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Units (RSUs) – as part of the V2X paradigm – or cellular base sta-

tions, where recent works have proposed to optimize the offloading

process to minimize the overall latency and the energy consumed

by the ADS [5, 16]. Still, we find that current approaches in the

literature are lacking in the following departments:

• The driving context – crucial to robustness – is not factored

in the offloading decision. Given how a scene’s complexity

directly correlates with the risk level, and delayed responses

could lead to consequences with different levels of severity

• Adapting the offloading load according to the runtime condi-

tions while accounting for the underlying ADS composition

(e.g., concurrent sensor processing pipelines) is overlooked

1.1 Motivational Example

In Figure 2, we show two frames from the Radiate dataset [25],

and compare their mean average Precision (mAP) scores on the

object detection task. As shown, the left frame instantiates a com-

plex scene with numerous objects of diverse classes, some of them

superimposed or obstructed from view leading to relatively low

mAP scores. Still, we observe that through fusing the outputs from

all sensory pipelines (2 cameras, lidar, and radar), an mAP score of

17.6% is realized, which surpasses the highest score achieved by a

standalone sensory pipeline output – 11.7% from the right stereo

camera. This alludes to the power of sensor fusion as each sensor

can capture its own unique set of features that complement those

from other sensors to provide more comprehensive views of the

driving scenes. On the flip side, the right frame contains a mere

single vehicle that is easily detectable by the standalone camera,

achieving a 100% mAP score. From here, we can contemplate the

desired behavior when VEC is supported with regards to tuning

the operating mode. Specifically, an ADS experiencing plain driv-

ing scenes can opt for offloading processing loads from a subset of

sensory pipelines for resource efficiency, because although delayed

server responses could cause some partial outputs to be absent by

the execution deadline, partial fusion of the available local outputs

would suffice for this time window due to the relative simplicity

of the scene. Contrarily, complicated scenes should have all sen-

sor outputs available for fusion to stimulate robustness, which is

only achieved during local execution mode as the uncertainty of the

wireless networks is avoided. This behavior would be learned by

our proposed solution as will be detailed in the following sections.

1.2 Novel Contributions

To address the above limitations, we present a methodology for

Robust Task Offloading inModular Multi-Sensor Autonomous Driv-

ing Systems, namely Romanus. From here, we can summarize the

main contributions of this paper as follows:

• We present Romanus, a methodology to support efficient

and robust offloading for modular ADS platform comprising

multiple sensory pipelines with support for sensor fusion.

• As far as our knowledge goes, we are the first to factor the

driving context in the offloading decision for the robustness

of autonomous driving.

• We integrate optimal offloading points within each sensor

processing model to realize a dynamic decision space for the

runtime operating modes of the ADS.

Single Camera mAP: 11.7%

Late Fusion mAP: 17.6%

Single Camera mAP: 100%

Late Fusion mAP: 100%

Mode: Local Execution Mode: Offloading

Figure 2: Two frames of different complexities showing single

camera and late fusion mAP scores and the selected opera-

tional modes by our learning-based solution. The bounding

boxes indicate the ground truths from the dataset.

• We implement a Deep Reinforcement Learaning (DRL) based

runtime solution that leverages contextual and temporal

correlations in the data to optimize the offloading process for

latency, energy, and robustness given concurrent pipelines.

• Experiments on the object detection use-case using a real-

world driving dataset and an industry-grade ADS indicate

that our approach is 14.99% more energy-efficient than lo-

cal execution while achieving a 77.06% reduction in risky

behavior form a robust-agnostic baseline.

2 RELATED WORKS

Mutli-Sensor Perception: To maximize information extraction

from a driving scene, data is collected from a diverse set of sensors,

e.g., cameras, lidar, and radar, to promote perception robustness.

Mainly, There are two primary schemes for processing these multi-

sensory inputs: early fusion [24, 30] and late fusion [29]. The former

combines all sensory features to a single feature at an early point

in the ADS pipeline, but is susceptible to sensing noise. Conversely,

the latter offers more resilience at the expense of more redundancy

across the sensor pipelines. Recent works [17, 18] have also explored

the potential of hybrid fusion approaches to leverage the best of both

worlds, albeit with added implementation complexities. Here, we

concentrate our analysis on the standard late fusion approach as it is

more challenging and understudied from an offloading perspective.

Vehicular Edge Computing (VEC): Numerous research efforts

have targeted system-wide resource optimization for VEC through

optimal task offloading and scheduling strategies given a variety of

servers, vehicles, and tasks [28, 31]. Typically, such strategies are

complemented with runtime solutions that can tune the operation

according to variations in the deployment environment, such as

the network connectivity conditions [6]. Nonetheless, delayed re-

sponses from edge servers are not tolerated in autonomous driving

application as the safety of the road, vehicles, and passengers [5]

can be compromised. Hence, [27] proposed a customized commu-

nication protocol for a stable and fast offloading of autonomous

driving tasks. Even more so, the authors in [16] proposed a fail-safe

routine to re-invoke local computation if responses are delayed

beyond a certain threshold to account for the uncertainty of wire-

less links. Such schemes would be even more convoluted when

offloading from multiple concurrent pipelines is considered.

