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ABSTRACT

Due to the high performance and safety requirements of self-driving
applications, the complexity of modern autonomous driving sys-
tems (ADS) has been growing, instigating the need for more so-
phisticated hardware which could add to the energy footprint of
the ADS platform. Addressing this, edge computing is poised to en-
compass self-driving applications, enabling the compute-intensive
autonomy-related tasks to be offloaded for processing at compute-
capable edge servers. Nonetheless, the intricate hardware archi-
tecture of ADS platforms, in addition to the stringent robustness
demands, set forth complications for task offloading which are
unique to autonomous driving. Hence, we present ROMANUS, a
methodology for robust and efficient task offloading for modular
ADS platforms with multi-sensor processing pipelines. Our method-
ology entails two phases: (i) the introduction of efficient offloading
points along the execution path of the involved deep learning mod-
els, and (ii) the implementation of a runtime solution based on Deep
Reinforcement Learning to adapt the operating mode according to
variations in the perceived road scene complexity, network connec-
tivity, and server load. Experiments on the object detection use case
demonstrated that our approach is 14.99% more energy-efficient
than pure local execution while achieving a 77.06% reduction in
risky behavior from a robust-agnostic offloading baseline.
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1 INTRODUCTION

Because erroneous or delayed responses in self-driving applica-
tions can compromise road safety, equipment, and/or the lives of
the passengers themselves, Autonomous Driving Systems (ADS)
are required to achieve outstanding performances on core driving
tasks, such as perception and localization. Consequently, ADS plat-
forms are designed today to run highly-sophisticated algorithms
on intricate hardware architectures to realize such desired levels of
performance while being robust to any adverse driving contexts.
For that, modern ADS platforms have adopted a multi-modal pro-
cessing approach for constructing ensemble perspectives of driving
scenes using a diverse set of sensory inputs, as in how the Tesla
Autopilot systems possess 8 cameras and 12 ultrasonic sensors [3].

* Both authors contributed equally to this research.
This work was partially supported by the National Science Foundation (NSF) under
award CCF-2140154.

O

This work is licensed under a Creative Commons Attribution International 4.0 License.

ICCAD °22, October 30-November 3, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9217-4/22/10.
https://doi.org/10.1145/3508352.3549356

Such a multi-sensor approach leads to the generation of an enor-
mous volume of high-dimensional data that requires tremendous
resources for real-time processing, further adding to the power
demands of the entire system. Addressing this, a heterogeneous
collection of hardware components, as in Application-Specific Inte-
grated Circuits (ASICs) and GPUs, are commonly integrated onto
ADS platforms to balance performance demands and power effi-
ciency [13]. Still, hardware advancements are met with growing
algorithmic complexity and the requirement for supporting new
features, leading the power footprint to remain relatively high. For
instance, if we compare two generations of ADS platforms: the
Nvidia Drive PX2, which was used by Tesla and Audi Q7 for their
autopilot programs [1, 2], against its successor, the Nvidia Drive
AGX Orin [4], we find that performance efficiency aside, the base-
line power demands increased from 250 W to 800 W, which in
theory can have adverse effects on both the thermal comfort of the
passengers and the vehicle’s driving range [13].
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Figure 1: Vehicular Edge Computing (VEC) Architecture

Given how the bulk of processing in ADS modules is largely dom-
inated by deep neural networks (DNNs), compression techniques,
e.g., quantization and pruning, have been considered to reduce the
modules’ complexity, and in turn, their resource requirements [12].
However, experienced performance degradation poses a concern
with regards to adopting such techniques’ for this class of critical
applications. Alternatively, recent research efforts have targeted
exploiting the emerging edge computing paradigm for autonomous
driving and other vehicular services, in which cloud computing
capabilities are brought to the edge of the network through edge
servers deployed close to the edge devices, enabling offloading of
cumbersome processing burdens to these edge servers for better
resource management [14]. In the context of vehicular applications,
the edge devices are known as connected vehicles (CVs) and the
paradigm is further specified as vehicular edge computing (VEC),
or vehicular fog computing (VFC) in other cases [5].

