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Abstract
We consider the operator L = −div(A∇), where A is an n × n matrix of real coefficients
and satisfies the ellipticity condition, with n ≥ 2. We assume that the coefficients of the
symmetric part of A are in L∞(Rn), and those of the anti-symmetric part of A only belong
to the space BMO(Rn). We create a complete narrative of the L p theory for the square

root of L and show that it satisfies the L p estimates
∥
∥
∥

√
L f

∥
∥
∥
L p

� ‖∇ f ‖L p for 1 < p <

∞, and ‖∇ f ‖L p �
∥
∥
∥

√
L f

∥
∥
∥
L p

for 1 < p < 2 + ε for some ε > 0 depending on the

ellipticity constant and the BMO semi-norm of the coefficients. Moreover, we prove the L p

estimates for some vertical square functions associated to e−t L . In another article of the
authors, these results are used to establish the solvability of the Dirichlet problem for elliptic
equation div(A(x)∇u) = 0 in the upper half-space (x, t) ∈ R

n+1+ with the boundary data in
L p(Rn, dx) for some p ∈ (1,∞).
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1 Introduction andmain results

This paper is motivated by the study of boundary value problems for elliptic operators having
a BMO anti-symmetric part. These operators arise in the study of equations with divergence-
free drift, e.g. −Δu + c · ∇u = 0 and ∂t u + c · ∇u − Δu = 0, where c is a divergence-free
vector field in Rn . Seregin, Silvestre, Šverák, and Zlatoš ([23]) discovered that the condition
div c = 0 can be used to relax the regularity assumptions on c under which one can prove the
Harnack inequality and other regularity results for solutions. It turns out that c ∈ BMO−1 in
the elliptic case, and c ∈ L∞(BMO−1) in the parabolic case are the right conditions, in the
sense that the interior regularity theory of De Giorgi, Nash, and Moser carries over to these
operators. Generalizing to elliptic or parabolic equations in divergence form, this condition is
equivalent to assuming that the matrix A can be decomposed into an L∞ elliptic symmetric
part and an unbounded anti-symmetric part in a certain function space. In the elliptic case,
the anti-symmetric part should belong to the John-Nirenberg space BMO (bounded mean
oscillation) and, in the parabolic case, to L∞(BMO). The spaceBMOplays an important role
in two ways. First, this space has the appropriate scaling properties which appear naturally
in the iterative arguments of De Giorgi-Nash-Moser. Secondly, the BMO condition on the
anti-symmetric part of the matrix allows one to define suitable weak solutions. This latter
fact is essentially due to an application of the div-curl lemma appearing in the theory of
compensated compactness, and the details can be found in [17,23].

These operators have gained much attention since [23]. In [22], the authors showed the
existence of the fundamental solution of the parabolic operator L − ∂t , and derived Gaussian
estimate for the fundamental solution. Later, Dong and Kim [4] have generalized the result
for fundamental solutions to second-order parabolic systems, under the assumption that
weak solutions of the system satisfy a certain local boundedness estimate. The investigation
into boundary value problems for elliptic operators having a BMO anti-symmetric part was
launched by the work [17]. There, the second and the fourth authors of this paper studied the
boundary behavior of weak solutions as well as the Dirichlet problem for elliptic operators
in divergence form with BMO anti-symmetric part.

In another direction, Escauriaza and thefirst author of this paper proved theKato conjecture
for elliptic operators having a BMO anti-symmetric part in [5]. To be precise, they showed
that the domain of the square root

√
L contains W 1,2(Rn), and that

∥
∥
∥

√
L f

∥
∥
∥
L2(Rn)

� ‖∇ f ‖L2(Rn) (1.1)

holds over Ẇ 1,2(Rn). Their proof does not rely on the Gaussian estimates obtained in [22].
The Kato conjecture dates back to the 60’s, when T. Kato conjectured [13,14] that an abstract
version of (1.1)might hold, for “regularly accretive operators”. The conjecture was disproved
byMcIntosh [18],who then reformulated the conjecture for divergence form elliptic operators
with complex, L∞, n × n matrix. The validity of the conjecture was established when the
heat kernel of the operator L satisfies the “Gaussian property”, first in 2 dimensions [11] and
then in all dimensions [9]. We say L satisfies the Gaussian property if the kernel Kt (x, y)
of the operator e−t L satisfies the following: for all t > 0, for some constants 0 < β,μ ≤ 1
and C ,
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|Kt (x, y)| ≤ Ct−
n
2 e− β|x−y|2

t ,

|Kt (x, y) − Kt (x + h, y)| + |Kt (x, y) − Kt (x, y + h)|
≤ Ct−

n
2

( |h|
t1/2 + |x − y|

)μ

e− β|x−y|2
t

when 2 |h| ≤ t1/2 + |x − y|. The conjecture was solved for elliptic operators in divergence
form with complex, bounded coefficients in [2], and, as we mentioned above, for operators
considered in the present paper in [5].

The L2 boundeness (1.1) naturally leads to the question about L p boundeness, p 	= 2.
Namely, if L is such that the domain of L1/2 agrees with W 1,2(Rn), how do

∥
∥L1/2 f

∥
∥
L p

and ‖∇ f ‖L p compare? It turns out that the ranges of p for
∥
∥L1/2 f

∥
∥
L p � ‖∇ f ‖L p and

‖∇ f ‖L p �
∥
∥L1/2 f

∥
∥
L p can be different. In [3], it is shown that for divergence form differ-

ential operators L = − div(A∇), where A is a matrix with complex-valued bounded entries
and satisfying a uniform ellipticity condition, if L has the Gaussian property, and that (1.1)
and its corresponding inequality for L∗ hold, then

∥
∥L1/2 f

∥
∥
L p ≤ cp ‖∇ f ‖L p ∀ 1 < p < ∞, (1.2)

‖∇ f ‖L p ≤ c′
p

∥
∥L1/2 f

∥
∥
L p ∀ 1 < p < 2 + ε, (1.3)

for some ε > 0 depends only on L . The proof relies on a non-standard factorization of
L1/2 which makes Calderón-Zygmund theory fully available. We remark that although the
Gaussian property is available for elliptic operators with a BMO anti-symmetric part [22],
the results in [3] do not apply to this setting, mainly because the decomposition used in [3]
requires the coefficients being bounded. In [1], Auscher presents the L p boundedness results
without a direct appeal to kernels of the operators. The main observation in [1] is that the
limits of the interval of exponents p ∈ [1,∞] for which the semigroup is L p bounded, and
the limits of the interval of exponents p ∈ [1,∞] for which (

√
t∇e−t L)t>0 is L p bounded,

fully describe the L p behavior of the square root operator, as well as some Littlewood-Paley-
Stein type functionals (we simply call them square functions in this paper). We record here
that the two vertical square functions studied in [1] are

gL( f )(x) =
(ˆ ∞

0

∣
∣
∣(L1/2e−t L f )(x)

∣
∣
∣

2
dt

)1/2

and

GL( f )(x) =
(ˆ ∞

0

∣
∣
∣(∇e−t L f )(x)

∣
∣
∣

2
dt

)1/2

.

For L being an elliptic operator having a BMO anti-symmetric part, the L p boundedness
for L1/2 and square functions was unknown. While this question is interesting by itself, we
are motivated also by the study of boundary value problems for these operators. Indeed, for
divergence form operators with matrix in the “block form”, that is, L = divx,t (A(x)∇x,t )

with A =
[

B 0
0ᵀ 1

]

, inequalities (1.2) and (1.3) can be thought of as a “Rellich identity”

‖∂t u‖L p ≈ ‖∇xu‖L p . The latter plays an important role in the solvability of Neumann and
regularity problem with L p data. See e.g. [12,16,24]. Even more generally, for operators
having a full (n + 1) × (n + 1) elliptic coefficients matrix A(x), tools related to the Kato
problem have been successfully used to tackle boundary value problems. In [8], for instance,
the L p estimates for some square functions similar to gL and GL form parts of the proof
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938 S. Hofmann et al.

of the L p solvability for elliptic operators with real, L∞, t-independent coefficients in the
upper-half space for p sufficiently large. However, details regarding these L p estimates are
missing, and one did not know whether these estimates are valid for elliptic operators having
a BMO anti-symmetric part.

In this paper, we create a complete narrative of the L p theory for the square root operator
(Sect. 4), and derive the L p estimates for the vertical square functions (Sect. 5). Let L =
− div(A∇) be an operator with real coefficients defined in R

n , n ≥ 2. Assume that the
symmetric part of the n × n matrix A is elliptic and L∞, and the anti-symmetric part is in
BMO(Rn). Our main results are the following:

1.
∥
∥L1/2 f

∥
∥
L p � ‖∇ f ‖L p for 1 < p < ∞, and ‖∇ f ‖L p �

∥
∥L1/2 f

∥
∥
L p for 1 < p < 2+ε1.

(Theorem 4.77)
2. we have the L p square functions estimates

∥
∥
∥
∥

( ˆ ∞

0

∣
∣
∣t Le−t2L F

∣
∣
∣

2 dt

t

)1/2
∥
∥
∥
∥
L p(Rn)

≤ Cp ‖∇F‖L p(Rn) ∀ 1 < p < ∞,

(Proposition 5.7)
∥
∥
∥
∥

(ˆ ∞

0

∣
∣
∣t2∇Le−t2L F

∣
∣
∣

2 dt

t

)1/2
∥
∥
∥
∥
L p(Rn)

≤ Cp ‖∇F‖L p(Rn) ∀ 1 < p < 2 + ε1,

(Proposition 5.12)
∥
∥
∥
∥

(ˆ ∞

0

∣
∣
∣t2∂t Le

−t2L F
∣
∣
∣

2 dt

t

)1/2
∥
∥
∥
∥
L p(Rn)

≤ Cp ‖∇F‖L p(Rn) ∀ 1 < p < ∞.

(Proposition 5.26)

In these results, ε1 > 0 depends only on the ellipticity constant and the BMO semi-norm of
the coefficients of the operator, and on dimension (Proposition 4.38).

To dealwith theBMOcoefficients,we need estimates on theHardy normof some functions
of particular form. These are presented in Sect. 2. We give a precise definition of the operator
L in Section 3, starting from a sesquilinear form. The L p estimates for the square root and
square functions rely on the off-diagonal estimates for the semigroup and (

√
t∇e−t L)t>0,

which are derived in Section 4. Another key ingredient in proving the L p estimates for the
square root is the representation formula for the Riesz transform,whichwe carefully justify in
Proposition 4.62. To prove the L p estimates for the square functions (Proposition 5.7–5.26),
we exploit the L p estimates for the square root operator and borrow some ideas from [1].

While the paper can be viewed independently as a part of an extensive theory of functional
calculus of elliptic operators and associated Hardy spaces, for us it was mainly motivated
by the demands coming from the theory of boundary value problems. In [10], to continue
the work [17], we study of L p Dirichlet problem for elliptic operators having a BMO anti-
symmetric part. There, we are able to prove the Dirichlet problem with L p(dx) boundary
data in the upper half-space (x, t) ∈ R

n+1+ , n ≥ 2, is uniquely solvable for p sufficiently
large, for these operators under some natural structural assumptions on the matrix, namely, t-
independent. In [10], we use theGaussian estimate for the t-derivatives of the heat kernel (4.4)
to derive the L p estimates for some non-tangential maximal functions. The L p estimates for
the square functions (Proposition 5.7–5.26) are used to carry out a refined integration by parts
argument. The result in [10] extends the work of Hofmann, Kenig, Mayboroda and Pipher
([8]), which holds for elliptic operators in divergence form with real-valued, non-symmetric,
L∞ and t-independent coefficients.
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2 Hardy Norms

Definition 2.1 We say f ∈ L1(Rn) is in the real Hardy spaceH1(Rn) if

‖ f ‖H1(Rn) :=
∥
∥
∥
∥
sup
t>0

|ht ∗ f |
∥
∥
∥
∥
L1(Rn)

< ∞,

where ht (x) = 1
tn h

( x
t

)

, and h is any smooth non-negative function on R
n , with supp h ⊂

B1(0) such that
´
Rn h(x)dx = 1.

The following estimates shall be used frequently in the rest of the paper.

Proposition 2.2 Let 1 < p < ∞. Let u ∈ Ẇ 1,p(Rn), v ∈ Ẇ 1,p′
(Rn). Then for any 1 ≤

i, j ≤ n, ∂ j u∂iv − ∂i u∂ jv ∈ H1(Rn) with
∥
∥∂ j u∂iv − ∂i u∂ jv

∥
∥
H1(Rn)

� ‖∇u‖L p ‖∇v‖L p′ , (2.3)

where the implicit constant depends only on p and dimension.

We refer to [17,23] for its proof.

