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Abstract—Detecting human stress levels and emotional states
with physiological body-worn sensors is a complex task, but
one with many health-related benefits. Robustness to sensor
measurement noise and energy efficiency of low-power devices
remain key challenges in stress detection. We propose SELF-
CARE, a fully wrist-based method for stress detection that
employs context-aware selective sensor fusion that dynamically
adapts based on data from the sensors. Our method uses motion
to determine the context of the system and learns to adjust
the fused sensors accordingly, improving performance while
maintaining energy efficiency. SELF-CARE obtains state-of-the-
art performance across the publicly available WESAD dataset,
achieving 86.34% and 94.12% accuracy for the 3-class and 2-class
classification problems, respectively. Evaluation on real hardware
shows that our approach achieves up to 2.2× (3-class) and 2.7×
(2-class) energy efficiency compared to traditional sensor fusion.

Index Terms—Stress detection, edge computing, energy effi-
ciency, sensor fusion

I. INTRODUCTION

The future of smart healthcare requires dependable sensor

systems that can operate at increased levels of autonomy

under energy constraints while providing valuable health-

related information. One area gaining significant attention is

affective computing, or the ability for machines to understand

human emotional states. Stress detection is one example of

affective computing that allows machines to detect stress

levels within humans, which has a myriad of implications

for healthcare science [1]. Stress can be interpreted as a

physiological state that is triggered by chemical or hormonal

surges during moments of physical, cognitive, emotional, or

acute challenges [2].

Stress detection via physiological sensor data has been

widely studied [3]–[6]. Physics-based models cannot relate

this sensor data to explicit stress states, so classical machine

learning models (random forests, decision trees, etc.) or deep

learning models (convolutional neural networks, long short-

term memory, etc.) are often used to perform stress classifica-

tion as the models learn over labeled datasets [7]–[10]. How-

ever, classical machine learning models are more commonly

used than deep learning approaches due to computational

complexity and explainability [11], [12].

Methods using sensor fusion across multi-modal physiolog-

ical data have been commonly used to increase performance

∗Both authors contributed equally to this research.

of emotion recognition [12]. Early, or feature-level, fusion

focuses on combining data at the raw-data level compared to

late, or decision-level, fusion that combines the final outputs of

a system. Even methods that employ both early and late fusion

are noticeably limited, since they have static architectures

that cannot adapt to changing contexts [13]. Another key

challenge in using these physiological signals is that they are

susceptible to large amounts of noise during physical motion.

Fusing such noisy measurements can subsequently degrade the

classification performance [11]. Lastly, there is a lack of focus

in stress detection to evaluate feasibility for edge (on-device)

computing [14] as solutions should be energy-efficient and

capable of running on resource-constrained devices [15].

Key research challenges arise from the current methods

for stress detection, notably: (i) how to develop an adaptive

architecture that alters the fusion schema depending on the

current context; (ii) how to utilize measurements from the

motion sensors to model the context; (iii) how to achieve

comparable results to higher fidelity chest-worn devices while

using more energy-efficient wrist wearable sensors; and (iv)

how to incorporate temporal aspects into the stress classifica-

tion problem that can further improve accuracy.

To address these challenges, we propose SELF-CARE, a

fully wrist-based solution that models context as a function of

motion and proposes a selective sensor fusion that adapts based

on this learned context. SELF-CARE outperforms existing

solutions for stress detection, while also providing energy

efficiency suitable for edge computing on the wrist. We present

the following key contributions:

1) We introduce a selective sensor fusion method that

learns context based on motion, and dynamically adjusts

the sensor fusion performed to maximize classification

performance while ensuring energy efficiency.

2) We propose a late fusion technique for classification us-

ing a Kalman filter that incorporates temporal dynamics.

3) We validate our methodology on the WESAD dataset,

showing that SELF-CARE achieves state-of-the-art per-

formance for the 3-class and 2-class stress detection

problems while using only wrist-worn sensors.

4) Experimental evaluation on real hardware shows that

our SELF-CARE methodology is feasible for on-device,

energy-efficient computing.
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Fig. 1. Proposed SELF-CARE Architecture. In this depiction four types of
wrist-worn sensors are used, the gating model selects two branches given
the context, a Random Forest classifier is used for the branch models, and a
Kalman filter is used for the late fusion over the two selected branches.

