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Abstract

We consider the operator L = —div(AV), where A is an n x n matrix of real coefficients
and satisfies the ellipticity condition, with n > 2. We assume that the coefficients of the
symmetric part of A are in L°°(R"), and those of the anti-symmetric part of A only belong
to the space BM O(R"). We create a complete narrative of the L? theory for the square

root of L and show that it satisfies the L? estimates H «/Zf”” SNWVfllpp forl < p <

oo, and ||V fllr < ”ﬁfHLp for 1 < p < 2+ € for some € > 0 depending on the

ellipticity constant and the BMO semi-norm of the coefficients. Moreover, we prove the L?
estimates for some vertical square functions associated to e L. In another article of the
authors, these results are used to establish the solvability of the Dirichlet problem for elliptic
equation div(A(x)Vu) = 0 in the upper half-space (x, t) € ]R’fl with the boundary data in

LP(R", dx) for some p € (1, 00).
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1 Introduction and main results

This paper is motivated by the study of boundary value problems for elliptic operators having
a BMO anti-symmetric part. These operators arise in the study of equations with divergence-
free drift, e.g. —Au + ¢ - Vu =0 and d;u + ¢ - Vu — Au = 0, where c is a divergence-free
vector field in R". Seregin, Silvestre, Sverék, and Zlato§ ([23]) discovered that the condition
div ¢ = 0 can be used to relax the regularity assumptions on ¢ under which one can prove the
Harnack inequality and other regularity results for solutions. It turns out thate € BM O~ in
the elliptic case, and ¢ € L*°(BM O~ in the parabolic case are the right conditions, in the
sense that the interior regularity theory of De Giorgi, Nash, and Moser carries over to these
operators. Generalizing to elliptic or parabolic equations in divergence form, this condition is
equivalent to assuming that the matrix A can be decomposed into an L elliptic symmetric
part and an unbounded anti-symmetric part in a certain function space. In the elliptic case,
the anti-symmetric part should belong to the John-Nirenberg space BMO (bounded mean
oscillation) and, in the parabolic case, to L°°(B M O). The space BMO plays an important role
in two ways. First, this space has the appropriate scaling properties which appear naturally
in the iterative arguments of De Giorgi-Nash-Moser. Secondly, the BMO condition on the
anti-symmetric part of the matrix allows one to define suitable weak solutions. This latter
fact is essentially due to an application of the div-curl lemma appearing in the theory of
compensated compactness, and the details can be found in [17,23].

These operators have gained much attention since [23]. In [22], the authors showed the
existence of the fundamental solution of the parabolic operator L — 9;, and derived Gaussian
estimate for the fundamental solution. Later, Dong and Kim [4] have generalized the result
for fundamental solutions to second-order parabolic systems, under the assumption that
weak solutions of the system satisfy a certain local boundedness estimate. The investigation
into boundary value problems for elliptic operators having a BMO anti-symmetric part was
launched by the work [17]. There, the second and the fourth authors of this paper studied the
boundary behavior of weak solutions as well as the Dirichlet problem for elliptic operators
in divergence form with BMO anti-symmetric part.

In another direction, Escauriaza and the first author of this paper proved the Kato conjecture
for elliptic operators having a BMO anti-symmetric part in [5]. To be precise, they showed
that the domain of the square root /L contains W-2(R"), and that

|v2s

@ S IVl 2@ (L.1)
holds over W12(R™"). Their proof does not rely on the Gaussian estimates obtained in [22].
The Kato conjecture dates back to the 60’s, when T. Kato conjectured [13,14] that an abstract
version of (1.1) might hold, for “regularly accretive operators”. The conjecture was disproved
by MclIntosh [18], who then reformulated the conjecture for divergence form elliptic operators
with complex, L*°, n x n matrix. The validity of the conjecture was established when the
heat kernel of the operator L satisfies the “Gaussian property”, first in 2 dimensions [11] and
then in all dimensions [9]. We say L satisfies the Gaussian property if the kernel K, (x, y)
of the operator e~/ L satisfies the following: for all r > 0, for some constants 0 < 8, u© <1
and C,
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Bli—y)?

K (x, )| <Ct72e™ 7,
|Ki(x,y) — Ki(x +h, y)| + K (x,y) — K; (x, y + h)|

<o Al Me_M
- 172 +x —y|

when 2 |h| < t'/2 4 |x — y|. The conjecture was solved for elliptic operators in divergence
form with complex, bounded coefficients in [2], and, as we mentioned above, for operators
considered in the present paper in [5].

The L? boundeness (1.1) naturally leads to the question about L? boundeness, p # 2.
Namely, if L is such that the domain of L2 agrees with WwLZ(R"), how do ||L1/2f||LP
and |V f||;» compare? It turns out that the ranges of p for HLl/zf”Lp < IVfllLr and
Vil S || L2 f || Lp can be different. In [3], it is shown that for divergence form differ-
ential operators L = —div(AV), where A is a matrix with complex-valued bounded entries
and satisfying a uniform ellipticity condition, if L has the Gaussian property, and that (1.1)
and its corresponding inequality for L* hold, then

L2 < epIVFle V1< p<oo, (12)
IVl <c, L2 fll,,  Y1<p<2+e (1.3)

for some ¢ > 0 depends only on L. The proof relies on a non-standard factorization of
L'/2 which makes Calderén-Zygmund theory fully available. We remark that although the
Gaussian property is available for elliptic operators with a BMO anti-symmetric part [22],
the results in [3] do not apply to this setting, mainly because the decomposition used in [3]
requires the coefficients being bounded. In [1], Auscher presents the L” boundedness results
without a direct appeal to kernels of the operators. The main observation in [1] is that the
limits of the interval of exponents p € [1, oo] for which the semigroup is L” bounded, and
the limits of the interval of exponents p € [1, oo] for which (VtVe™L), ¢ is LP bounded,
fully describe the L? behavior of the square root operator, as well as some Littlewood-Paley-
Stein type functionals (we simply call them square functions in this paper). We record here
that the two vertical square functions studied in [1] are

0 2 \1/2
gL(f) = ( | f@zet e dt)

and

% )\ 172
GL(f>(x>=(/0 (Ve ) dr) :

For L being an elliptic operator having a BMO anti-symmetric part, the L” boundedness
for L'/? and square functions was unknown. While this question is interesting by itself, we
are motivated also by the study of boundary value problems for these operators. Indeed, for
divergence form operators with matrix in the “block form”, that is, L = divy ;(A(x)Vy ;)
with A = [ BO] inequalities (1.2) and (1.3) can be thought of as a “Rellich identity”
N0:ullr =~ 1 Vseull Lr- The latter plays an important role in the solvability of Neumann and
regularity problem with L? data. See e.g. [12,16,24]. Even more generally, for operators
having a full (n + 1) x (n 4 1) elliptic coefficients matrix A(x), tools related to the Kato
problem have been successfully used to tackle boundary value problems. In [8], for instance,
the L? estimates for some square functions similar to g; and G, form parts of the proof
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of the L” solvability for elliptic operators with real, L°°, t-independent coefficients in the
upper-half space for p sufficiently large. However, details regarding these L? estimates are
missing, and one did not know whether these estimates are valid for elliptic operators having
a BMO anti-symmetric part.

In this paper, we create a complete narrative of the L? theory for the square root operator
(Sect.4), and derive the L” estimates for the vertical square functions (Sect.5). Let L =
—div(AV) be an operator with real coefficients defined in R"”, n > 2. Assume that the
symmetric part of the n x n matrix A is elliptic and L®°, and the anti-symmetric part is in
BM O (R"™). Our main results are the following:

LL'Y2f),, SUVFlpeforl < p < oc,and |V £l S |LV2 £, forl < p < 2+e.
(Theorem 4.77)
2. we have the L? square functions estimates

L Rdi\12
( ‘tLe F' —) < Cp IVFllp@n Y1 <p<oo,
0 t LP(R")

(Proposition 5.7)

oo 2di\1/2
‘(/ ‘tZVLe_tzLF‘ 7) < CpIVFllp@n ¥Y1<p<2+er,
0 d LP(R")

(Proposition 5.12)

00 2 din1/2
H(/ ‘tZB,Le_lzLF‘ 7)
0 t

(Proposition 5.26)

SCP ”VF”LP(R”) A\l < p <.

LP(R")

In these results, €; > 0 depends only on the ellipticity constant and the BMO semi-norm of
the coefficients of the operator, and on dimension (Proposition 4.38).

To deal with the BMO coefficients, we need estimates on the Hardy norm of some functions
of particular form. These are presented in Sect. 2. We give a precise definition of the operator
L in Section 3, starting from a sesquilinear form. The L? estimates for the square root and
square functions rely on the off-diagonal estimates for the semigroup and (v/fVe L), .,
which are derived in Section 4. Another key ingredient in proving the L? estimates for the
square root is the representation formula for the Riesz transform, which we carefully justify in
Proposition 4.62. To prove the L? estimates for the square functions (Proposition 5.7-5.26),
we exploit the L? estimates for the square root operator and borrow some ideas from [1].

While the paper can be viewed independently as a part of an extensive theory of functional
calculus of elliptic operators and associated Hardy spaces, for us it was mainly motivated
by the demands coming from the theory of boundary value problems. In [10], to continue
the work [17], we study of L? Dirichlet problem for elliptic operators having a BMO anti-
symmetric part. There, we are able to prove the Dirichlet problem with L”(dx) boundary
data in the upper half-space (x, ) € RT‘I, n > 2, is uniquely solvable for p sufficiently
large, for these operators under some natural structural assumptions on the matrix, namely, -
independent. In [10], we use the Gaussian estimate for the #-derivatives of the heat kernel (4.4)
to derive the L” estimates for some non-tangential maximal functions. The L” estimates for
the square functions (Proposition 5.7-5.26) are used to carry out a refined integration by parts
argument. The result in [10] extends the work of Hofmann, Kenig, Mayboroda and Pipher
([8]), which holds for elliptic operators in divergence form with real-valued, non-symmetric,
L®° and t-independent coefficients.
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2 Hardy Norms
Definition 2.1 We say f € L'(R") is in the real Hardy space H! (R") if

< 00,
L1(R")

”f”Hl(Rn) =

sup |z * f]
t>0
where h;(x) = tinh ()7‘) and & is any smooth non-negative function on R”, with supph C
B1(0) such that [, h(x)dx = 1.

The following estimates shall be used frequently in the rest of the paper.

Proposition2.2 Let 1 < p < oo. Let u € WIP(R"), v € WP (R"). Then for any 1 <
i,j <n, dudv— dudjve H (R") with

8judiw — Bited 0]y gy < IVl Lo 101, 23)
where the implicit constant depends only on p and dimension.

We refer to [17,23] for its proof.

Proposition2.4 Let 1 < p < co. Letu € WHP(RY), v € Wl*”,(R”). Then forany 1 <i <
n, 3; (uv) € H'(R™) with

10; @)llggt gy S Nl IV + IVullLe I 2.5
where the implicit constant depends only on p and dimension.

Proof Let h be a smooth nonnegative compactly supported mollifier with fR,, h(x)dx =1,
supp/i C B1(0). And let i, (x) = t~"h(7). Then we have

hi 0 (uv)(x) = /Rn hi(x — y)d; (uv)(y)dy = —/ dihi(x — y)u(y)v(y)dy

By (x)
1 X —
:/Bwﬁa"h (%)u(y) (V) — 5, ) dy

1 xX—y
+ 0;ih — u(y)()p,wdy = I + b.
B

NORA

For I, we have

1
VA */ [u(y)]
" JB(x)

1/a o 1/
< (][ |u|“dy) f dy
B (x) B (x)

1/a 1/8 1 178
< (][ |u|“dy) (f |W|ﬂdy> < (M [ul*) = (x) (M VolP) ' (x),
B (x) By (x)

where @ € [1, p), é + % =1+ %, and M ( f) is the Hardy-Littlewood maximal function of
f. For I, note that I, = th(x) hy(x — )3;u(y)(v) B,x)dy. So

v(y) — (V)B,(x)

d
7 y

v(y) — (V) B,(x)
t
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940 S.Hofmann et al.