Proposition 2.4 Let 1 < p < ∞. Let u ∈ Ẇ 1,p(Rn), v ∈ Ẇ 1,p′
(Rn). Then for any 1 ≤ i ≤

n, ∂i (uv) ∈ H1(Rn) with

‖∂i (uv)‖H1(Rn) � ‖u‖L p ‖∇v‖L p′ + ‖∇u‖L p ‖v‖L p′ , (2.5)

where the implicit constant depends only on p and dimension.

Proof Let h be a smooth nonnegative compactly supported mollifier with
´
Rn h(x)dx = 1,

supp h ⊂ B1(0). And let ht (x) = t−nh( xt ). Then we have

ht ∗ ∂i (uv)(x) =
ˆ
Rn

ht (x − y)∂i (uv)(y)dy = −
ˆ
Bt (x)

∂i ht (x − y)u(y)v(y)dy

=
ˆ
Bt (x)

1

tn+1 ∂i h

(
x − y

t

)

u(y)
(

v(y) − (v)Bt (x)
)

dy

+
ˆ
Bt (x)

1

tn+1 ∂i h

(
x − y

t

)

u(y)(v)Bt (x)dy =: I1 + I2.

For I1, we have

|I1| � 1

tn

ˆ
Bt (x)

|u(y)|
∣
∣
∣
∣

v(y) − (v)Bt (x)

t

∣
∣
∣
∣
dy

�
( 

Bt (x)
|u|α dy

)1/α
( 

Bt (x)

∣
∣
∣
∣

v(y) − (v)Bt (x)

t

∣
∣
∣
∣

α′

dy

)1/α′

�
( 

Bt (x)
|u|α dy

)1/α ( 
Bt (x)

|∇v|β dy

)1/β

�
(

M |u|α) 1
α (x)

(

M |∇v|β)1/β
(x),

where α ∈ [1, p), 1
α

+ 1
β

= 1 + 1
n , and M( f ) is the Hardy-Littlewood maximal function of

f . For I2, note that I2 = ´
Bt (x)

ht (x − y)∂i u(y)(v)Bt (x)dy. So

123



940 S. Hofmann et al.

|I2| � 1

tn

ˆ
Bt (x)

|∂i u| ∣∣(v)Bt (x)
∣
∣ dy �

 
Bt (x)

|∇u| dy
 
Bt (x)

|v| dy
� M(|∇u|)(x)M(v)(x).

Combining the estimates for I1 and I2, and using Hölder inequality, we haveˆ
Rn

sup
t>0

|ht ∗ ∂i (uv)(x)| dx

�
∥
∥
∥
∥

(

M |u|α) 1
α

∥
∥
∥
∥
L p

∥
∥
∥

(

M |∇v|β)1/β
∥
∥
∥
L p′ + ‖M(|∇u|)‖L p ‖M(v)‖L p′

� ‖u‖L p ‖∇v‖L p′ + ‖∇u‖L p ‖v‖L p′ ,

where in the last inequality we have used that 1 ≤ α < p and 1 < β < p′. ��
Proposition 2.6 Let u, v ∈ W 1,2(Rn), and ϕ be a Lipschitz function in R

n. Then for any
1 ≤ i, j ≤ n, ∂ j (uv)∂iϕ − ∂i (uv)∂ jϕ ∈ H1(Rn) with

∥
∥∂ j (uv)∂iϕ − ∂i (uv)∂ jϕ

∥
∥
H1(Rn)

� ‖u |∇ϕ|‖L2 ‖∇v‖L2 + ‖v‖L2 ‖|∇u| |∇ϕ|‖L2 ,

or
∥
∥∂ j (uv)∂iϕ − ∂i (uv)∂ jϕ

∥
∥
H1(Rn)

� ‖∇ϕ‖L∞(Rn)

(

‖u‖L2 ‖∇v‖L2 + ‖v‖L2 ‖∇u‖L2

)

,

(2.7)

where the implicit constant depends only on dimension.

Proof Wecan assumeϕ ∈ C2(Rn). Set� = (0, . . . , 0, ∂ jϕ, 0, . . . , 0,−∂iϕ, 0, . . . , 0). Then
div� = 0 and

∂i (uv)∂ jϕ − ∂ j (uv)∂iϕ = � · ∇(uv) = div(�uv). (2.8)

Let h be a smooth nonnegative compactly supportedmollifierwith
´
Rn h(x)dx = 1, supp h ⊂

B1(0). And let ht (x) = t−nh( xt ). We compute

ht ∗ div(�uv)(x) = −
ˆ
Bt (x)

∇yht (x − y) · �(y)u(y)v(y)dy

= −
ˆ
Bt (x)

∇yht (x − y) · �(y)u(y)(v(y) − (v)Bt (x))dy

−
ˆ
Bt (x)

divy(ht (x − y)�(y))u(y)(v)Bt (x)dy

= −
ˆ
Bt (x)

∇yht (x − y) · �(y)u(y)(v(y) − (v)Bt (x))dy

+
ˆ
Bt (x)

ht (x − y)� · ∇u(y)(v)Bt (x)dy

=: I1 + I2.

|I1| � 1

tn+1

ˆ
Bt (x)

|∇ϕ| |u| ∣∣v − (v)Bt (x)
∣
∣

�
( 

Bt (x)
|u∇ϕ|α

)1/α(  
Bt (x)

(

∣
∣v − (v)Bt (x)

∣
∣

t
)α

′) 1
α′
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�
( 

Bt (x)
|u∇ϕ|α

)1/α(  
Bt (x)

|∇v|β
)1/β

� M1/α(|u∇ϕ|α)(x)M1/β(|∇v|β)(x), (2.9)

where 1 < α, β < 2, 1
α

+ 1
α′ = 1, 1

α
+ 1

β
= 1 + 1

n . And

|I2| �
( 

Bt (x)
|∇ϕ| |∇u|

) ∣
∣(v)Bt (x)

∣
∣ � M(|∇ϕ| |∇u|)(x)M(v)(x).

So

|ht ∗ div(�uv)(x)| � M1/α(|u∇ϕ|α)(x)M1/β(|∇v|β)(x) + M(|∇ϕ| |∇u|)(x)M(v)(x),

and thusˆ
Rn

sup
t>0

|ht ∗ div(�uv)(x)| dx � ‖u |∇ϕ|‖L2 ‖∇v‖L2 + ‖v‖L2 ‖|∇u| |∇ϕ|‖L2 .

By (2.8) and the definition of Hardy norm, we complete the proof. ��

3 Sectorial operators and resolvent estimates

We give a precise definition for the operator L .
Let W̃−1,2(Rn) be the space of the bounded semilinear functionals on W 1,2(Rn). We say

that f ∈ W̃−1,2 is semilinear if

〈 f , αu + βv〉W̃−1,2,W 1,2 = ᾱ〈 f , u〉W̃−1,2,W 1,2 + β̄〈 f , v〉W̃−1,2,W 1,2 ,

whenever α, β ∈ C and u, v ∈ W 1,2(Rn).
Define L : W 1,2(Rn) → W̃−1,2(Rn) as follows

〈L u, v〉W̃−1,2,W 1,2 =
ˆ
Rn

A∇u · ∇v̄

=
ˆ
Rn

As∇u · ∇v̄ +
ˆ
Rn

Aa∇u · ∇v̄,

where A = (ai j (x)) is n× n, real, As = 1
2 (A+ Aᵀ) = (asi j (x)) is of coefficients in L∞(Rn)

and elliptic, i.e. there exists 0 < λ0 ≤ 1 such that for all x ∈ R
n ,

λ0 |ξ |2 ≤ asi j (x)ξiξ j ∀ ξ ∈ R
n,

∥
∥As

∥
∥∞ ≤ λ−1

0 ,

and the coefficients of Aa = 1
2 (A − Aᵀ) = (aai j (x)) are in BMO(Rn), with

∥
∥
∥aai j

∥
∥
∥
BMO

:= sup
Q⊂Rn

 
Q

∣
∣
∣aai j − (aai j )Q

∣
∣
∣ dx ≤ Λ0

for some Λ0 > 0, where Q is any cube in Rn . Then by Proposition 2.2,
∣
∣〈L u, v〉W̃−1,2,W 1,2

∣
∣ ≤ C ‖∇u‖L2 ‖∇v‖L2 ,

with C depending on λ0, Λ0 and dimension.
Now define a sesquilinear form on L2(Rn) × L2(Rn): for any u, v ∈ W 1,2(Rn), let

t[u, v] = 〈L u, v〉W̃−1,2,W 1,2 .

123



942 S. Hofmann et al.

The numerical range Θ(t) of t is defined as

Θ(t) := {t[u, u] : u ∈ D(t) with ‖u‖L2 = 1}.

Proposition 3.1 t is a densely defined, closed, sectorial sesqulinear form in L2, and there
exists 0 < θ0 < π

2 such that for any ξ ∈ Θ(t), |arg ξ | ≤ θ0.

Proof The domain D(t) of t is W 1,2(Rn), which is dense in L2. So t is densely defined. To
see that it is closed, let un ∈ D(t), un → u in L2 and t[un − um, un − um] → 0. We want
to show that u ∈ D(t) and t[un − u, un − u] → 0. Since t[un − um, un − um] → 0,

λ0 |∇(un − um)| ≤ �
ˆ
Rn

A∇(un − um) · ∇(un − um) → 0.

So {un} is a Cauchy sequence in W 1,2(Rn), which implies that u ∈ W 1,2 = D(t) and

|t[un − u, un − u]| ≤ Λ0 ‖|∇(un − u)|‖L2 → 0.

Now we show that t is sectorial, i.e., its numerical range Θ(t) is a subset of a sector of the
form

|arg(ξ − γ )| ≤ θ, for some 0 ≤ θ <
π

2
and γ ∈ R.

For u ∈ D(t) with ‖u‖L2 = 1, write u = u1 + iu2. Then

�〈L u, u〉W̃−1,2,W 1,2 =
ˆ
Rn

asi j (∂ j u1∂i u1 + ∂ j u2∂i u2) ≥ λ0

ˆ
Rn

|∇u|2 ,

�〈L u, u〉W̃−1,2,W 1,2 =
ˆ
Rn

asi j (∂ j u2∂i u1 − ∂ j u1∂i u2) +
ˆ
Rn

aai j (∂ j u2∂i u1 − ∂ j u1∂i u2).

By Proposition 2.2,
∣
∣�〈L u, u〉W̃−1,2,W 1,2

∣
∣ ≤ C

´
Rn |∇u|2, with C depending on λ0, Λ0 and

n. This implies that
∣
∣�〈L u, u〉W̃−1,2,W 1,2

∣
∣

�〈L u, u〉W̃−1,2,W 1,2
≤ C, with C = C(λ0,Λ0, n).

Therefore, there exists 0 < θ0 = θ0(λ0,Λ0, n) < π
2 such that for any ξ ∈ Θ(t), |ξ | ≤ θ0. ��

Then by [15] Chapter VI Theorem 2.1 and its proof, we obtain

Lemma 3.2 There is a unique m-accretive, sectorial operator L : D(L) ⊂ L2(Rn) →
L2(Rn) such that

1. D(L) ⊂ D(t) = W 1,2(Rn), and D(L) is dense in D(t) with respect to the W 1,2 norm.
2. (Lu, v) = t[u, v] for all u ∈ D(L), v ∈ D(t). Here (·, ·) is the inner product on complex

L2(Rn).
3. If u ∈ D(t), w ∈ L2(Rn), and t[u, v] = (w, v) for any v ∈ D(L), then u ∈ D(L) and

Lu = w.

By m-accretive we mean that (L + λI )−1 is a bounded operator on L2 for any � λ > 0, and
∥
∥(L + λI )−1

∥
∥
L2→L2 ≤ (� λ)−1.
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This lemma implies that there is a unique L : D(L) ⊂ L2(Rn) → L2(Rn) with its domain
dense in W 1,2 corresponding to L : W 1,2 → W̃−1,2, and (Lu, v) = 〈L u, v〉W̃−1,2,W 1,2 for
any u ∈ D(L), v ∈ W 1,2.

We denote by Θ(L) the numerical range of L:

Θ(L) = {(Lu, u) : u ∈ D(L) with ‖u‖L2 = 1.}.
Let T = −L . Denote the resolvent set of T by ρ(T ). Note that since L is m-accretive,
{λ ∈ C : � λ < 0} ⊂ ρ(L). So λ ∈ ρ(T ) whenever � λ > 0. Let Σ0 = C \ Θ(T ), and
denote by Σ̂0 the component of Σ0 that contains R+.

Lemma 3.3 Σ̂0 ⊂ ρ(T ). And for any λ ∈ Σ̂0,

∥
∥(λI − T )−1

∥
∥
L2→L2 = ∥

∥(λI + L)−1
∥
∥
L2→L2 ≤ 1

dist(λ;Θ(T ))
.