Figure 1 illustrates the hierarchical architecture of VEC and its re-
liance on the wireless infrastructure, where the higher bandwidths
and ultra-low latencies promised by the forthcoming 5G and Dedi-
cated Short Range Communications (DSRC) technologies are to be
instrumental in VEC’s wide-scale adoption [14]. In this regard, VEC
computing servers are expected to be deployed either at Road Side
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Units (RSUs) — as part of the V2X paradigm - or cellular base sta-
tions, where recent works have proposed to optimize the offloading
process to minimize the overall latency and the energy consumed
by the ADS [5, 16]. Still, we find that current approaches in the
literature are lacking in the following departments:

o The driving context — crucial to robustness — is not factored
in the offloading decision. Given how a scene’s complexity
directly correlates with the risk level, and delayed responses
could lead to consequences with different levels of severity

e Adapting the offloading load according to the runtime condi-
tions while accounting for the underlying ADS composition
(e.g., concurrent sensor processing pipelines) is overlooked

1.1 Motivational Example

In Figure 2, we show two frames from the Radiate dataset [25],
and compare their mean average Precision (mAP) scores on the
object detection task. As shown, the left frame instantiates a com-
plex scene with numerous objects of diverse classes, some of them
superimposed or obstructed from view leading to relatively low
mAP scores. Still, we observe that through fusing the outputs from
all sensory pipelines (2 cameras, lidar, and radar), an mAP score of
17.6% is realized, which surpasses the highest score achieved by a
standalone sensory pipeline output — 11.7% from the right stereo
camera. This alludes to the power of sensor fusion as each sensor
can capture its own unique set of features that complement those
from other sensors to provide more comprehensive views of the
driving scenes. On the flip side, the right frame contains a mere
single vehicle that is easily detectable by the standalone camera,
achieving a 100% mAP score. From here, we can contemplate the
desired behavior when VEC is supported with regards to tuning
the operating mode. Specifically, an ADS experiencing plain driv-
ing scenes can opt for offloading processing loads from a subset of
sensory pipelines for resource efficiency, because although delayed
server responses could cause some partial outputs to be absent by
the execution deadline, partial fusion of the available local outputs
would suffice for this time window due to the relative simplicity
of the scene. Contrarily, complicated scenes should have all sen-
sor outputs available for fusion to stimulate robustness, which is
only achieved during local execution mode as the uncertainty of the
wireless networks is avoided. This behavior would be learned by
our proposed solution as will be detailed in the following sections.

1.2 Novel Contributions

To address the above limitations, we present a methodology for
Robust Task Offloading in Modular Multi-Sensor Autonomous Driv-
ing Systems, namely RomaNUs. From here, we can summarize the
main contributions of this paper as follows:

e We present RoMANUSs, a methodology to support efficient
and robust offloading for modular ADS platform comprising
multiple sensory pipelines with support for sensor fusion.

o As far as our knowledge goes, we are the first to factor the
driving context in the offloading decision for the robustness
of autonomous driving.

e We integrate optimal offloading points within each sensor
processing model to realize a dynamic decision space for the
runtime operating modes of the ADS.

Luke Chen*, Mohanad Odema*, Mohammad Abdullah Al Faruque

Mode: Local Execution

Mode: Offloading |

Single Camera mAP: 11.7%
Late Fusion mAP: 17.6%

; ¥ Late Fusion mAP: 100%
Figure 2: Two frames of different complexities showing single
camera and late fusion mAP scores and the selected opera-
tional modes by our learning-based solution. The bounding
boxes indicate the ground truths from the dataset.

e We implement a Deep Reinforcement Learaning (DRL) based
runtime solution that leverages contextual and temporal
correlations in the data to optimize the offloading process for
latency, energy, and robustness given concurrent pipelines.

e Experiments on the object detection use-case using a real-
world driving dataset and an industry-grade ADS indicate
that our approach is 14.99% more energy-efficient than lo-
cal execution while achieving a 77.06% reduction in risky
behavior form a robust-agnostic baseline.

2 RELATED WORKS

Mutli-Sensor Perception: To maximize information extraction
from a driving scene, data is collected from a diverse set of sensors,
e.g., cameras, lidar, and radar, to promote perception robustness.
Mainly, There are two primary schemes for processing these multi-
sensory inputs: early fusion [24, 30] and late fusion [29]. The former
combines all sensory features to a single feature at an early point
in the ADS pipeline, but is susceptible to sensing noise. Conversely,
the latter offers more resilience at the expense of more redundancy
across the sensor pipelines. Recent works [17, 18] have also explored
the potential of hybrid fusion approaches to leverage the best of both
worlds, albeit with added implementation complexities. Here, we
concentrate our analysis on the standard late fusion approach as it is
more challenging and understudied from an offloading perspective.