1
bl S — 0] |(0) B, )| dy S |Vuldy vl dy
1" JBi(x) B,(x) B,(x)
< M(IVul) (x) M (v) (x).

Combining the estimates for /1 and I, and using Holder inequality, we have

/ sup |h; * 9; (uv)(x)| dx
R

>0

< | (o1 pury#

/B
[a190®) 2| 1M audie 1M @)1,
Ly Ly
S lullpe VOl + 1Vullze 0l
where in the last inequality we have used that 1 <« < pand1 < 8 < p’. O

Proposition 2.6 Let u, v € W'2(R"), and ¢ be a Lipschitz function in R". Then for any
1<i,j<n 0juv)dip— 0;(uv)djp € HY (R with

8 @u)dig = 9 00 |10 gy < 1912 VN2 + o2 1Vl 9]l 2.
or
[0 @odig = 0w |y any S IV@leqany (Il V01122 + 0]z 1Vall 2 ),
2.7)

where the implicit constant depends only on dimension.

Proof We canassume ¢ € CZ(R”).SeHI) =(0,...,0,0;¢9,0,...,0,-0;¢0,0,...,0). Then
div® = 0 and

0i (uv)djp — 0 (uv)djp = ® - V(uv) = div(®uv). (2.8)

Let i be a smooth nonnegative compactly supported mollifier with fR,, h(x)dx = 1,supph C
B1(0). And let h;(x) = t’"h(%). We compute

hy % div(®uv) (x) —/B( )Vyh,(x —y) - e(u(y)v(y)dy

- /E " Vyhi(x —y) - @(Mu(y)((y) — (V) B,x))dy

- /B( )divy(ht(x = N()u(y) (), x)dy

- /B " Vyhi(x —y) - @(Mu(y)((y) — (V) B,x))dy

+/ hi(x = y)® - Vu(y) () g, (0ydy
B;(x)

=L+ D
1
Ll s — \% v—(v
015 gt [ 9ol o= @il
L/e v — (v ’ i/
<(f weer)"(f L= Wl
B;(x) By(x) !
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1/a 1/8
S(f wer)(f vel)
B;(x) By (x)

< MY (luvel*) ) MVE(1VulP)(x), 2.9)

where l <a, <2, 1+ L =1,

+4=1+1 And

1
1aps (]i( ) Vol |Vu|) | 8,0 S MVl [Vul)(x)M () (x).

So

ke % div(®uv) (1) < MY (uVel*)x)MYE(Vo|P)(x) + MVl |Vul) (x) M (v)(x),

and thus

/R sup |hy * div(@uv) ()| dx S lu[VelllL2 Vull2 + llvll 2 [1Vul [Velll 2 .

>0

By (2.8) and the definition of Hardy norm, we complete the proof. O

3 Sectorial operators and resolvent estimates

We give a precise definition for the operator L.
Let W:l’z(]R") be the space of the bounded semilinear functionals on wLZ(R"), We say
that f € W—12 is semilinear if

(frau+ Bo) 12 w2 =a(f u) 12412 + B V)12 12,

whenever «, 8 € C and u, v ENWIVZ(R”).
Define . : WH2(R") — W—1.2(R") as follows

(Lu, v)jj-12, w12 = / AVu - Vo

n

:/ ASVu-Vz_)+/ A%Vu - Vi,

where A = (a;j(x)) isn x n,real, A® = %(A + AT) = (afj (x)) is of coefficients in L>°(R")
and elliptic, i.e. there exists 0 < Ao < I such that for all x € R",

o lEP < af(nEE; VEER" A% <agl,

and the coefficients of A4 = %(A —AT) = (af’j (x)) are in BMO(R"), with

|

for some A > 0, where Q is any cube in R”. Then by Proposition 2.2,

a
ij

= sup a;’i — (af/-)Q‘dx < Ay

BMO QcRn][Q

(Lu, v)12y12| < ClIVull2 VY2,

with C depending on ¢, A and dimension.
Now define a sesquilinear form on L2(R") x L2(R"): for any u, v € WL2Z(R"), let

tu,v] = (Lu, U)W—I,Z’Wl.b
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942 S.Hofmann et al.

The numerical range © (¢) of ¢ is defined as

O(t) :={t[u,u] : u € D(t) with |Jull;2 = 1}.

Proposition 3.1 ¢ is a densely defined, closed, sectorial sesqulinear form in L?, and there
exists 0 < 6y < % such that for any & € O (1), larg&| < 6p.

Proof The domain D(z) of ¢ is W12(IR"), which is dense in L?. So ¢ is densely defined. To
see that it is closed, let u, € D(t), u, — u in L? and t[u, — tty, uy — um] — 0. We want
to show that u € D(t) and t[u, — u, u, — u] — 0. Since t{u, — uy, u, — u,,] — 0,

Ao IV(uy —up)l < 9%‘/ AV (uy — ) - V(uy — up) — 0.

n

So {u,} is a Cauchy sequence in WL2(R"), which implies that u € W2 = D(t) and
t{un — u, un —ull < Ao [IV(@un —w)lll 2 — 0.

Now we show that ¢ is sectorial, i.e., its numerical range © (t) is a subset of a sector of the
form

larg(§ —y)| <0, forsome( <6 < % and y € R.

Foru € D(t) with ||ul|;2 = 1, write u = u; + iup. Then
M Lu, u)fp-12 w12 = / a;vj(ajulaiul + dju20iuz) > )\O/ |Vul?,
' R~ R
S(Lu, u)W—1,27W1.2 = / afj(ajuzaiul — dju10;uz) +/ a?j(ajuzaiul — 0ju10;uz).
R~ R~

By Proposition 2.2,
n. This implies that

I(Lu, M>ﬁ'/71.2’wl,2| <C fR,, |Vu|2, with C depending on g, A¢ and

3 g ) -1,
3L, w)ig12, 12| < C, with C = C(hp, Ao, n).

SR(.,S,”u, M)W—1.2’W1,2

Therefore, there exists 0 < 8y = 6p(Arg, Ag, n) < % such that for any £ € O (1), |£] < 6p. O

Then by [15] Chapter VI Theorem 2.1 and its proof, we obtain

Lemma 3.2 There is a unique m-accretive, sectorial operator L : D(L) C L2(R") —
L2(R") such that

1. D(L) C D(t) = W“2(R"), and D(L) is dense in D(t) with respect to the W12 norm.

2. (Lu,v) =tu,v]forallu € D(L), v € D(t). Here (-, -) is the inner product on complex
L2(R™M).

3. Ifue D(t), w e L2(RM), and t[u, v] = (w, v) for any v € D(L), then u € D(L) and
Lu = w.

By m-accretive we mean that (L + A1)~ is a bounded operator on L* for any % & > 0, and
[@an e = G121
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This lemma implies that there is a unique L : D(L) C L?>(R") — L*(R") with its domain
dense in W2 corresponding to .Z : wh2 — W12 and (Lu,v) = (ZLu, v)j-12 y12 for
any u € D(L),v e Wh2,

We denote by ©@ (L) the numerical range of L:

O(L) = {(Lu,u) : u € D(L) with [Ju||;2 = 1.}.

Let T = —L. Denote the resolvent set of T by p(T). Note that since L is m-accretive,
{(reC: ‘Rk < 0} C p(L). So A € p(T) whenever A > 0. Let Xy = C\ O(T), and
denote by X the component of X that contains R*.

Lemma3.3 Xy C p(T). And for any » € X,

1

A —T)! =|ar+0)™! dist(h: @)
H( ) ”L2_>L2 ”( +L) ||142—>L2 = dist(A; ©(T))

Proof For any fixed A € Xy, for any u € D(T) with |lu|| ;2 = 1, we have
0 <dist(r, @(T)) < |A = (Tu, w)| = (M — Tu, w)| < (M = T)ullz2 .

Hence, if 1 € p(T), then

1
o I 3.4
¢ U RN dist(2; ©(T)) -

Now we show ﬁ‘o C p(T). Consider p(T) N ﬁo. It is nonempty since RT™ C p(T) N ﬁo.
The fact that p(T') is open implies that p(T) N ﬁ‘o is open in ﬁ‘o. But it is also closed in
ﬁ‘o since A, € p(T) N fio and A, — A € fio imply for n large enough, dist(A,, @(T)) >
%dist()\, ©®(T)), and consequently for n large enough |A, — A| < dist(x,, @(T)). Write
M—T =0 —T)I 4+ *—r)Opl —T)~ ). From (3.4),

[ =2 Gl = )7 < 1A =l |l = T)7Y| < B et B 1,
dist(h,; ©O(T)) 2

which implies that (/ + (A — X)) (A1 — 7)~H~! is bounded in L2, and consequently so is

(A —=T)""',ie.x € p(T). This implies that p(T)N f]o is closed in ﬁ'o. By the connectedness
of Xy, p(T)N Xy = Xy, or Xy C p(T). m]

Fix a 0; € (6, %). Let Ir—g, ={A € C: 1 #0,|argA| <7 —61}. Then I'_g, C p(T)
and there exists a co = co(fp, 61) > 1 such that for any A € I _g,,

dist(x; ©(T)) > % (3.5)

Corollary 3.6 There exists a C = C(6p, 01, ho) > 0 such that for any A € I'z_g,,

|G+ D7 oo+ —z VORI + D72

< —.
|)\|1/2 | —12 = |A]

Proof 1t follows immediately from Lemma 3.3 and (3.5) that

€0

o+ D7 e = 51
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944 S.Hofmann et al.

Since Iz_g, C p(T), for any A € I';_g,, the range of Al 4 L is L2(R"). Also, for any
u € D(L), (M + Lyu, u) = (L + Mu, u) j-12 y1.2, which gives that

N(AL + Lyu,u) = |(M + Lyullp2 flull2 -
On the other hand,
R(AT + L)u,u) = §)?(/R" AVu -Vi + /Rn lul?) > Ao ||Vu||iz + N ||u||i2 .
Therefore,
loA;|VMZS|KHWHé-+HQI4-LWHm|WHu-

Since

|I + L)~ I + Lyu > < % I + Lyull 2,

lluell 2

IA

one obtains ||Vul|;2 < C(co, Ao) |A|_1/2 [(AI + L)ull;2, and consequently

[Vt + L)™' < Cleo, ro) 272

4 [P theory for the semigroup and square roots

The resolvent estimates we derived in Corollary 3.6 imply that there exists an analytic con-
traction semigroup e~ on L? generated by —L. The semigroup can be expressed as the
contour integral (see e.g. [21] Chapter 1, Theorem 7.7)

1
et = —/ eM(L + AV,
27i Jr

where the path I" consists of two half-rays I's = {1 = re* ™= r > R} and of the arc
Iy = {L=Re"? 10| <7 — 6}, for any fixed R > 0, 6; € (6. %), where 6 is as in
Proposition 3.1. It follows that '~ is holomorphic in ¢ in the open sector |arg f| < 7 — 6.