DNN Split Computing: To identify optimal offloading points

within DNN architectures, [11, 21] analyzed the expected computa-

tion and communication costs for each potential offloading layer.

For a considerable number of architectures, either direct raw inputs

offloading or pure local execution represented the most efficient

option. Therefore, works in [7, 19, 20] proposed to modify a DNN’s

structure to include an early optimal offloading layer that shrinks
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Figure 3: Modular industry-grade ADS. The fusion point fol-

lowing the object detection module is this work’s use-case.

the size of transmissible data, minimizing the costs of both computa-

tion and communication. This split-computing concept was applied

for end-to-end control in autonomous vehicles [16], and here, we

extend its applicability to multi-sensor modular ADS platforms.

3 SYSTEM AND PROBLEM OVERVIEW

3.1 Autonomous Driving System Composition

For perspective, we briefly describe the primary modules that com-

pose a state-of-the-art ADS shown in Figure 3 as follows:

Perception: As the main receptor of the raw sensory data, the

perception module is responsible for processing the data over two

successive computing blocks. The first is an object detector to iden-

tify and classify objects of interest, e.g., pedestrians and vehicles,

that surround the ego vehicle. A tracking module ensues to receive

identified objects and associate them with their past movements so

as to predict the current movement trajectory.

Localization: Another module taking in the raw inputs is the

localization module, whose task is to pinpoint the position of the

vehicle at high precision using SLAM/GPS modules.

Planning: Outputs from the perception and localization blocks

are fused together onto the same 3D co-ordinate space for further

processing by the behavioral and motion planning block. From

here, a series of sequential path information can be generated from

starting position until the endpoint.

Control: The final block tasked with mapping the information

generated from the planning block onto control instructions for the

actuators (e.g., driving wheel, brakes, accelerator).

3.2 Problem Formulation

In a modular ADS pipeline, the perception block is the dominant

entity affecting the end-to-end performance the most [13], and thus,

directing offloading optimizations at this module can lead to sub-

stantial efficiency gains across the entire system. Still, sub-optimal

operating points can be reached if the following two aspects are

not considered properly: (i) the nominal safety considerations of

the autonomous driving application, and/or (ii) the structural com-

position of the ADS modules themselves. For the former, an ADS is

required to conclude end-to-end processing under stringent execu-

tion time limits to maintain road safety – a 100 ms deadline at the

worst [5, 13]. Hence, when VEC is supported, expected additional

delays due to wireless channel impairments should be considered

as part of the overall end-to-end latencies to determine the best of-

floading decision. Still, additional abrupt delays could threaten the

integrity of the self-driving application considering the tightness
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Figure 4: Object Detection with Late Fusion and offloading

support. Blue blocks/variables are passed to/from the DRL

domain in section 5. Transparent blocks are inactive.

of the execution windows. Whereas for the latter, understanding

the underlying structure of an ADS is key to determine the opti-

mal placement of an offloading point that effectively balances the

inherent trade-off between communication and computation. For

instance, offloading prior to the fusion point can incur a substan-

tial transmission overhead, as opposed to offloading after it which

could incur a sizeable computational overhead due to prolonged

periods of local processing.

Formally, a module employing late fusion comprises 𝑁 process-

ing models {𝑓1, 𝑓2, ..., 𝑓𝑁 } for every supported sensor. Thus, for an

input vector 𝑋 := 𝑥1:𝑁 , the fusion block output can be given by:

𝑦 = H(𝑓1 (𝑥1), 𝑓2 (𝑥2), ...., 𝑓𝑁 (𝑥𝑁 )) (1)

whereH is the fusion algorithm whose inputs are the 𝑁 outputs

𝑓𝑖 (𝑥𝑖 )∀𝑖 ∈ 𝑁 . When offloading is supported, the goal is to avoid

excessive computational overheads. Thus, each model 𝑓𝑖 would

incorporate an offloading point to be further defined as:

𝑓𝑖 (𝑥𝑖 ) = 𝑓 𝑇𝑖 (𝑓 𝐻𝑖 (𝑥𝑖 )) (2)

where 𝑓 𝐻𝑖 and 𝑓 𝑇𝑖 are the head and tail parts of the 𝑖𝑡ℎ model placed

prior to and after the offloading point, respectively. The former sub-

model is to be deployed locally while the latter is to be replicated

across the local and edge server platforms. As server responses

could peak due to the wireless channel uncertainty, some model

outputs may not be available for fusion given the strict execution

deadlines. Thus, we obtain instead partial fusion outputs given by:

