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ABSTRACT

Autonomous vehicles use multiple sensors, large deep-learning
models, and powerful hardware platforms to perceive the environ-
ment and navigate safely. In many contexts, some sensing modal-
ities negatively impact perception while increasing energy con-
sumption. We propose ECOFUSION: an energy-aware sensor fusion
approach that uses context to adapt the fusion method and reduce
energy consumption without affecting perception performance.
EcoFusion performs up to 9.5% better at object detection than ex-
isting fusion methods with approximately 60% less energy and 58%
lower latency on the industry-standard Nvidia Drive PX2 hardware
platform. We also propose several context-identification strategies,
implement a joint optimization between energy and performance,
and present scenario-specific results.

1 INTRODUCTION

Autonomous vehicles (AVs) are expected to improve mobility and
road safety dramatically. However, these benefits come with ris-
ing energy costs [6]. AVs require large deep-learning (DL) models
to perceive the environment and safely detect and avoid objects.
The computational demands of these models significantly increase
the hardware requirements of AVs, such that modern AV electri-
cal/electronic (E/E) systems can require between several hundred
watts (W) to over 1 kW of power. For example, the Nvidia Drive
PX2, used for Tesla Autopilot from 2016-2018, has a Thermal De-
sign Power (TDP) of 250 W [11], and modern successors have TDPs
ranging from 500 W to 800 W [1]. These power demands can also
increase the thermal demands on the vehicle’s climate-control sys-
tem. When combined, these demands can reduce vehicle range
by over 11.5% [14]. This impact is especially limiting for electric
vehicles due to their limited battery range and long recharge times
[26]. Furthermore, many other autonomous systems, including ro-
botics, unmanned aerial vehicles, and sensor networks, operate in
energy-constrained environments [5, 9, 21].

Recent works have attempted to address the energy demands of
AV systems with application-specific hardware design, model prun-
ing, and edge-cloud architectures [2, 3, 14, 16, 20]. These methods
have specific downsides as they require expensive hardware mod-
ifications, extensive domain knowledge, and consistent network
connectivity, respectively. Alternatively, efficient sensor-fusion ap-
proaches attempt to combine multiple sensing modalities to achieve
good perception performance with less energy than conventional
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Figure 1: Performance and energy comparison for various AV
perception sensor fusion methods in city and rainy driving.

fusion [3, 9, 12]. However, these approaches are also limited be-
cause they use statically designed fusion algorithms (e.g., early or
late fusion) that can lack robustness in difficult driving scenes [15].
Figure 1 illustrates the trade-off between performance and energy
between different sensor fusion methods for two contexts: city and
rain. None refers to using a single sensor with no fusion, early fu-
sion combines raw sensor data before processing, and late fusion
processes each sensor separately before fusing the final outputs. As
shown, no fusion consumes the least energy but also performs the
worst, late fusion performs much better but uses almost 3x more
energy, and early fusion is energy efficient but performs poorly in
difficult driving scenarios.

In summary, our key research challenges include: (i) perceiving
the environment accurately in difficult contexts, (ii) reducing the
energy consumption of AV perception systems, and (iii) adapting
the perception model to the current context to minimize energy
consumption without compromising perception performance. We
propose EcoFusION: an energy-aware sensor fusion approach that
uses context to dynamically switch between different sensor com-
binations and fusion locations. Our approach can reduce energy
consumption without degrading perception performance in com-
parison to both early and late fusion methods. As shown in Figure 1,
our approach (shown in gold) achieves higher performance than
other fusion methods while significantly reducing energy consump-
tion. The key contributions of this paper are as follows:

(1) We propose an energy-aware sensor fusion approach that
uses context to adapt the fusion method and reduce energy
consumption without affecting perception performance.

(2) We propose novel gating strategies that can identify the con-
text and use it to dynamically adjust the model architecture
as part of a joint optimization between energy consumption
and model performance.