II. METHODOLOGY

In this section we detail SELF-CARE, depicted in Fig.

1. Our proposed method performs stress classification given

sensor measurements from four wrist sensing modalities: tri-

axis accelerometer (ACC), blood volume pulse (BVP), elec-

trodermal activity (EDA), skin temperature (TEMP). SELF-

CARE uses the four main blocks: (i) preprocessing, (ii) context

identification, (iii) branch classifiers, and (iv) late fusion.

A. Preprocessing Step

SELF-CARE takes in as inputs data from any number of

heterogeneous physiological sensors. Preprocessing is used

over the raw, unfiltered sensor data by applying various filters

(e.g., band-pass filters or lowpass filters) to the input data

to reduce sensor noises and more easily extract important

features. The preprocessing performed over each sensing

modality follows that performed in [9].

B. Context Identification

1) Feature Extraction: The purpose of the context iden-

tification block is to select the branch classifier(s) based on

the context of the motion. It first extracts only ACC features

as they are directly related to the relative motion of the test

subject. These features are then processed by the gating model

to select the best performing branch. The feature extraction of

the three other modalities takes place after the gating model

has selected which branch(es) will be executed. We refer

readers to [6] for the full list of features per sensor.

2) Gating Model (π): The gating model trains a classifier

that uses the ACC features as inputs to select one of the

available branch classifiers for branches B1={BVP, EDA,

TEMP}; B2={ACC, BVP, EDA}; B3={BVP, EDA}. A Deci-

sion Tree (DT) classifier is used for our gating model, as it is

lightweight and adds minimum overhead for our architecture.

Note that, for each round of leave-one-subject-out (LOSO)

validation, only training data is used to generate gating labels.

Additionally, one, two or all the final classifiers may be

selected for final classification depending on the value of δ,

detailed next.

3) Performance-Energy Trade-off (δ): An important feature

of SELF-CARE is its ability to balance constraints between

performance and energy. We introduce the term δ that aids the

gating decision in considering this trade-off. The gating model

outputs prediction probabilities for the available branches

with b̄ representing the maximum probability branch. δ has a

range between 0 and 1, representing the range in which non-

maximum branches are selected by allowing branches with

probabilities greater than b̄ − δ to be also selected. Lower

δ values indicate tighter energy constraints, with δ = 0
indicating that only the highest probability branch from the

gating classifier is selected, while higher δ values allow more

branches to be selected, with δ = 1 indicating that all possible

branches are selected. For our 3-class (2-class) classification

problem we set δ = 0.4 (δ = 0.1).

4) Early Fusion (ψ): Once the branches are selected after

applying δ on the gating model decision, the features for

those branches will be extracted and concatenated together

to be passed to the corresponding classifiers (branches). In the

example in Fig. 1, B1 and B3 are the selected branches from

the gating model. The features from BVP, EDA, and TEMP

signals are concatenated together using early fusion and fed

to the branch classifier for B1, with B3 operating in similar

fashion for its sensor modalities.

C. Branch Classifiers

Next, the corresponding branch classifier(s) is (are) used to

perform classification of the segment. To train the individual

branch classifiers within SELF-CARE we train using different

combinations of input sensor data. For our analysis, we use five

different early fusion combinations of wrist sensors as input

branches - B1={BVP, EDA, TEMP}; B2={ACC, BVP, EDA};

B3={BVP, EDA}; B4={ACC, BVP}; B5={ACC, EDA}. Each

branch is evaluated on five different machine learning clas-

sifiers — Decision Tree (DT), Random Forest (RF), Ad-

aBoost (AB), Linear Discriminant Analysis (LDA), K- Nearest

Neighbor (KNN). The classifiers are chosen to ensure a fair

comparison with the original WESAD work [6]. Additionally,

the low complexity of the classifiers makes SELF-CARE

suitable for wearable devices. Following the work in [6], we

use same configurations for the classifiers. Out of the 25 (5

branches x 5 classifiers per branch) possible branch classifiers,

the branches with the minimum training loss are selected to

be used within SELF-CARE. Each selected branch outputs a

classification prediction to be fused by the late fusion method.

