offloading decisions,
where despite ensuring critical deadlines are met, the extent of
performance gains is likely to be affected, instilling doubts on
the efficacy of offloading in the first place and whether local
execution presented the better execution option in retrospect.
In summary, we find collaborative intelligence approaches for
latency-sensitive AS suffering from the following limitations:

1) The overhead of incorporating offloading fail-safe tech-
niques for reliable offloading is largely understudied,
that is, repeated invocations of these secondary routines
can limit the desired degree of performance efficiency
given how dynamic wireless networks can be.

2) Despite redundant execution and reactivation of local
resources being adopted for offloading reliability, they
are not characterized as part of performance modelling.

3) Setting the reactivation of local compute resources as
the offloading fail-safe guarantees meeting execution
deadlines regardless of the wireless state. However,
additional incurred costs in terms of energy consumption
are overlooked for the most part.

A. Motivational Case Study

We present an example on how offloading fail-safe routines
can affect performance efficiency in a real-world scenario,
we analyze how the end-to-end control self-driving offloading
solution presented in [14] would perform under different
wireless condition states, where autonomous driving systems
(ADS) are required to complete processing and analysis of
the collected input data within 100 ms of their acquisition.
Primarily, this constraint is inspired by how numerous self-
driving datasets collect frames at a sensor sampling frequency
of 10 Hz [3], [12]. As a way to promote energy efficiency with-
out compromising the execution deadlines, [14] proposed an
optimal offloading strategy to select between local or remote
execution based on estimates of the experienced data rates.
Additionally, reactivation of local computing resources is also
designated as the fail-safe when the slack time for receiving
results back from the edge server expires. For this motivational
example, we implemented a pipeline for processing 720p
camera inputs using a ResNet-18 [18] on an NVIDIA Drive
PX2 [2] — used by Tesla for their Autopilot ADS [19]. We
also collected a trace of 500 LTE data rate samples so as to
compare the overall energy consumption under their offloading
strategy against continuous local execution.

As illustrated in Figure 1, we evaluate the efficacy of
their offloading strategy under both ideal and challenging
wireless conditions compared to that of pure local execution.
By challenging wireless conditions, we mean the scenarios in
which the intricate wireless channel impairments — e.g., sudden
obstruction of line-of-sight during navigation — accumulate
to delay the response times of the edge server beyond the
critical threshold (i.e., the 100 ms deadline) after offloading
has already been attempted. We define a parameter called
failure rate which denotes the amount of times the offloading
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Fig. 1. Cumulative Energy consumption for processing a 720p input image
given the Nvidia Drive PX2 ADS, the optimal offloading strategy in [14], and
the collected LTE data rate trace in the background for different failure rates.

Energy values are normalized with respect to that from local execution.

fail-safe is invoked instantiating the reactivation of the local
computing resources for the given wireless data rate trace.
As shown, offloading under ideal conditions is 1.12X more
energy-efficient compared to local execution over the same
LTE trace. However, it can be observed that the performance
deviates from the ideal when the percentage of failure rate
increases. For instance at 30%, not only does energy con-
sumption increase by 23.3% over the ideal case, but also by
a factor of 9.8% over pure local execution. It should be noted
that it is for the purpose of this motivation that we analyze the
effects of relatively high failure rates given the short trace of
samples. In practice, controllers are likely to detect high failure
rates (as 30%), and revert back to pure local execution. In
the experiments section, we place emphasis on more realistic
failure rate settings (as low as 1%) over longer sample traces.

Summary and conclusions from observations: In most
cases, offloading strategies developed for latency-critical AS
are predominantly adequate to operate under specific expected
behaviors of the wireless network. However, delay variations
experienced in real-world scenarios can have a profound
impact on performance, potentially causing fail-safe triggering
that hampers the overall solution’s effectiveness. Therefore,
given the variations in networking infrastructure from one
region to the other, as well as the highly dynamic nature of the
communication channel, edge server load, and urban naviga-
tion, which all exhibit complex spatio-temporal distributions
that influence the overall delay, a different approach is needed.

B. Problem and Research Challenges

Achieving resource-efficient and reliable edge computing
for AS instigates addressing the following key challenges:

1) How to account for fail-safe integration during the
design stage so as to minimize their energy consumption
overhead without compromising the solution’s utility?

2) How to effectively adapt the runtime operational policy
according to an all-encompassing view of the wireless
condition state, and its impact on processing efficiency?

3) How to ensure that the adopted optimizations — at both
design and deployment — would maintain the degree of
robustness required by the critical AS applications?

C. Novel Contributions

To address the aforementioned challenges, our main contri-
butions in this paper are listed as follows:

1) We present TESTUDO, a methodology for implementing
dynamic neural network solutions for latency-critical

/publications/ri

S://www.ieee.or
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 31,2023 at f7:39:51 UTC from IEEE Xp?ore. Restrictions apply.

hts/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3211480

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

AS employing remote edge computing. As far as our
knowledge goes, TESTUDO is the first to present a multi-
branch neural network model distributed across both the
local platform and server, serving both the primary and
secondary offloading fail-safe processing routines while
maintaining the nominal safety for the AS application.

2) At the design stage, TESTUDO adopts block-wise Neu-
ral Architecture Search (NAS) as a modular design
approach to design the multi-branch neural network.
In particular, knowledge distillation (KD) methods are
applied to optimize the design the various computing
blocks constituting the different execution paths of the
dynamic neural network to efficiently integrate both
features of split-computing and early-exiting.

3) For the deployment phase, TESTUDO enacts a deep
reinforcement learning (DRL) approach to select for
each time window the processing pipeline that max-
imizes prediction quality and energy efficiency given
the execution deadlines. Our novel contribution here
lies in leveraging the abstract information generated
each time window within the processing domain for the
DRL’s input state observation in the following time step.
This aids in discerning the underlying contextual and
temporal correlations existing in the data stream, and
consequently estimate the input sample complexity and
network stability status.

4) Evaluation of TESTUDO on the use-cases of end-to-end
control in ADS and UAVs’ object detection has demon-
strated that it improves on energy efficiency compared to
the state-of-the-art edge offloading strategies — reaching
up to 31% with an average of 15.9% for the former,
and 13.4% with an average of 5.3% for the latter with
virtually no impact on models’ utility.

II. PROBLEM FORMULATION

In this section, we formulate our problem to minimize
the energy consumption footprint for the latency-critical AS
applications employing collaborative intelligence. Since we
are engaging this problem from the perspective of the edge
device, i.e., the AS platform itself, our analysis is performed
under the assumption that the AS has already established
connection with the edge server from which it gets the
strongest reception signal — which in most cases is the one
closest geographically. From here, our formulation relies on
modelling the experienced latency and energy consumption
at the edge device when operating within the vicinity of the
edge server’s coverage area. Furthermore, we rely on a simple
model of channel failures — which anyway captures channel
correlation — to obtain a clear performance evaluation.