Proof For any fixed λ ∈ Σ0, for any u ∈ D(T ) with ‖u‖L2 = 1, we have

0 < dist(λ,Θ(T )) ≤ |λ − (Tu, u)| = |((λI − T )u, u)| ≤ ‖(λI − T )u‖L2 .

Hence, if λ ∈ ρ(T ), then

∥
∥(λI − T )−1

∥
∥
L2→L2 ≤ 1

dist(λ;Θ(T ))
. (3.4)

Now we show Σ̂0 ⊂ ρ(T ). Consider ρ(T ) ∩ Σ̂0. It is nonempty since R+ ⊂ ρ(T ) ∩ Σ̂0.
The fact that ρ(T ) is open implies that ρ(T ) ∩ Σ̂0 is open in Σ̂0. But it is also closed in
Σ̂0 since λn ∈ ρ(T ) ∩ Σ̂0 and λn → λ ∈ Σ̂0 imply for n large enough, dist(λn,Θ(T )) >
1
2 dist(λ,Θ(T )), and consequently for n large enough |λn − λ| < dist(λn,Θ(T )). Write
λI − T = (λn I − T )(I + (λ − λn)(λn I − T )−1). From (3.4),

∥
∥(λ − λn)(λn I − T )−1

∥
∥ ≤ |λ − λn |

∥
∥(λn I − T )−1

∥
∥ ≤ |λ − λn |

dist(λn;Θ(T ))
<

1

2
,

which implies that (I + (λ − λn)(λn I − T )−1)−1 is bounded in L2, and consequently so is
(λI −T )−1, i.e. λ ∈ ρ(T ). This implies that ρ(T )∩Σ̂0 is closed in Σ̂0. By the connectedness
of Σ̂0, ρ(T ) ∩ Σ̂0 = Σ̂0, or Σ̂0 ⊂ ρ(T ). ��
Fix a θ1 ∈ (θ0,

π
2 ). Let Γπ−θ1 = {λ ∈ C : λ 	= 0, |arg λ| ≤ π − θ1}. Then Γπ−θ1 ⊂ ρ(T )

and there exists a c0 = c0(θ0, θ1) ≥ 1 such that for any λ ∈ Γπ−θ1 ,

dist(λ;Θ(T )) ≥ |λ|
c0

. (3.5)

Corollary 3.6 There exists a C = C(θ0, θ1, λ0) > 0 such that for any λ ∈ Γπ−θ1 ,

∥
∥(λI + L)−1

∥
∥
L2→L2 + 1

|λ|1/2
∥
∥∇(λI + L)−1

∥
∥
L2→L2 ≤ C

|λ| .

Proof It follows immediately from Lemma 3.3 and (3.5) that

∥
∥(λI + L)−1

∥
∥
L2→L2 ≤ c0

|λ| .
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Since Γπ−θ1 ⊂ ρ(T ), for any λ ∈ Γπ−θ1 , the range of λI + L is L2(Rn). Also, for any
u ∈ D(L), ((λI + L)u, u) = 〈(L + λ)u, u〉W̃−1,2,W 1,2 , which gives that

�((λI + L)u, u) ≤ ‖(λI + L)u‖L2 ‖u‖L2 .

On the other hand,

�((λI + L)u, u) = �(

ˆ
Rn

A∇u · ∇ū + λ

ˆ
Rn

|u|2) ≥ λ0 ‖∇u‖2L2 + �λ ‖u‖2L2 .

Therefore,

λ0

ˆ
Rn

|∇u|2 ≤ |λ| ‖u‖2L2 + ‖(λI + L)u‖L2 ‖u‖L2 .

Since

‖u‖L2 = ∥
∥(λI + L)−1(λI + L)u

∥
∥
L2 ≤ c0

|λ| ‖(λI + L)u‖L2 ,

one obtains ‖∇u‖L2 ≤ C(c0, λ0) |λ|−1/2 ‖(λI + L)u‖L2 , and consequently
∥
∥∇(λI + L)−1

∥
∥ ≤ C(c0, λ0) |λ|−1/2 .

��

4 Lp theory for the semigroup and square roots

The resolvent estimates we derived in Corollary 3.6 imply that there exists an analytic con-
traction semigroup e−t L on L2 generated by −L . The semigroup can be expressed as the
contour integral (see e.g. [21] Chapter 1, Theorem 7.7)

e−t L = 1

2π i

ˆ
Γ

etλ(L + λI )−1dλ,

where the path Γ consists of two half-rays Γ± = {

λ = re±i(π−θ1), r ≥ R
}

and of the arc
Γ0 = {

λ = Reiθ , |θ | ≤ π − θ1
}

, for any fixed R > 0, θ1 ∈ (θ0,
π
2 ), where θ0 is as in

Proposition 3.1. It follows that e−t L is holomorphic in t in the open sector |arg t | < π
2 − θ0.

Let Kt (x, y) be the kernel of e−t L . The results by Qian and Xi [22] show that the operator
L satisfies the “Gaussian Property", that is, Kt (x, y) satisfies the following bounds: there are
some constants C = C(λ0,Λ0, n), β = β(λ0,Λ0, n) ∈ (0, 1) and μ0 = μ0(λ0,Λ0, n) ∈
(0, 1), such that for all t > 0, 0 < μ < μ0

|Kt (x, y)| ≤ Ct−
n
2 e− β|x−y|2

t , (4.1)

|Kt (x, y) − Kt (x + h, y)| + |Kt (x, y) − Kt (x, y + h)|
≤ Ct−

n
2

( |h|
t1/2 + |x − y|

)μ

e− β|x−y|2
t (4.2)

when 2 |h| ≤ t1/2 + |x − y|.
We remark that the Gaussian estimates for the t-derivatives of the kernel Kt (x, t) can be

derived from the Gaussian estimates ([20] Theorem 6.17):
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Proposition 4.3 For any l ∈ N, ∂ lt Kt (x, y) satisfies the following estimates: there are some
constants C = C(λ0,Λ0, n), β = β(λ0,Λ0, n) ∈ (0, 1), such that for all t > 0,

∣
∣
∣∂

l
t Kt (x, y)

∣
∣
∣ ≤ Clt

− n
2 −l e− β|x−y|2

t (4.4)

The L2 (actually, L p for all 1 ≤ p < ∞) estimate for ∂ lt e
−t L follows from (4.4) imme-

diately: for all t > 0,

∥
∥
∥∂ lt e

−t L
∥
∥
∥
L2→L2

≤ cl t
−l for all l ∈ N. (4.5)

Moreover, we have for all t > 0,
∥
∥
∥∇e−t L

∥
∥
∥
L2→L2

≤ Ct−
1
2 . (4.6)

(4.6) can be derived from (4.5) as follows:

∥
∥
∥∇e−t L f

∥
∥
∥

2

L2
≤ 1

λ0
�
ˆ
Rn

A∇e−t L · ∇e−t L f

≤ 1

λ0

∥
∥
∥∂t e

−t L f
∥
∥
∥
L2

∥
∥
∥e−t L f

∥
∥
∥
L2

≤ C t−1 ‖ f ‖2L2 .

4.1 L2 off-diagonal estimates for the semigroup

Definition 4.7 Let T = (Tt )t>0 be a family of operators. We say that T satisfies L2 off-
diagonal estimates if for some constants C ≥ 0 and α > 0 for all closed sets E and F , all
h ∈ L2 with support in E and all t > 0 we have

‖Tth‖L2(F) ≤ Ce− αd(E,F)2
t ‖h‖L2 . (4.8)

Here and subsequntly, d(E, F) is the semi-distance induced on sets by theEuclidean distance.
If T = (Tz)z∈Σμ is a family defined on a complex sector Σμ with 0 ≤ μ < π

2 , then we
adopt the same definition and replace t by |z| in the right hand side of (4.8). In this case, the
constants C and α may depend on the angle μ.

Proposition 4.9 There exists ω0 = ω0(n, λ0,Λ0) ∈ (0, π
2 ), such that for all μ ∈ (0, π

2 −
ω0), the families (e−zL )z∈Σμ , (zLe−zL )z∈Σμ and (

√
z∇e−zL )z∈Σμ satisfy L2 off-diagonal

estimates.

Proof We begin with the case of real times t > 0. Let ϕ be a bounded Lipschitz function
with Lipschitz constant 1 and ρ > 0. Define Lρ = eρϕL e−ρϕ as follows: for any u, v ∈
W 1,2(Rn)

〈Lρu, v〉W̃−1,2,W 1,2 = 〈L (eρϕu), e−ρϕv〉W̃−1,2,W 1,2 .

Note that since ‖∇ρ‖L∞ is bounded, Proposition 2.6 implies that Lρ : W 1,2 → W̃−1,2 is
bounded. Define L ′

ρ = Lρ + c0ρ2, with c0 to be determined. Using Proposition 2.6, we
estimate
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946 S. Hofmann et al.

�〈L ′
ρu, u〉W̃−1,2,W 1,2

≥ �〈L u, u〉W̃−1,2,W 1,2 − Cn,Λ0 ‖ρ∇ϕ‖L∞ ‖∇u‖L2 ‖u‖L2

+
(

c0ρ
2 − 1

λ0
‖ρ∇ϕ‖2L∞

)

‖u‖2L2

≥ λ0

2
‖∇u‖2L2 + (

c0ρ
2 − Cn,λ0,Λ0ρ

2) ‖u‖2L2 .

Here we have used ‖∇ϕ‖L∞ ≤ 1. Now by choosing c0 = c0(n, λ0,Λ0) sufficiently large,
we have

�〈L ′
ρu, u〉W̃−1,2,W 1,2 ≥ λ0

2
‖∇u‖2L2 + c0

2
ρ2 ‖u‖2L2 .

For �〈L ′
ρu, u〉W̃−1,2,W 1,2 , we have

∣
∣�〈L ′

ρu, u〉W̃−1,2,W 1,2

∣
∣ ≤ ∣

∣�〈L u, u〉W̃−1,2,W 1,2

∣
∣ + Cλ0 ‖∇u‖2L2 + Cλ0ρ

2 ‖u‖2L2

≤ Cn,λ0,Λ0 ‖∇u‖2L2 + Cλ0ρ
2 ‖u‖2L2 .

Therefore, there exists C0 = C0(n, λ0,Λ0) > 0, such that
∣
∣�〈L ′

ρu, u〉W̃−1,2,W 1,2

∣
∣

�〈L ′
ρu, u〉W̃−1,2,W 1,2

≤ C0,

which implies that there exists 0 < ω0 = ω0(n, λ0,Λ0) < π
2 such that

∀ ξ ∈ Θ(L ′
ρ), |ξ | ≤ ω0. (4.10)

As we argue in Sect. 3, we can find unique sectorial operators L ′
ρ and Lρ corresponds toL ′

ρ

andLρ , respectively. Then we can prove estimates (4.5) and (4.6) for the operator L ′
ρ . That

is, there is C = C(n, λ0,Λ0), such that
∥
∥
∥e−t L ′

ρ ( f )
∥
∥
∥
L2

+
∥
∥
∥t∂t e

−t L ′
ρ ( f )

∥
∥
∥
L2

+
∥
∥
∥

√
t∇e−t L ′

ρ ( f )
∥
∥
∥
L2

≤ C ‖ f ‖L2

for all t > 0. Then by L ′
ρ = Lρ + c0ρ2 I and ∂t e

−t L ′
ρ = −L ′

ρe
−t L ′

ρ , a direct computation
shows
∥
∥
∥e−t Lρ ( f )

∥
∥
∥
L2

+
∥
∥
∥t(Lρ + c0ρ

2 I )e−t Lρ ( f )
∥
∥
∥
L2

+
∥
∥
∥

√
t∇e−t Lρ ( f )

∥
∥
∥
L2

≤ Cec0ρ
2t ‖ f ‖L2 .

This implies
∥
∥
∥e−t Lρ ( f )

∥
∥
∥
L2

+
∥
∥
∥t∂t e

−t Lρ ( f )
∥
∥
∥
L2

+
∥
∥
∥

√
t∇e−t Lρ ( f )

∥
∥
∥
L2

≤ Ce2c0ρ
2t ‖ f ‖L2 ∀ t > 0.

(4.11)

Let E and F be two closed sets and f ∈ L2, with compact support contained in E . For
any ε > 0, choose ϕ(x) = ϕε(x) = d(x,E)

1+εd(x,E)
. With this choice of ϕε, the operator Lρ has

bounded form. Observe that there exists R0 > 1 sufficiently large, such that for any R ≥ R0,

d(E, F) ≤ d(E, F ∩ BR(0)) ≤ 2d(E, F).

Also, for any fixed R ≥ R0, there exists ε0 = ε0(n, R, E) > 0, such that for any 0 < ε ≤ ε0,
εd(x, E) ≤ 1

2 for all x ∈ F ∩ BR(0), and thus

ϕε(x) = d(x, E)

1 + εd(x, E)
≥ 2

3
d(x, E), ∀ x ∈ F ∩ BR(0). (4.12)
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With these observations and (4.11), the argument of the L2 off-diagonal estimates for
(e−t L )t>0, (t∂t e−t L )t>0 and (

√
t∇e−t L)t>0 follows from [1] Proposition 3.1.