D. Late Fusion Method

Here we present our Kalman filter-based method for classi-

fication over an ensemble of classifiers, although we claim

that any applicable late fusion method is supported within

SELF-CARE. In the context of our problem, we consider a

Kalman filter approach towards the multi-class classification

problem like in [16], however, we additionally model the

temporal dynamics in the stress classification problem for each

sample. The unknown state our filter is attempting to estimate

is the probability of each class during each segment. Thus,

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 31,2023 at 17:52:04 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
OVERALL PERFORMANCE COMPARISON OF RELATED WORKS USING LOSO VALIDATION

Modality Used
3-Class 2-Class Wrist Wrist

Best Model Macro F1 Accuracy Best Model Macro F1 Accuracy Only Computing

Related Works

All (Wrist+Chest) [6] AB 68.85 79.57 LDA 90.74 92.28 No No

All Wrist [6] AB 64.12 75.21 RF 84.11 87.12 Yes Yes

All Wrist + Trans. Chest [7] GAN-RF 74.5 81.4 GAN-RF 89.7 92.1 No No

All Wrist [8] DNN - 83.43 DNN - 93.14 Yes No

BVP (Wrist) [9] HCNN 64.15 75.21 HCNN 86.18 88.56 Yes No

Selected Branch Classifiers [Ours]

B1={BVP, EDA, TEMP}(Wrist) RF 62.73 76.62 RF 84.66 89.01 Yes Yes

B2={ACC, BVP, EDA}(Wrist) RF 62.88 77.71 RF 85.08 88.76 Yes Yes

B3={BVP, EDA}(Wrist) RF 61.02 73.96 RF 86.37 89.33 Yes Yes

Traditional Late Fusion [Ours]

Soft-voting (B1, B2, B3) RF 63.75 78.79 RF 87.09 90.00 Yes Yes

Hard-voting (B1, B2, B3) RF 64.02 78.70 RF 87.17 89.89 Yes Yes

SELF-CARE [Ours]

Kalman (B1, B2, B3) RF 71.97 86.34 RF 92.93 94.12 Yes Yes

we define this x as a c dimensional vector of estimated class

probabilities. Additionally, the predictions from each separate

classifier are the measurements z, which are processed se-

quentially per time step. For the 3-class (2-class) problem,

we initialize x0 = [0.8, 0.1, 0.1]� (x0 = [0.8, 0.2]�) with

estimation error covariance matrix P0 = 0.01 · I3x3 (P0 =
0.01·I2x2). The state transition matrix and measurement matrix

are identity matrices for the respective problems. The process

noise for both problems is modeled as a discrete time white

noise with variance set at 5e-4. The measurement noise is

modeled as a function of each measurement to allow the filter

to adjust the confidence of the measurements according to

each reported class probability: R = ((1 − z) · 2 · I3x3)
2

(R = ((1−z)/2·I2x2)
2). Lastly, a tunable threshold technique

was used to process the measurements which involved (i) an

ε parameter to select measurements which had a maximum

predicted probability above the threshold and (ii) a γ factor

to scale the measurements to account for the imbalanced class

distribution in the dataset. This thresholding process allows

for the filter to weight each measurement it receives with

a differing degree of noise while also attempting to resolve

issues that arise from imbalanced datasets. For the 3-class (2-

class) problem, we set ε = 0.4 (ε = 0.7) and γ = [.278, 1, 1]�

(γ = [.667, 1.1]�). During 3-class classification, the prediction

probabilities are generally lower as they are distributed across

an additional class when compared to 2-class classification,

thus calling for a lower ε threshold. To validate our Kalman-

filter based method, we benchmark its performance against

commonly used voting mechanisms for late fusion: hard-

voting and soft-voting [17]. The method of hard-voting assigns

the final class based on the class most commonly voted by

each classifier, whereas soft-voting selects the class with the

highest average value across all the classifiers.