Formally, multiple execution strategies, M, can be sup-
ported when edge computing is provided for autonomous
systems, comprising at least a basic local routine in addition
to another remote execution mode [4]. Each operational mode
m € M can possess its own unique execution path and
performance overhead. Thus for each m, we can breakdown
the key performance metrics; end-to-end latency, L7, .;, and
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energy consumption, E}7, .. into the following components:

;Ztal - Lg}vec + LZ})mm + Lgér (1)
Egroltal = Eg;:ec + Egmm + E’Zille 2
where L7} . and L7} represent the local and edge server’s

execution latencies, respectively. Similarly, £} . and E.
correspond to the energy consumption of the local computing
platform during execution and idle states, with the latter
being reached whenever the system is neither processing nor
transmitting data — as in waiting for the results from the edge
server. L7 and ET? represent the respective latency and
energy for communication which can be given as:

Lzycl)mm = L?x + Lgm + 5(Lpropa Lqueue) (3)
Elomm = BTy + ER, )

where L7p ., L%, ET., and K are the transmission la-
tencies and energy consumption in the uplink and downlink.
0 represents a random function that captures the additional
uncertain latencies that may be experienced by an AS in
the deployment environment. We characterize two dominant
factors influencing J: propagation delays, Ly,.op, and queuing
delays, Lgyeue. The latter directly represents the randomness
associated with how occupied the remote edge server’s queues
are, which in turn translates into additional waiting times until
the offloaded task is dispatched for processing. In terms of
the former, the causes for propagation delays for AS can be
broken down into two bilateral sources: (i) the nature of radio
waves propagation that incurs path losses due to diffraction,
reflection, and other effects in the deployment environment,
where the edge device can suffer degradation in the received
signal strength as a result of obstructed line-of-sight or multi-
path fading, also translating into additional delays due to
the longer round-trip times and/or re-transmissions; and (if)
The unique motion characteristics of an AS which further
exacerbate the path loss effects as a result of the movement
patterns, speed, orientation, antenna alignments, proximity,
etc. Given how the modelling dynamics of these factors can
be extremely challenging to solve in real-time considering the
milliseconds operational scale of AS, we abstract all these
factors into the random function § as our main focus is the end-
to-end latency, irrespective of the true instantaneous causes
of such additional delays. We further denote the respective
transmission sizes during upload and download as a and b
and define the transmission overheads as follows:

a™

m b m m

Rx — [ ERa::PRl“' Rz (6)
Pa

in which ¢,, ¢4, Pr;, and Pg, are the data rates and
transmission power estimates at the local platform during
upload and download, respectively. In practice, the upload and
download transmission sizes, a™ and b™, are the ones after
post-processing distributed across several data frames, where
each possesses header information as additional data specific
to the networking protocol besides the application payload.
Nevertheless, header sizes can be negligible when dealing with
high-fidelity data (e.g., image representations), and from this
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point forward, our analysis of the transmission overheads will
be based on the true feature data sizes without networking
overheads, following the practice in relevant edge computing
works [5], [6], [10], [14]

From here, the selection process of an edge computing
mode m at runtime needs to factor two essential requisites: (7)
Reliability; in the sense that critical hard execution deadlines
associated with the AS application must be met regardless
of the selected execution path or wireless network state. We
formally give the reliability constraint as L}, , <= T, with
T being the critical deadline, i.e., execution window length.
(ii) Robustness; through ensuring that any selected operational
mode does not degrade prediction quality compared to a
canonical computing baseline — as in pure local execution.
To elaborate, a mode m can be more energy-efficient through
instantiating simpler local computing modules, leading to
smaller evaluations of L.ze. and E.g .. in (1) and (2). The
caveat, however, is that some inputs may experience higher
prediction errors when processed by the simpler model com-
pared to the full-sized baseline model. Formally, we can define
this error increase as Aerr™ = err™ - err®¢ and the
robustness constraint to be Aerr™ < erry,, where erryy, is a
predefined positive tolerance threshold (err;,=0 indicates the
extreme case where no increase in error is tolerated). Hence,
we can optimize the AS edge computing operation for energy
efficiency through defining the following objective for every
time window of duration 7" as follows:

min B, st L <=T, Aerr™ < errt™  (7)
meM
where the goal is to identify an optimal edge computing
operational mode that provides the lowest energy footprint as
defined in (2), subject to both the reliability and robustness
constraints as defined above.

Modeling fail-safe offloading: When remote edge com-
puting is supported, we can break down a neural network
model into two parts: a head portion which comprises the
network layers that precede the offloading point (if any) on
the local edge platform, and a tail which constitutes parts of
network past the offloading point which are deployed on the
edge server. In the case of direct input offloading, the entire
neural network model is deployed on the edge server as a tail
model with no layers assigned to the local device. When it
comes to latency-critical AS applications, reactivation of local
computing resources need to be incorporated as a recovery
routine to account for network uncertainty when server re-
sponses in the corresponding time window are perceived to
peak beyond a critical threshold. This means some form of
the tail model needs to be deployed on the local edge device,
leading the definition of L¢ye. in (1) to become:

if LH + Lcomm + Lser <T- LFS
otherwise

LHa
Ly + Lrg,

Legee =
®)
where Ly is the execution latency for the head portion of a
model on the local platform prior to offloading whereas Lpg
is the execution latency component for the offloading fail-safe.
Given the lack of emphasis on how often does L., in

(8) evaluate to the second case during offloading — which is
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Fig. 2. An example end-to-end control system architecture rendered through
TESTUDO supporting reliable edge computing for autonomous systems.
Offloading point is placed following the M g component. The aggregation of
M p and either of M;“” or M%z can be used as the offloading fail-safe.

dependent on the randomness induced by § in (3), the projected
performance gains from offloading might be overly opti-
mistic. TESTUDO aims to remedy this deficiency by actively
considering the impact of the offloading fail-safe invocation
frequencies on the overall performance to guide both the
design and deployment stages of the edge computing solution.
In Figure 2, we depict an instance of the final system model
rendered with execution blocks distributed between the local
platform and the edge server, supporting multiple potential
operational modes that instigate the need for a learning-based
approach for solving (7). More details are provided on the
design and functionality of each component in the next section.

III. SYSTEM DESIGN

We first describe the processing pipeline classes for AS,
detail our proposed design approach supporting optimal of-
floading points, and discuss how to implement the various
processing components using modular design techniques.

A. End-to-end Processing Pipelines in Autonomous Systems

For AS, there are two primary approaches to implement
end-to-end control pipelines:

Imitation learning: The approach instigates a model learn-
ing how to imitate human experts’ behavior with regards
to a specific control task (e.g., self-driving) [20], where a
model can learn through supervised learning to minimize a
loss function between its predictions and ground-truth values.
Mainly, there are two primary components: (i) Perception;
to perceive events occurring in the environment, sensing
modalities are provided to the AS through sensory equipment
(e.g., vision through mounted cameras) to abstract higher state
representations from the collected data through a processing
model (e.g., DNN) [18], and (ii) Control; concatenated at
the end of the perception pipeline to receive its outputs — in
addition to any available control inputs (e.g., turn left signal)
— and translate them into the necessary control outputs.