(3) We benchmark the hardware performance of our approach
on the industry-standard Nvidia Drive PX2 autonomous
driving platform.
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(4) We present an in-depth analysis of the performance of each
sensing modality in a range of difficult driving contexts.

2 RELATED WORK

In past years, research on energy-efficient AVs has focused mainly
on reducing the energy needs for locomotion and actuation. How-
ever, due to the rise in DL perception algorithms and the com-
putational requirements of modern AVs, minimizing the energy
consumption of AV E/E systems is becoming a core problem [4, 6].
Authors in [3] focus on improving computational efficiency through
algorithmic changes for a camera-lidar AV platform while using
knowledge-based network pruning in their DL model. Selectively
fusing sensors, as done in [7], also has potential benefits to save
computational energy on AVs. Distinct from these methods, our
approach utilizes the context of the environment to enable further
energy optimization for AVs. Studies have demonstrated the value
of context identification, such as in [12], where authors propose
altering the power levels and operating state of an AV lidar sensor
depending on the environmental factors, such as the vehicle’s speed,
to improve perception efficiency. Likewise, [9] proposes adjusting
the sensing frequency for indoor robot localization according to
environmental dynamics. However, these approaches are limited as
they rely on statically designed context-based rules, whereas our
approach employs a self-adaptive design to learn the context of the
environment dynamically.

Trade-offs between the energy and performance of deep neural
networks (DNNG), like those used in AV perception, have also been
studied. [17] improves the computational efficiency of DNNs for
classification by using component-specialization during training
and component-selection during inference. [27] presents a structure
simplification procedure that removes redundant neurons within
DNNeS. [25] performs incremental training with DNNs to consider
energy-accuracy trade-offs at run-time. Unlike our approach, these
works are only applied to classification using a single input modality
and do not incorporate context. Additionally, we tackle the complex,
cross-domain problem of AV energy optimization with our dynamic
sensor fusion architecture, and present experiments involving real
AV hardware.

3 PROBLEM FORMULATION

Here we detail the formulation for AV object detection and the joint
energy-performance optimization implemented in our work.

3.1 Sensor Fusion for Object Detection

For each input sample, the goal of an object detector ¢ is to utilize
the set of sensor measurements in the sample, X, to accurately
detect the objects in the scene, Y:

Y = ¢(X), where Y = {Y}

class Yreghi=1...d (1)
where d is the number of objects in the sample. ¢ can be imple-
mented via conventional sensor fusion techniques, an ML/DL model,
or an ensemble of ML/DL models. The targets for object i in the
sample are defined as follows:

chlass € {c1,c2,¢3,... } Y;"eg =

@)

where Yi lass represents the class of the object (e.g., c1: car, ca: truck,

[p1, v1, piz, v2] € R

c3: pedestrian) from a set of defined object classes, and Yieg repre-

sents the 2D bounding box coordinates of the object in reference to
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the coordinate frame of the sample. We denote the model’s estimate
of Y as Y. Since X represents data from multiple heterogeneous
sensing modalities, sensor fusion can be used to fuse the data to
provide a better estimate of Y. In early fusion, the raw sensor in-
puts are fused before being passed through the object detector as
follows:

V= g(y(X1. Xa,... Xs)) (3)
where i/ represents the function for fusing the different inputs. In
contrast, late fusion, involves fusing the outputs of an ensemble of
sensor-specific object detectors as follows:

Y1 Yo, o Y = ¢1(X1), da(Xa), .., ds(Xs)

5 Ys)

4)

Y =¢(¥1, Y. )

3.2 Energy Modeling

In this work, we aim to jointly optimize the energy consumption
and performance of the perception system of an AV. To enable
this optimization, we use real-world measurements from three
different sensors to model the energy consumption of various object
detectors ¢ on the industry-standard Nvidia Drive PX2 autonomous
driving hardware platform, depicted in Figure 2. For a given object
detector implementation ¢ and fixed-size input X, we model energy
consumption E as follows:

E(¢,X) = P(¢,X) * (¢, X) (6)

where t(¢§, X) represents the processing latency in seconds, and
P(¢, X) represents the hardware power consumption in Watts of
running input X through ¢ as measured on the hardware. We
measured the PX2’s average power consumption under load as
45.4 Watts. Assuming X has a fixed size, we calculate E(¢) for all
¢ € @ offline. Next, we use this energy calculation within a joint
optimization framework.

