
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

TESTUDO: Collaborative Intelligence for

Latency-Critical Autonomous Systems
Mohanad Odema, Luke Chen, Marco Levorato, and Mohammad Abdullah Al Faruque, Senior Member, IEEE

Abstract—Edge computing is to be widely adopted for au-
tonomous systems (AS) applications as compute-intensive pro-
cessing tasks can be offloaded to compute-capable servers located
at the edge of the network infrastructure. Given the critical na-
ture of numerous AS applications, their tasks are mostly governed
by strict execution deadlines to alleviate any safety concerns
from delayed responses. Although wireless link uncertainty has
prompted recent works to designate redundant local execution
as an offloading fail-safe to ensure these deadlines are met,
frequent invocation of such fail-safe mechanisms can potentially
undermine the extent of performance gains from offloading. In
this paper, we thoroughly analyze how redundant execution over-
heads can influence the overall performance. Then, we present
TESTUDO, a methodology to optimize the energy consumption
for latency-sensitive AS applications employing collaborative edge
computing. Primarily, our methodology encompasses two main
stages: (i) Designing processing pipelines supporting optimal
offloading points and fail-safe integration using modular design
techniques, and (ii) Developing a context-aware adaptive runtime
solution based on Deep Reinforcement Learning to adapt the
mode of operation according to the wireless network status. Our
experiments for end-to-end control and object detection use-cases
have shown that TESTUDO achieved energy gains reaching up to
31% and 13.4% (15.9% and 5.3% on average) for the former
and latter, respectively, while incurring little-to-no degradation in
prediction scores (< 1% change) from state-of-the-art strategies.

Index Terms—Edge Computing, Collaborative Intelligence,
Latency-Critical, Autonomous Systems,

I. INTRODUCTION AND RELATED WORKS

THe wide-scale deployment of autonomous systems (AS)

is edging ever closer to becoming reality given the mas-

sive prospect of benefits from applications such as autonomous

driving and unmanned aerial vehicles (UAV). Hence, machine

learning – and deep neural networks (DNNs) in particular –

has been at the forefront of algorithmic techniques applied for

primary processing given their exceptional performances on

crucial autonomy-related tasks. However, the challenge has al-

ways been to map these compute-intensive algorithms onto the

relatively resource-constrained AS computing platforms. For

instance, the continuously growing computational demands

has led the newer generation of autonomous driving systems

(ADS) hardware platforms, the Nvidia AGX Orin, to incur

a thermal design power (TDP) rating of 800 Watts [1] – a

3.2× increase from its predecessor, the Nvidia Drive PX2 [2],

which can reduce a vehicle’s driving range by a factor up to

11.5% [3]. In the case of UAVs, physical form constraints can

This work was partially supported by the National Science Foundation
(NSF) under award CCF-2140154. Mohanad Odema, Luke Chen, and Moham-
mad Abdullah Al Faruque are with the Department of Electrical Engineering
& Computer Science, University of California at Irvine, CA 92697 USA
(emails: {modema, panwangc, alfaruqu}@uci.edu). Marco Levorato is with
the Computer Science Department, Donald Bren School of Information and
Computer Sciences, University of California at Irvine, CA 92697 USA (email:
levorato@uci.edu).

limit hosting powerful computing platforms, and consequently

limiting their applications’ scope [4].

To address this, edge computing has been presented as

promising solution for processing burden of compute-intensive

tasks can be delegated to compute-capable servers located

at the edge of the network infrastructure. Albeit similar

to conventional cloud computing [5]–[8], the rationale be-

hind adopting edge computing hinges on having the com-

pute servers positioned within close proximity from where

the data is initially generated, firmly mitigating the effects

of propagation delays [9]. To further bound the impact of

transmission overheads, researchers have proposed to shrink

the data prior to transmission, most prominently through the

application of in-model compression techniques that map the

high-dimensional raw input data to low scale representations

before the offloading point with little-to-no impact on the

performance accuracy [10], [11]. What’s more, the promise of

higher bandwidths from the forthcoming V2X and 5G wireless

technologies is poised to further diminish the effect of added

transmission latencies.