Modular Pipelines: This is the standardized approach for
implementing industry-grade processing pipelines for AS [3],
[4], [12], [21], which relies on having independent modules
placed at different parts of the computing pipeline, each
receiving the partial outputs from the preceding module(s) for
processing to provide new partial outputs for the subsequent
module(s) until the final control unit outputs are generated,
where every module is responsible for a specific learnable
task — as how the outputs from perception and localization
modules in an ADS are provided to a planning module [22].
Since perception constitutes the bulk of the processing load
[3], directing offloading optimizations towards its modules can
maximize performance gains across the entire pipeline.
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B. In-Model Compression for Split Computing

One prominent approach for achieving efficient split-
computation between the local platform and the edge server
is the application of in-model compression to obtain optimal
offloading points. Formally, a DNN model M can be split into
two parts: a head My and tail M to be deployed on the local
and edge server platforms, respectively. The direct approach
to select the splitting layer, ¢, has been to identify the layer at
which the output z; = My (z) becomes smaller in size than
the input z to decrease transmission overhead. Oftentimes,
this criterion is only met at the latter layers for many DNN
architectures, which leads to increased local computation [5],
[8]. Instead, recent split computing works proposed the notion
of in-model compression through a bottleneck [11], in which
a modified model version M’ would comprise 3 sections:
Mg, Mp, and Mr. Submodels Mg and Mp represent a
specialized form of an encoder-decoder architecture replacing
the original M. From here, Mg would serve as the new
head M’ ;; while the concatenation of M p and M7 would be
deployed on the edge server. Conceptually, M g is introduced
to obtain the compressed form z; = Mpg(x) prematurely in
the network to realize an early optimal offloading point —
bottleneck — within M’. M p on the other hand serves two
purposes: (i) ensuring that z’ = M p(Mpg(z)) maintains the
same spatial dimensions as the original input to M, and
(i) minimizing the loss incurred by M’ due to the proposed
structural modifications of Mg and Mp. In terms of the
latter, techniques inspired by knowledge distillation (KD) have
shown tremendous promise in maintaining the accuracy of M’
on par with that of the original M [10], [14].

C. Blockwise Neural Architecture Search

In this part, we propose to branch out an a supplementary
model from the primary processing pipeline to be leveraged
for both the main and secondary execution routines as a more
energy-efficient alternative. To achieve this, this branched
model would comprise simpler computing modules than those
of the main processing model, reducing the latency and en-
ergy consumption overheads from local execution. We denote
this simpler model as the early-exit model. Figure 2 depicts
the early-exit model in the final system architecture as the
aggregation of Mp and M4, following the shared M.

Given their simpler composition, early-exit models are not
as accurate as their primary counterparts, and hence, they
are only invoked when the input sample belongs to the
distribution of canonical samples exhibiting low complexity
features. Since numerous AS applications belong to the class
of regression problems (e.g., predicting control outputs), con-
ventional approaches for deciding on the the early-exiting
decision based on classification confidence estimates are not
directly applicable [23]. Instead, we propose to implement the
early exit using a modular approach, namely blockwise neural
architecture search (NAS) whose advantages are fourfold: (i)
A modular approach aids in identifying which blocks are
the most sensitive to alterations with regards to the task
at hand, allowing optimizations to be targeted towards the
less-critical blocks, (ii) Customization of search blocks is
supported, enabling the inclusion of desired edge computing
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Fig. 3. Blockwise NAS for edge computing (fop) and a walk-through example
for the traversal search (bottom). PM is for partial model and its indices are
for the stage and the PM’s ranking based on the loss defined in (12).
features as incorporating a bottleneck in the first search block
(see Figure 3), (iii) The rendered simpler execution path can
be leveraged for energy efficiency along both the primary and
fail-safe execution paths with minimal impact on the model
utility, and (iv) A student model’s accuracy is not necessarily
bound by that of the teacher.

Blockwise NAS using Knowledge Distillation: Neural Ar-
chitecture Search (NAS) is an established method to automate
DNN model design through identifying architecture o* that
achieves the best performance on a target task. Typically, a
NAS search space is defined as a large supernet A with shared
parameter weights W, and o* € A is a subnet within. To
manage the colossal search overheads, the approach in [24]
proposed to divide the search space A into smaller successive
independent supernets A; with each block i possessing its
shared weights WW;, leading to an exponential reduction in the
search space size and the overall design turnaround time. Thus,
given inputs X and ground truth values Y, a* is formed by
aggregating N subnets from the search blocks which satisfy:

N
o =argmin Y Loa (W} (), aii9i1,y) 9
acA T

s.t. Wit =min Liain (Wi, Ai3 yi-1, i) (10)
where y;_1 and y; represent the inputs and ground truth labels
for search block %, respectively. Practically, pre-trained DNN
models on the same task can be leveraged as teachers to
obtain y; and y;_; from their intermediate data represen-
tations at different stages, which allows guiding the search
process for each search block 7. In words, the main building
blocks constituting a DNN architecture, such as the 4 primary
blocks of stacked layers in a ResNet architecture [18], are
designated as separate teacher blocks, each with its input and
output representations utilized as guides for the corresponding
search block, as depicted in Figure 3 (top). Therefore using
knowledge distillation (KD), the training and validation loss
estimates, Lirqin, and L4, between block predictions g;(-)
and the teacher ground truth values can be given by:

1 ) .
LirainWi, Aisyi—1, i) = ?Hyi — Gi(yi—1)|)! (1)

Loat(Wi, Ais yi—1,¥3) = i — 9i(yi—1)|? (12)

1
Ko7 (yi)
in which K is the number of output neurons, o(y;) is the
standard deviation of y;, and j is for the function degree.
The loss estimate in L,,; is normalized relative to the cor-
responding o7 (y;) to ensure fairness since feature map sizes
can differ from one candidate partial model to the other within
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a search block. Without any loss in generality, we found for
experiments that setting j to 2 for L4, (Mean Squared
Error) and to 1 for £,, (Mean Absolute Error) worked well.

Model Aggregation under Constraint: After the initial
search process has concluded, partial model rankings are
rendered for each search block according to £,4;. If there are
no target performance constraints, then the top-ranking partial
models from each block can be concatenated to construct
the complete DNN model However, as the goal here is to
obtain more efficient computational blocks for the early exit,
a target performance constraint (e.g., latency) denoted by
Ctarget needs to be satisfied. To avoid the prohibitive act
of evaluating each possible combination of partial models,
we construct a lookup table for the performance costs of
each candidate operation within a search block (which in the
case of latency are obtained through hardware measurements).
Then, we can estimate the maximum allowable cumulative
performance cost for each block C; as:

7 N
Ci = costy = Ciarges — Y, min_cost,  (13)

n=1 n=i+1

where min_cost,, is the minimum cost for a partial model
at block n estimated from the pre-calculated lookup table.
Once each block’s maximum cost C; has been estimated using
(13), a traversal search can be performed starting from the first
search block, and recursively going through the partial models
of the subsequent blocks as long as the corresponding C; con-
straints are satisfied. In other words, the testing of subsequent
blocks is skipped if the current partially constructed model at
block ¢ has a cumulative performance cost that exceeds Cj;.
Furthermore, once a model satisfying the constraint has been
identified, the search returns to the previous block to avoid
testing inferior models [24]. A walk-through example for this
traversal search is provided in Figure 3 (bottom).

D. Deployment Hierarchy

Figure 2 illustrates how the final rendered computing mod-
ules are to be distributed across the local platform and the
edge server for the deployment stage. As shown, M g with the
optimal offloading point from the first student block is placed
locally to be shared by all possible execution paths. Con-
versely, M p is replicated across both execution domains, with
the subsequent computing blocks from the original teacher
model concatenated at the end of M p forming the full tail
model, M?“”. Furthermore, the local domain possesses an
extra local early exit tail MZ” following M p as well which
is constructed from the remaining student blocks, which can
be invoked for the primary or fail-safe operation. All execution
paths converge to supply inputs for the following module in the
AS pipeline until final predictions are mapped onto physical
control outputs. From this arrangement, an ample decision
space of operational modes is presented that can be exploited
to maximize resource efficiency based on the corresponding
deployment conditions.