Perception System
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Figure 2: Sensor diagram [22] with our Nvidia Drive PX2.

3.3 Joint Energy-Performance Optimization

We formulate our optimization as a joint minimization problem
between energy consumption and model loss. We denote the list
of all object detector configurations as ®. For each configuration
¢ in @, we use a model to predict the loss after the outputs of ¢
are fused via late fusion, denoted L¢(#). The loss is defined as the
combined regression and classification loss (using smooth L1 loss
and cross-entropy loss, respectively) between the ground-truth Y
and the Y predicted by the model as defined in [19]. Then, the
minimum fusion loss configuration ¢’ is identified. We also define
the function p, which determines the set of ¢s that have a fusion
loss within y of ¢’. This set ®* is defined as follows:

O = p(Ly(®),y) = {§ € Dt Lp(g) ~Lp(@) < Ly(d)+y} ()
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where y is the maximum allowable difference in loss between any
¢ and ¢’ in order for ¢ to be included in ®*. y can be defined
based on the problem and represents the maximum deviation in
performance from the best performing configuration ¢’ that is
allowed to enable the exploration of more efficient configurations. In
some cases, maximum performance may not be necessary, so energy
can be saved by increasing y. Otherwise, if maximum performance
is desired, then y can be set to 0, so only ¢’ is in ®*.

Given that E(¢) is known, we have the following joint loss func-
tion for each ¢ in ®*:

Ljoint (¢, Ap) = (1= Ag) * Ly (§) + A * E() )
where L(¢) and E(¢) represent the predicted fusion loss and energy
consumption, respectively, of ¢; and Ag € [0.0 - 1.0] is the weight-
ing factor that weights the importance of energy consumption vs.
performance in the joint optimization. Next, we select ¢*, a con-
figuration in ®* which lies on the Pareto frontier of the following
minimization:

¢* = argmin(Ljoint (9, 1)) ©)
Ve ed*
After ¢* is identified, it is executed to produce the final set of
detections Y.

4 ECOFUSION METHODOLOGY
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Figure 3: Our proposed EcoFusion framework.

We propose ECOFUSION, a novel adaptive sensor fusion approach
that jointly optimizes performance and energy consumption by
identifying the context of an environment before subsequently
adapting the model and fusion architecture. Our model can: (i)
adapt between using no fusion, early fusion, and late fusion, (ii)
select from one or more radar, lidar, or camera sensor inputs, and
(iii) execute different types of fusion simultaneously depending on
what it determines is the best execution path to minimize loss and
energy consumption in the current context jointly.

The workflow for our approach is shown in Figure 3 and is
detailed in Algorithm 1. First, sensor measurements are passed
through modality-specific stem models, which produce an initial
set of features F for each sensor. Next, the gate model uses F and
the set of possible model configurations ® to estimate the loss of
each possible configuration for the given inputs. After selecting the
candidates for optimization using y, we pass these candidates ®*,
their known energy consumption E, and their estimated losses Ly
to produce Ljoin; for the optimization function. Then, the ¢ with
the lowest Ljoins, denoted ¢, is selected to execute as is done in
Equation 9. Since each ¢ represents an ensemble of one or more
object detectors, denoted as branches, we run each branch in ¢*
with its expected inputs and collect the results ¥*. These are then
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fused using our late fusion block, producing a final set of detections
Y. The following subsections elaborate on the different components
in our approach.