Despite all these efforts, the volatile nature of wireless

links can cause additional delays that can compromise the

operational integrity of such latency-critical autonomous sys-

tems. Specifically, abrupt interruptions and micro-scale delays

from a multitude of dynamic factors such as path propagation

losses, network congestion, server queuing delays, and even

the motion characteristics of the AS itself, can accumulate

to cause a notable impact on the overall processing latency,

especially precarious for autonomous systems control appli-

cations whose nominal safety relies on providing outputs

within tens of milliseconds [12]. Inspired by the redundancy

policies of safety-critical systems [13], recent edge computing

works have embraced a similar idea to address response time

uncertainty through redundant execution schemes, in which an

additional execution pipeline – usually on the local platform

– is activated whenever server response time is predicted to

peak due to wireless channel impairments, which we denote

here by offloading fail-safe mechanisms [4], [14]–[16]. Unlike

conventional fail-safe approaches that apply redundancy for

functional safety, that is, to ensure a system is immune of

software bugs and/or hardware failures [12], [17], offloading

fail-safe are more concerned with safety from a nominal sense,

in which correct and timely outputs are to be provided every

time-step even if the wireless channel is impaired.

On the same subject, although fail-safe techniques target

handling extreme rare cases of operation in which deviation

from normal operation can occur, divergent cases in wireless

networks are more likely to occur considering the highly

dynamic environment of mobile autonomous systems employ-

ing edge computing, which makes the offloading fail-safe

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3211480

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 31,2023 at 17:39:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

AS employing remote edge computing. As far as our

knowledge goes, TESTUDO is the first to present a multi-

branch neural network model distributed across both the

local platform and server, serving both the primary and

secondary offloading fail-safe processing routines while

maintaining the nominal safety for the AS application.

2) At the design stage, TESTUDO adopts block-wise Neu-

ral Architecture Search (NAS) as a modular design

approach to design the multi-branch neural network.

In particular, knowledge distillation (KD) methods are

applied to optimize the design the various computing

blocks constituting the different execution paths of the

dynamic neural network to efficiently integrate both

features of split-computing and early-exiting.

3) For the deployment phase, TESTUDO enacts a deep

reinforcement learning (DRL) approach to select for

each time window the processing pipeline that max-

imizes prediction quality and energy efficiency given

the execution deadlines. Our novel contribution here

lies in leveraging the abstract information generated

each time window within the processing domain for the

DRL’s input state observation in the following time step.

This aids in discerning the underlying contextual and

temporal correlations existing in the data stream, and

consequently estimate the input sample complexity and

network stability status.

4) Evaluation of TESTUDO on the use-cases of end-to-end

control in ADS and UAVs’ object detection has demon-

strated that it improves on energy efficiency compared to

the state-of-the-art edge offloading strategies – reaching

up to 31% with an average of 15.9% for the former,

and 13.4% with an average of 5.3% for the latter with

virtually no impact on models’ utility.

II. PROBLEM FORMULATION

In this section, we formulate our problem to minimize

the energy consumption footprint for the latency-critical AS

applications employing collaborative intelligence. Since we

are engaging this problem from the perspective of the edge

device, i.e., the AS platform itself, our analysis is performed

under the assumption that the AS has already established

connection with the edge server from which it gets the

strongest reception signal – which in most cases is the one

closest geographically. From here, our formulation relies on

modelling the experienced latency and energy consumption

at the edge device when operating within the vicinity of the

edge server’s coverage area. Furthermore, we rely on a simple

model of channel failures – which anyway captures channel

correlation – to obtain a clear performance evaluation.

Formally, multiple execution strategies, M , can be sup-

ported when edge computing is provided for autonomous

systems, comprising at least a basic local routine in addition

to another remote execution mode [4]. Each operational mode

m ∈ M can possess its own unique execution path and

performance overhead. Thus for each m, we can breakdown

the key performance metrics; end-to-end latency, Lm
total, and

energy consumption, Em
total, into the following components:

Lm
total = Lm

exec + Lm
comm + Lm

ser (1)

Em
total = Em

exec + Em
comm + Em

idle (2)

where Lm
exec and Lm

ser represent the local and edge server’s

execution latencies, respectively. Similarly, Em
exec and Em

idle

correspond to the energy consumption of the local computing

platform during execution and idle states, with the latter

being reached whenever the system is neither processing nor

transmitting data – as in waiting for the results from the edge

server. Lm
comm and Em

comm represent the respective latency and

energy for communication which can be given as:

Lm
comm = Lm

Tx + Lm
Rx + δ(Lprop, Lqueue) (3)

Em
comm = Em

Tx + Em
Rx (4)

where Lm
Tx, Lm

Rx, Em
Tx, and Em

Rx are the transmission la-

tencies and energy consumption in the uplink and downlink.