Let K, (x, y) be the kernel of ™! L The results by Qian and Xi [22] show that the operator
L satisfies the “Gaussian Property", that is, K, (x, y) satisfies the following bounds: there are
some constants C = C(ig, Ag, n), B = B(ho, Ag,n) € (0,1) and ng = pno(ro, Ag,n) €
(0, 1), such that forallt > 0,0 < u < po

n Blx—y[2

[Ki(x,y)| < Ct72e” 7, 4.1)
K (x,y) — Ki(x +h, )| + K (x,y) — K (x, y + h)|
n h H -’(—'2
e PR N WP 42)
12 4+ |x =yl

when 2 || < V2 + |x — yl.
We remark that the Gaussian estimates for the 7-derivatives of the kernel K, (x, t) can be
derived from the Gaussian estimates ([20] Theorem 6.17):
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Proposition 4.3 Foranyl € N, 3'K,(x, y) satisfies the following estimates: there are some
constants C = C (Ao, Ao, n), B = B(ho, Ao, n) € (0, 1), such that for all t > 0,

_ Bla—y[?
13

8K, (x, y)’ <Cii e (4.4)

The L? (actually, L? for all 1 < p < o0) estimate for 8; e~ 'L follows from (4.4) imme-
diately: for all r > 0,

ale 't <ct™' foralll e N. (4.5)
L2112
Moreover, we have for all ¢t > 0,
H Ve 'k <crt. (4.6)
L2112

(4.6) can be derived from (4.5) as follows:

2 1 .
“Ve”Lf‘ L= rm/ AVe L Ve iLf
0 n
1 _ _ _
e L2 Nt e 1S

4.1 L? off-diagonal estimates for the semigroup

Definition 4.7 Let 7 = (T;);~0 be a family of operators. We say that 7 satisfies L? off-
diagonal estimates if for some constants C > 0 and o > 0 for all closed sets E and F, all
h e L? with support in E and all f > 0 we have

ad(E

_ad(E.F)?
ITihll 2y < Ce T Al (4.3)

Here and subsequntly, d (E, F) is the semi-distance induced on sets by the Euclidean distance.

If T= (T;);ex, is a family defined on a complex sector X, with 0 < p < % then we
adopt the same definition and replace ¢ by |z| in the right hand side of (4.8). In this case, the
constants C and « may depend on the angle 1.

Proposition 4.9 There exists wy = wo(n, ro, Ao) € (0, 5), such that for all u € (0, 5 —
o), the families (e_ZL)ZEEM, (zLe‘ZL)ZEgﬂ and (\/EVe_ZL)Zegu satisfy L? off-diagonal
estimates.

Proof We begin with the case of real times r > 0. Let ¢ be a bounded Lipschitz function
with Lipschitz constant 1 and p > 0. Define ., = e”¥ ZLe™"¢ as follows: for any u, v €
WI‘Z(R")

(Lpu, v)j—12 w12 = (L (eu), e "Pv) 12 .
Note that since || V||, is bounded, Proposition 2.6 implies that %, : W2 — W12 s

bounded. Define jflﬁ =%+ co ,02, with ¢q to be determined. Using Proposition 2.6, we
estimate
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Eﬁ(f!;u, U)jy-12 w2
= WLu, u)jy-12 w12 — Co,ag 1PVl oo VUl 2 [lull 2

1
+ (60,02 “ ||pwn%oo) a2

AQ
> = IVull, + (cop® = Cnrg,400”) lluell3 .

Here we have used ||[V¢|| .« < 1. Now by choosing co = co(n, Lo, Ag) sufficiently large,
we have

. Ao o
WLy, w2 iz = 2 I Vula + = 0% ullZ

For Ts(fgu, u)jy-12 w12, we have
~ ~ ~ 2 2 2
|S(Lpu, u) 12 w2 | < |S(Lu, u) 12 w2 | + Cog IVull72 + Caop” lull7,

2 2 2
< Cn,)\o,Ao ”VMHLZ + C)n()p ||M||L2 .
Therefore, there exists Co = Co(n, Ao, Ag) > 0, such that

|S(Lyu, u) 1.2 2| - o,

?ﬁ(offéu, M)ﬁ}—l,z,wl,Z
which implies that there exists 0 < wp = wo(n, Lo, Ag) < % such that
VEeO(Z,), &l <wo. (4.10)

As we argue in Sect. 3, we can find unique sectorial operators L; and L, corresponds to .Z,f
and .Z), respectively. Then we can prove estimates (4.5) and (4.6) for the operator L;,. That
is, there is C = C(n, Ao, Ap), such that

jesicn)

LHrae B o]+ |vivert o] L = ciri

L2

for all + > 0. Then by L;) =L,+ cop*I and 8,@”% = —L;)g*”‘;), a direct computation
shows

B _ _ 2
et n| L, + 1o +coptne o]+ |Viveteon| < cer i
This implies

et o [raeto ]+ [Vive o] < ceoigine viso.
@.11)

Let E and F be two closed sets and f € L2, with compact support contained in E. For
any ¢ > 0, choose ¢(x) = . (x) = 1-&1(27(5)15) With this choice of ¢, the operator .Z), has

bounded form. Observe that there exists Rg > 1 sufficiently large, such that for any R > Ry,
d(E, F) <d(E, FNBg(0) <2d(E, F).

Also, for any fixed R > Ry, there exists &g = o(n, R, E) > 0, such that forany 0 < ¢ < ¢&o,
ed(x, E) < § forall x € F N Bg(0), and thus

Pe(x) = A B gd(x E), ¥Yx € FNBg(0) (4.12)
‘ l+edx,E) —3 77 ' '
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With these observations and (4.11), the argument of the L? off-diagonal estimates for
(e i~0, (t0;e7 )20 and (/7Ve L), ¢ follows from [1] Proposition 3.1.

To extend to complex times, consider the operator €' < which has coefficients ei"‘A(x).
Note that if £ is in the numerical range of el &, then larg&| < 6p + |a|, where the angle
o is as in (3.1). Therefore, in light of (4.10), the argument aboye applies to e as long
as la| < % — wo. Observe that when z = tel®, e~k = ¢~1(¢“L) From this the desired
estimates follow. m]

Remark 4.13 The same argument applies to the adjoint operator L*. Therefore, for all u €
(0, % — wp), the families (e™*%").cx,, (zL*e¢ ™) cx,, and (Ve L") cx, satisfy L?
off-diagonal estimates.

Using the L? off-diagonal estimates, we can define the action of the semigroup on L
and on Lipschitz function in the leOC sense.

Lemma4.14 Let f € L*(R"). Then for any xo € R", lim e“L(f]lBR(XO)) exists in

loc (R™) and the limit does not depend on xo. We define the llmlt to be e”!L f.

Proof We first fix any xo € R". Fix any Ry > 1, and let Ry > R; > 8Ry. Then there exists
[ € Nsuch that 2/R; < Ry < 2/ R;. We write

et (f LBy o) = f Ly, (xo))‘

e (f g, () — € H (S 1By, (xo))’ =

1
—tL —tL
= ‘e f <HBR2(X0) - ﬂleRl (Xo))’ + Z ‘e f (Ilele(Xo) - ﬂsz—lRl(XO))‘ .
k=1

Observe that d(Bg,(x0), Byt g, (X0)\ Bor-1p, (X0)) > 2=1Ry fork = 1,2,...,1. Then by
L? off-diagonal estimates for (e7'F) ,~o» We have

He_tL(fllBRz(xo)) - €_tL(f113R1(x0))’

L2<B o (x0))
(2 R1)2 k1R )2
Se” 1A 1122 By (v0)\ Byt g, Ceo +Ze T M @y, o
k=1
I+1 ot ,
SYem R Nl S PRl
k=1

where the implicit constant depends only on Ag, Ag and n. This shows that e’ Lif1g 2 (x0))
is a Cauchy sequence in Lloc (R™), when f € L™.

We now show the limit is independent of the choice of xg. Let x; € R” be a differ-
ent point than xg. Then for R sufficiently large, the symmetric difference Br(xo) ABg(x1)
is contained in Bor(0)\B k (0). So by the L? off-diagonal estimates for e 'L, and that

d(BR(x0)ABR(x1), B (0)) > R, we have

Se
L2(B g (0))
q

—tL —tL
He " f1Br) — ¢ fﬂBR(x.)‘ IF 1228 (x0) ABR (1)

n _cR?
SRIeT | fllpe .

This implies that img_, oo € 'L f 1 g, (xg) = limr— o0 € 'F f1p,(x)) in the leoc sense. O
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Remark 4.15 The limit limg_, oo e "L (f1Bg(xy)) actually exists in Wllo’c2 (R™). One can show
this by using the L? off-diagonal estimates for («/fVe_’ Ly ) ;-0 instead of the L? off-diagonal

estimates for (¢~*%) _  in the argument above.
>0
Similarly, we can define e L f for f Lipschitz.

Lemma4.16 Let f be a Lipschitz function. Then for any xo € R", the limit img_, o e 'L
(f1Bg(xy)) exists in L? (R") and not depend on xy. We define the limit to be e’”‘f.

loc

Proof Fix any xo € R”, any Ry > 1, and let R, > R; > 8Ry. Then there exists / € N such
that 2/ R| < Ry < 2% R;. We write

leitL(fﬂBRz(xo)) - eitL(f]lBRl (XO))‘
< ’e_'L ((f — [ (x0)(LBg, (xo) — IBRI(X())))‘
+ ‘e“L (f(xo)(IIBRzuo) ~ Loy, <x0>))’ = hth

Since f(xp) is a bounded constant function, the proof of Lemma 4.14 applies to I, and we
have

—n/2
1120112 By oy S 2R 1 f (o) (.17)

For I;, we have

_e'Rry?
il 2By (o S €7

(f = F (X0 LBg, (x0)\ By , (o) .2

O Ry?

l
+Ze ‘

(f = SOOI LByt c0\Byt g, @0) | 5

_(zk—lRl)Z "
SY e T @RIVl ooy

n+l

2 (kR T .
<> (¢ ”) @RV S

ntl  —

R 2NV Sl

This and (4.17) show that e 'L (f1Bg(xp)) is a Cauchy sequence in L? (R™), when fis

loc
Lipschitz. By a similar argument as in the proof of Lemma 4.14, one can show the limit is

independent of xo. O

Remark 4.18 By applying the L? off-diagonal estimates for (\/fVe’tL f ) .~ instead of the
L? oft-diagonal estimates for (e_’ L ) 0 in the argument above, one can show thatas R — oo,

e "E(f 1)) converges in WIL’Cz (R™), when f is Lipschitz.

Proposition 4.19 The conservation property e L1 = 1, for any t > 0, holds in the sense
of L?

loc -

Proof Let @ be an L?(R") function with compact support, and suppose the support of @ is
contained in a cube Q with [(Q) = ro. We first show e L@ e L.
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Let Qo = 20, and decompose R”" into a union of nonoverlapping cubes with same size.
That is, R" = |_|,in Qp, with |Qk| = |Qol. Let xp denote the center of Q and Qg, and let
x denote the center of Q, fork = 1,2, .... Define

Fir={0k :2lrg < |xx —xg| <2+ Dro}, forl=1,2,....

By the L? boundedness of the semigroup, we have

Ju

For any Qj € F;, we use the L? off-diagonal estimates for (e~ L)~ to obtain

e—[L(p’ < |Q0|1/2 He—tL(p’

L S 100 Il (4.20)

c(lr )2
| fetol <toaeta]  <iont e o,
o L2(Qp)
Since | F;| ~ 1", we have
ellrg)? L,
> / | S Qol e @l S 17yt e
OeF Ok
Summing in / yields
0 n 2 +2 n 2 +2
/ e—‘ch‘ SY g T @l S P @ 4.21)
R™\ Qo =1
Then e "L ® e L! follows from (4.20) and (4.21). The argument also applies to ¢ ~'L" and

soe 'L e L Therefore, by Lemma 4.14, we have

/ e 1P = lim e "L(1p,)® = lim Ipge L' ® = / eIl @, (4.22)
n R—o0 R R—o0 R n

Here and subsequently, B is the ball centered at the origin with radius R. We shall first show
Jgn €L 1@ does not depend on > 0 by proving

—tL1 5/
— 19 =0, 4.23
dt Jrn ¢ ( )

/ e P = / P. (4.24)

This implies that e %1 = 1 in the sense of L12oc .