𝑦 = H(I1 × 𝑓1 (𝑥1),I2 × 𝑓2 (𝑥2), ....,I𝑁 × 𝑓𝑁 (𝑥𝑁 )) (3)

where the random variable I𝑖 ∈ {0, 1} indicates whether 𝑓𝑖 (𝑥𝑖 ) is

available for fusion. Naturally, the lesser number of inputs available

the more robustness is compromised. Therefore, given𝑀 operating

offloading modes, the objective is to identify the mode satisfying:

min
𝑚∈𝑀

𝐸 (𝑋 |𝑚), 𝑠 .𝑡 . 𝐿(𝑋 |𝑚) ≤ 𝐿𝑡ℎ, Δ(𝑦,𝑦) ≤ 𝐶𝑡ℎ (4)

where 𝐸 (·) and 𝐿(·) are the respective end-to-end energy consump-

tion and execution latency for processing the input vector 𝑋 given

processing mode 𝑚. This formulation is regulated by a latency

constraint 𝐿𝑡ℎ for nominal safety, and a robustness constraint 𝐶𝑡ℎ
based on the difference in prediction quality between 𝑦 and 𝑦. In

the following sections, we present our methodology for solving the

optimization objective in (4), which will entail applying DNN struc-

tural optimizations and a runtime learning-based approach. We

demonstrate our analysis for the use-case of late fusion following

the object detection module as illustrated in Figure 3.
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edge Distillation to train M𝐸 · M𝐷 using the �rst 2 blocks

4 CONCURRENT PIPELINES DESIGN

Figure 4 depicts the proposed processing domain for object detec-

tion with our applied modifications given concurrent DNNs and a

late fusion scheme detailed as follows.

4.1 Object Detection with Late Fusion

This scheme entails processing each sensory input separately before

aggregating the outputs together through fusion. Specifically, there

are two primary computational tasks:

Object Detection: For each sensor, an object detection pipeline

is implemented to identify and classify objects in a scene. Initially,

each model entails a feature extractor based on a Convolutional

Neural Network (CNN), e.g., ResNet-18 here [9], responsible for

abstracting raw sensory data into smaller-sized features for the

following detection model, e.g., Faster R-CNN network [23], which

consists of a regional proposal network (RPN) to suggest regions of

interest where objects may exist, a classification stage to categorize

the objects within each proposal, and a final post processing stage

to convert classified proposals into bounding box predictions.

Fusion: As the outputs from each pipeline are bounding boxes,

we can directly fuse them together using Non-Maximum Suppres-

sion (NMS) [23] to calculate the intersection over union (IoU) and

obtain an estimate on the degree of overlapping between each pair

of bounding boxes from the overall set of predictions. If an IoU for a

pair of boxes exceeds a predetermined threshold, the bounding box

with less confidence score is discarded, and this operation repeats

until all possible pairing combinations are covered.

4.2 Implementing DNNs to support Offloading

To avoid the overhead of offloading raw inputs, we scale the optimal

offloading point injection technique in [16, 20] to each concurrent

pipeline without compromising the overall utility as follows:

Structural Alterations: We alter the structure of the feature

extractors (ResNet-18 here) within each pipeline to minimize local

computation overhead prior to the offloading point and downsize

the transmissible data. Specifically, we substitute a considerable

portion from the earliest parts of a DNN with an encoder-decoder

like structure of two functional components: (i) an encoder, M𝐸 ,

which offers an efficient offloading option at its output through

shrinking the input data into a lower-dimensional representation

that retains the most relevant of features, i.e., small output sizes

translate to low communication overheads., and (ii) a decoder,M𝐷 ,

to receive outputs from the encoder and cast them back to higher

dimensional representations of dimensions compatible with the

remainder of the network. Here, we replace the first two residual

blocks from each ResNet-18 with an encoder-decoder structure.

Knowledge Distillation: Next, modified architectures need to

be retrained to maintain utility. We apply knowledge distillation

at
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Figure 6: Our hierarchical agent for runtime mode selection

[20] to trainM𝐸 andM𝐷 through minimizing a loss function, e.g.,

mean squared error (𝐿𝑀𝑆𝐸 ), between M𝐷 outputs and those from

the original parts,M𝑜𝑟𝑖𝑔 . Figure 5 illustrates this for our ResNet-18

with the loss component for a single input 𝑥 given by:

𝐿𝑆𝐸 = | |M𝑜𝑟𝑖𝑔 (𝑥) −M𝐷 (M𝐸 (𝑥)) | |
2
2 (5)

Hence, unaltered DNN components can retain their weight val-

ues with only the parameters of the new structure trained to pro-

duce the same output values as the originals.