δ represents a random function that captures the additional

uncertain latencies that may be experienced by an AS in

the deployment environment. We characterize two dominant

factors influencing δ: propagation delays, Lprop, and queuing

delays, Lqueue. The latter directly represents the randomness

associated with how occupied the remote edge server’s queues

are, which in turn translates into additional waiting times until

the offloaded task is dispatched for processing. In terms of

the former, the causes for propagation delays for AS can be

broken down into two bilateral sources: (i) the nature of radio

waves propagation that incurs path losses due to diffraction,

reflection, and other effects in the deployment environment,

where the edge device can suffer degradation in the received

signal strength as a result of obstructed line-of-sight or multi-

path fading, also translating into additional delays due to

the longer round-trip times and/or re-transmissions; and (ii)

The unique motion characteristics of an AS which further

exacerbate the path loss effects as a result of the movement

patterns, speed, orientation, antenna alignments, proximity,

etc. Given how the modelling dynamics of these factors can

be extremely challenging to solve in real-time considering the

milliseconds operational scale of AS, we abstract all these

factors into the random function δ as our main focus is the end-

to-end latency, irrespective of the true instantaneous causes

of such additional delays. We further denote the respective

transmission sizes during upload and download as a and b

and define the transmission overheads as follows:

Lm
Tx =

am

φu
, Em

Tx = PTx · Lm
Tx (5)

Lm
Rx =

bm

φd
, Em

Rx = PRx · Lm
Rx (6)

in which φu, φd, PTx, and PRx are the data rates and

transmission power estimates at the local platform during

upload and download, respectively. In practice, the upload and

download transmission sizes, am and bm, are the ones after

post-processing distributed across several data frames, where

each possesses header information as additional data specific

to the networking protocol besides the application payload.

Nevertheless, header sizes can be negligible when dealing with

high-fidelity data (e.g., image representations), and from this

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3211480

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 31,2023 at 17:39:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

exploitation, and samples experiences from its replay buffer

to train its policy network until convergence [25].

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We evaluate TESTUDO on two AS applications instantiating

different requirements and computational demands: end-to-

end control for autonomous driving and object detection in

modular UAV pipelines. Our setup is detailed as follows:

Datasets: We use the Carla conditional imitation learning

dataset [26] and the Au-Air UAV dataset for low altitude traffic

surveillance [27] – the former instantiating the imitation learn-

ing class of problems while the latter is for object detection

as part of a modular processing pipeline. The Carla dataset

has been collected using the CARLA urban driving simulator

[28] and is divided into 657,800 and 74,800 respective training

and validation image frames, each of which is coupled with

control/sensor outputs. The Au-Air dataset contains 32,823

labeled frames extracted from 8 recorded video clips with

132,034 object instances belonging to 8 object categories

related to traffic surveillance. To arrange frames as correlated

inputs (see Algorithm 1), groups of temporally correlated

frames – 200 for Carla and 60 for Au-Air – are aggregated

into separate clips as inputs. With this arrangement, we divide

the Au-Air dataset into 90% training and 10% validation sets.

Benchmarking: We compare TESTUDO against Sage [14]

and Hydra [4] strategies employing collaborative edge comput-

ing with offloading fail-safe measures – the former for end-

to-end control in ADS while the latter for UAV navigation.

In brief, Sage’s operational principle is to determine each

time window, t, whether to execute locally or offload to

an edge server based on whichever action is perceived to

be more energy-efficient given a critical latency threshold.