Observe that we can define a,e*fo = limpg_ o 0L (f1Bg(xy)) In leoc ,for f e L,
for any x € R”. This is because the argument in the proof of Lemma 4.14 applies to d,e '~
if one uses the L? off-diagonal estimates for (tLe_’L)t>0 instead of that for (e_’L)t>0.
particular, we have 9,;¢ " Ll = limg_ o0 dre"L1p - Also, using the L? off-diagonal estimates

for (tL*e”L*) K one can show 8,e'L"® e L!. Therefore,
1>

and then show

In

R—o0

/ de 'l1d = lim B,e”LILBRaleim /1BRa,e—zL*q> :/3,e—tL*¢.
n — 00

@ Springer



950 S.Hofmann et al.

Let n € C°(R") with p = 1 in By, and suppn C By. Let ng(x) = n (%) for R > 0.
Then

d — _ S o
T et =/ 3te_tL1(p =/ nroe~ 'L @ +/ (1 —ngr)de " P.
dt Jgn n n R

(4.25)

Since d;¢'L"® e L', the last term goes to 0 as R — co. We write
/n nroe P = —/” nrL*e'L"® = /n AVng - Ve 'L'®
= [ AV VTG 4 [ 479V (cre @),
Here, {g(x) = ¢ (%), where ¢ € C{°(R") with ¢ = 1 in By\ By and supp¢ C Bs)z \ Bia.

Note that {g = 1 in the support of Vng.
Choose R to be sufficiently large so that Q C B & We estimate

A

IA

AV Ve ld| < L v
. ng - Ve o IVnrllL2

L*(Bag\Bg)

n 1 cR?
SRETI @2,

where the last inequality follows from the L2 off-diagonal estimates for (ﬁVe_’L*) o
t
By Proposition 2.2, we have i

< CAoIVnrliL2

/ AR -V (Lre D)

v (gRe*’L*cb)

L2’

Using the support property of {g and Vg, we have
M)

s|ve o)
L2

+R7! ”e_’L*

L2(Bsg \BR) L2(Bsg \BR)
2 2 2

v
_1 _cr? —1 _cR?
St72e 1 || @2+ R e @2,
where the last inequality follows from the L? off-diagonal estimates for (ﬁ Ve™! L*) o and
t>
(e"”) o Combining these estimates, we obtain [, ngd;e~'L"® — 0as R — oco. So
1>
from (4.25), the desired result (4.23) follows.
To prove (4.24), we fix R > 0 sufficiently large so that 2Q C Bg. Write

/ €7IL15:/ nre L' @ +/ (1 —npe'L*o.
n n ]Rn
" s strongly continuous in L2 at r = 0,

lim/ nre L@ :/ nRE:/E,

t—0 n n

We have ‘fRn(l — nR)e—’L*q)‘ < fR”\Qo ‘e—tL*q)
—tL*

Since e 'L

, where Qy is constructed in the begin-

ning. Since we can also obtain (4.21) for e , we then have

n

_ 1) w2
/R(l—nR)e"L @'51’02 ) @2,
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which goes to 0 as + — 0. Therefore, since we have shown that fRn e L1 is independent
of ¢, we obtain (4.24). O

4.2 P theory for the semigroup

We now study the uniform boundedness of the semigroup (e *L),~¢ and of the family
(WtVe Ly,_pon LP spaces. We begin with a few definitions.
Let 7= (T;):=0 be a family of uniformly bounded operators on L2,

Definition 4.26 We say that 7is L? — L4 bounded for some p, g € [1, co] with p < g if for
some constant C, forall# > Oand all h € L? N L2

_rm
IT:hllLe = Ct— 2 \lAllLp

where y,, = ‘% — % . We shall use y,, to denote y,, =

n n
27 p
Definition 4.27 We say that 7satisfies L” — L7 off-diagonal estimates for some p, ¢ € [1, 00]
with p < ¢ if for some constants C, ¢ > 0, for all closed sets E and F,allh € LP N L? with

support in E and all # > 0 we have

Ypq cd(E,F)?

1 Tihllpary < Ct™ 2 e |l .

Note that the uniform L? boundedness of (e ')~ ¢ and of (t3;¢ L), follows from the
kernel estimates (4.4).

Lemma 4.28 Let p > 1. There is some constant C = C(n, Ly, Ag, p) such that forallt > 0
andall f € L?,

[erer] = cisiee, (429)
o tr) < ClflLe. (430)
Proof By (4.4), we have
/Rn |K:(x, y)ldx <C /Wle(x,y)ldyEC, (4.31)
/Rn 10, K, (x, y)|dx < Ct™! /]R 10: K (x, y)|dy < Ct~ L. (4.32)

Then

e f)| = ‘ [ &t y)f(y)dy‘

i 1
< (/ |Kr(x,y)|d)’)p </ [K:(x, y)I lf(Y)I”dY>p :
R R

So (4.29) follows from (4.31). And (4.30) follows from (4.32) by the same argument. m]

Proposition4.33 1. (e'L),.is LP — L? bounded for any 1 < p < 2.

2. (e7'L),~0 satisfies the LP — L? off-diagonal estimates for any 1 < p < 2.

3. (75,20 is L2 — LP bounded for 2 < p < oo, and satisfies the L* — L? off-diagonal
estimates for2 < p < o0o.
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(1)isaconsequence of the L? boundedness of the semigroup, and the Gagliardo-Nirenberg
inequality. Details can be found in [1] Proposition 4.2. Item (2) follows from interpolating by
the Riesz-Thorin theorem the L” — L2 boundeness with the L2 off-diagonal estimates of the
semigroup. And since (1) and (2) also holds for el = (e~ 'Ly*, (3) follows from duality.

The next results for (1d;e*%);~¢ are in the same spirit of Propostion 4.33. We give the
proof in full detail.

Proposition 434 1. (13, 'L),~0 is L? — L? bounded for any 1 < p < 2.

2. (t8,e7'L),~ satisfies the LP — L? off-diagonal estimates for any 1 < p < 2.

3. (td,e7'L)20 is L? — L bounded for2 < p < oo, and satisfies the L> — L? off-diagonal
estimates for2 < p < oo.

Proof (1).Let p € [1,2).Since d,e "L f € WH2(R™), we can apply the Gagliardo-Nirenberg
inequality and get,

2 e 2B
dre ’LfHL2 =C|vaety] ) e ’LfH” 4.35)

forallt > Oand f € L2NLP, wherea +f = 1 and (1 +y,)a = y,. Using 32e 'L f € L2
and Lemma A.2, we have

m/ AVo e . Vool f =0 (La,e—’Lf, a,e—’Lf)

1d 2
2 ,—tL ¢ ,—tL —tL
=-N(9;e M fe! 12,2 =5 de”! f‘LZ'
By ellipticity,
2 1 d 2
Ve 'L ‘ <—— 2 gt ‘ . 4.36
H ¢ fLZ_ 2\ dt 1 sz ¢ 2

Assume f € L> N LP with || f]l, = 1. Let ¢(t) = |de~'L f|. By the L? boundedness
of (de™E)ss0, |de ™ f|,, < Cpt~". Then by (4.35) and (4.36), one obtains z%go(t)% <

—C¢/(t). Integrating in ¢,
2t 2t /
t
/ t%ﬂdr < —C/ L4 (1) dt,
t RION

and thus ¢(r) < Ct_%%g. Here we assumed that ¢(¢) # 0. Otherwise, considering ¢(t) + ¢
and then letting ¢ — 0 would give the same result. Thus ||t8,e_’1‘f ”12 <Ci Ta =Ct,
which proves (1).

(2). As in the proof of Proposition 4.33, it follows from the L? off-diagonal estimates of
(td,e7'L),-0, the L' — L? boundedness of (13;¢~"%),~, and the Riesz-Thorin interpolation
theorem.

(3). Since e 'L f € D(L) forany f € L%, td,e 'L f = —tLe 'L f = —te™ 'L Lf. So we
have

(tde By = —tL*e 'L = 13,071,
Since (2) and (3) also hold for t9,e™* L (3) follows from duality and a limiting argument. OI

For (+/1Ve™"1),-0, when p < 2, we immediately obtain the L? — L? boundedness and the
LP — L? off-diagonal estimates. We include the short proofs here for the sake of completeness.
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Proposition 437 1. (/1Ve 'L),oqis LP — L? bounded for any 1 < p < 2.
2. (J1Ve Ly, satisfies LP — L? off-diagonal estimates for any 1 < p < 2.

Proof Let p € [1,2) and f € L?> N LP. Write /1Ve 'L f = \/fVe_%e_%f. Then by the
L? boundedness of (/7Ve L)~ and the L? — L? boundedness of (¢~'L),~, one has

\/’ —tL —iL -
[Vivet s etr) L = F IS,

which proves (1).
(2) follows from the L? off-diagonal estimates of (v/7Ve*L);. 0, the L' — L? boundedness
of (v/1Ve™ L), o, and the Riesz-Thorin interpolation theorem. ]

<C
L2 -

When p > 2, aduality argument would not give us the desired results as in Proposition 4.33
(3) and Proposition 4.34 (3). However, we are able to derive a reverse Holder type inequality
for Ve~'L f, and then use the L> — L? boundedness of (13;¢~*);~0 to obtain the L? — LP
boundedness of (+/7Ve 'L),- . Note that this approach is entirely different from the existing
proof (see e.g. [1] chapter 4), as the latter relies on the boundedness of the coefficients and
does not work for BMO coefficients.

Proposition 4.38 1. (/1Ve™'L),.q is L? — L? bounded for any 2 < p < 2 + €| for some
€1 = €1(Ag, Ag,n) > 0.

2. (J1Ve LY, g satisfies the L*> — LP off-diagonal estimates for any 2 < p < 2 + €},
where €1 is as in (1).

Proof Let f € .7(R™),andletu(x, t) = e~'L f(x). Then u satisfies the equation o;u+Lu =
0 in L2. That is, for any w € Wl’z(R"),

/ A(x)Vu(x,t) - Vw(x)dx = —/ oru(x, Hw(x)dx, VYt > 0.
R® R~

Fix ¢ > O and fix acube Q C R"” withI(Q) = pg, where py is to be determined. Let xg € 3Q
and let 0 < p < min {% dist(xg, 3(3Q)), po}. Let Q;(x) denote the cube centered at x with
side length s. Choose ¢ € Cg(]R"), with0 < ¢ < 1,9 =11in Q,(x0), suppp C Q%p(xo),

and |Vo| < %.
Letw(x) = (u(x,t) —c) (pz(x), where ¢ = JCsz(xo) u(x, t)dx. Then

/ A Vu(x, 1) -V ((u(x, 1) — o) (x)) dx = —/ Bu(x, 1) (u(x, 1) — ) p*(x)dx.
n RY(

We have

/ AVu -V ((u— c)(pz) dx = / ASVu - Vug’dx + 2/ A*Vu - Vo ((u — c)p)dx
n n ]Rn

Ao
> 2 |Vu|2¢2—c/ lu —c|* |Vol|?
2 R}l ]Rn

k
> 20 |Vu|2—C,o’2/ lu—c|?.
2 Jo,t0) 03,00

To deal with fR,, A*Nu-vV ((u — c)<p2) dx, we introduce another bump function n € Cg R™)
withO<n<1,p=1on Q%p(xo), suppn C Q2,(x0), and [Vny| S %. Then we have
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A'Nu - V(> (u — ¢)dx

n

[ A9 (- 0rn?) - v

/ A*Vu -V ((u— c)(pz) dx =
]Rn

o

N =

By Proposition 2.6,

IA

ClIVeliLee [ —=nllip2 IV (= cml 2

/ ANu -V ((u — c)goz) dx

AQ
n IVul? n?dx + C | Vol / lu — c|® ndx
Rr R»