IV. RUNTIME ADAPTATION FOR DEPLOYMENT STAGE

The challenge for an AS employing edge computing during
deployment is to maintain an efficient and reliable operation in

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt

Fail safe invocation

~
& Edgel _
2 - i 1 Abstract Features _l_]ﬁ
-§ Xp;  Local Full :— i%;
§ g2 1 Local Exit 1 L_FS invoked? t-1 L

Observation DRL domain
State Buffer S

F.
S
gl |

¢: channel estimate
Fig. 4. Information flow between the processing and DRL domains. Mainly,
the DRL reuses abstract features and the fail-safe invocation flag from the
processing domain at ¢ — 1 to guide its decision for the window t.

Window t

face of the wireless channel uncertainty which can negatively
affect performance. To realize a control performance close to
the optimal, we propose a learning-based approach that can
capture the underlying distributions of the dynamic parameters
characterized by complex spatio-temporal patterns so as to
tune the operational control knobs at runtime accordingly.

With this setting, we pinpoint 2 crucial guiding principles
for any runtime solution implementation: (7) it should be light-
weighted so that the AS would not incur additional excessive
processing overheads while being able to capture the desired
contextual information from the environment, and (ii) the
solution must maintain the application integrity with regards
to latency, that is, the mode selection decision should be made
available before execution paths diverge.

A. Deep Reinforcement Learning (DRL) Solution

We propose a deep reinforcement learning (DRL) solution
to extract contextual knowledge and discern temporal patterns
within both the collected data streams (e.g., mounted camera
feed) and network conditions to determine the best execution
strategy for an AS. The novelty of our DRL implementa-
tion is that it follows the aforementioned guiding principles
as follows: (i) Since AS applications process data samples
collected at high sampling frequencies, Strong temporal corre-
lations exist between successive samples, and thus the abstract
representation obtained from the processing pipeline at time
window ¢ — 1 can be leveraged for constructing the contextual
observation of the following time window ¢, and (ii) leveraging
abstract representations imply that no exhaustive processing
is needed by the DRL, allowing the solution to be compact
as desired. Figure 4 illustrates this sequence of information
passing over successive windows ¢t — 1 and ¢, where the
abstract data representations J;_; and the offloading fail-safe
invocation status Z;_; represent the information of interest for
the observation at window ¢ as they reflect the data sample’s
complexity as well as the stability of the wireless network.
Formally, the constituents of the DRL solution are as follows:

State Space: the observation at time t is given as
ot = {bt, Ft—1,Zt—1}, where ¢, represents the corresponding
probed channel capacity, while F;_; and I;_; are the respec-
tive abstract feature representations and the fail-safe invocation
flag at ¢ — 1. Given how ¢, (in Mbps) sustained at the AS can
be approximated based on the prior experienced end-to-end
latencies and transmission data sizes, it can fail to capture
the intricate variations in the networking environment that
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may delay server response times, and cause the reactivation
of the local resources as the secondary execution routines.
Thus, through monitoring the fail-safe invocation status, I;_1,
we can gain insight into the immediate state of the network in
terms of stability to account for the possible lags of ¢;. We also
include a state buffer that enables stacking observation o; with
the prior k£ observations to form the final state representation
sy = {0,041, .., 0,— }. The rationale behind having this state
buffer is to add another dimension to the temporal correlations
between different observations if needed by the target ap-
plication without complicating the DRL implementation, i.e.,
keeping it as a lightweight solution.

Action Space: The action space A defines all possi-
ble actions that can be taken given a state s € S. In
the case of edge computing for AS, A represents the
set of all potential execution strategies which we define
as A = {Edgess1, Edgeysa, Local gy, Localeyi }, where
Edgeyss1 and Edgeso are the decisions to execute at the edge
server with the distinction in the subscripts, fsl and fs2,
reflecting the offloading fail-safe choices of MEu! or ME®,
respectively (see Section III-D). Local f,y; and Localey;; are
the respective full and early-exit local execution strategies
(recall the definition of the early-exit model in Section III-C)

Agent: Through a Q function that can estimate the value of
actions for any state s, a DRL agent can identify the optimal
action at each ¢, a; = argmax,c 4 Q~(5¢), given s; under a
learnt policy 7. To better manage the continuous state space
of our environment, we adopt a Deep Q-Learning approach
to approximate (), by a policy network that is trained to
maximize a reward function, R = f(X, Eotar, error), which
directs the network to select actions that minimize the error
and energy consumption Fy,.,; given the trade-off parameter
A as both metrics are impacted by the choice of execution
strategy. Specifically, we intend for the DRL agent to learn
a function that selects the most convenient action a € A de-
pending on the perceived scene complexity and the networking
conditions, where our rationale is to set the A parameter to a
value that allows the DRL agent to learn a policy that selects
the most energy efficient action iff the scene exhibits low
complexity characteristics (encoded through the error metric),
or else an action that instantiates the full model pipeline will be
chosen. Ej,q; constitutes the local and transmission overheads
as defined in Equation 2, whereas error can be evaluated
as the estimated loss function from the already trained full
model predictions — that is, the Mean Absolute Error (MAE)
between predictions and the true labels from a supervised
learning dataset. We remark that our interest here is only in the
evaluations of the loss function to compute the DRL reward
for the agent’s training. The full and exit models are already
trained by this point. Without loss of generality, we employ a
Double Deep Q-Network (DDQN) [25] and define R as:

R = —X\x* Eiptar + —(1 = A) x error (14)

B. Training Environment for the Agent

To train the policy network, we need to capture the wireless
network uncertainty within the DRL training process through
estimates of the channel capacity, ¢, and abrupt interruptions
that trigger the fail-safe represented by the flag, I, as follows:
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Channel Modeling: Through collecting traces of channel
capacity ¢, we are able to fit them into a Rayleigh distribution
— widely adopted for wireless communications. This would en-
able approximating channel capacity estimates as independent
and identically distributed (i.i.d.) random variables sampled for
the DRL training as ¢ ~ Rayleigh(0,0), with o being the
scale factor. Figure 5 depicts how we fit a Rayleigh distribution
for the LTE traces collected for our experiments.

Failure Rates: Our aim here is to imitate potential random
network fluctuations experienced within the AS environment
(recall § in Equation 3) within the DRL environment, where
the end-to-end latency when offloading can be pushed beyond
the pre-specified deadlines, triggering the secondary local
execution routine and changing the system state into what
we denote as a failure state. From here, we characterize the
rate of moving to this failure state as failure rates within
the emulation environment, and leverage a Markov model
comprising two states — stable and fail. The reasons for
adopting this Markov approach are two-fold: (i) our primary
concern is whether failure state has been accessed or not,
irrespective of which random delay component from ¢ caused
it, and (ii)) In actual deployment scenarios, it is difficult to
discern in real-time the cause of this transition considering
the milliseconds operational scale.