Algorithm 1: EcoFusion Algorithm
Input: X, Ag, @, y, E(®)
Output: Object Detections ¥
1 Initialize feature vector F and branch output vector Y*.

2 for s in sensors do
3 | F[s] « stem(s) // extract features by modality
a4 Lp(®) « gate(F, )
5 @ — p(Lp(D).y)
¢ for ¢ in®* do

7 | Ljoint (¢, AE) « (1= Ap) * Lp($) + Ap + E($)
8 ¢ — argminv(ﬁe@* (Ljoint (¢, AE))
9 for branch in ¢* do

L Y*[branch] « branch(F*)

11 Y «— fusion_block(Y*)

// estimate model losses
// select candidates

// joint opt.

10 // pass subset of F

// fuse branch detections

4.1 Stem Model

The stem models are implemented as a small set of CNN layers that
produce an initial set of features for each input modality. The stems
are modality-specific, so there is one stem for each type of sensor
used. The collection of features F output by the stems is collectively
passed to the gate model to identify the context and select the set
of branches to execute. Then, F is input to the selected branches.

4.2 Context-Aware Gating Model

We implement several gating strategies to estimate the fusion losses
of each sensor configuration and facilitate the selection of ¢*. The
goal of each gating model is to (i) identify the context based on
the input features, (ii) estimate the performance of each model
configuration in the context, and (iii) compute the optimization
result and use it to select ¢*. Next, we detail the different methods
we implemented for performing steps (i) and (ii).

4.2.1 Knowledge Gating. Our Knowledge Gating approach uses
domain knowledge on the performance of each modality in differ-
ent driving conditions to statically decide the best configuration for
each rigidly-defined driving context (e.g., rain, snow, city, motor-
way). This gating approach assumes the context can be identified
from external sources, such as weather information, GPS location,
and time of day. Also, it assumes that the set of possible contexts is
finite, which may limit scalability.

4.2.2 Deep Gating. This approach uses a deep-learning model with
three CNN layers and one MLP layer to predict the loss for each
model configuration for a given set of inputs. Then, the optimization
function is run on these outputs.

4.2.3 Attention Gating. This approach is identical to the Deep
Gating model, except for the addition of a self-attention layer to
enable the gate to identify important areas of the input feature map.

4.2.4 Loss-Based Gating. In this strategy, the a posteriori ground-
truth loss from each configuration for a given input is used to select
¢*. Thus, this implementation is not deployable in the real world but



DAC 22, July 10-14, 2022, San Francisco, CA, USA

represents the theoretical best-case performance for a gate model
that can perfectly predict the fusion loss of every configuration for
every input.

4.3 Branch Models

The branches in the model take the form of various object detectors.
Each branch performs object detection by implementing a Faster
R-CNN [19] object detector containing a ResNet-18 CNN model
[10] to extract features from input images and a Region Proposal
Network (RPN) to propose object locations across the feature map.
The RPN proposals are then fed through a region-of-interest layer
that predicts Ycilass’ Yrieg for each box i, as well as the confidence
scores for the predicted boxes. We split each ResNet-18 model after
the first convolution block, such that the first block becomes the
stem, and the remaining three convolution blocks are used in each
branch. Each branch can be configured to process either a single
sensor or a set of sensors. In this work, we implement one branch
for each input sensor and three early fusion branches that fuse both
homogeneous and heterogeneous sets of sensors. Using the gate to
select the branches, our model can dynamically choose between no
fusion, early fusion, late fusion, and combinations of the three.

4.4 Fusion Block

The fusion block is implemented via a typical late-fusion algorithm.
The detections from any number of branches are first converted to
a uniform coordinate system before being statistically processed
and fused using the weighted box fusion method from [23]. This
process helps refine the accuracy of the bounding box predictions
by reinforcing predictions with high confidence and overlap with
other predictions.