+C||V¢||Loo/ lu — c|? |Vn|* dx

RVI

A

< 20 |Vu|2dx+Cp72/ Iu—clzdx.
02, (x0) 02, (x0)

For f]R” ou(x,t) (u(x,t) —c) (pz(x)dx, we use Cauchy-Schwarz inequality to get

‘ / dux, 1) (ux, 1) — ¢) > (x)dx
RH
1 1
pr/ |3zu|2<,02dx+7,0_2/ i — e gdx
2 R’l 2 Rﬂ
1 1
< fpg/ |8tu|2dx + 7/0—2/ |u —clzdx.
277 J0spx0) 2 03(x0)

Combining these estimates, we obtain

=

AQ
2 Jo,x0

C 2 2
<= |u—c|2dx+—°/ |W|2dx+p—°/ |0,u|? dx.
P~ J Q2p(x0) 4 02y (x0) 2 025 (x0)

The Sobolev-Poincaré inequality gives

][ |Vu|2 dx
Q,o(XO)
n+2

20\ " 1 2 2 2
<C |Vu|n+2 + = [Vul®dx + Cpg |0;ul” dx.
02, (x0) 2 J02,(x0) 03,(x0)

Then by Lemma A.1, there is some €] = €1 (Ao, Ag, n) > 0, such that forall p € [2,2+¢],

(o) <l () )

p/2
/|W|de5(:pg”yp </ |Vu|2> +/ lpod;u|? dx. (4.39)
9] 20 20

|Vu|? dx

that is,
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Decompose R” into a union of disjoint cubes R" = I_I?'; 9 with each Q; having side
length po. For each Q;, applying (4.39) and then summing in j, one has

IVullLogny < Cog " IVl 2y + C lo0dullon . ¥ P € 2,2+l
Choosing po = /1 gives
ad

Then by the L? boundedness of (v/f Ve L),. g and the L>— L boundedness of (13;¢~%);~0,
we obtain

”\/fVe_’LfH“ <crFflp, VYpel2+al fes®.

< Ct 72
Ly —

Vivu| L+ Clidully, Ypel22+el

Thus (1) follows from a standard limiting argument.
(2) can be proved using the L? off-diagonal estimates and the L? — L>+¢! boundedness
of (v/tVe™L),., and the Riesz-Thorin interpolation theorem. m]

4.3 LP Theory for the square root

Since L is an m-accretive operator, there is a unique m-accretive square root L'/2 such that

L'2LV2 =L in D(L). (4.40)
Also, L'/? is m-sectorial with the numerical range contained in the sector |arg&| <
Z. And D(L) is a core of L'/, ie. {(u, L'/?u):u € D(L)} is dense in the graph
{u, L'?u) : u € D(L'/?)} (see [15] p.281 for a proof for these facts).

Our goal in this section is to prove the L? bounds for the square root.
Many formulas can be used to compute L!/2. The one we are going to use is

L'2f =g=1/2 /oo e—fLLfﬁ (4.41)
B 0 Vi '

Observe that the integral converges in L? when f € D(L). Since for f € D(L), Lf € L?,
then by the L? boundedness of the semigroup, fol e tLLf % converges. And the L? bound
of (t3,e~'%),~¢ implies that foo ”LLf— converges in L.

The determination of the domain of the square root of L has become known as the
Kato square root problem. It has been shown by Auscher, Hofmann, Lacey, McIntosh,
and Tchamitchian [2] that for a uniformly complex elliptic operator L = — div(AV) with
bounded measurable coefficients, one has in all dimensions

1LY £ 2 = IV £l (4.42)

and the domain of L!'/? is W!2, which was known as the Kato’s conjecture. Recently,
Escauriaza and Hofmann ([5]) extended the result to the same kind of operators that we are
interested in, that is, operators with a BMO anti-symmetric part. Note that although they only
showed one side of (4.42), that is

1LY £ 2 SUVFlle (4.43)

the other direction follows from a duality argument. In fact, note that the same argument
applies to L* so one has

1L f] 2 SV L2 (4.44)
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It turns out that (4.43) and (4.44) are enough:

Lemma 4.45 [f (4.43) holds for all f € D(L), and (4.44) holds for all f € D(L*). Then
VAl SIL2f s VFew!h? (4.46)
And the domain ole/2 is WL2(R™),

Proof We first show that W!2 ¢ D(L'/2). Since D(L) is dense in W12, for any u € wh2,
there are {u;} C D(L) such that uy — u in W2, Then by (4.43), LY2(uy — “J')”LZ <
HV(uk — uj)HLQ. This shows that {Ll/zuk} is Cauchy in L2, Suppose LYy, - v e L%
Since L'/2 is closed, we have L'/2y = v, and u € D(L'/?).

Now we show (4.46) holds. Let f € ./ (R"). Let g € ./(R") with ||g||;2 < 1. For any
8 > 0, define hs := (L* +81)~!(—divg) € D(L*). That is,

5/ hmdx+/ A*Vhs - Vwdx = —/ divgwdx VYwe WH2([R"). (4.47)
Letting w = h;s and taking real parts of (4.47), then ellipticity and Young’s inequality give

5 2 AQ 2 2
lhs|*dx + =— | |Vhsl*dx <C | |g|*dx <C. (4.48)
n 2 Rn Rn
By writing
(Vf.g) =—(f.divg) = (f, (L* +8Dhs) = (f, (L)*(L*)?hs) + 8(f, hs)
= (L2 £, (L' hs) + 8(f, hs),
we get that

Vool < LYV 1| 2 [ 2hs] o+ 8112 lhsll 2
SNLY2 £ 2 Vsl 2 + 811 £l 2 ksl 2
S e+ 821 N2 s

where we have used (4.44) in the second inequality, and (4.48) in the last inequality. There-
fore,

IVAllz = sup (VLIS |LY2f] 2 +8V2 07N
ge.s (R")
llgll;2 =<1

Letting 8§ — 0, we obtain (4.46) holds forall f € .7 (R"). Since .7 (R") is dense in W12 (R"),
(4.46) holds for all f € W-2(R"), which contains the domain of L.
Finally, we show D(Ll/z) c W2, and thus proves D(Ll/z) = W2, To this end, let
u € D(L'?). Since D(L) is a core of L'/, there exist {u,} C D(L) such that u,, — u in
L2, and LY?(u,) - LY?u in L?. Since
IV Gun = w2 S JLY? = ) | 12

{u,} is a Cauchy sequence in W12, This implies u € W12, O

From the Kato’s estimate (4.43) one can see that L!/2 can be extended to the homogeneous
Sobolev space W2, In particular, L'/? extends to an isomorphism from W!-? to L2 and

g=L"2L712¢ vgel? (4.49)
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In fact, by (4.46), L'/? is one-to-one. So it suffices to justify that the range of L'/ is the
whole L2, To this end, we first show that the range of L is dense in L2,

Lemma 4.50 The range of L is dense in L*.
Proof Let g € L?. Forany § > 0, let g5 € . (R") such that ||gs — gl;2 < 8. Define
fO = (L +egs e D).

We claim that ” L fe(s) —g HL2 < C§ when € is sufficiently small. And this would complete

the proof of the lemma.
We write

Lf® —g=L(L+eD g —g=gs —e(L +eD) g5 — g,

and then
HLfgf” - g’ L= les— gl el L +enT e <s+e|L+enTe]. @sD
We have
o0
(L+el) gy = /0 1D (g3 dr,
and thus
1 o L
l@renTaslys < [ e et

Fix any 1 < p < 2, then by the LP — L? bound of the semigroup, we obtain
-1 * —te —2
IL+en~gs] 2 S ) ¢ 177 |lgslipp dt
7 o0 p 7
st [T Rarigi, st
0

By choosing e sufficiently small, this and (4.51) imply that H Lf® gHL2 < 25.Since s > 0

is arbitrary, it proves that the range of L is dense in L?. O

Remark 4.52 By a similar argument and interpolation, one can show that the range of L is
dense in L?, forany 1 < p < oo.

Corollary 4.53 The range of L'/* acting on W'2 is L.

Proof Since L'/2L'/? = Lin D(L), L'/?> maps D(L)into D(L'/?) = W12 and L'/>(W12)
contains the range of L. So the range of L!/? acting on W2 is dense in L?. Extending L'/?
to W12, we claim that L'/? has closed range in L2. To see this, suppose {Ll/zf,,} is a
Cauchy sequence in L? with lim, .o, L'?f, = y € L?. By (4.46), |V(fy — fu)ll ;2 <
ILY2(fu = fu)| 2. which implies that { f,,} is Cauchy in W!2. So f, — f € W!2. Then
we have

Iy~ 221 = = 2 s 2 G = ]
<e+IV(fu — fm)llL2 < 2e

for n sufficiently large. This implies that y = L'/2 , and thus the range of L'/2 is closed. 0
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A consequence of D(L'/?) = WL2(R") is the following representation formula

Lemma4.54 If f, h € W'2 then

(@HV2f,LV?h) = / AV f - Vh.

n

Proof For f, h € W2, L'/?h and (L*)'/? f belong to L%. So both sides of the equality
are well-defined (we use Proposition 2.2 for the right-hand side). Since the domain of L is
dense in W'-2 and thus dense in W2, it suffices to show the equality holds for & € D(L)
and f € W'2. By (4.40),

(@H'2f,LY2h) = (f. L'2LY2h) = (f. Lh),
which equals to fR,, V f - AVh by construction of L. O

Another implication of (4.46) and (4.49) is the L? boundedness of VL~!/2, the Riesz
transform associqted to L. In fact, since L'/ is an isomorphism from wh2to L2, letting
f:=L"Y2g € W'2 in (4.46) one obtains

VL= ,> Slgll. Vg e L (4.55)

Note that by the formula (4.41), we immediately get the following formula for L~!/2

o dt
L712g = 71_1/2/ e tg=  VgeR(L).
0

N

Lemma4.56 Let n > 3, and let 2* = nzT”z Let 1 < p < oo and p # 2. Then for all
gelL’NLP,

L™ 12g =712 /oo e—’Lgﬁ (4.57)
0 NG

is valid and converges in L? + L% if p # 2*, and in L* + LP~€ if p = 2*, where € > 0 is
arbitrarily small.

Proof Let g € L> N LP, and write

o dt ! dt *© dt
eftLg—: eill‘g——l—/ eftLg— =14+11.
/o Vi Jo Vi Vi
We first consider 1 < p < 2. By the L? boundedness of the semigroup, / converges in L?
norm. For /1, note that we have

|5

which is a consequence of the LP — L? bound of (/7Ve L), and Sobolev embedding.
So the integral converges in L? + L2 norm.
For p > 2, we consider the following cases.

I+y,
St 7 gl (4.58)

2"

s[vets

L

. p > 2*. By the L% bound of (e ) s-0, 70,2 S llgll2r < Ngllz2nze, and thus 7
converges in LY. 11 converges in L? because of the L? — L? boundedness of (e ~"L),-¢.

I4+yp
Note that p > 2* gives y,, > 1, and thus f]°° ~10dt < oo.
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2. 2 < p < 2* For I, we use the L? — L% boundedness of the semigroup to get

1 }/],2*+1
1] 2+ 5/ 17T de gl Slglee s
0

where we have used yo+ = %— ";2 < 1.Thatis, I converges in LY Let P = % be the

reverse Sobolev exponent of p. Then by Sobolev embedding and L”* — L? boundedness
of (\/1Ve™L),.¢ (note that P« < 2), one gets

Je7%s]

which yields 77 converges in L?.