Vehicular Edge Computing (VEC): Numerous research efforts
have targeted system-wide resource optimization for VEC through
optimal task offloading and scheduling strategies given a variety of
servers, vehicles, and tasks [28, 31]. Typically, such strategies are
complemented with runtime solutions that can tune the operation
according to variations in the deployment environment, such as
the network connectivity conditions [6]. Nonetheless, delayed re-
sponses from edge servers are not tolerated in autonomous driving
application as the safety of the road, vehicles, and passengers [5]
can be compromised. Hence, [27] proposed a customized commu-
nication protocol for a stable and fast offloading of autonomous
driving tasks. Even more so, the authors in [16] proposed a fail-safe
routine to re-invoke local computation if responses are delayed
beyond a certain threshold to account for the uncertainty of wire-
less links. Such schemes would be even more convoluted when
offloading from multiple concurrent pipelines is considered.

DNN Split Computing: To identify optimal offloading points
within DNN architectures, [11, 21] analyzed the expected computa-
tion and communication costs for each potential offloading layer.
For a considerable number of architectures, either direct raw inputs
offloading or pure local execution represented the most efficient
option. Therefore, works in [7, 19, 20] proposed to modify a DNN’s
structure to include an early optimal offloading layer that shrinks
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Figure 3: Modular industry-grade ADS. The fusion point fol-
lowing the object detection module is this work’s use-case.
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the size of transmissible data, minimizing the costs of both computa-
tion and communication. This split-computing concept was applied
for end-to-end control in autonomous vehicles [16], and here, we
extend its applicability to multi-sensor modular ADS platforms.

3 SYSTEM AND PROBLEM OVERVIEW

3.1 Autonomous Driving System Composition

For perspective, we briefly describe the primary modules that com-
pose a state-of-the-art ADS shown in Figure 3 as follows:

Perception: As the main receptor of the raw sensory data, the
perception module is responsible for processing the data over two
successive computing blocks. The first is an object detector to iden-
tify and classify objects of interest, e.g., pedestrians and vehicles,
that surround the ego vehicle. A tracking module ensues to receive
identified objects and associate them with their past movements so
as to predict the current movement trajectory.

Localization: Another module taking in the raw inputs is the
localization module, whose task is to pinpoint the position of the
vehicle at high precision using SLAM/GPS modules.

Planning: Outputs from the perception and localization blocks
are fused together onto the same 3D co-ordinate space for further
processing by the behavioral and motion planning block. From
here, a series of sequential path information can be generated from
starting position until the endpoint.

Control: The final block tasked with mapping the information
generated from the planning block onto control instructions for the
actuators (e.g., driving wheel, brakes, accelerator).

3.2 Problem Formulation

In a modular ADS pipeline, the perception block is the dominant
entity affecting the end-to-end performance the most [13], and thus,
directing offloading optimizations at this module can lead to sub-
stantial efficiency gains across the entire system. Still, sub-optimal
operating points can be reached if the following two aspects are
not considered properly: (i) the nominal safety considerations of
the autonomous driving application, and/or (ii) the structural com-
position of the ADS modules themselves. For the former, an ADS is
required to conclude end-to-end processing under stringent execu-
tion time limits to maintain road safety — a 100 ms deadline at the
worst [5, 13]. Hence, when VEC is supported, expected additional
delays due to wireless channel impairments should be considered
as part of the overall end-to-end latencies to determine the best of-
floading decision. Still, additional abrupt delays could threaten the
integrity of the self-driving application considering the tightness
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Figure 4: Object Detection with Late Fusion and offloading
support. Blue blocks/variables are passed to/from the DRL
domain in section 5. Transparent blocks are inactive.

of the execution windows. Whereas for the latter, understanding
the underlying structure of an ADS is key to determine the opti-
mal placement of an offloading point that effectively balances the
inherent trade-off between communication and computation. For
instance, offloading prior to the fusion point can incur a substan-
tial transmission overhead, as opposed to offloading after it which
could incur a sizeable computational overhead due to prolonged
periods of local processing.

Formally, a module employing late fusion comprises N process-
ing models {fi, f5, ..., fyr} for every supported sensor. Thus, for an
input vector X := x1.n, the fusion block output can be given by:

y=H(fi(x1), f2(x2), ..., fn (xN)) €]

where H is the fusion algorithm whose inputs are the N outputs
fi(xi)Vi € N. When offloading is supported, the goal is to avoid
excessive computational overheads. Thus, each model f; would
incorporate an offloading point to be further defined as:

filwi) = T (F7 () @)
where fl.H and fiT are the head and tail parts of the i;;, model placed
prior to and after the offloading point, respectively. The former sub-
model is to be deployed locally while the latter is to be replicated
across the local and edge server platforms. As server responses
could peak due to the wireless channel uncertainty, some model

outputs may not be available for fusion given the strict execution
deadlines. Thus, we obtain instead partial fusion outputs given by:

§=H(I1 X fi(x1), L2 X fa(x2), ... IN X fN(xN)) ®3)

where the random variable 7; € {0, 1} indicates whether f;(x;) is
available for fusion. Naturally, the lesser number of inputs available
the more robustness is compromised. Therefore, given M operating
offloading modes, the objective is to identify the mode satisfying:

min E(X|m), s.t. L(X|m) < Ly, A(y,7) < Cypy (4)
meM

where E(-) and L(-) are the respective end-to-end energy consump-
tion and execution latency for processing the input vector X given
processing mode m. This formulation is regulated by a latency
constraint L;, for nominal safety, and a robustness constraint Cyp,
based on the difference in prediction quality between y and . In
the following sections, we present our methodology for solving the
optimization objective in (4), which will entail applying DNN struc-
tural optimizations and a runtime learning-based approach. We
demonstrate our analysis for the use-case of late fusion following
the object detection module as illustrated in Figure 3.
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4 CONCURRENT PIPELINES DESIGN

Figure 4 depicts the proposed processing domain for object detec-
tion with our applied modifications given concurrent DNNs and a
late fusion scheme detailed as follows.

4.1 Object Detection with Late Fusion

This scheme entails processing each sensory input separately before
aggregating the outputs together through fusion. Specifically, there
are two primary computational tasks:

Object Detection: For each sensor, an object detection pipeline
is implemented to identify and classify objects in a scene. Initially,
each model entails a feature extractor based on a Convolutional
Neural Network (CNN), e.g., ResNet-18 here [9], responsible for
abstracting raw sensory data into smaller-sized features for the
following detection model, e.g., Faster R-CNN network [23], which
consists of a regional proposal network (RPN) to suggest regions of
interest where objects may exist, a classification stage to categorize
the objects within each proposal, and a final post processing stage
to convert classified proposals into bounding box predictions.

Fusion: As the outputs from each pipeline are bounding boxes,
we can directly fuse them together using Non-Maximum Suppres-
sion (NMS) [23] to calculate the intersection over union (IoU) and
obtain an estimate on the degree of overlapping between each pair
of bounding boxes from the overall set of predictions. If an IoU for a
pair of boxes exceeds a predetermined threshold, the bounding box
with less confidence score is discarded, and this operation repeats
until all possible pairing combinations are covered.

4.2 Implementing DNNs to support Offloading

To avoid the overhead of offloading raw inputs, we scale the optimal
offloading point injection technique in [16, 20] to each concurrent
pipeline without compromising the overall utility as follows:
Structural Alterations: We alter the structure of the feature
extractors (ResNet-18 here) within each pipeline to minimize local
computation overhead prior to the offloading point and downsize
the transmissible data. Specifically, we substitute a considerable
portion from the earliest parts of a DNN with an encoder-decoder
like structure of two functional components: (i) an encoder, Mg,
which offers an efficient offloading option at its output through
shrinking the input data into a lower-dimensional representation
that retains the most relevant of features, i.e., small output sizes
translate to low communication overheads., and (ii) a decoder, Mp,
to receive outputs from the encoder and cast them back to higher
dimensional representations of dimensions compatible with the
remainder of the network. Here, we replace the first two residual
blocks from each ResNet-18 with an encoder-decoder structure.
Knowledge Distillation: Next, modified architectures need to
be retrained to maintain utility. We apply knowledge distillation
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Figure 6: Our hierarchical agent for runtime mode selection

[20] to train ME and Mp through minimizing a loss function, e.g.,
mean squared error (Lyssg), between Mp outputs and those from
the original parts, Moyig. Figure 5 illustrates this for our ResNet-18
with the loss component for a single input x given by:

Lsk = || Morig(x) = Mp(Mg(x))ll; (©)

Hence, unaltered DNN components can retain their weight val-
ues with only the parameters of the new structure trained to pro-
duce the same output values as the originals.

Deployment for Inference: After retraining, the modified archi-
tectures would be deployed for each concurrent detection pipeline
on the local ADS. Furthermore, each Mp and its succeeding blocks
would be replicated across the VEC servers to enable online au-
tonomous driving services. Thus during runtime, servers can re-
ceive outputs from Mg components, process them, and return
predictions, e.g., bounding boxes coordinates, to the ADS platforms.
On the ADS, available local and received predictions are fused to
provide the final outputs for the following blocks.

5 REINFORCEMENT LEARNING CONTROL

VEC operation is reliant on the surrounding conditions with regards
to the wireless channel state and the server load. Hence, we propose
a learning-based approach based on deep reinforcement learning
(DRL) to adapt the mode of operation so as to maximize performance
efficiency while maintaining robustness — which we account for
in the offloading decision through leveraging the abstract feature
representations already computed within the processing pipelines.