To extend to complex times, consider the operator eiαL , which has coefficients eiαA(x).
Note that if ξ is in the numerical range of eiαL , then |arg ξ | ≤ θ0 + |α|, where the angle
θ0 is as in (3.1). Therefore, in light of (4.10), the argument above applies to eiαL as long
as |α| < π

2 − ω0. Observe that when z = teiα , e−zL = e−t(eiαL). From this the desired
estimates follow. ��
Remark 4.13 The same argument applies to the adjoint operator L∗. Therefore, for all μ ∈
(0, π

2 − ω0), the families (e−zL∗
)z∈Σμ , (zL∗e−zL∗

)z∈Σμ , and (
√
z∇e−zL∗

)z∈Σμ satisfy L2

off-diagonal estimates.

Using the L2 off-diagonal estimates, we can define the action of the semigroup on L∞
and on Lipschitz function in the L2

loc sense.

Lemma 4.14 Let f ∈ L∞(Rn). Then for any x0 ∈ R
n, lim

R→∞e−t L( f 1BR(x0)) exists in

L2
loc (Rn) and the limit does not depend on x0. We define the limit to be e−t L f .

Proof We first fix any x0 ∈ R
n . Fix any R0 > 1, and let R2 > R1 > 8R0. Then there exists

l ∈ N such that 2l R1 < R2 ≤ 2l+1R1. We write
∣
∣
∣e−t L ( f 1BR2 (x0)) − e−t L( f 1BR1 (x0))

∣
∣
∣ =

∣
∣
∣e−t L

(

f 1BR2 (x0) − f 1BR1 (x0)

)∣
∣
∣

≤
∣
∣
∣e−t L f

(

1BR2 (x0) − 1B2l R1
(x0)

)∣
∣
∣ +

l
∑

k=1

∣
∣
∣e−t L f

(

1B2k R1
(x0) − 1B2k−1R1

(x0)

)∣
∣
∣ .

Observe that d(BR0(x0), B2k R1
(x0)\B2k−1R1

(x0)) � 2k−1R1 for k = 1, 2, . . . , l. Then by
L2 off-diagonal estimates for

(

e−t L
)

t>0, we have
∣
∣
∣

∣
∣
∣e−t L( f 1BR2 (x0)) − e−t L( f 1BR1 (x0))

∣
∣
∣

∣
∣
∣
L2(BR0 (x0))

� e− c(2l R1)2

t ‖ f ‖L2(BR2 (x0)\B2l R1 (x0)) +
l

∑

k=1

e− c(2k−1R1)2

t ‖ f ‖L2(B2k R1
(x0))

�
l+1
∑

k=1

e− c(2k−1R1)2

t (2k R1)
n/2 ‖ f ‖L∞ � tn/2R−n/2

1 ‖ f ‖L∞ ,

where the implicit constant depends only on λ0, Λ0 and n. This shows that e−t L( f 1BR(x0))

is a Cauchy sequence in L2
loc (Rn), when f ∈ L∞.

We now show the limit is independent of the choice of x0. Let x1 ∈ R
n be a differ-

ent point than x0. Then for R sufficiently large, the symmetric difference BR(x0)ΔBR(x1)
is contained in B2R(0)\B R

2
(0). So by the L2 off-diagonal estimates for e−t L , and that

d(BR(x0)ΔBR(x1), B R
4
(0)) � R, we have

∥
∥
∥e−t L f 1BR(x0) − e−t L f 1BR(x1)

∥
∥
∥
L2(B R

4
(0))

� e− cR2
t ‖ f ‖L2(BR(x0)ΔBR(x1))

� R
n
2 e− cR2

t ‖ f ‖L∞ .

This implies that limR→∞ e−t L f 1BR(x0) = limR→∞ e−t L f 1BR(x1) in the L2
loc sense. ��
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Remark 4.15 The limit limR→∞ e−t L( f 1BR(x0)) actually exists inW
1,2
loc (Rn). One can show

this by using the L2 off-diagonal estimates for
(√

t∇e−t L f
)

t>0 instead of the L
2 off-diagonal

estimates for
(

e−t L
)

t>0 in the argument above.

Similarly, we can define e−t L f for f Lipschitz.

Lemma 4.16 Let f be a Lipschitz function. Then for any x0 ∈ R
n, the limit limR→∞ e−t L

( f 1BR(x0)) exists in L2
loc (Rn) and not depend on x0. We define the limit to be e−t L f .

Proof Fix any x0 ∈ R
n , any R0 > 1, and let R2 > R1 > 8R0. Then there exists l ∈ N such

that 2l R1 < R2 ≤ 2l+1R1. We write
∣
∣
∣e−t L ( f 1BR2 (x0)) − e−t L( f 1BR1 (x0))

∣
∣
∣

≤
∣
∣
∣e−t L

(

( f − f (x0))(1BR2 (x0) − 1BR1 (x0))
)∣
∣
∣

+
∣
∣
∣e−t L

(

f (x0)(1BR2 (x0) − 1BR1 (x0))
)∣
∣
∣ =: I1 + I2

Since f (x0) is a bounded constant function, the proof of Lemma 4.14 applies to I2, and we
have

‖I2‖L2(BR0 (x0)) � tn/2R−n/2
1 | f (x0)| . (4.17)

For I1, we have

‖I1‖L2(BR0 (x0)) � e−c
(2l R1)2

t

∥
∥
∥( f − f (x0))1BR2 (x0)\B2l R1 (x0)

∥
∥
∥
L2

+
l

∑

k=1

e−c
(2k−1R1)2

t

∥
∥
∥( f − f (x0))1B2k R1

(x0)\B2k−1R1
(x0)

∥
∥
∥
L2

�
l+1
∑

k=1

e−c
(2k−1R1)2

t (2k R1)
1+ n

2 ‖∇ f ‖L∞(Rn)

�
∞
∑

k=1

(
(2k R1)

2

t

)− n+1
2

(2k R1)
1+ n

2 ‖∇ f ‖L∞

� t
n+1
2 R

− n
2

1 ‖∇ f ‖L∞ .

This and (4.17) show that e−t L( f 1BR(x0)) is a Cauchy sequence in L2
loc (Rn), when f is

Lipschitz. By a similar argument as in the proof of Lemma 4.14, one can show the limit is
independent of x0. ��
Remark 4.18 By applying the L2 off-diagonal estimates for

(√
t∇e−t L f

)

t>0 instead of the
L2 off-diagonal estimates for

(

e−t L
)

t>0 in the argument above, one can show that as R → ∞,

e−t L( f 1BR(x0)) converges in W 1,2
loc (Rn), when f is Lipschitz.

Proposition 4.19 The conservation property e−t L1 = 1, for any t > 0, holds in the sense
of L2

loc .

Proof Let Φ be an L2(Rn) function with compact support, and suppose the support of Φ is
contained in a cube Q with l(Q) = r0. We first show e−t LΦ ∈ L1.
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Let Q0 = 2Q, and decompose Rn into a union of nonoverlapping cubes with same size.
That is, Rn = ⊔∞

k=0 Qk , with |Qk | = |Q0|. Let xQ denote the center of Q and Q0, and let
xk denote the center of Qk , for k = 1, 2, . . . . Define

Fl = {

Qk : 2lr0 ≤ ∣
∣xk − xQ

∣
∣ < 2(l + 1)r0

}

, for l = 1, 2, . . . .

By the L2 boundedness of the semigroup, we have
ˆ
Q0

∣
∣
∣e−t LΦ

∣
∣
∣ ≤ |Q0|1/2

∥
∥
∥e−t LΦ

∥
∥
∥
L2

� |Q0|1/2 ‖Φ‖L2 . (4.20)

For any Qk ∈ Fl , we use the L2 off-diagonal estimates for (e−t L )t>0 to obtain
ˆ
Qk

∣
∣
∣e−t LΦ

∣
∣
∣ ≤ |Qk |1/2

∥
∥
∥e−t LΦ

∥
∥
∥
L2(Qk )

� |Q0|1/2 e− c(lr0)2

t ‖Φ‖L2 .

Since |Fl | ≈ ln , we have

∑

Qk∈Fl

ˆ
Qk

∣
∣
∣e−t LΦ

∣
∣
∣ � ln |Q0|1/2 e− c(lr0)2

t ‖Φ‖L2 � l−2r
− n

2 −2
0 t

n+2
2 ‖Φ‖L2 .

Summing in l yields

ˆ
Rn\Q0

∣
∣
∣e−t LΦ

∣
∣
∣ �

∞
∑

l=1

l−2r
− n

2 −2
0 t

n+2
2 ‖Φ‖L2 � r

− n
2 −2

0 t
n+2
2 ‖Φ‖L2 . (4.21)

Then e−t LΦ ∈ L1 follows from (4.20) and (4.21). The argument also applies to e−t L∗
and

so e−t L∗
Φ ∈ L1. Therefore, by Lemma 4.14, we have

ˆ
Rn

e−t L1Φ = lim
R→∞

ˆ
Rn

e−t L(1BR )Φ = lim
R→∞

ˆ
Rn

1BR e
−t L∗

Φ =
ˆ
Rn

e−t L∗
Φ. (4.22)

Here and subsequently, BR is the ball centered at the origin with radius R. We shall first show´
Rn e−t L1Φ does not depend on t > 0 by proving

d

dt

ˆ
Rn

e−t L1Φ = 0, (4.23)

and then show ˆ
Rn

e−t L1Φ =
ˆ
Rn

Φ. (4.24)

This implies that e−t L1 = 1 in the sense of L2
loc .

Observe that we can define ∂t e−t L f = limR→∞ ∂t e−t L( f 1BR(x0)) in L2
loc , for f ∈ L∞,

for any x0 ∈ R
n . This is because the argument in the proof of Lemma 4.14 applies to ∂t e−t L

if one uses the L2 off-diagonal estimates for
(

t Le−t L
)

t>0 instead of that for
(

e−t L
)

t>0. In
particular,wehave ∂t e−t L1 = limR→∞ ∂t e−t L1BR .Also, using the L

2 off-diagonal estimates

for
(

t L∗e−t L∗)

t>0
, one can show ∂t e−t L∗

Φ ∈ L1. Therefore,

ˆ
Rn

∂t e
−t L1Φ = lim

R→∞

ˆ
∂t e

−t L1BRΦ = lim
R→∞

ˆ
1BR∂t e−t L∗

Φ =
ˆ

∂t e−t L∗
Φ.
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Let η ∈ C∞
0 (Rn) with η = 1 in B1, and supp η ⊂ B2. Let ηR(x) = η

( x
R

)

for R > 0.
Then

d

dt

ˆ
Rn

e−t L1Φ =
ˆ
Rn

∂t e
−t L1Φ =

ˆ
Rn

ηR∂t e−t L∗
Φ +

ˆ
Rn

(1 − ηR)∂t e−t L∗
Φ.

(4.25)

Since ∂t e−t L∗
Φ ∈ L1, the last term goes to 0 as R → ∞. We writeˆ

Rn
ηR∂t e−t L∗

Φ = −
ˆ
Rn

ηRL∗e−t L∗
Φ =

ˆ
Rn

A∇ηR · ∇e−t L∗
Φ

=
ˆ
Rn

As∇ηR · ∇e−t L∗
Φ +

ˆ
Rn

Aa∇ηR · ∇ (

ζRe−t L∗
Φ

)

.

Here, ζR(x) = ζ
( x
R

)

, where ζ ∈ C∞
0 (Rn) with ζ = 1 in B2\B1 and supp ζ ⊂ B5/2 \ B1/2.

Note that ζR = 1 in the support of ∇ηR .
Choose R to be sufficiently large so that Q ⊂ B R

8
. We estimate

∣
∣
∣
∣

ˆ
Rn

As∇ηR · ∇e−t L∗
Φ

∣
∣
∣
∣
≤ 1

λ0
‖∇ηR‖L2

∥
∥
∥∇e−t L∗

Φ

∥
∥
∥
L2(B2R\BR)

� R
n
2 −1t−

1
2 e− cR2

t ‖Φ‖L2 ,

where the last inequality follows from the L2 off-diagonal estimates for
(√

t∇e−t L∗)

t>0
.

By Proposition 2.2, we have
∣
∣
∣
∣

ˆ
Rn

Aa∇ηR · ∇ (

ζRe−t L∗
Φ

)
∣
∣
∣
∣
≤ CΛ0 ‖∇ηR‖L2

∥
∥
∥∇

(

ζRe
−t L∗

Φ
)∥
∥
∥
L2

.