5 EXPERIMENTS

In our experiments, we used the RADIATE [22] dataset, which pro-
vides annotated real-world object detection data from an AV with
the following sensors: a Navtech CTS350-X radar, a Velodyne HDL-
32e lidar, and a ZED stereo camera. The following classes of objects
are annotated in the dataset: {car, van, truck, bus, motorbike, bicycle,
pedestrian, group of pedestrians}. The dataset consists of various
difficult driving contexts (e.g., rain, fog, snow, city, motorway) that
are challenging for typical object detectors. In ECOFUSION, we use
a 70:30 train-test split across the dataset and train our model with
all of the stems and branches enabled using supervised learning.
Next, we take the trained stem and branch outputs and use them
to separately train the gate model to select the branches that pro-
duce the lowest loss for a given stem output (F). We evaluate each
model’s performance at object detection using average loss and
mean average precision (mAP), which is widely used for bench-
marking object detection models [8, 19]. We compute the mAP for
bounding boxes with an intersection-over-union (IoU) > 0.5, align-
ing with the PASCAL Visual Object Classes (VOC) Challenge [8].
We calculated the energy consumption of each model configuration
¢ € @ on the Nvidia Drive PX2 shown in Figure 2. We ignore the
energy consumed by the gate models as we measured that they
have negligible energy consumption (< 0.005 J) compared to the
stems and branches of the model after TensorRT compilation. In all
of our experiments, we set y = 0.5 as we experimentally determined
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that it ensures performance at least as good as early and late fusion
while enabling energy optimization. However, we note that y can
be tuned based on the requirements for a given application.

Ae
0.2 0.4 0.6 0.8
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Figure 4: Analysis of the energy-loss trade-off of EcoFusioN’s
optimization function with gating models and Af values.

5.1 Joint Optimization Analysis

We evaluated the trade-off between the performance (model loss)
and energy consumption (in Joules) for each gating model in Fig-
ure 4. We varied Ag between 0-1.0, where each point in the chart is
color-coded according to its Ag value. As shown, tuning Ag higher
or lower skews the model towards either increasing energy effi-
ciency or increasing performance, respectively, so Ag should be
chosen depending on the requirements for a given application. The
configuration for Loss-Based that best minimizes both objectives
is Ag = 0.5 with a loss of 0.966 and energy consumption of 0.844 J.
Attention and Deep have similar Pareto frontiers, but Attention
achieves better solutions for higher Ag values while Deep achieves
slightly lower loss with some low Ag values. The gap between At-
tention/Deep and Loss-Based is likely due to modeling limitations
and could potentially be closed using larger or more advanced gate
models. For Attention, Ap = 1 (most energy efficient) results in a loss
of 1.317 and an energy consumption of 0.945 J, while Ag = 0 (best
performing) results in a loss of 0.9153 and an energy consumption
of 3.566 J. As shown by the nearly flat trend on the right side of the
plot, Deep and Attention can reduce energy significantly with little
effect on loss by tuning Ag. Knowledge is statically programmed
such that, for each scenario type, we use domain knowledge to
manually select the best sensor combination to use. Due to these
constraints, Knowledge can be less efficient in some scenarios and
is not tunable with our optimization.

5.2 Energy and Performance Evaluation

Our results for energy consumption and performance evaluation
are shown in Table 1. In all of our experiments, early fusion takes in
both cameras and lidar as input, while late fusion uses both cameras,
lidar, and radar. The energy consumption and latency increase as
the fusion method is varied from none to early to late, which is as
expected as the latter methods require increasingly larger detection
pipelines. The single-sensors are the most efficient, but their mAP
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scores vary widely from 67% to 79%, likely due to inconsistent
performance across scenarios. Early fusion is faster, more efficient,
and achieves a higher mAP score and than late fusion; however,
early fusion is insufficiently robust in poor driving conditions as
will be discussed in Section 5.4. EcoFusioN with Ag = 0.01 achieves
higher mAP than all other methods with less energy than late fusion.
With Ag = 0.05, EcoFusiIon still outperforms early fusion with less
energy usage. As stated in [14], an AV must be able to process inputs
at least once every 100 ms (10 frames per second) to ensure safety.
In addition to meeting this latency requirement, EcoFusion also
executes faster than both early and late fusion, which can improve
safety and responsiveness by enabling the AV to process inputs
more frequently. With Ag = 0.01, EcoFusion achieves a mAP score
5.1% and 9.5% higher than early and late fusion, respectively, with
60% less energy and 58% lower latency than late fusion.