5.1 Hierarchical Agent

As shown in Figure 6, our DRL solution constitutes a hierarchical
agent whose main components are as follows:

5.1.1 Contextual Encoder. In order to estimate the complexity of
the corresponding scene, we leverage the computed feature set,
¢, at time window ¢ from the main sensor processing pipelines to
guide the decision for the following window t + 1, given as #; =
{(F1)t, (F2)t, - (FN)¢}- The rationale behind using the feature set
of the preceding time window is twofold: (i) features do not need
to be computed from scratch as they have already been generated
within the primary processing pipelines (see the global pooling
blocks in Figure 4), and, (ii) the small window size for autonomous
driving (< 100 ms) means that successive frames share similar
driving contexts due to the high spatio-temporal scenic correlations.

Given how ¥; can outweigh other DRL inputs due to its rela-
tively larger size, ; needs to be initially encoded into a further
lower-dimensional representation. Hence, ¥; is processed through
a contextual encoder comprising a sequence of fully-connected lay-
ers to obtain the final abstraction (Ft* In our experiments, Tt* was
of 256x smaller in size than %;.
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5.1.2  State Encoder. The next component is the state encoder
whose input is the final state representation s; = {7/, s, q:}
formed from aggregating the contextual encoder outputs, ¥,*, the
channel capacity ¢;, and server queuing delays g;. Practically, the
latter two metrics can be estimated by probing the edge server.

5.1.3  Action Space. Represented by the final fully-connected layer
in the state encoder, the action space covers the set of all possible
modes of operation that can be selected by the DRL at runtime. We
define it as A = {of floady,of floady,of floady, ...of floadn_1},
where an action of fload; is for choosing the offloading option for
i sensory pipelines, with of floady being pure local execution. In
the case that the same DNN structure is shared across all pipelines,
only the number of offloading pipelines matter. We do not consider
of floady as a viable option so that the ADS is always guaranteed a
new output every time window since at least one pipeline is always
processed locally. This way, even under a worst-case scenario when
tasks from N — 1 pipelines are offloaded and results are not received
within the time limit, the vehicle can still operate in a safe man-
ner. In practice, we merely need a subset of actions A* C A, with
{offloady,of floadn_1} C A*, where A* can contain the actions
that exhibit notable variability in performance. At runtime, action
vector, a;, is mapped onto the control of each processing pipeline.

5.2 DRL Environment

We detail the emulated DRL training environment for learning a
policy 7 that makes offloading decisions based on the current state.

5.2.1 Training and Reward. Reinforcement learning approaches
rely on having a Q function to provide value estimates for each state-
action pair so as to select the optimal action @ = arg max, . 4 O (8, a)
for each § under a learnt policy 7. However, estimating state-action
pair values in continuous state spaces is challenging, and DRL
offers to approximate Q, by a policy network trained to maximize
a reward. With no loss in generality, our DRL employs a Double
Deep Q-Network [26] with a compounded reward function R as:

if mAP(y) < mAP,,

otherwise

(6)

which evaluates to different functions based on a measure of robust-
ness, which we associate here with the degree of uncertainty in the
final fused predictions y in (1), determined by the mean Average
Precision (mAP) scores for object detectors as in [22]. In brief, our
goal is for the agent to realize a policy that deters from offloading
actions when prediction confidence is low, which we achieve here
through leveraging the contextual information in 7;_; to assess
the scene’s complexity, and make offloading decisions accordingly
with the goal of minimizing prediction uncertainty. Thus, if mAP,,
is not met, R evaluates to A defined as:

- {o,P if 4 == of fload,
NP

if @ == of fload;
for penalizing the agent whenever an offloading action is selected,
with the penalty value being proportionate to the number of offload-
ing pipelines, i, out of N total, with a maximum negative penalty of
P.Recall that of floadn ¢ A as one pipeline always executes locally
to ensure at least one output is available irrespective of the wireless

st,i#0,i<N (7)
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network conditions. On the flip side, when mAP,;, is satisfied, R
evaluates to 8 as follows:

g 1P if L(X|d) > Ly, @
C, otherwise

which penalizes the agent by P when its selected action d causes the
overall execution latency for inputs X, L(X|a), to exceed the critical
execution latency constraint, L;j. In other words, this means that
the agent is penalized when not all partial outputs are available in
time for late fusion. In reality, state-of-the-art ADS platforms are
designed to meet the application latency demands, and hence, we
set the value of L;j, to that of local execution. Contrarily, when L,
is satisfied, R finally evaluates to C given by:

) {0, if E(X|a) == min(E(X|a)|L(X]a) < L)

P, otherwise

Vae A", A" CA 9)
penalizing the agent by P if the energy consumption footprint

E(X|a) from selecting action a is not the minimal from amongst
those of all viable actions a € A* that are projected to meet L;.