III. EXPERIMENTAL ANALYSIS

A. Dataset Evaluation Metrics

SELF-CARE is validated on the publicly available WESAD

dataset [6]. The dataset contains data for a total of 15 subjects

from both chest (RespiBAN) and wrist (Empatica E4) worn

sensors. Our work focuses on stress detection using only wrist-

based data, as we use the following sensors from the Empatica

E4: ACC BVP, EDA, TEMP. The dataset has three types

of classes related to emotional states, namely — baseline

(neutral), amusement, and stress. For the 2-class problem,

baseline and amusement are considered as the non-stress class.

The filtered signals are segmented by a window of 60 seconds

of data with a sliding length of 5 seconds following [7].

This gives a total of 6458 segments for each signal across all

subjects of the WESAD dataset. The WESAD dataset is highly

imbalanced in terms of the number of segments per class.

For this reason, F1 score is also used along with accuracy

to measure the classification performance. To ensure a fair

comparison with other works, we use the macro F1 score.

B. Experimental Results

This section presents the performance of SELF-CARE

for stress detection in 3-class and 2-class classification. We

also demonstrate the energy efficiency of our approach in a

ultra-low-power 32-bit microcontroller EFM32 Giant Gecko

(EFM32GG-STK3700A) [18] representing a wearable device

operating on the edge. The microcontroller has an ARM

Cortex-M3 processor with a maximum clock rate of 48 MHz.

It has 128 KB of RAM and 1 MB of flash memory.

1) Performance Evaluation: Table I shows the overall

performance comparison of the related works against our

proposed method. Authors in [6] explored different combi-

nations of chest and wrist sensors across a variety of models.

The results for three deep learning methods are also shown

[7]–[9]. For our three selected branch classifiers, the soft-

and hard-voting methods are applied, showing performance

improvements compared to the individual branch classifiers

for both 3-class and 2-class classification. Lastly, SELF-CARE

using Kalman filter-based late fusion further improves the

performance for 3-class and 2-class classification compared

to these traditional late fusion methods. Despite using only

wrist signals, SELF-CARE outperforms all other state-of-the-

art works that use either wrist, chest, or both sensors for 3-class
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and 2-class classification. Only [7] achieves a better macro F1

score than SELF-CARE for 3-class classification. However,

they use both wrist and translated chest features, and employ

a computationally expensive GAN model, which is not suitable

for wrist computing.

2) Energy Evaluation: As shown in Table I, traditional

late fusion improves the performance compared to individ-

ual branch classifiers. However, it is not energy-efficient, as

multiple classifiers need to be used simultaneously — unlike

SELF-CARE that minimizes the number of classifiers selected

for a given segment. We benchmark SELF-CARE with hard-

voting late fusion, which is relatively more energy-efficient

than soft-voting and shows similar performance to soft-voting.

As shown in Fig. 2 for 3-class classification, SELF-CARE with

δ = 0.4 improves up to ∼8% accuracy and ∼8% F-1 score,

while being ∼2.2× energy-efficient compared to hard-voting.

Similarly, for 2-class classification (Fig. 3), SELF-CARE with

δ = 0.1 outperforms hard-voting by up to ∼4% accuracy

and ∼6% F-1 score while being ∼2.7× energy-efficient. The

higher energy efficiency for 2-class can be partially attributed

to the lower δ = 0.1, which reduces the use of multiple

branches compared to δ = 0.4 for 3-class. The higher δ for

3-class is chosen to prioritize performance over energy, as the

3-class problem is inherently more challenging than 2-class.

IV. CONCLUSION

In this paper we proposed SELF-CARE, a selective sensor

fusion approach that uses context-aware, energy-efficient edge

computing to perform stress detection. SELF-CARE models

context as the motion of a subject and performs an intelligent

gating mechanism to select which sensor fusion schema to use

given a certain input. To the best of our knowledge, SELF-

CARE achieves state-of-the-art performance on the WESAD

dataset in terms of 3-class classification (86.34%) and 2-

class classification (94.12%) in approaches that use LOSO

validation. Furthermore, SELF-CARE achieves upto 2.2× (3-

class) and 2.7× (2-class) energy efficiency with respect to

comparable late fusion methods.
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