In Figure 5, the transition probabilities between the two
states are given by p(fail) and p(rec), with the former
capturing the overall failure rate over the duration of operation,
whereas the latter is for the probability of recovery and
returning to the stable state. p(rec) is defined independent of
p(fail) to maintain a degree of randomness over the duration
the system remains in a failure state, that is, for how many
successive time windows does the system incur invocations of
the secondary execution routines until it transitions back to the
stable state. Consequently, the temporal patterns of network
quality degradation experienced in the runtime environment
due to motion, terrain and surrounding object variation can be
emulated. Hence, we set p(rec) to 0.5 representing an equally
likely chance to recover from or remain in the failure state.

Algorithm: Algorithm 1 describes how to generate the tem-
porally correlated states to train the DRL. The first component,
correlated inputs in line 2, represents a batch of consecutive
data points that share a temporal relation (e.g., consecutive
frames from a camera), which is needed by the DRL to learn
how to estimate the data complexity for a sample ¢ using the
abstract representation of the preceding sample, F;_;. In lines
4-8, the corresponding data rate estimate, ¢;, and failure state,
m; are sampled and used to construct the corresponding obser-
vation, which can be aggregated with the prior & observations
to construct an ensemble state. With these states, a typical
DRL training procedure in lines 9-15 is performed where the
agent interacts with the environment through exploration and
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exploitation, and samples experiences from its replay buffer
to train its policy network until convergence [25].

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We evaluate TESTUDO on two AS applications instantiating
different requirements and computational demands: end-to-
end control for autonomous driving and object detection in
modular UAV pipelines. Our setup is detailed as follows:

Datasets: We use the Carla conditional imitation learning
dataset [26] and the Au-Air UAV dataset for low altitude traffic
surveillance [27] — the former instantiating the imitation learn-
ing class of problems while the latter is for object detection
as part of a modular processing pipeline. The Carla dataset
has been collected using the CARLA urban driving simulator
[28] and is divided into 657,800 and 74,800 respective training
and validation image frames, each of which is coupled with
control/sensor outputs. The Au-Air dataset contains 32,823
labeled frames extracted from 8 recorded video clips with
132,034 object instances belonging to 8 object categories
related to traffic surveillance. To arrange frames as correlated
inputs (see Algorithm 1), groups of temporally correlated
frames — 200 for Carla and 60 for Au-Air — are aggregated
into separate clips as inputs. With this arrangement, we divide
the Au-Air dataset into 90% training and 10% validation sets.

Benchmarking: We compare TESTUDO against Sage [14]
and Hydra [4] strategies employing collaborative edge comput-
ing with offloading fail-safe measures — the former for end-
to-end control in ADS while the latter for UAV navigation.
In brief, Sage’s operational principle is to determine each
time window, ¢, whether to execute locally or offload to
an edge server based on whichever action is perceived to
be more energy-efficient given a critical latency threshold.
Their fail-safe is to re-invoke the remainder of the full local
execution pipeline whenever the threshold T'— Ly is reached
based on corresponding estimates of the data rate, ¢. As
for Hydra, it employs a more lenient deadline policy that
can tolerate missing d successive deadlines. Specifically, it
entails two operational modes when connected to a single
remote edge server: (i) Performance (P); where computation
is delegated to the server for energy efficiency as long as
the execution deadline, 7', is met, and (if) Reliability (R);
where the local pipeline is activated as a fail-safe alongside
the remote execution pipeline when § successive deadlines are
missed. Once the the latency of the remote server execution
falls below T once more, Hydra switches back to Performance
(P) mode. We follow their specifications and perform our
analysis using 720x 1280 (720p) and 360x640 image sizes
for the respective ADS and UAV experiments, and set their
critical deadlines, 7', to 100 and 150 ms, respectively.

Blockwise NAS: We train and use ResNet-50 and ResNet-
18 architectures [18] as the teacher models. These architectures
comprise ResNet backbones, supplemented with relevant back-
ends according to the AS application — conditional imitation
learning component for vehicle control [26] and the region
proposal network components from Faster R-CNN for object
detection [29]. To facilitate upcoming comparisons, we keep
the architectural parameters of the earliest student block with
the bottleneck in accordance with the specifications in [10],
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Algorithm 1: DRL Training Environment

Input: Temporal constant: k, Rayleigh distribution scale: o
1 Initialize O_queue(k), S_list, mo
// construct temporal states
2 for correlated_inputs in dataset do
for i = 1 to len(correlated_inputs) do
¢i ~ Rayleigh(0, ) // sample ¢
m; < Markov(m;—1) // failure state
O_queue.push(p;, Fi—1,m;—1) // moving window
if len(O_queue) >= k then
L S_list.append(Vobservation € O_queue)

® N AW

// training procedure
9 for ¢ to len(S_list) — 1 do
// exploit/explore based on e-decay

10 at = argmaXg,ec A Q~(st) or random action
11 Take action a¢, observe reward r; and next_state s;41
et = (St,at, T, 5t+1) // experience tuple

12 Store_Experience(et) // store experience

13 e; = Sample_Ewxperiences() // random batches

14 Qloss = DDQN (ej) // calculate loss

15 | Qr < Qioss // update policy network
TABLE I

SEARCH SPACES FOR THE EARLY-EXITS. EXPANSION RATIO IS A
MULTIPLIER FOR SHRINKING #CHANNELS WITHIN STUDENT BLOCKS

#Student Blks ~ #Layers  Kernel  Expansion Ratio
ResNet-18 1 23 35,7 % %
ResNet-50 2 234 3,57 51

where we use 3 and 6 output channels at the bottleneck
offloading point (M g output) for the respective applications,
leading to data transmission sizes 64 x and 32X less than that
of the inputs, respectively (We refer the interested reader to
[10] for more details). These student blocks with bottlenecks
are trained using blockwise KD from the first two corre-
sponding ResNet teacher blocks. The remaining two ResNet
teacher blocks are used to guide the blockwise NAS search
for implementing the early-exit model with the search space
descriptions provided in Table I. Thanks to the modularity, we
only needed to run 3 search epochs for each teacher-student
combination, with a learning rate of 2 x 102 and a batch size
of 4, taking less than a day in total on a desktop machine
with Nvidia 2070 GPU. For the final traversal search, we
characterize Cy,rgc+ as the execution latency of the local exit
model, and we set it to 0.8x that of the local full model.
The best performing model from the NAS satisfying Ciqrget
is rendered as the exit model.

Scoring Metrics: End-to-end vehicle control is evaluated
based on the Mean Absolute Error (MAE) between model
predictions and ground truths for control outputs — steering,
acceleration pedal, and braking pedal angles. For scoring
models on object detection, we use the prominent mean
Absolute Precision (mAP) with an intersection over union
(IoU) threshold of 0.5 following the Au-Air dataset paper [27].