5.2.2  Latency and Energy Estimation . In order to evaluate R for
each selected 4, the end-to-end estimates for energy and latency
can be approximated every time window as follows:

L = Ligcal + LTx + Lserver + LrRx (10)
E =Ejocar + ETx + Eigie + ERx (11)

where the latency L can be broken down into the respective lo-
cal, transmission, server, and receiving latencies. Similarly, energy
consumption constitutes the same components except for incor-
porating idling energy as we are only concerned about the ADS
energy footprint. From here, the local components are given by:

Ligcal = N X L, + (N —i) X Lygi1 | @ == of fload; (12)

in which Ly, and L;,;; are the respective latencies for executing
the encoder Mg and the remaining tail parts of the model, respec-
tively. When the selected action is to offload processing from i
processing pipelines (i.e. @ == of fload;), the total local execution
latency accounts for processing across the N encoders and the N —i
tail models. This additive form represents the most direct approach
for modeling local execution. However in reality, the concurrency
of pipelines can speed up local execution depending on the available
hardware resources at the expense of a larger power consumption
footprint, Pj,.4;. We approximate this trade-off through considering
energy for performance evaluation, defining Ej ., as:

Elocal = Liocal X Plocal (13)

5.2.3 Channel Estimation. To estimate the communication over-
heads, we first fit a Rayleigh distribution curve with scale o to
throughput traces @ collected from the real-world for different
wireless technologies, i.e., ® ~ Rayleigh(o). Then, we use the con-
structed distribution to sample independent and identically dis-
tributed (i.i.d.) random variables as the channel capacity ¢ to be
used for the training and evaluation processes of the DRL agent
where data transmission parameters can be evaluated as:
ixXb
Lrx = 7 | @ == of floadi; Erx = Lx X Prx (14)
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where b is the transmissible data size from one sensory pipeline
while Pry is the transmission power incurred by the ADS. Similarly,
the formulation for the receiving parameters, Lgy and ERy., can be
provided given corresponding estimates for channel capacity and
data sizes in the downlink.

5.24  Server Queuing. Lastly, we model the server latency Lgerper
using queuing delays where we have:

- E 03

representing the probability that the offloaded task would encounter
c other tasks before it in the server’s processing queue, with p
being the average server load, and C being the queue size. From
here, we are able to generate a probability density function (pdf)
for values within 0-C from which we can sample queuing positions,
and consequently approximate Lgerper-

c

6 EXPERIMENTS AND RESULTS

6.1 Experimental Setup

6.1.1 Dataset. We use the RADIATE multimodal perception dataset
[25] for its diverse driving scenarios and adverse weather conditions
such as snow, fog, and rain. The dataset covers 8 object classes with
annotations from a Navtech CTS350-X radar, a Velodyne HDL-32e
LiDAR, and a ZED stereo camera. The variety of scenes provides
a varying degree of difficulty for ADS and enables the robustness
assessment. For instance, cameras obstructed by snow offer poor
visibility indicating higher difficulty that can cause sub-optimal
object detection performance. Here, we implemented 4 object de-
tection DNN pipelines: 2 stereo cameras, radar, and lidar. All inputs
are mapped onto the forward-facing perspective for late fusion.

6.1.2  Training and Metrics. As was mentioned in Section 4, the
original processing pipelines for each sensing modality comprise a
ResNet-18 followed by a Faster R-CNN. These models were trained
using a batch size of 1, learning rate of 0.005, and the multi-task
loss function in [23] which combines both classification and box
regression losses. For the NMS fusion, we use a fusion IoU threshold
of 0.4. We employ mAP as our evaluation metric with boxes IoU >
0.5 since it is widely adopted for object detection tasks [8] where
the average precision is estimated using the precision and recall
values. More details about evaluating these values are in [8, 23].

6.1.3 Hardware and Performance Evaluation. We use the industry-
grade Nvidia Drive PX2 Autochauffer as our ADS hardware. The
concurrent DNN models are compiled using the TensorRT library
becoming inference engines. The local execution power Pj,.,; is
estimated as the difference in the ADS power measurements when
processing and idling. For the transmission power Pry, we follow
[16] and evaluate it using the data transfer power models in [10].

6.1.4  Encoder-Decoder Structure. The input frame’s resolution for
each of the sensory pipelines is 672 X 376 (~ 740.25 kB). The encoder,
ME, comprises 3 layers (2 convolutional and 1 pooling), each with
a stride of 2 with only 3 channels at the output. Therefore, when
the outputs from Mp are quantized to 8 bits for offloading [16],
the transmissible data size b in equation 14 becomes ~ 11.57 kB
(64x less than the input’s). The decoder Mp mimics the structure
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presented in [20] to have its output of the same dimensions as that
from the original second ResNet-18 block.