Using the support property of ζR and ∇ζR , we have
∥
∥
∥∇

(

ζRe
−t L∗

Φ
)∥
∥
∥
L2

�
∥
∥
∥∇(e−t L∗

Φ)

∥
∥
∥
L2(B 5R

2
\B R

2
)
+ R−1

∥
∥
∥e−t L∗∥∥

∥
L2(B 5R

2
\B R

2
)

� t−
1
2 e− cR2

t ‖Φ‖L2 + R−1e− cR2
t ‖Φ‖L2 ,

where the last inequality follows from the L2 off-diagonal estimates for
(√

t∇e−t L∗)

t>0
and

(

e−t L∗)

t>0
. Combining these estimates, we obtain

´
Rn ηR∂t e−t L∗

Φ → 0 as R → ∞. So

from (4.25), the desired result (4.23) follows.
To prove (4.24), we fix R > 0 sufficiently large so that 2Q ⊂ BR . Writeˆ

Rn
e−t L1Φ =

ˆ
Rn

ηRe−t L∗
Φ +

ˆ
Rn

(1 − ηR)e−t L∗
Φ.

Since e−t L∗
is strongly continuous in L2 at t = 0,

lim
t→0

ˆ
Rn

ηRe−t L∗
Φ =

ˆ
Rn

ηRΦ =
ˆ

Φ.

Wehave
∣
∣
∣

´
Rn (1 − ηR)e−t L∗

Φ

∣
∣
∣ ≤ ´

Rn\Q0

∣
∣
∣e−t L∗

Φ

∣
∣
∣, where Q0 is constructed in the begin-

ning. Since we can also obtain (4.21) for e−t L∗
, we then have

∣
∣
∣
∣

ˆ
Rn

(1 − ηR)e−t L∗
Φ

∣
∣
∣
∣
� r

− n
2 −2

0 t
n+2
2 ‖Φ‖L2 ,
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which goes to 0 as t → 0. Therefore, since we have shown that
´
Rn e−t L1Φ is independent

of t , we obtain (4.24). ��

4.2 Lp theory for the semigroup

We now study the uniform boundedness of the semigroup (e−t L)t>0 and of the family
(
√
t∇e−t L)t>0 on L p spaces. We begin with a few definitions.
Let T = (Tt )t>0 be a family of uniformly bounded operators on L2.

Definition 4.26 We say that T is L p − Lq bounded for some p, q ∈ [1,∞] with p ≤ q if for
some constant C , for all t > 0 and all h ∈ L p ∩ L2

‖Tth‖Lq ≤ Ct−
γpq
2 ‖h‖L p ,

where γpq =
∣
∣
∣
n
q − n

p

∣
∣
∣. We shall use γp to denote γp2 =

∣
∣
∣
n
2 − n

p

∣
∣
∣.

Definition 4.27 Wesay thatT satisfies L p−Lq off-diagonal estimates for some p, q ∈ [1,∞]
with p ≤ q if for some constants C , c > 0, for all closed sets E and F , all h ∈ L p ∩ L2 with
support in E and all t > 0 we have

‖Tth‖Lq (F) ≤ Ct−
γpq
2 e− cd(E,F)2

t ‖h‖L p .

Note that the uniform L p boundedness of (e−t L )t>0 and of (t∂t e−t L)t>0 follows from the
kernel estimates (4.4).

Lemma 4.28 Let p ≥ 1. There is some constant C = C(n, λ0,Λ0, p) such that for all t > 0
and all f ∈ L p,

∥
∥
∥e−t L f

∥
∥
∥
L p

≤ C ‖ f ‖L p , (4.29)
∥
∥
∥t∂t e

−t L f
∥
∥
∥
L p

≤ C ‖ f ‖L p . (4.30)

Proof By (4.4), we haveˆ
Rn

|Kt (x, y)| dx ≤ C
ˆ
Rn

|Kt (x, y)| dy ≤ C, (4.31)
ˆ
Rn

|∂t Kt (x, y)| dx ≤ Ct−1
ˆ
Rn

|∂t Kt (x, y)| dy ≤ Ct−1. (4.32)

Then
∣
∣
∣e−t L f (x)

∣
∣
∣ =

∣
∣
∣
∣

ˆ
Rn

Kt (x, y) f (y)dy

∣
∣
∣
∣

≤
(ˆ

Rn
|Kt (x, y)| dy

) 1
p′

(ˆ
Rn

|Kt (x, y)| | f (y)|p dy
) 1

p

.

So (4.29) follows from (4.31). And (4.30) follows from (4.32) by the same argument. ��
Proposition 4.33 1. (e−t L)t>0 is L p − L2 bounded for any 1 ≤ p < 2.
2. (e−t L )t>0 satisfies the L p − L2 off-diagonal estimates for any 1 < p < 2.
3. (e−t L )t>0 is L2 − L p bounded for 2 < p ≤ ∞, and satisfies the L2 − L p off-diagonal

estimates for 2 < p < ∞.
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(1) is a consequence of the L p boundedness of the semigroup, and theGagliardo-Nirenberg
inequality. Details can be found in [1] Proposition 4.2. Item (2) follows from interpolating by
the Riesz-Thorin theorem the L p − L2 boundeness with the L2 off-diagonal estimates of the
semigroup. And since (1) and (2) also holds for e−t L∗ = (e−t L)∗, (3) follows from duality.

The next results for (t∂t e−t L )t>0 are in the same spirit of Propostion 4.33. We give the
proof in full detail.

Proposition 4.34 1. (t∂t e−t L)t>0 is L p − L2 bounded for any 1 ≤ p < 2.
2. (t∂t e−t L)t>0 satisfies the L p − L2 off-diagonal estimates for any 1 < p < 2.
3. (t∂t e−t L)t>0 is L2 − L p bounded for 2 < p ≤ ∞, and satisfies the L2 − L p off-diagonal

estimates for 2 < p < ∞.

Proof (1). Let p ∈ [1, 2). Since ∂t e−t L f ∈ W 1,2(Rn), we can apply theGagliardo-Nirenberg
inequality and get,

∥
∥
∥∂t e

−t L f
∥
∥
∥

2

L2
≤ C

∥
∥
∥∇∂t e

−t L f
∥
∥
∥

2α

L2

∥
∥
∥∂t e

−t L f
∥
∥
∥

2β

L p
(4.35)

for all t > 0 and f ∈ L2 ∩ L p , where α +β = 1 and (1+ γp)α = γp. Using ∂2t e
−t L f ∈ L2

and Lemma A.2, we have

�
ˆ
Rn

A∇∂t e
−t L f · ∇∂t e−t L f = �

(

L∂t e
−t L f , ∂t e

−t L f
)

= −�〈∂2t e−t L f , e−t L f 〉W̃−1,2,W 1,2 = −1

2

d

dt

∥
∥
∥∂t e

−t L f
∥
∥
∥

2

L2
.

By ellipticity,
∥
∥
∥∇∂t e

−t L f
∥
∥
∥

2

L2
≤ − 1

2λ0

d

dt

∥
∥
∥∂t e

−t L f
∥
∥
∥

2

L2
. (4.36)

Assume f ∈ L2 ∩ L p with ‖ f ‖L p = 1. Let ϕ(t) = ∥
∥∂t e−t L f

∥
∥. By the L p boundedness

of (∂t e−t L )t>0,
∥
∥∂t e−t L f

∥
∥
L p ≤ Cpt−1. Then by (4.35) and (4.36), one obtains t

2β
α ϕ(t)

1
α ≤

−Cϕ′(t). Integrating in t ,
ˆ 2t

t
t
2β
α dt ≤ −C

ˆ 2t

t

ϕ′(t)
ϕ(t)1/α

dt,

and thus ϕ(t) ≤ Ct−
2−α
1−α . Here we assumed that ϕ(t) 	= 0. Otherwise, considering ϕ(t) + ε

and then letting ε → 0 would give the same result. Thus
∥
∥t∂t e−t L f

∥
∥
2
L2 ≤ Ct−

α
1−α = Ct−γp ,

which proves (1).
(2). As in the proof of Proposition 4.33, it follows from the L2 off-diagonal estimates of

(t∂t e−t L )t>0, the L1 − L2 boundedness of (t∂t e−t L )t>0, and the Riesz-Thorin interpolation
theorem.

(3). Since e−t L f ∈ D(L) for any f ∈ L2, t∂t e−t L f = −t Le−t L f = −te−t L L f . So we
have

(t∂t e
−t L)∗ = −t L∗e−t L∗ = t∂t e

−t L∗
.

Since (2) and (3) also hold for t∂t e−t L∗
, (3) follows from duality and a limiting argument. ��

For (
√
t∇e−t L)t>0, when p < 2, we immediately obtain the L p−L2 boundedness and the

L p−L2 off-diagonal estimates.We include the short proofs here for the sake of completeness.
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Proposition 4.37 1. (
√
t∇e−t L)t>0 is L p − L2 bounded for any 1 ≤ p < 2.

2. (
√
t∇e−t L)t>0 satisfies L p − L2 off-diagonal estimates for any 1 < p < 2.

Proof Let p ∈ [1, 2) and f ∈ L2 ∩ L p . Write
√
t∇e−t L f = √

t∇e− t L
2 e− t L

2 f . Then by the
L2 boundedness of (

√
t∇e−t L)t>0 and the L p − L2 boundedness of (e−t L)t>0, one has

∥
∥
∥

√
t∇e−t L f

∥
∥
∥
L2

≤ C
∥
∥
∥e− t L

2 f
∥
∥
∥
L2

≤ Cpt
− γp

2 ‖ f ‖L p ,

which proves (1).
(2) follows from the L2 off-diagonal estimates of (

√
t∇e−t L)t>0, the L1−L2 boundedness

of (
√
t∇e−t L)t>0, and the Riesz-Thorin interpolation theorem. ��

When p > 2, a duality argumentwould not give us the desired results as in Proposition 4.33
(3) and Proposition 4.34 (3). However, we are able to derive a reverse Hölder type inequality
for ∇e−t L f , and then use the L2 − L p boundedness of (t∂t e−t L)t>0 to obtain the L2 − L p

boundedness of (
√
t∇e−t L)t>0. Note that this approach is entirely different from the existing

proof (see e.g. [1] chapter 4), as the latter relies on the boundedness of the coefficients and
does not work for BMO coefficients.

Proposition 4.38 1. (
√
t∇e−t L)t>0 is L2 − L p bounded for any 2 ≤ p ≤ 2 + ε1 for some

ε1 = ε1(λ0,Λ0, n) > 0.
2. (

√
t∇e−t L)t>0 satisfies the L2 − L p off-diagonal estimates for any 2 ≤ p < 2 + ε1,

where ε1 is as in (1).

Proof Let f ∈ S (Rn), and let u(x, t) = e−t L f (x). Then u satisfies the equation ∂t u+Lu =
0 in L2. That is, for any w ∈ W 1,2(Rn),ˆ

Rn
A(x)∇u(x, t) · ∇w(x)dx = −

ˆ
Rn

∂t u(x, t)w(x)dx, ∀ t > 0.

Fix t > 0 and fix a cube Q ⊂ R
n with l(Q) = ρ0, where ρ0 is to be determined. Let x0 ∈ 3Q

and let 0 < ρ < min
{ 1
2 dist(x0, ∂(3Q)), ρ0

}

. Let Qs(x) denote the cube centered at x with
side length s. Choose ϕ ∈ C2

0 (R
n), with 0 ≤ ϕ ≤ 1, ϕ = 1 in Qρ(x0), suppϕ ⊂ Q 3

2 ρ(x0),

and |∇ϕ| � 1
ρ
.

Let w(x) = (u(x, t) − c) ϕ2(x), where c = ffl
Q2ρ(x0)

u(x, t)dx . Then
ˆ
Rn

A(x)∇u(x, t) · ∇ (

(u(x, t) − c)ϕ2(x)
)

dx = −
ˆ
Rn

∂t u(x, t) (u(x, t) − c) ϕ2(x)dx .

We haveˆ
Rn

As∇u · ∇ (

(u − c)ϕ2) dx =
ˆ
Rn

As∇u · ∇uϕ2dx + 2
ˆ
Rn

As∇u · ∇ϕ ((u − c)ϕ) dx

≥ λ0

2

ˆ
Rn

|∇u|2 ϕ2 − C
ˆ
Rn

|u − c|2 |∇ϕ|2

≥ λ0

2

ˆ
Qρ(x0)

|∇u|2 − Cρ−2
ˆ
Q 3

2 ρ
(x0)

|u − c|2 .

To deal with
´
Rn Aa∇u ·∇ (

(u − c)ϕ2
)

dx , we introduce another bump function η ∈ C2
0 (R

n)

with 0 ≤ η ≤ 1, η = 1 on Q 3
2 ρ(x0), supp η ⊂ Q2ρ(x0), and |∇η| � 1

ρ
. Then we have
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ˆ
Rn

Aa∇u · ∇ (

(u − c)ϕ2) dx =
ˆ
Rn

Aa∇u · ∇(ϕ2)(u − c)dx

= 1

2

ˆ
Rn

Aa∇ (

(u − c)2η2
) · ∇(ϕ2).