Performance Evaluation: We use an Nvidia Drive PX2
AutoChauffeur and an Nvidia Jetson Nano as our hardware
computing platforms for the ADS and UAV, respectively. To
maximize hardware performance efficiency and benchmark
local execution latency overheads, we leverage the Nvidia
TensorRT library [30] to compile our DNN models as highly
optimized inference engines on both experimental Nvidia
platforms. Mainly, we keep the default TensorRT settings in
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which each first visible GPU on the respective platform is
designated as the target inference unit — that is, the integrated
Pascal-based GPU on the TegraX2 SoC for the Drive PX2
and the Maxwell-based GPU for the Jetson Nano. We ensure
that no other applications are utilizing the hardware resource
during the benchmarking process. Additionally, in order to
estimate the local execution power, P..., we adopt a system-
level approach and monitor the difference in consumed power
on the Drive PX2 during execution and idle times, which on
average reaches ~ 7 W when our deployed DNNs are invoked
on the target onboard GPU. For the Jetson Nano, we set P, ..
to 4 W in conjunction with a similar analysis performed in [4].
Thus, we can have a common ground for directly comparing
the execution and offloading overheads without the effects of
the usual on” power. Predominantly, we can now evaluate the
local energy consumption overheads Fepec = Legec * Pezec
in equation (2) using the aforementioned values. Whereas for
E omm, we follow the practice adopted by the relevant related
collaborative intelligence works [5]-[7], [14], and use the 4G
LTE and WiFi data transfer power consumption models in [31]
to obtain estimates for the communication power, P.q.m -
DRL: Our DRL model comprises 5 fully connected layers.
The first 4 layers take as input the abstract features, F;_1,
map them to a lower-dimensional representation, before con-
catenating them with Z;_; and ¢, to be inputted to the final
layer. In terms of added cost, the transmission overhead of
Fi—1 from the edge server back to the local DRL domain
— if needed — is negligible and can be aggregated with the
returned results. For perspective, F;_1 size is = 0.5 kB for
the ADS application incurring a transmission cost of < 1 ms
at 5 Mbps. In terms of the DRL architecture itself, it occupies
~ 0.6 MB (40x less than our smallest processing model) and
completes execution in < 1 ms, satisfying the requirement
to provide an output decision prior to the offloading point at
the encoder’s output M g(-) — which approximately takes 12
ms. We also performed empirical evaluations for the DRL’s
agent performance at £k = 1,2, and found that for both our
experimental datasets, setting k = 1 worked fine.

B. End-to-end Vehicle Control Experiments

Architectures Evaluation: We compare different ResNet
architectures with regards to the experienced MAE and latency
to process input images of 720p resolution in Table II. We
denote our trained baselines — the teachers — as ResNetyq e, the
primary model with the distilled bottleneck as ResNeth 1;1113 N
and the exit model from the block-wise NAS as ResNeth”/ig N
Our trained baseline ResNet-50y,s. model achieved an average
MAE of 0.033 compared to the 0.032 achieved by the version
in [14], whereas its latency processing overhead reached
140.16 ms — exceeding the 100 ms response requirement in
[3], [12]. Once the bottleneck structure has been integrated,
the execution latency drops to 89.66 ms for the ResNet-
503; %; N Vversion. Even more so, the average MAE drops to
0.03, asserting how student architectures are not bounded by
their teacher’s performance. The top-performing model with
an early-exit tail incurred a latency execution overhead of
70.91 ms, satisfying Ciorger as defined above. The average
MAE for the exit model ResNet-SOewI/ig  is slightly more than
the full version reaching around 0.033. Similar trends were
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TABLE 11
COMPARING BLOCKWISE MODELS AND THEIR BASELINES FOR THE
CARLA SELF-DRIVING DATASET ON THE NVIDIA PX2 PLATFORM

MAEx10~3 720p input
Model Steer Acc. Brake Avg. latency(ms)
ResNet-50 [14] 260 514 180 318 -
ResNet-50p0 50 260 536 198 331 140.16
ResNet-507 1 257 458 189  30.1 89.66
w/BN
ResNet-50°%/t 259 522 195 325 70.91
ResNet-18p.50 250 515 194 323 60.3
ResNet-187 "1 20.1 433 180 271 41.94
w/BN
ResNet-185%/t 259 545 190  33.1 3348

observed for the ResNet-18 architectures, where the average
MAE dropped from ResNet-18yqs. to ResNet-187"'7, - (0.032
to 0.027), and increased back for ResNet—]Sg“”/ig N to 0.033.
The full and exit ResNet model are to be arranged as described
in Section III-D, forming, in turn, the DRL action space.

DRL Performance Evaluation: Firstly, we associate the
robustness error parameters in Equation (7) with the MAE
evaluations, and through empirical evaluations on the training
dataset, we find that setting err‘" to 0.02 offers good energy
optimization opportunities from leveraging the secondary exit
path with little-to-no effect on MAE. In accordance with this
setting, we define a reference optimal strategy to select the
most energy-efficient action as long as the MAE difference
between the full and exit models is less than 0.02 (i.e,
AMAE < 0.02), or else actions instantiating the full model
pipeline would be selected. In Figure 6, we compare the
energy consumption at runtime of our proposed DRL solution
against other strategies: Local, Sage [14], and the reference
optimal strategy. All energy evaluations are normalized with
respect to that of pure local execution, and we repeat the
analysis for two DRL policies (at A = 0.01 and 0.05) trained
at k=1 for each ResNet architecture. These \ values were
chosen after performing some parametric sweeps on both the
logarithmic and linear scales, with the purpose of prioritizing
robustness over energy efficiency as stated in Section IV-A.
Given LTE communication and failure rates of 1%, 10%,
and 20%, we observe that the policies learned by our DRL
solutions consistently outperform both the local and Sage
strategies in terms of energy efficiency across all scenarios.
Most notably, the energy consumption for the ResNet-50 at
A = 0.05 dropped by up to 31% and 23.3% from SAGE for
the 1% and 20% failure rates, respectively.

For the ResNet-50s, mapping policies learned by the DRL
lowered the average experienced MAE across the 3 failure
rates (by a factor up to 1.2%) from the other two strategies
that only utilize ResNet-SOfu I;lé - This points out how the
DRL not only learns how to leverage the exit pipeline for
energy efficiency, but also to improve its predictions on a per-
sample basis, exploiting F;_1 to determine which samples are
simple enough to map to the early-exit model. For the ResNet-
18 architectures, the energy consumption still drops even for
the MAE-oriented policy at A = 0.01 by respective 1.7%,
9.6%, and 12.8%. However, the larger discrepancy in MAE
between the full and exit ResNet-18 models (see in Table II)
makes it harder for the DRL to decrease MAE through the
learned mapping policies. Still at A = 0.01, the DRL is capable
of maintaining the MAE difference from strategies that only
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Fig. 6. Benchmarking in terms of energy savings given when LTE is supported for ResNet-50 (brown) and ResNet-18 (blue). Evaluations are normalized
with respect to that of local execution. Shaded backgrounds indicate the better A options for MAE — evaluated on the Carla imitation learning dataset [26].
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SAGE-DRL Energy

DRL-SAGE Energy === 1 SAGE-OPT Error

=== DRL-OPT Error

AError (MAE)
g

Switch to Localp,;, for this
sequence as is better in terms
of accuracy and energy

Switch to Local,; to maintain
accuracy and avoid fail-safe penalty

10 20 30 40 50 60 70 80 90 100 110
Frame no.

Fig. 7. Comparing the DRL and Sage behaviors over a sequence of correlated
frames in terms of difference in MAE from the reference optimal policy. The
background bar plot shows their the per-frame energy consumption difference.