3. p = 2*. One can see I converges in L% from the L2" boundedness of (e7'L),~¢.For I 1,
the Sobolev embedding and L(P=9)+ — 1.2 poundedness of (+/7Ve L), imply that 117
converges in LP~¢, for arbitrary small € > 0.

I+y

P2
< (Ve 'k H St 2
S|vette| . s gz

Lr

Now it remains to show that the equality (4.57) holds forany g € L>NL”. By Lemma 4.50
and the remark after it, R(L) contains a dense subset of L2 N LP. Therefore, there exists
{gn} C R(L) N LP such that g, — g € L> N LP. Then

L’I/Qg,l — 712 /00 e*’Lgnﬂ-
0 Ji

So from the convergence argument above, one can see that {L’l/ e, } is a Cauchy sequence

inL?+ L% if p # 2*. Suppose L~'/2g, — f € L? + L?". Since L'/? is an isomorphism
from W12 to L%, L~1/2g is well-defined. We compute

”L_l/zg - f”LP+L2* = ”L_l/zg — L7, ||LP+L2* + ”L_l/zg" - f||LP+L2*
<272 = L7 gu]l o + |L7 g0 = S Loy

And by Sobolev embedding and (4.55),
272 — L7282 S |VLT2 (80 = )] 12 S llgn — g2

Thus, we have proved that L~'/?g = f. When p = 2*, {L™"/?g, } is a Cauchy sequence in
LP~¢ + L7 and a similar argument gives the same result. m}

Lemma4.59 Letn =2.Let1 < p < ooand p # 2. Thenforallg € L>NLP,

L—I/Zg — 12 /00 e_tLgﬂ
0 NG

is valid and converges in LP (R?) + BM O (R?).

Proof As in the proof of Lemma 4.56, we let g € L? N L? and write

[ty [ ot

When 1 < p < 2, the same argument in the proof of Lemma 4.56 for I carries over to the
2-d setting and shows that / converges in L”(R?). By replacing L2" with BM O in (4.58),
one gets I1 converges in BM O (R?).
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When p > 2, the L” — L® boundedness of the semigroup gives

1
(RAIPRS 5/ r
0

where we have used y 00 = % < 1. This implies that I converges in L°°, and thus in BM O.

Slglpr s

IT converges in L? because of the Sobolev embedding and the LP* — L? boundedness of

(V1Ve Ly, . Note that p, = ﬁ <2.

We have proved that for any g € L> N L7, foo ‘tLgf} converges in L” + BM O, and

it remains to show the improper integral equals to L~!/2g. To see this, one only needs to

replace L% with BM O in the corresponding proof of Lemma 4.56. O

Corollary 4.60 We have the following representation for the Riesz transform:

(VL™ 127 v)=m" 1/211m/ / _”‘f—
forall f € L>NL?, and for all C"- valued v € Co°.

Proof Since we have observed in Lemma 4.56 and 4.59 that the improper integral defining
L~1/2 f convergesin L + L% orin LP=¢ + L2 if p = 2*, orin L” + BMO if n = 2, and
since div v is compactly supported and belongs to every L?, and to the Hardy space H', we
can write

7'/ (VL_I/zf, V) :nl/z/ VL_I/zf de——rrl/z/ _l/zf divvdx

=—1i -tk d dx =1 Ve 'L f Vdx—
Egl})/”/ f vvdx 1m//ne fvx\[
dt
=1l Ve 'L *d— //v*’L Vdx—
E;rrb/e/)]e f vdx + Ve fvxﬁ
1

=lin%)/ / Ve 'L de+// e 'Ly de

€—> n n

:611%// —’Lf 4.61)

where we have used the L? — L2 bound (or the L2 —LP bound if p > 2) of (+/tVe '),.0, s0
the second improper integral converges, and we can then exchange the order of integration.
O

We now show that the limit can be taken inside the integral in Corollary 4.60 and thus we
have the following formula for the Riesz transform associated to L:

Proposition 4.62 Let 1 < p < oo and p # 2, then
1 [® Ve llf

N/ NG

Proof By Corollary 4.60, it suffices to show that for f € L2 N LP,

VL™'2(f) = —JLdar, VfelL’nL’.

0y —tL
F(f) = /1 %dt is a Cauchy sequence in L?(R"). (4.63)
X
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By the MclIntosh-Yagi theorem ([19] Theorem 1), we have

A

which implies that for any € > 0, there exists 6o = §(f, €) > 0 such that

/L

Set Ny > 1 so that Nio < 80, and choose m > k > Ny. We write

_ 2 dxdt
(L) et S SNy, VS € LR,

2 dxdt
(L) /4L f’ XT <é (4.64)

v —th L2 —sz
—1/2
Fu(f) = Felf) = / = [t
Since VL~1/2 is bounded on L2,
1 L1/2, sz
| Fin () — Fe()llp2 < C
m J L2
T L1/2p—tL
=C sup eifdt, gl
gel? gl o<1 | \/ 5 Vi

We compute

1

1
£ LY2emh f 38 RV .
s c J _ L /2 —tL)2 o —tL*]2
( . NG dt, g _A (L e f.,e g)dt

m

‘ -
%‘ —_
~ ~

O

(L1/4e—tL/2f’ (L*)1/4e—tL*/2g> dt

~ | —

((tL)1/4 —tL/Zf (tLH)V4e —tL*/2 )d '

n

Then by Cauchy-Schwartz, the McIntosh-Yagi theorem and (4.64), we obtain

1
b L2t

< g eifdn g)
il NG

f 2axar\' [
1/4 —tL)2 X
5(// () etk g 2 ) (//
1/2
2 dxdt
(1) e 1] "7) lgllz2 < Ce.

=<(f L

This implies that for any m > k > No, |Fu(f) — Fe(f)ll2 < Ce, that is, {Fx(f)} is
Cauchy in L2. O

12
w1/4 —grr |? dxdt
(L) et g

We shall use this representation of the Riesz transform to obtain the L” boundedness of
the square root operator.

Lemma4.65 To show that (L)' f|,, SNV fllpe. f € WhP, with p > 1, it suffices to
show

|V, Slgll,y VYgelL*nL?. (4.66)
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Proof Let f € ./(R").

[@HY2 ), = sup [(LH'2f.g)| = sup [((LHY2f. LV2L72g)]|
geL2nL?’ geL2nL?
lgll, r <1 lgll, ,y <1
— sup |((L*)1/2f’L1/2h)‘
geLl?nL?
gl <1

where i = L~!/2g. Then by Lemma 4.54 and Proposition 2.2

(@2, L'h)| = '/ vf- AVh‘ SUVAlL VL8]
]Rn
Therefore, (4.66) gives
ILHY2f),, S sup IVFI gl SIVElL  YfeS R, (4.67)
gel?nL?

gl =<1

Since.,V(R") is dense in W17, (L*)!/2 can be extended to W7 and (4.67) holds for all
fewhr, O

Therefore, to prove H (L*)l/zf”“ S|V Sl for p > 2, it suffices to show
|vL="g|,» Sllglyr  VgeL*nLP, (4.68)

where pg € [1, p’). This is because L2N LP is dense in L2 N L?'. In order to prove (4.68),
we show that the Riesz transform is of weak type (po, po), and then the strong type (p, p)
bound follows from interpolation with the strong type (2,2) bound (4.55).

Proposition 4.69 Let pg € (1,2). Then
VL] oy SlIgllpr  YgeLP L
As a consequence, forany 1 < p < 2,
VL™ ¢],, S gl VeeLPnL?

Proposition 4.69 can be proved exactly as in [1] (p.43-44) and its proof is thus omitted.
The main ingredients in the proof are the Riesz transform representation formula (Proposi-
tion 4.62), the L0 — L? off-diagonal estimates for (v/f Ve L), o, and the following lemma.

Lemma4.70 ([1] Theorem 2.1) Let po € [1, 2). Suppose that T is a sublinear operator of
strong type (2,2), and let Ay, r > 0, be a family of linear operators acting on L?. For a ball
B, let C\(B) = 4B, C;(B) =2/*'B\2/Bif j > 2.

Assume for j > 2

I A 1/p
T3] Jo |70~ A 5g(1)<®/3|f|’]°) 7

and for j > 1

1 N\ 1 1/po
<|2/JFIB|/C“ ® |Ar(B)f| ) <g() <m/B |f|p0) 4.72)
J
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for all ball B with radius r(B) and all f supported in B. If ¥ = E‘,-g(j)Z”j < 00, then T
is of weak type (po, po), with a bound depending only on the strong type (2, 2) bound of T,
po and X.

We now turn to the case when p < 2 in the L? estimate of the square root. Due to
Lemma 4.65, to show |(L*)1/2fHL,, S IIVflle for 1 < p < 2, it suffices to show

|vL='2¢|,» < ligll,y forany g € L2N LY.

Proposition 4.73 Let po € (2,2 + €1), where € is as in Proposition 4.38. Then for any
2<p<po

VL], S gl VeeLPNL?
The main ingredients of the proof are the Riesz transform representation formula we
obtained in Proposition 4.62, the L2 — LPo off-diagonal estimate for (/1 Ve™ LY,~0, which

gives the upper range 2 + € of p, and the following lemma. The proof of Proposition 4.73
is contained in [1] (p.48-50) and is thus omitted.

Lemma 4.74 ([1] Theorem 2.2) Let po € (2, oo]. Suppose that T is sublinear operator acting
on L?, and let A,, r > 0, be a family of linear operators acting on L*. Assume

1 12
(m/B\T(I—Ar(B))ff) <c MU o),

and

1 0 1/po N

forall f € L?, all ball B with radius r(B) and all y € B.If2 < p < poand Tf € L?
when f € LP N L?, then T is strong type (p, p). More precisely, for all f € LP N L2,

ITfllpe <cllfliee

where c depends only on n, p, po and C.

We observe that the arguments above all applies to the adjoint operator L*. So we have
obtained

Proposition 4.75 Let 1+ ﬁ < p < oo, where € is as in Proposition 4.38. Let | € whe.
Then

I 21 SUVFIe . LY f ) SVl

We remark that the L” estimate for the square root is actually valid for all p € (1, 00).
That is, we have |L'Y2f||,, S IV fll.» for 1 < p < oo, f € WP, This can be obtained
by the weak type (1,1) estimate

1LY £ e SV Ll (4.76)

and then by Marcinkiewicz interpolation. (4.76) can be derived using a Calderon-Zygmund
decomposition for Sobolev functions. One can find the details in [1] Lemma 5.13. There,
the result is carefully relied on dimension, as well as the lower range of p in the L? — L?
off-diagonal estimate for the semigroup. In our setting, we do not need those discussions
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mainly because the Gaussian estimate (4.1) yields the LP? — L? off-diagonal estimate for
(e~ tEyopforall1 < p < 2.

We end this section by summarizing our results. Note that by writing Vf =
VL2 (Ll/ 2f ) the L? estimate for the Riesz transform associated to L yields the invert-
ibility property of the square root on L? spaces.

Theorem4.77 Let n > 2, €| be as in Proposition 4.38, and let f € WL-P(R™). Then
ILV2 £ SUVflips for 1 < p < oo  And |V flls S |LV2f|, for1 < p <2+l

Furthermore, L'/? extends to an isomorphism from WP onto LP when 1 < p<2+e€.