By Proposition 2.6,
∣
∣
∣
∣

ˆ
Rn

Aa∇u · ∇ (

(u − c)ϕ2) dx

∣
∣
∣
∣
≤ C ‖∇ϕ‖L∞ ‖(u − c)η‖L2 ‖∇ ((u − c)η)‖L2

≤ λ0

4

ˆ
Rn

|∇u|2 η2dx + C ‖∇ϕ‖2L∞

ˆ
Rn

|u − c|2 η2dx

+C ‖∇ϕ‖L∞
ˆ
Rn

|u − c|2 |∇η|2 dx

≤ λ0

4

ˆ
Q2ρ(x0)

|∇u|2 dx + Cρ−2
ˆ
Q2ρ(x0)

|u − c|2 dx .

For
´
Rn ∂t u(x, t) (u(x, t) − c) ϕ2(x)dx , we use Cauchy-Schwarz inequality to get

∣
∣
∣
∣

ˆ
Rn

∂t u(x, t) (u(x, t) − c) ϕ2(x)dx

∣
∣
∣
∣

≤ 1

2
ρ2

ˆ
Rn

|∂t u|2 ϕ2dx + 1

2
ρ−2

ˆ
Rn

|u − c|2 ϕ2dx

≤ 1

2
ρ2
0

ˆ
Q2ρ(x0)

|∂t u|2 dx + 1

2
ρ−2

ˆ
Q2ρ(x0)

|u − c|2 dx .

Combining these estimates, we obtain

λ0

2

ˆ
Qρ(x0)

|∇u|2 dx

≤ C

ρ2

ˆ
Q2ρ(x0)

|u − c|2 dx + λ0

4

ˆ
Q2ρ(x0)

|∇u|2 dx + ρ2
0

2

ˆ
Q2ρ(x0)

|∂t u|2 dx .

The Sobolev-Poincaré inequality gives
 
Qρ(x0)

|∇u|2 dx

≤ C

( 
Q2ρ(x0)

|∇u| 2n
n+2

) n+2
n

+ 1

2

 
Q2ρ(x0)

|∇u|2 dx + Cρ2
0

 
Q2ρ(x0)

|∂t u|2 dx .

Then by Lemma A.1, there is some ε1 = ε1(λ0,Λ0, n) > 0, such that for all p ∈ [2, 2+ε1],
( 

Q
|∇u|p dx

)1/p

≤ C
{( 

2Q
|∇u|2

)1/2

+
( 

2Q
|ρ0∂t u|p

)1/p }

,

that is,

ˆ
Q

|∇u|p dx ≤ Cρ
−pγp
0

(ˆ
2Q

|∇u|2
)p/2

+
ˆ
2Q

|ρ0∂t u|p dx . (4.39)
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Decompose Rn into a union of disjoint cubes Rn = �∞
j=1Q j with each Q j having side

length ρ0. For each Q j , applying (4.39) and then summing in j , one has

‖∇u‖L p(Rn) ≤ Cρ
−γp
0 ‖∇u‖L2(Rn) + C ‖ρ0∂t u‖L p(Rn) , ∀ p ∈ [2, 2 + ε1].

Choosing ρ0 = √
t gives

∥
∥
∥

√
t∇u

∥
∥
∥
L p

≤ Ct−
γp
2

∥
∥
∥

√
t∇u

∥
∥
∥
L2

+ C ‖t∂t u‖L p , ∀ p ∈ [2, 2 + ε1].
Then by the L2 boundedness of (

√
t∇e−t L)t>0 and the L2−L p boundedness of (t∂t e−t L)t>0,

we obtain
∥
∥
∥

√
t∇e−t L f

∥
∥
∥
L p

≤ Ct−
γp
2 ‖ f ‖L2 , ∀ p ∈ [2, 2 + ε1], f ∈ S (Rn).

Thus (1) follows from a standard limiting argument.
(2) can be proved using the L2 off-diagonal estimates and the L2 − L2+ε1 boundedness

of (
√
t∇e−t L)t>0, and the Riesz-Thorin interpolation theorem. ��

4.3 Lp Theory for the square root

Since L is an m-accretive operator, there is a unique m-accretive square root L1/2 such that

L1/2L1/2 = L in D(L). (4.40)

Also, L1/2 is m-sectorial with the numerical range contained in the sector |arg ξ | ≤
π
4 . And D(L) is a core of L1/2, i.e.

{

(u, L1/2u) : u ∈ D(L)
}

is dense in the graph
{

(u, L1/2u) : u ∈ D(L1/2)
}

(see [15] p.281 for a proof for these facts).
Our goal in this section is to prove the L p bounds for the square root.
Many formulas can be used to compute L1/2. The one we are going to use is

L1/2 f = π−1/2
ˆ ∞

0
e−t L L f

dt√
t
. (4.41)

Observe that the integral converges in L2 when f ∈ D(L). Since for f ∈ D(L), L f ∈ L2,
then by the L2 boundedness of the semigroup,

´ 1
0 e−t L L f dt√

t
converges. And the L2 bound

of (t∂t e−t L )t>0 implies that
´∞
1 e−t L L f dt√

t
converges in L2.

The determination of the domain of the square root of L has become known as the
Kato square root problem. It has been shown by Auscher, Hofmann, Lacey, McIntosh,
and Tchamitchian [2] that for a uniformly complex elliptic operator L = − div(A∇) with
bounded measurable coefficients, one has in all dimensions

∥
∥L1/2 f

∥
∥
L2 ≈ ‖∇ f ‖L2 , (4.42)

and the domain of L1/2 is W 1,2, which was known as the Kato’s conjecture. Recently,
Escauriaza and Hofmann ([5]) extended the result to the same kind of operators that we are
interested in, that is, operators with a BMO anti-symmetric part. Note that although they only
showed one side of (4.42), that is

∥
∥L1/2 f

∥
∥
L2 � ‖∇ f ‖L2 , (4.43)

the other direction follows from a duality argument. In fact, note that the same argument
applies to L∗ so one has

∥
∥(L∗)1/2 f

∥
∥
L2 � ‖∇ f ‖L2 . (4.44)

123



956 S. Hofmann et al.

It turns out that (4.43) and (4.44) are enough:

Lemma 4.45 If (4.43) holds for all f ∈ D(L), and (4.44) holds for all f ∈ D(L∗). Then

‖∇ f ‖L2 �
∥
∥L1/2 f

∥
∥
L2 , ∀ f ∈ W 1,2. (4.46)

And the domain of L1/2 is W 1,2(Rn).

Proof We first show that W 1,2 ⊂ D(L1/2). Since D(L) is dense in W 1,2, for any u ∈ W 1,2,
there are {uk} ⊂ D(L) such that uk → u in W 1,2. Then by (4.43),

∥
∥L1/2(uk − u j )

∥
∥
L2 �

∥
∥∇(uk − u j )

∥
∥
L2 . This shows that

{

L1/2uk
}

is Cauchy in L2. Suppose L1/2uk → v ∈ L2.
Since L1/2 is closed, we have L1/2u = v, and u ∈ D(L1/2).

Now we show (4.46) holds. Let f ∈ S (Rn). Let g ∈ S (Rn) with ‖g‖L2 ≤ 1. For any
δ > 0, define hδ := (L∗ + δ I )−1(− div g) ∈ D(L∗). That is,

δ

ˆ
Rn

hδ w dx +
ˆ
Rn

A∗∇hδ · ∇w dx = −
ˆ
Rn

div gw dx ∀ w ∈ W 1,2(Rn). (4.47)

Letting w = hδ and taking real parts of (4.47), then ellipticity and Young’s inequality give

δ

ˆ
Rn

|hδ|2 dx + λ0

2

ˆ
Rn

|∇hδ|2 dx ≤ C
ˆ
Rn

|g|2 dx ≤ C . (4.48)

By writing

(∇ f , g) = − ( f , div g) = (

f , (L∗ + δ I )hδ

) = ( f , (L∗)1/2(L∗)1/2hδ) + δ( f , hδ)

= (L1/2 f , (L∗)1/2hδ) + δ( f , hδ),

we get that

|(∇ f , g)| ≤ ∥
∥L1/2 f

∥
∥
L2

∥
∥(L∗)1/2hδ

∥
∥
L2 + δ ‖ f ‖L2 ‖hδ‖L2

�
∥
∥L1/2 f

∥
∥
L2 ‖∇hδ‖L2 + δ ‖ f ‖L2 ‖hδ‖L2

�
∥
∥L1/2 f

∥
∥
L2 + δ1/2 ‖ f ‖L2 ,

where we have used (4.44) in the second inequality, and (4.48) in the last inequality. There-
fore,

‖∇ f ‖L2 = sup
g∈S (Rn)
‖g‖L2≤1

|(∇ f , g)| �
∥
∥L1/2 f

∥
∥
L2 + δ1/2 ‖ f ‖L2 .

Letting δ → 0,we obtain (4.46) holds for all f ∈ S (Rn). SinceS (Rn) is dense inW 1,2(Rn),
(4.46) holds for all f ∈ W 1,2(Rn), which contains the domain of L .

Finally, we show D(L1/2) ⊂ W 1,2, and thus proves D(L1/2) = W 1,2. To this end, let
u ∈ D(L1/2). Since D(L) is a core of L1/2, there exist {un} ⊂ D(L) such that un → u in
L2, and L1/2(un) → L1/2u in L2. Since

‖∇(un − um)‖L2 �
∥
∥L1/2(un − um)

∥
∥
L2 ,

{un} is a Cauchy sequence in W 1,2. This implies u ∈ W 1,2. ��
From theKato’s estimate (4.43) one can see that L1/2 can be extended to the homogeneous

Sobolev space Ẇ 1,2. In particular, L1/2 extends to an isomorphism from Ẇ 1,2 to L2 and

g = L1/2L−1/2g ∀ g ∈ L2. (4.49)
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In fact, by (4.46), L1/2 is one-to-one. So it suffices to justify that the range of L1/2 is the
whole L2. To this end, we first show that the range of L is dense in L2.

Lemma 4.50 The range of L is dense in L2.

Proof Let g ∈ L2. For any δ > 0, let gδ ∈ S (Rn) such that ‖gδ − g‖L2 < δ. Define

f (δ)
ε := (L + ε I )−1 gδ ∈ D(L).

We claim that
∥
∥
∥L f

(δ)
ε − g

∥
∥
∥
L2

< Cδ when ε is sufficiently small. And this would complete

the proof of the lemma.
We write

L f (δ)
ε − g = L(L + ε I )−1gδ − g = gδ − ε(L + ε I )−1gδ − g,

and then
∥
∥
∥L f (δ)

ε − g
∥
∥
∥
L2

≤ ‖gδ − g‖L2 + ε
∥
∥(L + ε I )−1gδ

∥
∥ < δ + ε

∥
∥(L + ε I )−1gδ

∥
∥ . (4.51)

We have

(L + ε I )−1gδ =
ˆ ∞

0
e−t(L+ε I )(gδ)dt,

and thus
∥
∥(L + ε I )−1gδ

∥
∥
L2 ≤

ˆ ∞

0
e−tε

∥
∥
∥e−t L gδ

∥
∥
∥
L2

dt .

Fix any 1 < p < 2, then by the L p − L2 bound of the semigroup, we obtain

∥
∥(L + ε I )−1gδ

∥
∥
L2 �

ˆ ∞

0
e−tε t−

γp
2 ‖gδ‖L p dt

� ε
γp
2 −1

ˆ ∞

0
e−τ τ− γp

2 dτ ‖gδ‖L p � ε
γp
2 −1.

By choosing ε sufficiently small, this and (4.51) imply that
∥
∥
∥L f

(δ)
ε − g

∥
∥
∥
L2

< 2δ. Since δ > 0

is arbitrary, it proves that the range of L is dense in L2. ��
Remark 4.52 By a similar argument and interpolation, one can show that the range of L is
dense in L p , for any 1 < p < ∞.

Corollary 4.53 The range of L1/2 acting on Ẇ 1,2 is L2.

Proof Since L1/2L1/2 = L in D(L), L1/2 maps D(L) into D(L1/2) = W 1,2, and L1/2(W 1,2)

contains the range of L . So the range of L1/2 acting on W 1,2 is dense in L2. Extending L1/2

to Ẇ 1,2, we claim that L1/2 has closed range in L2. To see this, suppose
{

L1/2 fn
}

is a
Cauchy sequence in L2 with limn→∞ L1/2 fn = y ∈ L2. By (4.46), ‖∇( fn − fm)‖L2 �
∥
∥L1/2( fn − fm)

∥
∥
L2 , which implies that { fn} is Cauchy in Ẇ 1,2. So fn → f ∈ Ẇ 1,2. Then

we have
∥
∥y − L1/2 f

∥
∥
L2 ≤ ∥

∥y − L1/2 fn
∥
∥
L2 + ∥

∥L1/2 ( fn − fm)
∥
∥

< ε + ‖∇( fn − fm)‖L2 < 2ε

for n sufficiently large. This implies that y = L1/2 f , and thus the range of L1/2 is closed. ��
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A consequence of D(L1/2) = Ẇ 1,2(Rn) is the following representation formula

Lemma 4.54 If f , h ∈ Ẇ 1,2 then

(

(L∗)1/2 f , L1/2h
) =

ˆ
Rn

A∇ f · ∇h.