Policy Analysis: We perform a closer in-depth analysis of

the policy learned by the DRL for the ResNet-18 at A = 0.01
for the 20% failure rate scenario. In Figure (7), we compare the
behavior of the DRL policy against that of Sage over a clip
sequence of correlated input frames from Carla’s evaluation
dataset. Each frame is associated with a corresponding ¢
and failure state m from the DRL emulation environment (as
defined in Section IV-B). All MAE estimates are referenced
against that of the optimal policy (OPT) defined above and
depicted by the solid horizontal black line, whereas the bar plot
in the background indicates the energy consumption difference
between Sage and the DRL for every indexed frame (as shown
in the legend). For instance, a negative value for DRL-SAGE at
a certain frame indicates that DRL is more energy efficient by
the difference amount in mJ. Throughout the trace, we observe
that the DRL is able to recognize patterns of abrupt network
interruptions, reverting to local execution to avoid the fail-safe
high energy penalties. On top of that, the period (frames 45-
80) over which the DRL behavior is the same as the optimal
demonstrates how it also learned to exploit the local exit to
improve on both the error and energy objectives.
We also breakdown the action selection frequency of the DRL
for the ResNet-18 at A = 0.01 in Figure 8 over the different
failure rates. As illustrated, Higher failure rates lead the DRL
to opt for more local execution actions. Despite this, the ratio
between attempted offloads that suffered an offloading fail-
safe invocation by both the DRL and Sage almost remains the
same across the failure rates at around ~ 5Xx less.

Analysis using WiFi: We repeat our experiments for the
more power-efficient WiFi technology [31]. In Table III, the
energy gains for the ResNet-50 architecture remain substantial
reaching 36.98% and 19.85% over Sage while dropping the
MAE by 1.68% and 1.25% for the 1% and 20% failure rates,
respectively. For the ResNet-18, the MAE-energy trade-off
problem becomes more complicated as their slimmer struc-
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Fig. 8. DRL Action selection frequency for the ResNet-18 at A=0.01 over the
Carla evaluation dataset [26] and the same sequence of sampled ¢ estimates.

ture and the negligible WiFi transmission overhead massively
shrink the energy penalty for the early-exit fail-safe, making
it a more appealing action choice, and subsequently leading
MAE to increase (as the 2.22% increase for A = 0.1 at 20%
case). At (A = 0.01), the MAE difference at 20% failure to
< 1% at the expense of a 0.92% increased energy consumption
over Sage. From here, we can deduce that the extent of
performance gains is mainly dependent on the underlying
model structure and the supported wireless technology.

C. Object Detection for UAV Experiments

Architectures Evaluation: We again train two baseline
ResNet architectures, ResNetyq s, to guide the design process
of the primary, ResNetij “lllg - and early-exit, ResNeth"’”/ifB N
models for object detection. In Table IV, we compare the
mAP evaluations on the Au-Air dataset as well as the latency
execution overhead on the Jetson Nano for 360x 640 inputs.
Typically, with each added optimization, the model execution
overhead is lowered, reaching primary/exit latency combina-
tions of 98.84/78.96 ms and 42.21/31.38 ms for the ResNet-50
and ResNet-18, respectively. In terms of mAP, we first remark
for perspective that the mAP values estimates for models
in the original Au-Air dataset paper [27] ranged between
22~30%. Our distilled ResNet-501,7,; reached 29.9% mAP
— improving over its baseline teacher (which achieved 28.8%
— which indicates how ResNet-Sij )“l]lg N generalizes better with
regards to the object detection tasﬁ, whereas the mAP of the
exit model ResNet-SOff/i]g  is slightly less at 27.1%. For the
ResNet-18, the mAP evaluations degrade slightly with each
incorporated optimization — from 27.3% to 26.8% to 26.3%.

DRL Performance Evaluation: Once more, we associate
the robustness condition error parameters with the MAE loss,
and also find that setting errt” to 0.02 also works for this set
of experiments. We train a DRL policy at A = 0.5 on the object
detection losses and compare it against Sage, Hydra, and local
strategies with regards to the change in mAP and energy
consumption in Table V. As all the competitor strategies
employ a single model pipeline, we first demonstrate — prior
to assessing energy gains — how the input mapping function
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TABLE III
REDUCTION IN MAE AND ENERGY COMPARED TO OTHER STRATEGIES
GIVEN THE NVIDIA PX2/WIFI SETUP USING THE CARLA DATASET [26]

. MAE Red. %  Energy Red. %

Model Fail (%) X 0T Jocal — [14]  Tocal
T 0T 168 1638 3698 6002

ResNetSO 5y 005 125 125 1985 3951
i 08 085 085 042 35.09

ResNetl§ 20 01 222 222 337 1904
20 001 030 -030 092 1695

TABLE IV

COMPARING MODELS PERFORMANCE ON THE AU-AIR OBJECT
DETECTION DATASET FOR UAV [27] ON THE NVIDIA JETSON NANO

Model Metric ResNetyq s RCSNetﬁulllsN ResNet? i;3 N
mAP 28.8 29.9 271

ResNet50 Lat. (ms) 122.06 98.84 78.96
mAP 27.3 26.8 26.3

ResNet18 Lat. (ms) 55.99 42.21 31.38

learnt by the DRL to execution pipelines can improve mAP
scores over strategies that employ a single execution pipeline
— be it the full or exit model. As shown in Table V, the DRL’s
dynamic input mapping consistently improves mAP scores
compared to any strategy employing a single exit pipeline.
However, mAP percentage changes are minute compared to
the full model. For instance, the DRL offered slight mAP
improvements (up to 0.54%) for the ResNet-18 architecture
and sustained minor drops (reaching -0.66%) for the ResNet-
50 as the failure rate increased. The increase or decrease in
mAP score can be attributed to the difference in prediction
scores between the full and exit pipelines in each architecture
(see Table IV), as closer mAP scores between both ResNet-
18 model allowed the DRL policy to better converge on the
error objective, and improve the average mAP scores. Even
for the ResNet-50, the fact that the max mAP drop is 0.66%
out of a maximum possible of 9.4% (the %drop in mAP from
ResNet! "/f,\+ to ResNete?/f, . in Table IV) indicates how the
DRL still managed to learn an effective mapping function.
For energy consumption comparisons, we first reiterate that
Hydra [4] employs a soft-deadline policy that tolerates missing
0 consecutive T' deadlines before activating the local pipeline
alongside the remote one. The local pipeline is deactivated
once more when the total execution latency drops below T
In the table, our DRL solution for the most part outperforms
Hydra at =1 by up to 10.59% and 13.42% for the ResNet-
50 and ResNet-18, respectively, except for the ResNet-50 1%
failure rate case, in which our DRL is 7.75% less efficient. This
is attributed to two things: (i) the fail-safe execution overhead
in the ResNet-50 is high, and (ii) At lower failure rates, Hydra
scarcely invokes redundant local executions. Nonetheless, their
soft deadlines policy caused 38 out of the 3240 validation
frames to miss their deadlines. As the deadline constraint
gets looser (6=2), more frames miss their deadlines, and more
energy consumption overhead is incurred by the DRL relative
to Hydra. Compared to Sage, our energy gains are not as much
as in the previous experiment because of the more relaxed
T'=150 ms, which has facilitated both more offloads and more
slack time for receiving server responses before triggering the
fail-safe, making Sage a viable option here at low failure rates.
Policy Analysis: In Figure 9, we take a more in-depth look
at how our learnt DRL policy behaves compared to Hydra
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(6 = 1) for the ResNet-18 over a sequence of 6 correlated
frames from the evaluation dataset at 10% failure rate. For each
frame, we show the mAP scores for the full and exit models
to gain a better insight into the DRL’s choices. At first, both
the DRL and Hydra are opting for their offloading mode as it
represents the most energy-efficient option. For the following
frame at t=1, the network starts to experience interruptions,
which initially led the DRL to incur an additional energy
penalty due to the fail-safe invocation, whereas Hydra missed
its deadline and switched to Reliability (R) mode for the
following frame at ¢{=2. Through observing (F;_1), the DRL
can discern input scene complexity, and understands from
the first two frames that the exit pipeline can serve as a
better candidate for this corresponding input stream, which we
observe for t=2 as it attempts offloading once more but with
the exit model as the fail-safe. Seeing network interruptions
persist, the DRL designates the Local,,;; as the primary mode
of operation to maximize energy efficiency. Once connectivity
is restored, both strategies switch back to offloading modes.
All in all, our DRL achieved 168 mlJ net energy gains over
Hydra and an average mAP of §1.9% compared to the 81.7%.