Fusion Configuration mAP Energy Latency
Type (%) 4) (ms)
L. Camera (Cy)  74.48%  0.945 21.57
None R. Camera (CR)  79.00%  0.945 21.57
Radar (R) 67.74%  0.954 21.85
Lidar (L) 70.45%  0.954 21.85
Early CrL+Cr+L 80.26%  1.379 31.36
Late CL+Cr+L+R 77.98%  3.798 84.32
AE=0 82.92% 3.566 81.49
EcoFusion
Ag =0.01 84.32% 1.533 35.14
(Ours) Ag = 0.05 82.16% 1110  25.43

Table 1: Energy Consumption and Performance Evaluation

5.3 Gating Method Evaluation

Table 2 shows mAP, loss, and energy results from evaluating our
gating strategies at different Ag values. With A = 0, the models
tend to pick better-performing branches regardless of their energy
consumption. As Ag increases, the joint optimization significantly
reduces energy consumption while keeping loss within y of the
lowest-loss configuration. Although Knowledge achieves decent
mAP scores, it lacks tunability and thus achieves the same loss
and energy consumption for all Ag; the encoded knowledge would
need to be manually updated to adjust the trade-off. Loss-Based
achieves the lowest loss and energy consumption but a lower mAP
than Deep and Attention. This result is likely because loss is not
perfectly correlated with mAP score; mAP primarily scores object
classification over properly aligned bounding boxes, while loss is
measured across both classification and box regression. Overall,
Attention performs slightly better than Deep and offers the best
trade-off of performance and energy.

5.4 Scenario-Specific Evaluation

Figure 5 shows loss and energy results for different driving scenar-
ios in the dataset. We evaluated no fusion (radar-only), early fusion,
late fusion, and EcoFusioN with Attention Gating. As shown in
the figure, EcoFusioN performs similarly to late fusion in terms
of loss across all scenarios. It is also clear that early fusion per-
forms poorly in the difficult driving conditions present in the Fog
and Snow scenarios. Late fusion is more robust and achieves rela-
tively good performance across scenes; however, late fusion also
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A Gating Method mAP (%) Avg.Loss Energy (J)
0 Knowledge 82.43% 1.519 2.021
0 Deep 82.68% 0.915 3.556
0 Attention 82.92% 0.915 3.566
0 Loss-Based ~ 8250% 0808 1719
0.01 Knowledge 82.43% 1.519 2.021
0.01 Deep 83.72% 1.124 1.457
0.01 Attention 84.32% 1.089 1.533
001  Loss-Based ~ 81.65% 0809 1280
0.1 Knowledge 82.43% 1.519 2.021
0.1 Deep 81.98% 1.432 1.008
0.1 Attention 79.72% 1.280 0.960
01  Loss-Based ~ 79.70% 0818  1.044

Table 2: Gating method evaluation.

consumes significantly more energy than all other methods. In
contrast, ECOFUSION’s energy efficiency is on-par with early fusion
and is significantly lower than that of late fusion. No fusion was
the most energy-efficient but also had the highest overall loss.