5 LP estimates for square functions

Proposition 5.1 Forany f € L?,

00 2
L[|t pl s 101, (52)

where the implicit constant depends on Ly, Ao and n. By a change of variable, we have

o 2 2 dtdx
/ / L2 f 00| S (53)
nJ0

Ik

Actually, the converse of (5.4) is also true. We have

1712 =—/000%H6"Lf’

We postpone its proof to the end. Using Lemma A.2, one has

Proof We first prove

—tL 2 < 2
(Ve @[ dtdx S 1F o, - (5.4)

2
2 dt. (5.5)

m/ AVe L . VeIl f = % (Le*’Lf, e*’Lf> = (e L e ) i

1d

-3l

2
2dt L2’

Therefore,

m —
112, =2 / n / AVe ' £ Ve T fdxd,
O n

and (5.4) follows from ellipticity.
Using | L'72f|| 2 S IV £ll2. (5.4) gives

/OO/ I(Ll/Ze—th)(x)‘zdxdtS/OO/
0 " 0 "

Proof of (5.5). The only thing that needs clarification is

Vet [ dxdt < 1112
e f X tN ”f||L2(R")

lim He_’l‘f‘
—00

2 2 mn
. 0, vV feL“(R"). (5.6)
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Fix any f € L2(R"). For any & > 0, choose ¢, € CS°(R") such that

g, Vt>0.

lgellzz < 1f12+1 and [ (F = 0| , <

And suppose supp ¢ C Q.. Let p € (1,2). Then the L” boundedness of () gives

2-p
<Cllgellr = Cl1Qel 2 llgelly2 -

/L
e
” el Ly

And the L? — L?" boundedness of (e ™)-0 gives

i 74
[ o], < Fhgelsa
Therefore, we have
12 12 2p Yy
—tL —tL —tL ——
< < 4p 4
le 0|, = e ee] )l 0], =l = F (1712 +1).

Then there is a 5 = tp(e) > 0, such that for any ¢ > 1y, e“Lgo(S ||L2 < ¢, and thus
e~ f] > < 2e. This proves (5.6). u]

() reemrr )™
e _
0 t

foralll < p < oo, and F € W2\ WP, Equivalently,

00 2 de\1/2
(] foer )
0 t

Proof We claim that to obtain (5.8), it suffices to show
00 ) 12
(/ ‘Ll/ze*’Lf( dt)
0

In fact, by letting f = L'/2F in (5.10), (5.8) follows from the commutativity of ¢~"’L and
L2, the LP? estimate for the square root, and a change of variables. The square function
1/2
o0 p1/2o—tL 2ah‘ is defined to be gz (f) in [1], and it has been proved to be L?
0

bounded by || f||;» with the range of p € (1, co) same as the one of boundedness of the
semigroup, up to endpoints. In other words, (5.10) holds for 1 < p < oo. (5.10) can be
proved ([1] p.78-80) using Lemma 4.70 for p < 2 and Lemma 4.74 for p > 2. O

Proposition 5.7

<CpIVFlLr@mm (5.8)
LP(RM)

< CplIVFlLrn - (5.9)
LP(R")

<Cplifll,y Yl<p<oo, felL?*NLP.

Lp
(5.10)

Remark5.11 For 2 < p < o0, (5.8) can be alternatively proved by showing that

2
2 . . . .
tLe "L F(x) @ is a Carleson measure in Ri“, and then using tent space interpo-

—dxtd’ is a

lation, as well as local estimates for Bte’tzLF(x). To show that ‘tLe”zLF(x)‘2

Carleson measure one needs the Gaussian decay estimate for the kernel of ;e L (see (4.4)).

This method is used in [8] to show (5.8) for p > 2 and for L being an elliptic operator with
L coefficients.

512 172

We now derive L? estimates for the functional ( fooo IIZVLe_’ L #) .
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Proposition5.12 Let 1 < p < 2 + €1, where €] is as in Proposition 4.38. And let F €
W2 A WL, Then
_ar 2diN1/2
(/ [PvLetE| S < Cp IVFllLon - (5.13)
0 t LP(R")

Or equivalently,

oo 2di\1/2
(/ ‘Na,e*ﬂLF 7)
0 t

Proof We shall establish the following

<CplIVFlLrmny-

LP(R")

2 diN\1/2
(e )

<Cp ||f||Lp(Rn) (5.14)
LP (R

for] < p <2+4e€and f € L2 N LP. Once this is proved, setting f = L'/2F € L2NLP
and then using

IL'2F|,, SIVFlw., VYi<p<oo

one obtains (5.13).

We now prove (5.14) by cases.

Case 1: p = 2. We write e L = e_’ZL/Ze_’ZL/Z, and use the fact that 1Ve—""L/2 is
bounded on L%(R"), uniformly in ¢ (by (4.6)), to obtain

© 2 2 dt e
/ / ‘tZVL‘/Ze*f Lf’ —dx:/ t/
nJ0o t 0 n
o0
O n
o0 P 2
=c// t‘Ll/ze_’ L/Zf‘ ddx.
n O

*© 1/2 —1*L/2 2 < 2
/,,/0 Z‘L e f‘ dtdx ~ ||f”L2(R")’

which finishes the proof of L? boundedness.

Case 2: 2 < p < 2 + €. We exploit Lemma 4.74 in this case. Note that Lemma 4.74
requires 7f € LP when f € L? N L? and the purpose of the statement is to bound the
L? norm of Tf. In practice, we would apply this lemma to suitable approximation of the
operator 7" and obtain uniform L? bounds. The uniformity of the bounds allows a limiting
argument to deduce L” boundedness of T'.

With this in mind, we define

G(f) = (/0 ’, vI1/2, _,2Lf‘2 dt>1/2’

and define G, to be the approximation of G

00 1/2
Go(f) = </ ‘tzvy/zeﬂzl‘f‘z ?> .

tVe*’ZL/Z(L‘/Ze*’ZL/Zf)’2 dxdt

Ll/ze—“/zf‘zdxdr

By Proposition 5.2,
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We shall first show G.(f) € L? for f € LP N L2, and then derive the uniform estimates for
G:(f). Namely,

(I;I/
(1,

uniformly in ¢, for any ball B with radius r, and for some integer m large enough. We
shall prove (5.16) with po = 2 + €;. Then by Lemma 4.74, |Ge ()l < NI fllpp for
all 2 < p < po, uniformly in &. Letting ¢ — 0, one obtains [|Gfl;, < || f]» for all
2 < p < po.

Proof of G.(f) € L? for f € LP N L2,

We rewrite G (f) to be

oo 1/2
Go(f) = (/2 ‘NLl/zeszf‘z ?) |

By Minkowski’s inequality,

1/2
Gell — e hy" f\) SMAFPNy VyeB (515

and

1/po
Ge(e "sz>‘> SMAG PPy YyeB  (516)

2/p

1Ge ()0 < {/Oo (/R (z‘le/zeth‘z>P/2dx> "
(L o) ]

0 2/p 12
([ favernumenng o) af ™
&2 n

We first use the L2 — L? bounds for (VtVe L), o, then (4.43), and finally the L? bounds
for (v/1Ve 'L),. ¢ to obtain

16Dl S ( / o / :
(L L

1/2
< (/ a0 ‘dr) 1/ = Cep I f N2
&

1/2
L1/2€—tL/2f’2 dxdt)

172
Ve L2 f’ dxdt)

Proof of (5.16)
Since the domain of e 'L is L2, the operators commute for f € L?:

VL1/26712L(efr2Lf) _ VefrzLLl/Zeftsz.

By Minkowski inequality,

2

Po 2

[é/ (/‘”‘tzwl/ze_tu(e_rnf)‘zﬂ) zdx]po
2

s/ /‘r VL2 L dx)"‘)ﬂ

e |B| t
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:/)|m/PVfw“mfﬂ”

Using the L2 — L7 off-diagonal estimates for (v/7 Ve "), -, as well as Poincaré inequality,
one can show

1/‘ g PP ‘ 1 S\ 172
e [ ve )T = e (e [ VP
(|B| B ; |2/+1B]| Jai+1p
with } j=18(j) < co. By this and Holder inequality we can bound (5.17) by
o 1 2o 1 2, 12 1/2y2dt
(ot [ fpvnere a4
/g izg(j)<|2f+13| 2/+1B' ¢ US| dx t
2 dt
2y 12, 1L ’ ar
<C/ Zg(J)‘zﬁ—lB‘ 2,+1B’ VLTTe fld

& ]>1
2 dt
/ / 2vL2e L f S
j>1 ’21"'13’ 2j+1 B t

<CMIGfH'*(y) VyeB. (5.18)

Po o dt
dx) = (5.17)

Proof of (5.15)
Now write f =3, fj, where

fi= = (Nap)lyjrigoip J=2,
Ji=(f = (ap)l4p.

Then

12
<|119|/ G =y f’) (u:n/

For fi, the L? bound of G and that of (I — e”zL)’" (the latter is a consequence of the
holomorphic functional calculus on L?) imply

1 —r2L\m 12 1 2 12
(7 Lloa=eromal ) <c (g [ar)

12
-c (i/ |f|2> < CMIFP2(y) Yy eB.
|B| Jap

12
Goll — ey 1) )

For f; with j > 2, let ¢(2) = tzl/ze_’zz(l - e—r2z)m. Then (see e.g. [1] section 3.2)
tLl/ze—tzL(l — e—rzL)m =o(L) :/ E_ZLﬂJr(Z)dZ +/ E_ZLn,(z)dz,
Iy I
where I'; is the half-ray Rte™* G-0)

1
ne(2) = 7/ ip()de, 2 e Ik,
Tl Vi
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with y being the half-ray R*e®" and0 < wg < 0 < v < 7, where ay is as in Proposition
(4.9). One can show

2m

), zelk, (5.19)

Ct
)| < inf (1,
@ = e M

whose proof is postponed to the end. Then,

1
i,
¢
-,
<C/OOL
~ Jo |B]
¢
),

=1, +1_. (5.20)

Ge(I —e " Ly f; \zdx

2
Ve o (2)dzfj + / Ve *n_(2)dzfj| dxdi
I

2

ry

Ve iy, (2)dzfj| dxdt

Iy
2
dxdt

Ve’ZLnf(z)dzfj
r

By Minkowski inequality and (5.19),

e [l [ (oo o)
5/000“;{/&(/3 t 2m )1/2|dz|}2dt

;
|2l (|2l +12)3/2 (Iz] + )"

Since z € I'y = Rte' (=9 and 6 < wp, we can apply the L? — L? off-diagonal estimates

for (ﬁve_d)zezﬂ ) and bound the expression above by

€Xz

2
VzVe it fil dx

/OO t (/ _c? ¢ F2m y ||| ” )
- P zl || fi dt (5.21)
o IBI\Jr, 1212 (2] + 12)372 (2] + 12)m ez

We use the following lemma to estimate (5.21)

Lemma5.22 ([1] Lemma 5.5) Let y,« > 0, m > 0 be fixed parameters, and ¢ a positive
constant. For some C independent of j € N, r,t > 0, the integral

© c4lr? 1 ta r2m
1 :/ e T —s ds
0 Y2 (s + o)1t (s +1)m

satisfies the estimate

C
wmny "G
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Lettingy = 1,0 = %, and ¢ replaced by 72 in the lemma, we obtain

o) ¢ 2 472 1
520< [ ——— inf ,7’72;”)0”7 2,
( )N/o (4im(27r))? n <(4Jr2) ( 2 ) IB] 2j+13|f| x
ing—2jm [ 1 2 42 1
52]n472]m‘/ , inf( __( r )2m>dt ‘ |f|2dx
o @ry 42’ a2 |2/+1B| Jaiv1p

S22 f2(y) Yy eB.

I_ can be estimated similarly. Choose 4m > n, we get

i ),
|Bl Jp

which proves (5.15).
Case 3: 1 < p < 2. We use Lemma 4.70 to prove (5.13) holds for 1 < p < 2. Define G

as before. Then by letting 7 = Gand A, =1 — (I — e”zL)’" in Lemma 4.70, it suffices to
show the following: let 1 < pp < 2,

1 g — ety " o (5 /Ifl"")l/po for j =2
Tl —e =8\ % orj =z,
271 B Je;m) Bl /5

(5.23)

2
Gl —e Ly f|" S MIfIP(y) VyeB,

and for j > 1

(PHIIB\ /C,-(B)

for any ball B with radius r, for all f supported in B, for some integer m sufficiently large,
I <k<mand};g(j)2" < oc.