VI. DISCUSSION

A. Overall Findings

Understanding the expected deployment conditions, inte-
grating the offloading fail-safe overheads as part of the per-
formance models, and encoding network disparities through a
metric like failure rates enables designing a more effective run-
time solution that is capable of better management of energy
resources. From our experiments, although TESTUDO gener-
ally achieved better performance efficiency for edge computing
AS applications with hard execution deadlines, less-critical
applications can benefit from more tolerant strategies, such as
Hydra, employing softer deadline policies that accept missing
one or two deadlines before invoking redundant execution.
Additionally, despite the changes in prediction errors being
mild (< 1% at the worst), the DRL solution can be curtailed
for absolute robustness — that is, no mAP changes — through
reducing its action space to offloading decisions only.

We also find that the blockwise NAS is extremely efficient
in designing both the primary and exit pipelines due to
the dramatically reduced search spaces which rendered exit
models of performances close to their primary counterparts.
In summary, we found that the degree of effectiveness of
our DRL solution dependent on combinations of (i) input
sizes; for offloading is more relevant as the size of an input
(processing load) increases, (if) Choices of T and Lpg;
for larger fail-safe overheads close to 71" (as in T=100 for
the ResNet-50) makes local execution strategies much more
appealing, (iii) Hardware; for local execution overheads are
affected accordingly, and (iv) wireless technology; for some
technologies incur a more power-efficient data transfer than
others [31]. For example, the 720p inputs, ResNet18, T=100,
Nvidia PX2, and WiFi combination in the end-to-end vehicle
control experiments did not offer any improvements over the
state-of-the-art, unlike other combinations.
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TABLE V
COMPARING THE % CHANGE IN MAP AND ENERGY CONSUMPTION FOR THE DRL ON THE OBJECT DETECTION TASK FOR THE AU-AIR DATASET [27] FOR
JETSON NANO AND WIFI. HYDRA [4] ALLOWS SUCCESSIVE § DEADLINES TO BE MISSED BEFORE REDUNDANTLY ACTIVATING THE LOCAL PIPELINE.

mAP Inc. % Energy Red. % Missed Deadlines

Model Fail (%) Full Exit =Hildra [4']= 5 Sage [14] local =I-IIydra [4]= 5

I 0.03 2.0 175 -1355 -8.94 383.02 38 60
ResNet50 10 -0.66 0.85 3.66 -26.87 -2.25 180.23 257 422

20 -0.65 0.53 | 10.59 -2345 3.40 117.57 440 720

1 -0.0 007 1.58 -0.55 0.25 125.19 34 54
ResNet18 10 0.54 0.15 | 10.56 -4.21 2.16 72.85 288 450

20 023 035 | 1342 -7.39 1.79 48.16 463 671

N

DRL: Local,,,
Hydra: R

DRL: Edge,;
Hydra: P .
/= g

Fig. 9. Comparing DRL and Hydra decisions over a sequence of 6 correlated frames from the runtime evaluation dataset using Au-Air [27] and the network
failure state for ResNet-18’s full and exit models. AE gain is the per-frame energy consumption difference between Hydra and the DRL. Green bounding
boxes indicate objects detectable by both models, blue ones are for objects detected by the exit only, and yellow ones are for objects detected by the full only.

B. Study Limitations and Future Works

We performed our analysis in this paper using models from
the existing wireless infrastructure — WiFi and 4G LTE. How-
ever, we concur that evaluations using 5G and V2X communi-
cation protocols are still needed as they will be instrumental in
the real-world adoption of connected and autonomous systems
[9]. Given such scenarios, the problem can be further scaled
to the effective management of an assembly of AS (e.g., a
fleet of connected autonomous vehicles) — possibly entailing
different dynamics of communication. Also relevant is how the
extent of energy gains is dependent on how the local execution
power P.,.. is evaluated, which was through a system-level
perspective in this work. A more granular approach could lead
to more insights on the effectiveness of our approach.

Furthermore, the values of 7" used here represent worst-case
bounds as industry standards employ tighter bounds for safety
— as strict as 30 Hz (~33 ms) for an ADS. From our analysis,
ResNet-18 derived architectures are more poised to operate
around these tighter constraints. In a similar vein, although
TESTUDO has shown promising performance gains, real-world
experiments are still needed for more tangible experiences of
network instability due to the various dynamic factors (e.g.,
motion characteristics), which are extremely unpredictable and
hard to model accurately. We also remark that relatively small
datasets have limited the DRL exposure to more experiences
of diverse contextual information. Also, more sophisticated
hardware platforms can instigate more complex architectures
and multi-sensory pipelines that require further evaluations on
end-to-end workloads in terms of offloading key kernels —
potentially benefiting more from offloading optimizations [16].

On another note, our analysis assumes that the AS always
operates within the vicinity of the original edge server it
delegated its processing to. In real-world settings, the AS may
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be moving away from the edge server and entering into the
domain of a different edge server. In such cases, the abstract
random function, §, can be a substandard characterization of
these motion aspects, as & merely abstracts random latencies
with no consideration to their source, the spatio-temporal
aspects of AS motion, or even the inner tidings at the edge
server side in terms of task mapping, hand-offs and relays. One
way that can aid in addressing this is through monitoring the
Received Signal Strength Index (RSSI) periodically at the local
AS platform, and involving it in the state observation for the
DRL as indicators of the mobility patterns. Still, experiments
need to be performed on both the simulation and real-world
settings to evaluate the efficacy of such approaches. We leave
these problems for future research works to address.

VII. CONCLUSIONS

We presented TESTUDO, a methodology for reliable and
efficient edge computing for AS operating under stringent
execution deadlines. Firstly, TESTUDO encompasses a modular
approach for designing efficient DNN computing pipelines for
edge computing supporting optimal offloading points and fail-
safe mechanisms using blockwise NAS and KD techniques.
Then at runtime, a DRL solution is provided to adapt the
execution mode according to the sample complexity and the
network status. Our experiments for end-to-end control and
object detection have demonstrated that TESTUDO achieved
energy gains up to 31% and 13.4% with averages of 15.9%
and 5.3%, respectively, with <1% change in prediction scores.
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