5.5 Discussion

5.5.1 Practicality. Since we evaluated our approach with the industry-
standard Nvidia Drive PX2 autonomous driving platform, it is clear
that our approach can save energy on real-world AV hardware while
meeting real-time latency constraints. Furthermore, by achieving
better object detection performance with lower latency, our ap-
proach improves safety and robustness over existing methods. Our
evaluation on a diverse driving dataset proves that our approach is
robust across scenarios and is thus more practical for real-world
driving. To implement EcoFusION on a real driving system, the de-
signer would first need to train the model on the appropriate dataset
before selecting the best Ag and y for their design requirements.
Then, the model can be compiled for hardware using TensorRT or
a similar library and integrated into the AV stack.

5.5.2  Sensor Clock Gating. More energy could be saved by dis-
abling unused sensors using clock gating. The Navtech CTS350-X
radar uses 24 W [18], the Velodyne HDL-32E lidar uses 12 W [13]
and the ZED camera uses 1.9 W [24], so reducing sensor energy
usage can significantly improve AV efficiency. Temporal model-
ing can enable the context to be estimated across time instead of
for a single input, allowing clock gating for specific periods. In
Table 3, we analyze the benefits of sensor clock gating with our
Knowledge Gating approach in each driving scenario since it uses
external context to inform sensor selection. We also show baseline
results with late fusion across the four sensors. Using the power
consumption P and measurement frequency f of each sensor s,
we estimate the energy that could be saved by stopping measure-
ments without slowing the motor’s rotation. We cannot completely
power gate the rotating lidar and radar sensors because they have
inertia and require several seconds to get back up to speed from
a stand-still, which can compromise safety. We model the energy
consumption Es of each sensor and the total energy consumption
Etotal as follows:

Es — (Psmeas. +Psmot0r) % 1/fs) Psmeas. — Ps _Psmotor

Etotal = E(§) + Z Es
s€EP

(10)
(11)
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Figure 5: Average loss and energy consumption per scenario for each fusion method. Junction and Motorway are abbreviated as
Jct. and Mwy., respectively. EcoFusioN achieves low loss across scenes with 43.7% lower energy consumption than late fusion.

Avg. Energy Consumption (J) by Scene Type

Fusion Method City Fog Fet. Mwy.  Night Rain  Rural  Snow  Overall
Late Fusion 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27
EcoFusion (Ours) 5.45 13.96 12.10 13.29 3.81 13.96 6.45
EcoFusioN Energy Savings | 58.91% -5.15% - 8.81% -0.09% | 71.28% | -5.15% 51.41%

Table 3: Combined sensor and AV hardware platform energy consumption in each driving scenario.

where ¢ is the model configuration defined for the context. After
our calculation, we set P45 = 0 to simulate clock gating of the
sensor. The Navtech CTS350-X consumes 2.4 W to spin the motor,
so its P™€45- = 21.6 W. Based on comparable lidar motor models,
we estimate the Velodyne HDL-32E’s P™¢4S- = 9.6 W. As shown in
Table 3, EcoFusioN would use up to 78.40% less energy than late
fusion in common driving scenarios. Our approach uses slightly
more energy than late fusion in more difficult driving scenarios, but
these scenarios are rare, so overall energy consumption is still lower.
On average, clock gating unused sensors with ECOFUSION uses
51.41% less energy than running all sensors with late fusion and
43.90% less energy than EcoFusioN without sensor clock gating.

6 CONCLUSION

This paper introduces EcoFusioN — a novel adaptive sensor fusion
approach that uses contextual information to adapt its architecture
and jointly optimize performance and energy consumption. We
show that EcoFusION outperforms early and late fusion in terms
of mAP (84.32% vs. 80.26% and 77.98%), with similar energy con-
sumption and latency to early fusion. We also demonstrate that
in difficult driving contexts, ECOFUSION is more robust than early
fusion (up to 85.6% lower loss) and more efficient than late fusion
(60% less energy). We additionally propose and evaluate multiple
gating strategies and find that a learned strategy outperforms a
knowledge-based strategy. Overall, we show that an energy-aware
adaptive sensor fusion approach can significantly improve the en-
ergy efficiency and perception performance of AVs.
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