Their fail-safe is to re-invoke the remainder of the full local

execution pipeline whenever the threshold T −LFS is reached

based on corresponding estimates of the data rate, φ. As

for Hydra, it employs a more lenient deadline policy that

can tolerate missing δ successive deadlines. Specifically, it

entails two operational modes when connected to a single

remote edge server: (i) Performance (P); where computation

is delegated to the server for energy efficiency as long as

the execution deadline, T , is met, and (ii) Reliability (R);

where the local pipeline is activated as a fail-safe alongside

the remote execution pipeline when δ successive deadlines are

missed. Once the the latency of the remote server execution

falls below T once more, Hydra switches back to Performance

(P) mode. We follow their specifications and perform our

analysis using 720×1280 (720p) and 360×640 image sizes

for the respective ADS and UAV experiments, and set their

critical deadlines, T , to 100 and 150 ms, respectively.

Blockwise NAS: We train and use ResNet-50 and ResNet-

18 architectures [18] as the teacher models. These architectures

comprise ResNet backbones, supplemented with relevant back-

ends according to the AS application – conditional imitation

learning component for vehicle control [26] and the region

proposal network components from Faster R-CNN for object

detection [29]. To facilitate upcoming comparisons, we keep

the architectural parameters of the earliest student block with

the bottleneck in accordance with the specifications in [10],

Algorithm 1: DRL Training Environment

Input: Temporal constant: k, Rayleigh distribution scale: σ
1 Initialize O queue(k), S list, m0

// construct temporal states

2 for correlated inputs in dataset do
3 for i = 1 to len(correlated inputs) do
4 φi ∼ Rayleigh(0, σ) // sample φ
5 mi ←Markov(mi−1) // failure state

6 O queue.push(φi,Fi−1,mi−1) // moving window

7 if len(O queue) >= k then
8 S list.append(∀observation ∈ O queue)

// training procedure

9 for t to len(S list)− 1 do
// exploit/explore based on ε-decay

10 at = argmaxa∈A Qπ(st) or random action
11 Take action at, observe reward rt and next state st+1

et = (st, at, rt, st+1) // experience tuple

12 Store Experience(et) // store experience

13 ej = Sample Experiences() // random batches

14 Qloss = DDQN(ej) // calculate loss

15 Qπ ← Qloss // update policy network

TABLE I
SEARCH SPACES FOR THE EARLY-EXITS. EXPANSION RATIO IS A

MULTIPLIER FOR SHRINKING #CHANNELS WITHIN STUDENT BLOCKS

#Student Blks #Layers Kernel Expansion Ratio

ResNet-18 1 2,3 3,5,7 1

4
, 3

8

ResNet-50 2 2,3,4 3,5,7 1

8
, 1

4

where we use 3 and 6 output channels at the bottleneck

offloading point (ME output) for the respective applications,

leading to data transmission sizes 64× and 32× less than that

of the inputs, respectively (We refer the interested reader to

[10] for more details). These student blocks with bottlenecks

are trained using blockwise KD from the first two corre-

sponding ResNet teacher blocks. The remaining two ResNet

teacher blocks are used to guide the blockwise NAS search

for implementing the early-exit model with the search space

descriptions provided in Table I. Thanks to the modularity, we

only needed to run 3 search epochs for each teacher-student

combination, with a learning rate of 2×10−3 and a batch size

of 4, taking less than a day in total on a desktop machine

with Nvidia 2070 GPU. For the final traversal search, we

characterize Ctarget as the execution latency of the local exit

model, and we set it to 0.8× that of the local full model.

The best performing model from the NAS satisfying Ctarget

is rendered as the exit model.

Scoring Metrics: End-to-end vehicle control is evaluated

based on the Mean Absolute Error (MAE) between model

predictions and ground truths for control outputs – steering,

acceleration pedal, and braking pedal angles. For scoring

models on object detection, we use the prominent mean

Absolute Precision (mAP) with an intersection over union

(IoU) threshold of 0.5 following the Au-Air dataset paper [27].

Performance Evaluation: We use an Nvidia Drive PX2

AutoChauffeur and an Nvidia Jetson Nano as our hardware

computing platforms for the ADS and UAV, respectively. To

maximize hardware performance efficiency and benchmark

local execution latency overheads, we leverage the Nvidia

TensorRT library [30] to compile our DNN models as highly

optimized inference engines on both experimental Nvidia

platforms. Mainly, we keep the default TensorRT settings in

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3211480

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 31,2023 at 17:39:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

which each first visible GPU on the respective platform is

designated as the target inference unit – that is, the integrated

Pascal-based GPU on the TegraX2 SoC for the Drive PX2

and the Maxwell-based GPU for the Jetson Nano. We ensure

that no other applications are utilizing the hardware resource

during the benchmarking process. Additionally, in order to

estimate the local execution power, Pexec, we adopt a system-

level approach and monitor the difference in consumed power

on the Drive PX2 during execution and idle times, which on

average reaches ≈ 7 W when our deployed DNNs are invoked

on the target onboard GPU. For the Jetson Nano, we set Pexec

to 4 W in conjunction with a similar analysis performed in [4].