6.1.5 DRL Settings. For safety, we always execute the radar pipeline
locally [15] and define A* = {of floady, of floads, of floads}. We
set P = =2, C = 4000, p = 0.9, and mAP;j, = 0.68 unless otherwise
stated. We set L;;, = 68.12 based on pure local execution latency.

Table 1: Loss and mAP (%) before (orig) and after (dist) inte-
grating Mg - Mp across various late fusion combinations.

Sensor Loss (orig) Loss (dist) | mAP (orig) mAP (dist)
2 Cameras 0.15 0.17 67.14 67.14
Radar+Lidar 0.10 0.11 67.14 67.14
Full Fusion 0.13 0.15 71.24 70.38

6.2 Object Detection and Performance

We first assess how the inclusion of Mg and Mq impacts the
loss and prediction accuracy of object detection. Table 1 shows the
changes in these metrics across different late fusion combinations
on the Radiate evaluation dataset. As seen, full sensor fusion has
the best performance in mAP, asserting how prediction robustness
relates to the number of fused outputs. It is also observed that the
new DNN structures maintain the same level of performance as
their original counterparts, with the highest degradation in mAP
from 71.24% to 70.38% experienced by the full fusion case, but still
offering a better score than that of the simpler sensor combinations.

Table 2: Hardware Measurements on the Nvidia Drive PX2

DNN Liocal (ms) Ejocal (J) Memor}’ (MB)
Encoder 3.78 0.03 0.025

1 pipeline 17.03 0.12 80.3

4 pipelines 68.12 0.48 321.2
DRL Agent 0.66 0.005 5.4

Table 2 displays the processing overheads for different DNN
components deployed on the PX2 hardware. The encoder Mg and
DRL agent take 3.78 and 0.66 ms, respectively, emphasizing how the
decision a; is obtained before the generation of any transmissible
outputs. Moreover, the execution latency for 4 pipelines on the PX2
can add up to 68.12 ms given the same power Pj,cq;-

6.3 Channel Capacity and Queuing Analysis

In this experiment, we analyze the influence of the experienced
channel capacity, ¢, and queuing delay, g;, on the optimal action
choice when optimizing for energy consumption under the latency
constraint L;;,. To elaborate, we illustrate in Figure 7 parametric
sweeps with respect to ¢ given g; = 15 ms. As shown, offloading
options are consistently more energy efficient than the pure lo-
cal option (offloadp), but the L;}, constraint dictates which action
should be chosen considering how poor values of ¢ could disqualify
some offloading choices. When ¢ > 4 Mbps, the latency overhead
for offload, does not exceed L;;, making it the optimal action until
¢ > 7 Mbps, at which the most energy-efficient option, offloads,
becomes valid. Similarly, this analysis is repeated in Figure 8 when
sweeping across q; given ¢ = 8 Mbps. Naturally, the latency over-
head is linearly proportional to g; under fixed network conditions,
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demonstrating the influence of server load over the optimal offload-
ing decision. From here, the key takeaway is that based on the
wireless infrastructure and VEC server capabilities, the maximum
number of concurrent offloading pipelines that meet L;;, can be
determined, and used accordingly to construct the decision space.

Table 3: Robustness analysis at p=0.97

. Average mAP (%)