Proof For f , h ∈ Ẇ 1,2, L1/2h and (L∗)1/2 f belong to L2. So both sides of the equality
are well-defined (we use Proposition 2.2 for the right-hand side). Since the domain of L is
dense in W 1,2 and thus dense in Ẇ 1,2, it suffices to show the equality holds for h ∈ D(L)

and f ∈ Ẇ 1,2. By (4.40),
(

(L∗)1/2 f , L1/2h
) = (

f , L1/2L1/2h
) = ( f , Lh) ,

which equals to
´
Rn ∇ f · A∇h by construction of L . ��

Another implication of (4.46) and (4.49) is the L2 boundedness of ∇L−1/2, the Riesz
transform associated to L . In fact, since L1/2 is an isomorphism from Ẇ 1,2 to L2, letting
f := L−1/2g ∈ Ẇ 1,2 in (4.46) one obtains

∥
∥∇L−1/2g

∥
∥
L2 � ‖g‖L2 ∀ g ∈ L2. (4.55)

Note that by the formula (4.41), we immediately get the following formula for L−1/2

L−1/2g = π−1/2
ˆ ∞

0
e−t L g

dt√
t
, ∀ g ∈ R(L).

Lemma 4.56 Let n ≥ 3, and let 2∗ = 2n
n−2 . Let 1 < p < ∞ and p 	= 2. Then for all

g ∈ L2 ∩ L p,

L−1/2g = π−1/2
ˆ ∞

0
e−t L g

dt√
t

(4.57)

is valid and converges in L p + L2∗
if p 	= 2∗, and in L2∗ + L p−ε if p = 2∗, where ε > 0 is

arbitrarily small.

Proof Let g ∈ L2 ∩ L p , and write
ˆ ∞

0
e−t L g

dt√
t

=
ˆ 1

0
e−t L g

dt√
t

+
ˆ ∞

1
e−t L g

dt√
t

=: I + I I .

We first consider 1 < p < 2. By the L p boundedness of the semigroup, I converges in L p

norm. For I I , note that we have
∥
∥
∥e−t L g

∥
∥
∥
L2∗ �

∥
∥
∥∇e−t L g

∥
∥
∥
L2

� t−
1+γp

2 ‖g‖L p , (4.58)

which is a consequence of the L p − L2 bound of (
√
t∇e−t L)t>0 and Sobolev embedding.

So the integral converges in L p + L2∗
norm.

For p > 2, we consider the following cases.

1. p > 2∗. By the L2∗
bound of (e−t L)t>0, ‖I‖L2∗ � ‖g‖L2∗ ≤ ‖g‖L2∩L p , and thus I

converges in L2∗
. I I converges in L p because of the L2 − L p boundedness of (e−t L )t>0.

Note that p > 2∗ gives γp > 1, and thus
´∞
1 t−

1+γp
2 dt < ∞.
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2. 2 < p < 2∗. For I , we use the L p − L2∗
boundedness of the semigroup to get

‖I‖L2∗ �
ˆ 1

0
t−

γp2∗ +1

2 dt ‖g‖L p � ‖g‖L p ,

wherewehave used γp2∗ = n
p− n−2

n < 1. That is, I converges in L2∗
. Let p∗ = np

n+p be the

reverse Sobolev exponent of p. Then by Sobolev embedding and L p∗ − L2 boundedness
of (

√
t∇e−t L)t>0 (note that p∗ < 2), one gets

∥
∥
∥e−t L g

∥
∥
∥
L p

�
∥
∥
∥∇e−t L g

∥
∥
∥
L p∗

� t−
1+γp∗2

2 ‖g‖L2 ,

which yields I I converges in L p .
3. p = 2∗. One can see I converges in L2∗

from the L2∗
boundedness of (e−t L )t>0. For I I ,

the Sobolev embedding and L(p−ε)∗ − L2 boundedness of (
√
t∇e−t L)t>0 imply that I I

converges in L p−ε , for arbitrary small ε > 0.

Now it remains to show that the equality (4.57) holds for any g ∈ L2∩L p . By Lemma 4.50
and the remark after it, R(L) contains a dense subset of L2 ∩ L p . Therefore, there exists
{gn} ⊂ R(L) ∩ L p such that gn → g ∈ L2 ∩ L p . Then

L−1/2gn = π−1/2
ˆ ∞

0
e−t L gn

dt√
t
.

So from the convergence argument above, one can see that
{

L−1/2gn
}

is a Cauchy sequence
in L p + L2∗

if p 	= 2∗. Suppose L−1/2gn → f ∈ L p + L2∗
. Since L1/2 is an isomorphism

from Ẇ 1,2 to L2, L−1/2g is well-defined. We compute
∥
∥L−1/2g − f

∥
∥
L p+L2∗ ≤ ∥

∥L−1/2g − L−1/2gn
∥
∥
L p+L2∗ + ∥

∥L−1/2gn − f
∥
∥
L p+L2∗

≤ ∥
∥L−1/2g − L−1/2gn

∥
∥
L2∗ + ∥

∥L−1/2gn − f
∥
∥
L p+L2∗ .

And by Sobolev embedding and (4.55),
∥
∥L−1/2g − L−1/2gn

∥
∥
L2∗ �

∥
∥∇L−1/2(gn − g)

∥
∥
L2 � ‖gn − g‖L2 .

Thus, we have proved that L−1/2g = f . When p = 2∗,
{

L−1/2gn
}

is a Cauchy sequence in
L p−ε + L2∗

, and a similar argument gives the same result. ��
Lemma 4.59 Let n = 2. Let 1 < p < ∞ and p 	= 2. Then for all g ∈ L2 ∩ L p,

L−1/2g = π−1/2
ˆ ∞

0
e−t L g

dt√
t

is valid and converges in L p(R2) + BMO(R2).

Proof As in the proof of Lemma 4.56, we let g ∈ L2 ∩ L p and write
ˆ ∞

0
e−t L g

dt√
t

=
ˆ 1

0
e−t L g

dt√
t

+
ˆ ∞

1
e−t L g

dt√
t

=: I + I I .

When 1 < p < 2, the same argument in the proof of Lemma 4.56 for I carries over to the
2-d setting and shows that I converges in L p(R2). By replacing L2∗

with BMO in (4.58),
one gets I I converges in BMO(R2).
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When p > 2, the L p − L∞ boundedness of the semigroup gives

‖I‖L∞ �
ˆ 1

0
t−

1+γp∞
2 dt ‖g‖L p � ‖g‖L p ,

where we have used γp∞ = 2
p < 1. This implies that I converges in L∞, and thus in BMO .

I I converges in L p because of the Sobolev embedding and the L p∗ − L2 boundedness of
(
√
t∇e−t L)t>0. Note that p∗ = 2p

2+p < 2.

We have proved that for any g ∈ L2 ∩ L p ,
´∞
0 e−t L g dt√

t
converges in L p + BMO , and

it remains to show the improper integral equals to L−1/2g. To see this, one only needs to
replace L2∗

with BMO in the corresponding proof of Lemma 4.56. ��
Corollary 4.60 We have the following representation for the Riesz transform:

(∇L−1/2 f , v
) = π−1/2 lim

ε→0

ˆ
Rn

ˆ ∞

ε

∇e−t L f
dt√
t
v dx

for all f ∈ L2 ∩ L p, and for all Cn- valued v ∈ C∞
0 .

Proof Since we have observed in Lemma 4.56 and 4.59 that the improper integral defining
L−1/2 f converges in L p + L2∗

or in L p−ε + L2∗
if p = 2∗, or in L p + BMO if n = 2, and

since div v is compactly supported and belongs to every L p , and to the Hardy spaceH1, we
can write

π1/2 (∇L−1/2 f , v
) = π1/2

ˆ
Rn

∇L−1/2 f v dx = −π1/2
ˆ
Rn

L−1/2 f div v dx

= − lim
ε→0

ˆ
Rn

ˆ 1
ε

ε

e−t L f
dt√
t
div v dx = lim

ε→0

ˆ 1
ε

ε

ˆ
Rn

∇e−t L f v dx
dt√
t

= lim
ε→0

ˆ 1

ε

ˆ
Rn

∇e−t L f v dx
dt√
t

+
ˆ ∞

1

ˆ
Rn

∇e−t L f v dx
dt√
t

= lim
ε→0

ˆ
Rn

ˆ 1

ε

∇e−t L f
dt√
t
v dx +

ˆ
Rn

ˆ ∞

1
∇e−t L f

dt√
t
v dx

= lim
ε→0

ˆ
Rn

ˆ ∞

ε

∇e−t L f
dt√
t
v dx (4.61)

where we have used the L p−L2 bound (or the L2−L p bound if p > 2) of (
√
t∇e−t L)t>0, so

the second improper integral converges, and we can then exchange the order of integration.
��

We now show that the limit can be taken inside the integral in Corollary 4.60 and thus we
have the following formula for the Riesz transform associated to L:

Proposition 4.62 Let 1 < p < ∞ and p 	= 2, then

∇L−1/2( f ) = 1√
π

ˆ ∞

0

∇e−t L f√
t

dt, ∀ f ∈ L2 ∩ L p.

Proof By Corollary 4.60, it suffices to show that for f ∈ L2 ∩ L p ,

Fk( f ) :=
ˆ ∞

1
k

∇e−t L f√
t

dt is a Cauchy sequence in L2(Rn). (4.63)
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By the McIntosh-Yagi theorem ([19] Theorem 1), we haveˆ ∞

0

ˆ
Rn

∣
∣
∣(t L)1/4e−t L f

∣
∣
∣

2 dxdt

t
� ‖ f ‖2L2(Rn)

∀ f ∈ L2(Rn),

which implies that for any ε > 0, there exists δ0 = δ( f , ε) > 0 such that
ˆ δ0

0

ˆ
Rn

∣
∣
∣(t L)1/4e−t L f

∣
∣
∣

2 dxdt

t
≤ ε2. (4.64)

Set N0 > 1 so that 1
N0

< δ0, and choose m > k > N0. We write

Fm( f ) − Fk( f ) =
ˆ 1

k

1
m

∇e−t L f√
t

dt = ∇L−1/2
ˆ 1

k

1
m

L1/2e−t L f√
t

dt .

Since ∇L−1/2 is bounded on L2,

‖Fm( f ) − Fk( f )‖L2 ≤ C

∥
∥
∥
∥
∥

ˆ 1
k

1
m

L1/2e−t L f√
t

dt

∥
∥
∥
∥
∥
L2

= C sup
g∈L2,‖g‖L2≤1

∣
∣
∣
∣
∣

(ˆ 1
k

1
m

L1/2e−t L f√
t

dt, g

)∣
∣
∣
∣
∣
.

We compute
(ˆ 1

k

1
m

L1/2e−t L f√
t

dt, g

)

=
ˆ 1

k

1
m

1√
t

(

L1/2e−t L/2 f , e−t L∗/2g
)

dt

=
ˆ 1

k

1
m

1√
t

(

L1/4e−t L/2 f , (L∗)1/4e−t L∗/2g
)

dt

=
ˆ 1

k

1
m

1

t

(

(t L)1/4e−t L/2 f , (t L∗)1/4e−t L∗/2g
)

dt .

Then by Cauchy-Schwartz, the McIntosh-Yagi theorem and (4.64), we obtain
∣
∣
∣
∣
∣

(ˆ 1
k

1
m

L1/2e−t L f√
t

dt, g

)∣
∣
∣
∣
∣

≤
(ˆ 1

k

1
m

ˆ
Rn

∣
∣
∣(t L)1/4e−t L/2 f

∣
∣
∣

2 dxdt

t

)1/2 (ˆ 1
k

1
m

ˆ
Rn

∣
∣
∣(t L∗)1/4e−t L∗/2g

∣
∣
∣

2 dxdt

t

)1/2

≤ C

(ˆ δ0

0

ˆ
Rn

∣
∣
∣(t L)1/4e−t L/2 f

∣
∣
∣

2 dxdt

t

)1/2

‖g‖L2 ≤ Cε.

This implies that for any m ≥ k > N0, ‖Fm( f ) − Fk( f )‖L2 ≤ Cε, that is, {Fk( f )} is
Cauchy in L2. ��

We shall use this representation of the Riesz transform to obtain the L p boundedness of
the square root operator.