Thus, we can have a common ground for directly comparing

the execution and offloading overheads without the effects of

the usual ’on’ power. Predominantly, we can now evaluate the

local energy consumption overheads Eexec = Lexec · Pexec

in equation (2) using the aforementioned values. Whereas for

Ecomm, we follow the practice adopted by the relevant related

collaborative intelligence works [5]–[7], [14], and use the 4G

LTE and WiFi data transfer power consumption models in [31]

to obtain estimates for the communication power, Pcomm.

DRL: Our DRL model comprises 5 fully connected layers.

The first 4 layers take as input the abstract features, Ft−1,

map them to a lower-dimensional representation, before con-

catenating them with It−1 and φt to be inputted to the final

layer. In terms of added cost, the transmission overhead of

Ft−1 from the edge server back to the local DRL domain

– if needed – is negligible and can be aggregated with the

returned results. For perspective, Ft−1 size is ≈ 0.5 kB for

the ADS application incurring a transmission cost of < 1 ms

at 5 Mbps. In terms of the DRL architecture itself, it occupies

≈ 0.6 MB (40× less than our smallest processing model) and

completes execution in < 1 ms, satisfying the requirement

to provide an output decision prior to the offloading point at

the encoder’s output ME(·) – which approximately takes 12

ms. We also performed empirical evaluations for the DRL’s

agent performance at k = 1, 2, and found that for both our

experimental datasets, setting k = 1 worked fine.

B. End-to-end Vehicle Control Experiments

Architectures Evaluation: We compare different ResNet

architectures with regards to the experienced MAE and latency

to process input images of 720p resolution in Table II. We

denote our trained baselines – the teachers – as ResNetbase, the

primary model with the distilled bottleneck as ResNet
full
w/BN ,

and the exit model from the block-wise NAS as ResNetexitw/BN .

Our trained baseline ResNet-50base model achieved an average

MAE of 0.033 compared to the 0.032 achieved by the version

in [14], whereas its latency processing overhead reached

140.16 ms – exceeding the 100 ms response requirement in

[3], [12]. Once the bottleneck structure has been integrated,

the execution latency drops to 89.66 ms for the ResNet-

50
full
w/BN version. Even more so, the average MAE drops to

0.03, asserting how student architectures are not bounded by

their teacher’s performance. The top-performing model with

an early-exit tail incurred a latency execution overhead of

70.91 ms, satisfying Ctarget as defined above. The average

MAE for the exit model ResNet-50exitw/BN is slightly more than

the full version reaching around 0.033. Similar trends were

TABLE II
COMPARING BLOCKWISE MODELS AND THEIR BASELINES FOR THE

CARLA SELF-DRIVING DATASET ON THE NVIDIA PX2 PLATFORM

Model
MAE×10−3 720p input

Steer Acc. Brake Avg. latency(ms)

ResNet-50 [14] 26.0 51.4 18.0 31.8 –

ResNet-50base 26.0 53.6 19.8 33.1 140.16

ResNet-50
full
w/BN

25.7 45.8 18.9 30.1 89.66

ResNet-50exit
w/BN

25.9 52.2 19.5 32.5 70.91

ResNet-18base 25.9 51.5 19.4 32.3 60.3

ResNet-18
full
w/BN

20.1 43.3 18.0 27.1 41.94

ResNet-18exit
w/BN

25.9 54.5 19.0 33.1 33.48

observed for the ResNet-18 architectures, where the average

MAE dropped from ResNet-18base to ResNet-18
full
w/BN (0.032

to 0.027), and increased back for ResNet-18exit
w/BN to 0.033.

The full and exit ResNet model are to be arranged as described

in Section III-D, forming, in turn, the DRL action space.