Policy mAP, of floady offloads of floads

R-agnostic ~ N/A 64.93 64.50 64.85
0.50 60.39 67.69 68.58

DRL 0.68 60.68 70.93 72.55
0.98 61.82 72.49 73.14
0.50 49.58 85.34 85.26

Oracle 0.68 50.58 93.68 93.62
0.98 54.84 99.51 99.49

6.4 Robustness Analysis

To analyze the DRLs capacity to make robust decisions, we de-
fine 2 baseline policies for comparison: (i) a robustness-agnostic
or R-agnostic policy that is aware of ¢ and g; to optimize for en-
ergy so long as L, is satisfied, and (ii) an Oracle resembling an
optimal strategy which in addition to the information available to
the R-agnostic policy, also possesses the true per-frame mAP esti-
mate apriori, and consequently, the optimal sequence of decisions
satisfying the robustness constraint mAP,,. All of the mentioned
strategies are more energy-efficient than pure local execution, and
the mAP,;, values are set in the experiments to 0.5, 0.68, and 0.98,
estimated based on the cumulative distribution of the evaluation
dataset such that 30%, 50%, and 70% of the evaluation mAP scores
fall under the corresponding thresholds.
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To evaluate robustness across each policy, we compute the aver-
age experienced mAP per action (AMAP) given the action selection
frequencies. Mainly, a robust behavior cause frames of high uncer-
tainty (mAP < mAP,;) to be processed locally, implying how the
AMAP experienced locally should be low compared to those from
the offloading actions. We illustrate this concept in Figure 9 across
the 3 policies for mAP;j, = 0.68 and p = 0.97. As seen, the R-agnostic
policy only considers performance efficiency for its action selection,
and subsequently, its AMAP across offloady, offloads, and offloads,
are equivalent with values of 64.39%, 65.01%, and 65.25%, respec-
tively. Conversely, the Oracle resembles the ideal embodiment of
robustness, assigning high uncertainty frames to offloady, despite
performance gains from offloading. In contrast to the R-agnostic
policy, 66.94% of the Oracle policy decisions are offloady with an
AMAP of 50.58%, and an AMAP as high as 93.68% for the remaining
offloading decisions. From here, our proposed DRL approach strives
to learn the Oracle’s behavior, through the observed action selection
breakdown, with 63.65% of actions belonging to offloady. Moreover,
the AMAP for offload; and offloads are 70.93% and 72.55%, respec-
tively, which despite outperforming the R-agnostic policy, are far
from that of the Oracle. This is expected considering the Oracle
policy is the unrealistic ideal behavior with apriori mAP knowledge.
We extend this analysis to other thresholds values in Table 3, where
we observe that as the robustness constraint becomes smaller, the
DRL exhibits a behavior closer to the R-agnostic and farther from
the Oracle and vice versa, indicating the DRL’s capacity to adapt to
various robustness requirements.

Table 4: Action frequency analysis at mAP;;, = 0.68

Action Frequency (%)

Policy P ~offloads offloads of floads
0.90 11.17 14.73 74.10
R-agnostic  0.97 37.18 17.17 45.65
0.99 70.34 9.25 20.41
0.90 51.73 8.83 39.44
DRL 0.97 63.65 10.95 25.39
0.99 85.14 5.46 94
0.90 53.19 8.00 38.82
Oracle 0.97 66.94 9.17 23.89
0.99 84.37 5.04 10.60

Furthermore, we vary the server load p in Table 4 and show
how the action frequency varies for each policy. As p increases,
the selection of local processing becomes more frequent across all
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% Energy Consumption w.r.t

policies, irrespective of the energy or robustness due to the L,

constraint. Such behavior is learned by our DRL solution given how

the action selection frequencies closely imitate that of the Oracle.

Table 5: Energy analysis relative to local at mAP,;, = 0.98

Metric Local R-agnostic DRL Oracle
Risky Actions (%) 0 63.37 14.54 0
Robust Actions (%) 100 36.63 85.46 100
Total Energy (kJ) 2.916 1.729 2.479  2.487
Total Energy Red. (%) 0 40.7 14.99  14.72

6.5 Energy Reduction vs Risky Actions

Local (bar chart)

We also compare the energy savings relative to the pure local exe-

cution, offloady, in addition to their risky behaviors. We first define
Risky Actions as the fraction of offloading actions whose respective
mAP scores fall below mAP;j,, and Robust Actions as the fraction

whose scores exceed the mAP,;,. We compare the performance of

each policy in Table 5, where although R-agnostic offers the highest

energy reduction of 40.7% compared to DRL’s 14.99%, 63.37% of

R-agnostic’s energy savings are Risky Actions, unlike DRL whose
Risky Actions constitute 14.54% of the offloading decisions. Through

extending this analysis further to entail multiple mAP,j, values, i.e.,
a higher threshold means a stricter offloading constraint, we ob-
serve in Figure 10 that the robustness-aware DRL at higher mAP,;,

substantially reduces the percentage of risky offloads compared
to the R-agnostic policy, with reductions of 24.50% and 77.06%, at

mAP;;, = 0.50 and mAP;j;, = 0.98 respectively.

7 CONCLUSION

In this work, we presented RomaNUs, a methodology for robust
and efficient task offloading for multi-sensor autonomous driving
systems (ADS). We first showed how to integrate optimal offloading

points along the processing pipelines in a multi-sensor object detec-

tion module with late fusion, and then implemented a DRL-based
runtime offloading that achieves 14.99% energy efficiency over pure

local execution with up to 77.06% decrease in risky offloading ac-

tions from a robust-agnostic solution. This methodology can be
generalized to a variety of sensors and fusion strategies depending

on the underlying system structure and how robustness is charac-

terized with regards to the application’s primary task, which would

form the basis for future research works along this direction.
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