(5.24) follows directly from the L0 — L? off-diagonal estimate of (e "L);~0. We now
turn to (5.23). As in the proof of (5.15), we have

v P\ 1 /7o
@) e (g L) (5.24)

1

_ —r2 Lym 2
TG Cj(g)\g(z ey | dx

o 2
< C/o m 6 /Ier Ve *tny(z)dz f| dxdt
oy . 2
+/0 m 6 /11 Ve *"n_(z)dz f| dxdt
= I+ (5.25)

where 1+ and 1 are same as before. We only estimate /., as /_ can be estimated in a similar
manner. By Minkowski inequality and (5.19), I, is bounded up to a constant by

I Ve~
/0 |2/+1B| [ /1"+ </cj(B) Lve
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The L7 — L? off-diagonal estimates for (/zVe <L) implies that the expression

ZEE% 9
above is bounded up to a constant by

| ([ t el )
- e z Z o r.
0 |21+1B| r, |Z|(1+y,,0)/2 (Iz] + £2)3/2 (2] + £2ym LP0(B)

Applying Lemma 5.22 withy =1+ y,; and a = % this is bounded up to a constant by

7 i 2m
4—2jm(2jr)_2yp0 ”f”LPO(B) o0 t -, 2 4J 2 "
|2j+lB‘ 0o (2/r)? 4ir2° \ 2

2
< p—Jj@mtn+t2yp) (L/ |f|P0) n )
~ |B| /B

Combining this with (5.25) gives (5.23) with g(j) = 27/ ®"+3+70) And thus by choosing
m to be an integer such that 2m + y,,, > %, we obtain the desired result.

Proof of (5.19)

We only show the estimate for 7. The proof for n_ is similar.

Write £ = pe”, and z = |z] /(37 Then [e¢?| = e=Plelsin(v=0), ’e”zl‘ = e~t*peosy,

. 2 2
Since 0 <6 < v < %, ’egze_t 5‘ < =P+ for some 0 < ¢ < 1. So

o0
_ 2
It (@) < t/ p' e P+ H(pymdp,
0
where H(p) = |l - exp(—rzpei")|. Observe that H(0) = 0, H(p) < 2, and that H is a
Lipschitz function with [H]o1 < r2. So we have
H(p) < Cinf(1,7p).
Using this estimate of H, we can bound |74 (z)| by

3
1 /oop%e—cpuzmz)dp ___ ¢ /oosée—sds __cra
0 (zl +12)3/2 [y (2] +12)3/2

and by

34,.2
Crp2m /Oop%+me-cp<\z\+,z)dp _ Gl + H)r ™
0 (|Z| + t2)m+3/2

Combining the two bounds we obtain

2m

Ct
inf (1 .

[m}
We also have a similar estimate when the derivative falls on 7. But in this case, the L?
estimates hold for any 1 < p < oo:

Proposition 5.26

0 2dt 1/2
H(/ ‘tza,Le_lzLF‘ 7)
0 t

oralll < p < oo, andall F e Wh2nwher,
Je p

<CpIVFlLr@mm (5.27)
LP(R")
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Proof Let
G(f) = (/Ooo ’tza,Ll/Qe*’ZLf‘z?)l/z. (5.28)
Then by the L? bounds of the square root of L, it suffices to show
IG Iy = Cplifllpr - (5.29)

Case 1: p = 2. The argument can be copied almost verbatim from the proof in Propo-
sition 5.12. The only difference is that we would use the uniform L? boundedness of
(t3,e~""L/2),_0, rather than that of (rVe~""L/2),_,.
Case 2: p > 2. We shall apply Lemma 4.74 again. And as in the proof of Proposition 5.12,
we should derive the analog of (5.15) and (5.16) for the approximation operator G.. We omit
this limiting process here for simplicity, and only derive the analogous estimates for G.

Let po > 2. We wish to prove

1 27 . |PO 1/po 201/2
(E/B\g(e—r ) ) S MAGIPP ) VyeB.
To this end, we first claim that
2o, L2 Lo L £y = 23 L 2L Ly v f e L2, (5.30)

Then by this and Minkowski inequality,

Po 2

L vl e’
2
5/ / ‘t 9, L% ~2 L, dx)"oﬂ
o \B| t
o0

=4/ (i/ ’z3e_r2LLl/2Le_t2L e dx)p%ﬂ
o ‘BlJg t

Using the L2 —Lpo off-diagonal estimates for (e ™" 2L),>0, one can show

2/po c; / )
|B|/’ ;‘2j+18‘ 2!’+‘B|f|

with C; = Ce=¥ . So

2

1 2 B VO 2
[E/B(/ ‘t aLl/Z t L( r Lf)‘ ) dX]pO
4/002 < / ‘t3L1/2Le_’2Lf‘ ax

B = ‘21‘*'13‘ 2j+1B

1 o 2.dt
p.i/ / ‘zza,LWe—’sz‘ iy
‘ZJ'HB‘ 2+1g Jo t

SMUIGHIP)()  VyeB.

Now we prove
! ’L 2\ 2411/2
(@/B\gu—e” )’”f\) SMAfP)' Py VyeB. (53D
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Define {f;};>1 as in the proof of Proposition 5.12. The estimates for f; again follows
from the L2 bound of G and that of (I — e”zL)m. For f; with j > 2, we let p(z) =
373/2¢712(1 — ¢="°%)™  Then

1
_ ftza,Lme”zL(I _ efrzL)m -3 L1/2Lefr2L([ _ eerL)m

=<P(L)=/ e_ZLn+(z)dz+/ e *n_(2)dz,
Iy I

where 74 and I'y are defined as in the proof of Proposition 5.12. By a similar argument as
in the proof of (5.19), one can show

3 2m

In+(2)] <13 /OO p32e=P D gy ap < ct inf(1, —
~ Jo ~ (lzl + 1232 (Iz] + 2)m

).
(5.32)
Then,

1 ‘ 2L 2
— | |oa—er by
|B|/B !
| 2 dt
=4/ ﬁ/ }Z3L1/2Le—t2L(I_e—r2L)mfj‘ d
0 B
oo
—4 / L / / L @dzf; + / e n_(@)dzf;
o IBlJpl/r. r
o0
AR EL
"
oo
o[
0
By Minkowski inequality and (5.32),

S RTITAY

We use the L2 off-diagonal estimate for (¢?L),cx, . to bound the above expression by
g €2z

© 1 42 t3r2m 2dt
— e —  \|d ) ) a
/0 |B| (/p+ (2| + 12)5/2+m ldz] ”f/ ||L2 p

Applying Lemma 5.22 and letting o= %, y = 0and ¢ = ¢ there, we obtain

2
dt
dx—
1

2
dt
dx—

2
dt
dXT = I+ + I_.

eiZLﬂf(Z)dej
I

3 —zL "

2
2R
S — dx) |d|]
(z] +12)2t"

)3 (4 r2 )Zm) dt

I+~/ (7) lnf ( |B| ”‘f”Lz(ZH']B) P

4jm 4Jr2

2jn—4jm 2/ ol 00 (4],,2)2;11
< - s 7
~ |21+1B| ||f||L2(21+IB) <A (4jr2)3dt + Ajr t4m+l dt)

S2mUm M f1P)(y)  Vy e B.

I_ can be estimated similarly. Choose 4m > n, we get

1 2
o [ Jou -t s mirP o) vy es.
1Bl /&
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Therefore, (5.29) holds for all 2 < p < pg. And since pg > 2 is arbitrary, (5.29) holds for
all2 < p < 0.

Case3: 1 < p < 2. Applying Lemma 4.70 and letting 1 < pg < 2, it suffices to show (5.23)
and (5.24), where G is defined in (5.28). Note that (5.24) is independent of the operator G
and is verified in the proof of Proposition 5.12. To see (5.23), we proceed similarly as the
proof of (5.31). Using the L7° — L? off-diagonal estimate of (eZL)Zeg%_Q, we obtain

1
}2/+13| C;(B)

¥pg L(zfr)z 3r2m 2dt
< el e ———— Il 42l |
|2’“B| / /F+ (2] +12)2+m ¢

plus an integral over I with the same integrand. Applying Lemma 5.22 with y = y,,, and

o — ety g

o = %, we have

1
12718 Je,m)

2 00 2 3 j2 2m
< 4720m ) r)=2r 7”][””0(3) / inf —t . ar dt
12/+1B] Jo 4Jr2 12 t

2
113005,
|B]

2
<27 J(n+4m+2ypy) < |f|p0 " )
|B]

Choosing m to be an integer such that 2m +yp, > 5 gives (5.23). And this shows that (5.29)
holds forall 1 < p < 2.

Proof of (5.30).

We know that for any g € L2, e Lg € D(L), and 3,e " Lg € W2 = D(L"/?). The
latter follows from analyticity of the semigroup

1

_7,/ M9, + L) (g)dA,
27Tl r

lga - e*’“)'"f\2

< p=j(n+am+2ypy) . —2¥p,

3je_t2L
as taking the derivative in ¢ gives that
2t
ddje 'l = - / M 30; (M + L)~ (g)da € L2
i :

Since e "L f € D(L) ¢ D(L'/?) and that e"°L is a bounded, linear operator on L2, the
lemma implies
2oL e e fy = 2o T EL 2 (e L ). (5.33)
So
tZBILl/Ze—tzL(e—rsz) _ _2t3Le—t2L(Ll/267r2Lf)
23 LRV P L2 Ly — 03 V2L~ Lo L p (5.34)
where the last equality follows from Lemma A.3 and L'/2L1/2 = L.

_243 L1/2Le—t2Le—r2Lf — _2f3 L1/2Le—r2Le—t2Lf
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— _2;3 Ll/ze—rZLLe—ﬂLf —72 LI/Qe—rzLale—tsz
= 283e " LL2Le L (5.35)

where in the last step we have used —2tLe™"’ Ly = e’ Lf e wh? = D(L'?) and
Lemma A.3. Combining (5.33)-(5.35), we have proved (5.30). ]

A Appendix

We include some frequently used results in this appendix for reader’s convenience.

Lemma A.1 ([7] Chapter V Proposition 1.1) Let Q be a cube in R". Let g € LY1(Q), ¢ > 1,
and f € L*(Q), s > q, be two nonnegative functions. Suppose

q
][ gldx <b (7[ gdx) + ][ fldx + 9][ gldx
Or(x0) Q2R (x0) Q2r (x0) Q2r (x0)

for each xo € Q and each R < min {% dist(xg, 0 Q), Ro}, where Ry, b, 6 are constants with
b>1Ry>00<6<1Thenge Ll (Q)forpelq, q+e¢) and

loc

(o) "= (o) (o) )

for Qor C O, R < Ry, where ¢ and € are positive constants depending only on b, 6, q, n
(and s).

LemmaA.2 Supposeu,v € L ((0, T), W2 (R™)) with d,u, d,v € L? ((0, T), W=12(R™)).
Then

(i) u e C ([0, T], L*R™M);
(ii) The mapping t > |u(-, )|l L2(wny is absolutely continuous, with
d
D)2y = 2RO 1), U D) a2 i for e 1 €[0T

Asa consequence,

d .
7 @G, 1), (D) p2@ny = O, ), v, D)) 12 wiz + (0w, 1), uC, 1)) 12 iz ae.
For its proof see e.g. [6] Section 5.9.2 Theorem 3.

Lemma A.3 ([15] Chapter V, Theorem 3.35) For any bounded linear operator B on L?, if
BL = LB in D(L), then L'/*B = BL'Y? in D(LY/?).
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