Deployment for Inference: After retraining, the modified archi-

tectures would be deployed for each concurrent detection pipeline

on the local ADS. Furthermore, eachM𝐷 and its succeeding blocks

would be replicated across the VEC servers to enable online au-

tonomous driving services. Thus during runtime, servers can re-

ceive outputs from M𝐸 components, process them, and return

predictions, e.g., bounding boxes coordinates, to the ADS platforms.

On the ADS, available local and received predictions are fused to

provide the final outputs for the following blocks.

5 REINFORCEMENT LEARNING CONTROL

VEC operation is reliant on the surrounding conditions with regards

to the wireless channel state and the server load. Hence, we propose

a learning-based approach based on deep reinforcement learning

(DRL) to adapt themode of operation so as tomaximize performance

efficiency while maintaining robustness – which we account for

in the offloading decision through leveraging the abstract feature

representations already computed within the processing pipelines.

5.1 Hierarchical Agent

As shown in Figure 6, our DRL solution constitutes a hierarchical

agent whose main components are as follows:

5.1.1 Contextual Encoder. In order to estimate the complexity of

the corresponding scene, we leverage the computed feature set,

F𝑡 , at time window 𝑡 from the main sensor processing pipelines to

guide the decision for the following window 𝑡 + 1, given as F𝑡 =

{(F1)𝑡 , (F2)𝑡 , .., (F𝑁 )𝑡 }. The rationale behind using the feature set

of the preceding time window is twofold: (i) features do not need

to be computed from scratch as they have already been generated

within the primary processing pipelines (see the global pooling

blocks in Figure 4), and, (ii) the small window size for autonomous

driving (≤ 100 ms) means that successive frames share similar

driving contexts due to the high spatio-temporal scenic correlations.

Given how F𝑡 can outweigh other DRL inputs due to its rela-

tively larger size, F𝑡 needs to be initially encoded into a further

lower-dimensional representation. Hence, F𝑡 is processed through

a contextual encoder comprising a sequence of fully-connected lay-

ers to obtain the final abstraction F ∗
𝑡 . In our experiments, F ∗

𝑡 was

of 256× smaller in size than F𝑡 .
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5.1.2 State Encoder. The next component is the state encoder

whose input is the final state representation 𝑠𝑡 = {F ∗
𝑡 , 𝜙𝑡 , 𝑞𝑡 }

formed from aggregating the contextual encoder outputs, F ∗
𝑡 , the

channel capacity 𝜙𝑡 , and server queuing delays 𝑞𝑡 . Practically, the

latter two metrics can be estimated by probing the edge server.

5.1.3 Action Space. Represented by the final fully-connected layer

in the state encoder, the action space covers the set of all possible

modes of operation that can be selected by the DRL at runtime. We

define it as 𝐴 = {𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑0, 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑1, 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑2, ...𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑𝑁−1},

where an action 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑𝑖 is for choosing the offloading option for

𝑖 sensory pipelines, with 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑0 being pure local execution. In

the case that the same DNN structure is shared across all pipelines,

only the number of offloading pipelines matter. We do not consider

𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑𝑁 as a viable option so that the ADS is always guaranteed a

new output every time window since at least one pipeline is always

processed locally. This way, even under a worst-case scenario when

tasks from 𝑁 −1 pipelines are offloaded and results are not received

within the time limit, the vehicle can still operate in a safe man-

ner. In practice, we merely need a subset of actions 𝐴∗ ⊆ 𝐴, with

{𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑0, 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑𝑁−1} ⊆ 𝐴∗, where 𝐴∗ can contain the actions

that exhibit notable variability in performance. At runtime, action

vector, 𝑎𝑡 , is mapped onto the control of each processing pipeline.

5.2 DRL Environment

We detail the emulated DRL training environment for learning a

policy 𝜋 that makes offloading decisions based on the current state.

5.2.1 Training and Reward. Reinforcement learning approaches

rely on having a Q function to provide value estimates for each state-

action pair so as to select the optimal action𝑎 = argmax𝑎∈𝐴𝑄𝜋 (𝑠, 𝑎)

for each 𝑠 under a learnt policy 𝜋 . However, estimating state-action

pair values in continuous state spaces is challenging, and DRL

offers to approximate 𝑄𝜋 by a policy network trained to maximize

a reward. With no loss in generality, our DRL employs a Double

Deep Q-Network [26] with a compounded reward function R as:

R =

{

A, if mAP(𝑦) < mAP𝑡ℎ

B, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6)

which evaluates to different functions based on a measure of robust-

ness, which we associate here with the degree of uncertainty in the

final fused predictions 𝑦 in (1), determined by the mean Average

Precision (mAP) scores for object detectors as in [22]. In brief, our

goal is for the agent to realize a policy that deters from offloading

actions when prediction confidence is low, which we achieve here

through leveraging the contextual information in F𝑡−1 to assess

the scene’s complexity, and make offloading decisions accordingly

with the goal of minimizing prediction uncertainty. Thus, if𝑚𝐴𝑃𝑡ℎ
is not met, R evaluates to A defined as:

A =

{

0, if 𝑎 == 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑0
𝑃

𝑁−𝑖 , if 𝑎 == 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑𝑖
𝑠 .𝑡 ., 𝑖 ≠ 0, 𝑖 < 𝑁 (7)

for penalizing the agent whenever an offloading action is selected,

with the penalty value being proportionate to the number of offload-

ing pipelines, 𝑖 , out of 𝑁 total, with a maximum negative penalty of

𝑃 . Recall that 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑𝑁 ∉ 𝐴 as one pipeline always executes locally

to ensure at least one output is available irrespective of the wireless

network conditions. On the flip side, when mAP𝑡ℎ is satisfied, R

evaluates to B as follows:

B =

{

𝑃, if 𝐿(𝑋 |𝑎) > 𝐿𝑡ℎ

C, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8)

which penalizes the agent by 𝑃 when its selected action 𝑎 causes the

overall execution latency for inputs𝑋 , 𝐿(𝑋 |𝑎), to exceed the critical

execution latency constraint, 𝐿𝑡ℎ . In other words, this means that

the agent is penalized when not all partial outputs are available in

time for late fusion. In reality, state-of-the-art ADS platforms are

designed to meet the application latency demands, and hence, we

set the value of 𝐿𝑡ℎ to that of local execution. Contrarily, when 𝐿𝑡ℎ
is satisfied, R finally evaluates to C given by:

C =

{

0, if 𝐸 (𝑋 |𝑎) ==𝑚𝑖𝑛(𝐸 (𝑋 |𝑎) |𝐿(𝑋 |𝑎) ≤ 𝐿𝑡ℎ)

𝑃, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

∀𝑎 ∈ 𝐴∗, 𝐴∗ ⊆ 𝐴 (9)

penalizing the agent by 𝑃 if the energy consumption footprint

𝐸 (𝑋 |𝑎) from selecting action 𝑎 is not the minimal from amongst

those of all viable actions 𝑎 ∈ 𝐴∗ that are projected to meet 𝐿𝑡ℎ .

5.2.2 Latency and Energy Estimation . In order to evaluate R for

each selected 𝑎, the end-to-end estimates for energy and latency

can be approximated every time window as follows:

𝐿 = 𝐿𝑙𝑜𝑐𝑎𝑙 + 𝐿𝑇𝑥 + 𝐿𝑠𝑒𝑟𝑣𝑒𝑟 + 𝐿𝑅𝑥 (10)

𝐸 = 𝐸𝑙𝑜𝑐𝑎𝑙 + 𝐸𝑇𝑥 + 𝐸𝑖𝑑𝑙𝑒 + 𝐸𝑅𝑥 (11)

where the latency 𝐿 can be broken down into the respective lo-

cal, transmission, server, and receiving latencies. Similarly, energy

consumption constitutes the same components except for incor-

porating idling energy as we are only concerned about the ADS

energy footprint. From here, the local components are given by:

𝐿𝑙𝑜𝑐𝑎𝑙 = 𝑁 × 𝐿M𝐸
+ (𝑁 − 𝑖) × 𝐿𝑡𝑎𝑖𝑙 | 𝑎 == 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑𝑖 (12)

in which 𝐿M𝐸
and 𝐿𝑡𝑎𝑖𝑙 are the respective latencies for executing

the encoder M𝐸 and the remaining tail parts of the model, respec-

tively. When the selected action is to offload processing from 𝑖

processing pipelines (i.e. 𝑎 == 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑𝑖 ), the total local execution

latency accounts for processing across the 𝑁 encoders and the 𝑁 −𝑖

tail models. This additive form represents the most direct approach

for modeling local execution. However in reality, the concurrency

of pipelines can speed up local execution depending on the available

hardware resources at the expense of a larger power consumption

footprint, 𝑃𝑙𝑜𝑐𝑎𝑙 . We approximate this trade-off through considering

energy for performance evaluation, defining 𝐸𝑙𝑜𝑐𝑎𝑙 as:

𝐸𝑙𝑜𝑐𝑎𝑙 = 𝐿𝑙𝑜𝑐𝑎𝑙 × 𝑃𝑙𝑜𝑐𝑎𝑙 (13)

5.2.3 Channel Estimation. To estimate the communication over-

heads, we first fit a Rayleigh distribution curve with scale 𝜎 to

throughput traces Φ collected from the real-world for different

wireless technologies, i.e., Φ ∼ Rayleigh(𝜎). Then, we use the con-

structed distribution to sample independent and identically dis-

tributed (i.i.d.) random variables as the channel capacity 𝜙 to be

used for the training and evaluation processes of the DRL agent

where data transmission parameters can be evaluated as:

𝐿𝑇𝑥 =
𝑖 × 𝑏

𝜙
| 𝑎 == 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑𝑖 ; 𝐸𝑇𝑥 = 𝐿𝑇𝑥 × 𝑃𝑇𝑥 (14)
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where 𝑏 is the transmissible data size from one sensory pipeline

while 𝑃𝑇𝑥 is the transmission power incurred by the ADS. Similarly,

the formulation for the receiving parameters, 𝐿𝑅𝑥 and 𝐸𝑅𝑥 , can be

provided given corresponding estimates for channel capacity and

data sizes in the downlink.

5.2.4 Server Queuing. Lastly, we model the server latency 𝐿𝑠𝑒𝑟𝑣𝑒𝑟
using queuing delays where we have:

𝑞𝑐 =
(1 − 𝜌) (𝜌)𝑐

1 − 𝜌�+1
(15)

representing the probability that the offloaded taskwould encounter

𝑐 other tasks before it in the server’s processing queue, with 𝜌

being the average server load, and 𝐶 being the queue size. From

here, we are able to generate a probability density function (pdf)

for values within 0-C from which we can sample queuing positions,

and consequently approximate 𝐿𝑠𝑒𝑟𝑣𝑒𝑟 .

6 EXPERIMENTS AND RESULTS

6.1 Experimental Setup

6.1.1 Dataset. Weuse the RADIATEmultimodal perception dataset

[25] for its diverse driving scenarios and adverse weather conditions

such as snow, fog, and rain. The dataset covers 8 object classes with

annotations from a Navtech CTS350-X radar, a Velodyne HDL-32e

LiDAR, and a ZED stereo camera. The variety of scenes provides

a varying degree of difficulty for ADS and enables the robustness

assessment. For instance, cameras obstructed by snow offer poor

visibility indicating higher difficulty that can cause sub-optimal

object detection performance. Here, we implemented 4 object de-

tection DNN pipelines: 2 stereo cameras, radar, and lidar. All inputs

are mapped onto the forward-facing perspective for late fusion.

6.1.2 Training and Metrics. As was mentioned in Section 4, the

original processing pipelines for each sensing modality comprise a

ResNet-18 followed by a Faster R-CNN. These models were trained

using a batch size of 1, learning rate of 0.005, and the multi-task

loss function in [23] which combines both classification and box

regression losses. For the NMS fusion, we use a fusion IoU threshold

of 0.4. We employ mAP as our evaluation metric with boxes IoU ≥

0.5 since it is widely adopted for object detection tasks [8] where

the average precision is estimated using the precision and recall

values. More details about evaluating these values are in [8, 23].

6.1.3 Hardware and Performance Evaluation. We use the industry-

grade Nvidia Drive PX2 Autochauffer as our ADS hardware. The

concurrent DNN models are compiled using the TensorRT library

becoming inference engines. The local execution power 𝑃𝑙𝑜𝑐𝑎𝑙 is

estimated as the difference in the ADS power measurements when

processing and idling. For the transmission power 𝑃𝑇𝑥 , we follow

[16] and evaluate it using the data transfer power models in [10].

6.1.4 Encoder-Decoder Structure. The input frame’s resolution for

each of the sensory pipelines is 672× 376 (≈ 740.25 kB). The encoder,

M𝐸 , comprises 3 layers (2 convolutional and 1 pooling), each with

a stride of 2 with only 3 channels at the output. Therefore, when

the outputs from M𝐸 are quantized to 8 bits for offloading [16],

the transmissible data size 𝑏 in equation 14 becomes ≈ 11.57 kB

(64× less than the input’s). The decoder M𝐷 mimics the structure

presented in [20] to have its output of the same dimensions as that

from the original second ResNet-18 block.

6.1.5 DRL Se�ings. For safety, we always execute the radar pipeline

locally [15] and define 𝐴∗
= {𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑0, 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑2, 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑3}. We

set 𝑃 = −2, 𝐶 = 4000, 𝜌 = 0.9, and mAP𝑡ℎ = 0.68 unless otherwise

stated. We set 𝐿𝑡ℎ = 68.12 based on pure local execution latency.

Table 1: Loss and mAP (%) before (orig) and after (dist) inte-

grating M𝐸 · M𝐷 across various late fusion combinations.