DRL Performance Evaluation: Firstly, we associate the

robustness error parameters in Equation (7) with the MAE

evaluations, and through empirical evaluations on the training

dataset, we find that setting errth to 0.02 offers good energy

optimization opportunities from leveraging the secondary exit

path with little-to-no effect on MAE. In accordance with this

setting, we define a reference optimal strategy to select the

most energy-efficient action as long as the MAE difference

between the full and exit models is less than 0.02 (i.e,

∆MAE < 0.02), or else actions instantiating the full model

pipeline would be selected. In Figure 6, we compare the

energy consumption at runtime of our proposed DRL solution

against other strategies: Local, Sage [14], and the reference

optimal strategy. All energy evaluations are normalized with

respect to that of pure local execution, and we repeat the

analysis for two DRL policies (at λ = 0.01 and 0.05) trained

at k=1 for each ResNet architecture. These λ values were

chosen after performing some parametric sweeps on both the

logarithmic and linear scales, with the purpose of prioritizing

robustness over energy efficiency as stated in Section IV-A.

Given LTE communication and failure rates of 1%, 10%,

and 20%, we observe that the policies learned by our DRL

solutions consistently outperform both the local and Sage

strategies in terms of energy efficiency across all scenarios.

Most notably, the energy consumption for the ResNet-50 at

λ = 0.05 dropped by up to 31% and 23.3% from SAGE for

the 1% and 20% failure rates, respectively.

For the ResNet-50s, mapping policies learned by the DRL

lowered the average experienced MAE across the 3 failure

rates (by a factor up to 1.2%) from the other two strategies

that only utilize ResNet-50
full
w/BN . This points out how the

DRL not only learns how to leverage the exit pipeline for

energy efficiency, but also to improve its predictions on a per-

sample basis, exploiting Ft−1 to determine which samples are

simple enough to map to the early-exit model. For the ResNet-

18 architectures, the energy consumption still drops even for

the MAE-oriented policy at λ = 0.01 by respective 1.7%,

9.6%, and 12.8%. However, the larger discrepancy in MAE

between the full and exit ResNet-18 models (see in Table II)

makes it harder for the DRL to decrease MAE through the

learned mapping policies. Still at λ = 0.01, the DRL is capable

of maintaining the MAE difference from strategies that only

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3211480

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 31,2023 at 17:39:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

TABLE III
REDUCTION IN MAE AND ENERGY COMPARED TO OTHER STRATEGIES

GIVEN THE NVIDIA PX2/WIFI SETUP USING THE CARLA DATASET [26]

Model Fail (%) λ
MAE Red. % Energy Red. %
[14] local [14] local

ResNet50
1 0.1 1.68 1.68 36.98 60.02
20 0.05 1.25 1.25 19.85 39.51

ResNet18
1 0.8 -0.85 -0.85 0.42 35.19
20 0.1 -2.22 -2.22 3.37 19.04
20 0.01 -0.30 -0.30 0.92 16.95

TABLE IV
COMPARING MODELS PERFORMANCE ON THE AU-AIR OBJECT

DETECTION DATASET FOR UAV [27] ON THE NVIDIA JETSON NANO

Model Metric ResNetbase ResNet
full
w/BN

ResNetexit
w/BN

ResNet50
mAP 28.8 29.9 27.1

Lat. (ms) 122.06 98.84 78.96

ResNet18
mAP 27.3 26.8 26.3

Lat. (ms) 55.99 42.21 31.38

learnt by the DRL to execution pipelines can improve mAP

scores over strategies that employ a single execution pipeline

– be it the full or exit model. As shown in Table V, the DRL’s

dynamic input mapping consistently improves mAP scores

compared to any strategy employing a single exit pipeline.

However, mAP percentage changes are minute compared to

the full model. For instance, the DRL offered slight mAP

improvements (up to 0.54%) for the ResNet-18 architecture

and sustained minor drops (reaching -0.66%) for the ResNet-

50 as the failure rate increased. The increase or decrease in

mAP score can be attributed to the difference in prediction

scores between the full and exit pipelines in each architecture

(see Table IV), as closer mAP scores between both ResNet-

18 model allowed the DRL policy to better converge on the

error objective, and improve the average mAP scores. Even

for the ResNet-50, the fact that the max mAP drop is 0.66%

out of a maximum possible of 9.4% (the %drop in mAP from

ResNet
full
w/BN to ResNetexitw/BN in Table IV) indicates how the

DRL still managed to learn an effective mapping function.