Sensor Loss (orig) Loss (dist) mAP (orig) mAP (dist)

2 Cameras 0.15 0.17 67.14 67.14

Radar+Lidar 0.10 0.11 67.14 67.14

Full Fusion 0.13 0.15 71.24 70.38

6.2 Object Detection and Performance

We first assess how the inclusion of ME and MD impacts the

loss and prediction accuracy of object detection. Table 1 shows the

changes in these metrics across different late fusion combinations

on the Radiate evaluation dataset. As seen, full sensor fusion has

the best performance in mAP, asserting how prediction robustness

relates to the number of fused outputs. It is also observed that the

new DNN structures maintain the same level of performance as

their original counterparts, with the highest degradation in mAP

from 71.24% to 70.38% experienced by the full fusion case, but still

offering a better score than that of the simpler sensor combinations.

Table 2: Hardware Measurements on the Nvidia Drive PX2

DNN 𝐿𝑙𝑜𝑐𝑎𝑙 (ms) 𝐸𝑙𝑜𝑐𝑎𝑙 (J) Memory (MB)

Encoder 3.78 0.03 0.025

1 pipeline 17.03 0.12 80.3

4 pipelines 68.12 0.48 321.2

DRL Agent 0.66 0.005 5.4

Table 2 displays the processing overheads for different DNN

components deployed on the PX2 hardware. The encoder ME and

DRL agent take 3.78 and 0.66 ms, respectively, emphasizing how the

decision 𝑎𝑡 is obtained before the generation of any transmissible

outputs. Moreover, the execution latency for 4 pipelines on the PX2

can add up to 68.12 ms given the same power 𝑃𝑙𝑜𝑐𝑎𝑙 .

6.3 Channel Capacity and Queuing Analysis

In this experiment, we analyze the influence of the experienced

channel capacity, 𝜙 , and queuing delay, 𝑞𝑡 , on the optimal action

choice when optimizing for energy consumption under the latency

constraint 𝐿𝑡ℎ . To elaborate, we illustrate in Figure 7 parametric

sweeps with respect to 𝜙 given 𝑞𝑡 = 15 ms. As shown, offloading

options are consistently more energy efficient than the pure lo-

cal option (offload0), but the 𝐿𝑡ℎ constraint dictates which action

should be chosen considering how poor values of 𝜙 could disqualify

some offloading choices. When 𝜙 > 4 Mbps, the latency overhead

for offload2 does not exceed 𝐿𝑡ℎ making it the optimal action until

𝜙 > 7 Mbps, at which the most energy-efficient option, offload3,

becomes valid. Similarly, this analysis is repeated in Figure 8 when

sweeping across 𝑞𝑡 given 𝜙 = 8 Mbps. Naturally, the latency over-

head is linearly proportional to 𝑞𝑡 under fixed network conditions,
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Figure 7: Variation of Latency and Energy Analysis w.r.t.
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Figure 8: Variation of Latency and Energy Analysis w.r.t.

Queuing Delay. Energy as bar charts, Latency as plot lines

demonstrating the influence of server load over the optimal offload-

ing decision. From here, the key takeaway is that based on the

wireless infrastructure and VEC server capabilities, the maximum

number of concurrent offloading pipelines that meet 𝐿𝑡ℎ can be

determined, and used accordingly to construct the decision space.

Table 3: Robustness analysis at 𝜌=0.97

Policy mAP𝑡ℎ
Average mAP (%)

𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑0 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑2 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑3
R-agnostic N/A 64.93 64.50 64.85

DRL

0.50 60.39 67.69 68.58

0.68 60.68 70.93 72.55

0.98 61.82 72.49 73.14

Oracle

0.50 49.58 85.34 85.26

0.68 50.58 93.68 93.62

0.98 54.84 99.51 99.49

6.4 Robustness Analysis

To analyze the DRLs capacity to make robust decisions, we de-

fine 2 baseline policies for comparison: (i) a robustness-agnostic

or R-agnostic policy that is aware of 𝜙 and 𝑞𝑡 to optimize for en-

ergy so long as 𝐿𝑡ℎ is satisfied, and (ii) an Oracle resembling an

optimal strategy which in addition to the information available to

the R-agnostic policy, also possesses the true per-frame mAP esti-

mate apriori, and consequently, the optimal sequence of decisions

satisfying the robustness constraint mAP𝑡ℎ . All of the mentioned

strategies are more energy-efficient than pure local execution, and

the mAP𝑡ℎ values are set in the experiments to 0.5, 0.68, and 0.98,

estimated based on the cumulative distribution of the evaluation

dataset such that 30%, 50%, and 70% of the evaluation mAP scores

fall under the corresponding thresholds.
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Figure 9: Action selection frequencies (%) breakdown across

the 3 policies at mAP𝑡ℎ=0.68 and 𝜌=0.97. Numbers next to

the bars indicate the average experienced mAP (AMAP) for

the evaluation dataset inputs mapped to each action.