For energy consumption comparisons, we first reiterate that

Hydra [4] employs a soft-deadline policy that tolerates missing

δ consecutive T deadlines before activating the local pipeline

alongside the remote one. The local pipeline is deactivated

once more when the total execution latency drops below T .

In the table, our DRL solution for the most part outperforms

Hydra at δ=1 by up to 10.59% and 13.42% for the ResNet-

50 and ResNet-18, respectively, except for the ResNet-50 1%

failure rate case, in which our DRL is 7.75% less efficient. This

is attributed to two things: (i) the fail-safe execution overhead

in the ResNet-50 is high, and (ii) At lower failure rates, Hydra

scarcely invokes redundant local executions. Nonetheless, their

soft deadlines policy caused 38 out of the 3240 validation

frames to miss their deadlines. As the deadline constraint

gets looser (δ=2), more frames miss their deadlines, and more

energy consumption overhead is incurred by the DRL relative

to Hydra. Compared to Sage, our energy gains are not as much

as in the previous experiment because of the more relaxed

T=150 ms, which has facilitated both more offloads and more

slack time for receiving server responses before triggering the

fail-safe, making Sage a viable option here at low failure rates.

Policy Analysis: In Figure 9, we take a more in-depth look

at how our learnt DRL policy behaves compared to Hydra

(δ = 1) for the ResNet-18 over a sequence of 6 correlated

frames from the evaluation dataset at 10% failure rate. For each

frame, we show the mAP scores for the full and exit models

to gain a better insight into the DRL’s choices. At first, both

the DRL and Hydra are opting for their offloading mode as it

represents the most energy-efficient option. For the following

frame at t=1, the network starts to experience interruptions,

which initially led the DRL to incur an additional energy

penalty due to the fail-safe invocation, whereas Hydra missed

its deadline and switched to Reliability (R) mode for the

following frame at t=2. Through observing (Ft−1), the DRL

can discern input scene complexity, and understands from

the first two frames that the exit pipeline can serve as a

better candidate for this corresponding input stream, which we

observe for t=2 as it attempts offloading once more but with

the exit model as the fail-safe. Seeing network interruptions

persist, the DRL designates the Localexit as the primary mode

of operation to maximize energy efficiency. Once connectivity

is restored, both strategies switch back to offloading modes.

All in all, our DRL achieved 168 mJ net energy gains over

Hydra and an average mAP of 81.9% compared to the 81.7%.

VI. DISCUSSION

A. Overall Findings

Understanding the expected deployment conditions, inte-

grating the offloading fail-safe overheads as part of the per-

formance models, and encoding network disparities through a

metric like failure rates enables designing a more effective run-

time solution that is capable of better management of energy

resources. From our experiments, although TESTUDO gener-

ally achieved better performance efficiency for edge computing

AS applications with hard execution deadlines, less-critical

applications can benefit from more tolerant strategies, such as

Hydra, employing softer deadline policies that accept missing

one or two deadlines before invoking redundant execution.

Additionally, despite the changes in prediction errors being

mild (< 1% at the worst), the DRL solution can be curtailed

for absolute robustness – that is, no mAP changes – through

reducing its action space to offloading decisions only.

We also find that the blockwise NAS is extremely efficient

in designing both the primary and exit pipelines due to

the dramatically reduced search spaces which rendered exit

models of performances close to their primary counterparts.

In summary, we found that the degree of effectiveness of

our DRL solution dependent on combinations of (i) input

sizes; for offloading is more relevant as the size of an input

(processing load) increases, (ii) Choices of T and LFS ;

for larger fail-safe overheads close to T (as in T=100 for

the ResNet-50) makes local execution strategies much more

appealing, (iii) Hardware; for local execution overheads are

affected accordingly, and (iv) wireless technology; for some

technologies incur a more power-efficient data transfer than

others [31]. For example, the 720p inputs, ResNet18, T=100,

Nvidia PX2, and WiFi combination in the end-to-end vehicle

control experiments did not offer any improvements over the

state-of-the-art, unlike other combinations.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3211480

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 31,2023 at 17:39:51 UTC from IEEE Xplore. Restrictions apply.