To evaluate robustness across each policy, we compute the aver-

age experienced mAP per action (AMAP) given the action selection

frequencies. Mainly, a robust behavior cause frames of high uncer-

tainty (mAP ≤ mAP𝑡ℎ) to be processed locally, implying how the

AMAP experienced locally should be low compared to those from

the offloading actions. We illustrate this concept in Figure 9 across

the 3 policies for mAP𝑡ℎ = 0.68 and 𝜌 = 0.97. As seen, the R-agnostic

policy only considers performance efficiency for its action selection,

and subsequently, its AMAP across offload0, offload2, and offload3,

are equivalent with values of 64.39%, 65.01%, and 65.25%, respec-

tively. Conversely, the 𝑂𝑟𝑎𝑐𝑙𝑒 resembles the ideal embodiment of

robustness, assigning high uncertainty frames to offload0, despite

performance gains from offloading. In contrast to the R-agnostic

policy, 66.94% of the Oracle policy decisions are offload0 with an

AMAP of 50.58%, and an AMAP as high as 93.68% for the remaining

offloading decisions. From here, our proposed DRL approach strives

to learn theOracle’s behavior, through the observed action selection

breakdown, with 63.65% of actions belonging to offload0. Moreover,

the AMAP for offload2 and offload3 are 70.93% and 72.55%, respec-

tively, which despite outperforming the R-agnostic policy, are far

from that of the Oracle. This is expected considering the Oracle

policy is the unrealistic ideal behavior with apriori mAP knowledge.

We extend this analysis to other thresholds values in Table 3, where

we observe that as the robustness constraint becomes smaller, the

DRL exhibits a behavior closer to the R-agnostic and farther from

the Oracle and vice versa, indicating the DRL’s capacity to adapt to

various robustness requirements.

Table 4: Action frequency analysis at mAP𝑡ℎ = 0.68

Policy 𝜌
Action Frequency (%)

𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑0 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑2 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑3

R-agnostic

0.90 11.17 14.73 74.10

0.97 37.18 17.17 45.65

0.99 70.34 9.25 20.41

DRL

0.90 51.73 8.83 39.44

0.97 63.65 10.95 25.39

0.99 85.14 5.46 9.4

Oracle

0.90 53.19 8.00 38.82

0.97 66.94 9.17 23.89

0.99 84.37 5.04 10.60

Furthermore, we vary the server load 𝜌 in Table 4 and show

how the action frequency varies for each policy. As 𝜌 increases,

the selection of local processing becomes more frequent across all
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Figure 10: Comparing Energy and Risky Actions

policies, irrespective of the energy or robustness due to the 𝐿𝑡ℎ
constraint. Such behavior is learned by our𝐷$𝐿 solution given how

the action selection frequencies closely imitate that of the 𝑂𝑟𝑎𝑐𝑙𝑒 .

Table 5: Energy analysis relative to local at mAP𝑡ℎ = 0.98

Metric Local R-agnostic DRL Oracle

Risky Actions (%) 0 63.37 14.54 0

Robust Actions (%) 100 36.63 85.46 100

Total Energy (kJ) 2.916 1.729 2.479 2.487

Total Energy Red. (%) 0 40.7 14.99 14.72

6.5 Energy Reduction vs Risky Actions

We also compare the energy savings relative to the pure local exe-

cution, offload0, in addition to their risky behaviors. We first define

Risky Actions as the fraction of offloading actions whose respective

mAP scores fall below mAP𝑡ℎ , and Robust Actions as the fraction

whose scores exceed the mAP𝑡ℎ . We compare the performance of

each policy in Table 5, where although R-agnostic offers the highest

energy reduction of 40.7% compared to DRL’s 14.99%, 63.37% of

R-agnostic’s energy savings are Risky Actions, unlike DRL whose

Risky Actions constitute 14.54% of the offloading decisions. Through

extending this analysis further to entail multiple mAP𝑡ℎ values, i.e.,

a higher threshold means a stricter offloading constraint, we ob-

serve in Figure 10 that the robustness-aware DRL at higher mAP𝑡ℎ
substantially reduces the percentage of risky offloads compared

to the R-agnostic policy, with reductions of 24.50% and 77.06%, at

mAP𝑡ℎ = 0.50 and mAP𝑡ℎ = 0.98 respectively.

7 CONCLUSION

In this work, we presented Romanus, a methodology for robust

and efficient task offloading for multi-sensor autonomous driving

systems (ADS). We first showed how to integrate optimal offloading

points along the processing pipelines in a multi-sensor object detec-

tion module with late fusion, and then implemented a DRL-based

runtime offloading that achieves 14.99% energy efficiency over pure

local execution with up to 77.06% decrease in risky offloading ac-

tions from a robust-agnostic solution. This methodology can be

generalized to a variety of sensors and fusion strategies depending

on the underlying system structure and how robustness is charac-

terized with regards to the application’s primary task, which would

form the basis for future research works along this direction.
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