Lemma 4.65 To show that
∥
∥(L∗)1/2 f

∥
∥
L p � ‖∇ f ‖L p , f ∈ Ẇ 1,p, with p > 1, it suffices to

show
∥
∥∇L−1/2g

∥
∥
L p′ � ‖g‖L p′ ∀ g ∈ L2 ∩ L p′

. (4.66)
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Proof Let f ∈ S (Rn).
∥
∥(L∗)1/2 f

∥
∥
L p = sup

g∈L2∩L p′
‖g‖

L p
′ ≤1

∣
∣
(

(L∗)1/2 f , g
)∣
∣ = sup

g∈L2∩L p′
‖g‖

L p
′ ≤1

∣
∣
(

(L∗)1/2 f , L1/2L−1/2g
)∣
∣

= sup
g∈L2∩L p′
‖g‖

L p
′ ≤1

∣
∣
(

(L∗)1/2 f , L1/2h
)∣
∣

where h = L−1/2g. Then by Lemma 4.54 and Proposition 2.2

∣
∣
(

(L∗)1/2 f , L1/2h
)∣
∣ =

∣
∣
∣
∣

ˆ
Rn

∇ f · A∇h

∣
∣
∣
∣
� ‖∇ f ‖L p

∥
∥∇L−1/2g

∥
∥
L p′ .

Therefore, (4.66) gives
∥
∥(L∗)1/2 f

∥
∥
L p � sup

g∈L2∩L p′
‖g‖

L p
′ ≤1

‖∇ f ‖L p ‖g‖L p′ � ‖∇ f ‖L p ∀ f ∈ S (Rn). (4.67)

Since S (Rn) is dense in Ẇ 1,p , (L∗)1/2 can be extended to Ẇ 1,p and (4.67) holds for all
f ∈ Ẇ 1,p . ��
Therefore, to prove

∥
∥(L∗)1/2 f

∥
∥
L p � ‖∇ f ‖L p for p > 2, it suffices to show

∥
∥∇L−1/2g

∥
∥
L p′ � ‖g‖L p′ ∀ g ∈ L2 ∩ L p0 , (4.68)

where p0 ∈ [1, p′). This is because L2 ∩ L p0 is dense in L2 ∩ L p′
. In order to prove (4.68),

we show that the Riesz transform is of weak type (p0, p0), and then the strong type (p, p)
bound follows from interpolation with the strong type (2,2) bound (4.55).

Proposition 4.69 Let p0 ∈ (1, 2). Then
∥
∥∇L−1/2g

∥
∥
L∞,p0 � ‖g‖L p0 ∀ g ∈ L p0 ∩ L2.

As a consequence, for any 1 < p < 2,
∥
∥∇L−1/2g

∥
∥
L p � ‖g‖L p ∀ g ∈ L p ∩ L2.

Proposition 4.69 can be proved exactly as in [1] (p.43–44) and its proof is thus omitted.
The main ingredients in the proof are the Riesz transform representation formula (Proposi-
tion 4.62), the L p0 − L2 off-diagonal estimates for (

√
t∇e−t L)t>0, and the following lemma.

Lemma 4.70 ([1] Theorem 2.1) Let p0 ∈ [1, 2). Suppose that T is a sublinear operator of
strong type (2, 2), and let Ar , r > 0, be a family of linear operators acting on L2. For a ball
B, let C1(B) = 4B, C j (B) = 2 j+1B \ 2 j B if j ≥ 2.

Assume for j ≥ 2
(

1
∣
∣2 j+1B

∣
∣

ˆ
C j (B)

∣
∣T (I − Ar(B)) f

∣
∣
2

)1/2

≤ g( j)

(
1

|B|
ˆ
B

| f |p0
)1/p0

(4.71)

and for j ≥ 1
(

1
∣
∣2 j+1B

∣
∣

ˆ
C j (B)

∣
∣Ar(B) f

∣
∣2

)1/2

≤ g( j)

(
1

|B|
ˆ
B

| f |p0
)1/p0

(4.72)
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for all ball B with radius r(B) and all f supported in B. If Σ = Σ j g( j)2nj < ∞, then T
is of weak type (p0, p0), with a bound depending only on the strong type (2, 2) bound of T ,
p0 and Σ .

We now turn to the case when p < 2 in the L p estimate of the square root. Due to
Lemma 4.65, to show

∥
∥(L∗)1/2 f

∥
∥
L p � ‖∇ f ‖L p for 1 < p < 2, it suffices to show

∥
∥∇L−1/2g

∥
∥
L p′ � ‖g‖L p′ for any g ∈ L2 ∩ L p′

.

Proposition 4.73 Let p0 ∈ (2, 2 + ε1), where ε1 is as in Proposition 4.38. Then for any
2 < p < p0,

∥
∥∇L−1/2g

∥
∥
L p � ‖g‖L p ∀ g ∈ L p ∩ L2.

The main ingredients of the proof are the Riesz transform representation formula we
obtained in Proposition 4.62, the L2 − L p0 off-diagonal estimate for (

√
t∇e−t L)t>0, which

gives the upper range 2 + ε1 of p, and the following lemma. The proof of Proposition 4.73
is contained in [1] (p.48–50) and is thus omitted.

Lemma 4.74 ([1] Theorem 2.2) Let p0 ∈ (2,∞]. Suppose that T is sublinear operator acting
on L2, and let Ar , r > 0, be a family of linear operators acting on L2. Assume

(
1

|B|
ˆ
B

∣
∣T (I − Ar(B)) f

∣
∣
2
)1/2

≤ C
(

M(| f |2))1/2 (y),

and
(

1

|B|
ˆ
B

∣
∣T Ar(B) f

∣
∣
p0

)1/p0
≤ C

(

M(|T f |2))1/2 (y),

for all f ∈ L2, all ball B with radius r(B) and all y ∈ B. If 2 < p < p0 and T f ∈ L p

when f ∈ L p ∩ L2, then T is strong type (p, p). More precisely, for all f ∈ L p ∩ L2,

‖T f ‖L p ≤ c ‖ f ‖L p

where c depends only on n, p, p0 and C.

We observe that the arguments above all applies to the adjoint operator L∗. So we have
obtained

Proposition 4.75 Let 1+ 1
1+ε1

< p < ∞, where ε1 is as in Proposition 4.38. Let f ∈ Ẇ 1,p.
Then

∥
∥(L∗)1/2 f

∥
∥
L p � ‖∇ f ‖L p ,

∥
∥L1/2 f

∥
∥
L p � ‖∇ f ‖L p .

We remark that the L p estimate for the square root is actually valid for all p ∈ (1,∞).
That is, we have

∥
∥L1/2 f

∥
∥
L p � ‖∇ f ‖L p for 1 < p < ∞, f ∈ Ẇ 1,p . This can be obtained

by the weak type (1,1) estimate
∥
∥L1/2 f

∥
∥
L1,∞ � ‖∇ f ‖L1 (4.76)

and then by Marcinkiewicz interpolation. (4.76) can be derived using a Calderon-Zygmund
decomposition for Sobolev functions. One can find the details in [1] Lemma 5.13. There,
the result is carefully relied on dimension, as well as the lower range of p in the L p − L2

off-diagonal estimate for the semigroup. In our setting, we do not need those discussions
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mainly because the Gaussian estimate (4.1) yields the L p − L2 off-diagonal estimate for
(e−t L )t>0 for all 1 < p < 2.

We end this section by summarizing our results. Note that by writing ∇ f =
∇L−1/2

(

L1/2 f
)

, the L p estimate for the Riesz transform associated to L yields the invert-
ibility property of the square root on L p spaces.

Theorem 4.77 Let n ≥ 2, ε1 be as in Proposition 4.38, and let f ∈ Ẇ 1,p(Rn). Then
∥
∥L1/2 f

∥
∥
L p � ‖∇ f ‖L p for 1 < p < ∞. And ‖∇ f ‖L p �

∥
∥L1/2 f

∥
∥
L p for 1 < p < 2 + ε1.

Furthermore, L1/2 extends to an isomorphism from Ẇ 1,p onto L p when 1 < p < 2 + ε1.

5 Lp estimates for square functions

Proposition 5.1 For any f ∈ L2,
ˆ
Rn

ˆ ∞

0

∣
∣
∣(L1/2e−t L f )(x)

∣
∣
∣

2
dtdx � ‖ f ‖2L2(Rn)

, (5.2)

where the implicit constant depends on λ0, Λ0 and n. By a change of variable, we have
ˆ
Rn

ˆ ∞

0

∣
∣
∣t L1/2e−t2L f (x)

∣
∣
∣

2 dtdx

t
� ‖ f ‖2L2(Rn)

. (5.3)

Proof We first prove
ˆ ∞

0

ˆ
Rn

∣
∣
∣(∇e−t L f )(x)

∣
∣
∣

2
dtdx � ‖ f ‖2L2(Rn)

. (5.4)

Actually, the converse of (5.4) is also true. We have

‖ f ‖2L2 = −
ˆ ∞

0

d

dt

∥
∥
∥e−t L f

∥
∥
∥

2

L2
dt . (5.5)

We postpone its proof to the end. Using Lemma A.2, one has

�
ˆ
Rn

A∇e−t L f · ∇e−t L f = �
(

Le−t L f , e−t L f
)

= −�〈∂t e−t L f , e−t L f 〉W̃−1,2,W 1,2

= −1

2

d

dt

∥
∥
∥e−t L f

∥
∥
∥

2

L2
.

Therefore,

‖ f ‖2L2 = 2
ˆ ∞

0
�
ˆ
Rn

A∇e−t L f · ∇e−t L f dxdt,

and (5.4) follows from ellipticity.
Using

∥
∥L1/2 f

∥
∥
L2 � ‖∇ f ‖L2 , (5.4) gives

ˆ ∞

0

ˆ
Rn

∣
∣
∣(L1/2e−t L f )(x)

∣
∣
∣

2
dxdt �

ˆ ∞

0

ˆ
Rn

∣
∣
∣∇e−t L f

∣
∣
∣

2
dxdt � ‖ f ‖2L2(Rn)

Proof of (5.5). The only thing that needs clarification is

lim
t→∞

∥
∥
∥e−t L f

∥
∥
∥

2

L2
= 0, ∀ f ∈ L2(Rn). (5.6)
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Fix any f ∈ L2(Rn). For any ε > 0, choose ϕε ∈ C∞
0 (Rn) such that

‖ϕε‖L2 ≤ ‖ f ‖L2 + 1 and
∥
∥
∥e−t L( f − ϕε)

∥
∥
∥
L2

< ε, ∀ t > 0.

And suppose suppϕε ⊂ Qε. Let p ∈ (1, 2). Then the L p boundedness of (e−t L)t>0 gives
∥
∥
∥e−t Lϕε

∥
∥
∥
L p

≤ C ‖ϕε‖L p ≤ C |Qε|
2−p
2p ‖ϕε‖L2 .

And the L2 − L p′
boundedness of (e−t L )t>0 gives

∥
∥
∥e−t Lϕε

∥
∥
∥
L p′ ≤ Ct−

γp′
2 ‖ϕε‖L2 .

Therefore, we have
∥
∥
∥e−t Lϕε

∥
∥
∥
L2

≤
∥
∥
∥e−t Lϕε

∥
∥
∥

1/2

L p

∥
∥
∥e−t Lϕε

∥
∥
∥

1/2

L p′ ≤ C |Qε|
2−p
4p t−

γp′
4

(‖ f ‖L2 + 1
)

.

Then there is a t0 = t0(ε) > 0, such that for any t > t0,
∥
∥e−t Lϕε

∥
∥
L2 < ε, and thus

∥
∥e−t L f

∥
∥
L2 < 2ε. This proves (5.6). ��

Proposition 5.7
∥
∥
∥
∥

( ˆ ∞

0

∣
∣
∣t Le−t2L F

∣
∣
∣

2 dt

t

)1/2
∥
∥
∥
∥
L p(Rn)

≤ Cp ‖∇F‖L p(Rn) (5.8)

for all 1 < p < ∞, and F ∈ W 1,2 ∩ W 1,p. Equivalently,
∥
∥
∥
∥

(ˆ ∞

0

∣
∣
∣∂t e

−t2L F
∣
∣
∣

2 dt

t

)1/2
∥
∥
∥
∥
L p(Rn)

≤ Cp ‖∇F‖L p(Rn) . (5.9)

Proof We claim that to obtain (5.8), it suffices to show
∥
∥
∥
∥
∥

(ˆ ∞

0

∣
∣
∣L1/2e−t L f

∣
∣
∣

2
dt

)1/2
∥
∥
∥
∥
∥
L p

≤ Cp ‖ f ‖L p ∀ 1 < p < ∞, f ∈ L2 ∩ L p.

(5.10)

In fact, by letting f = L1/2F in (5.10), (5.8) follows from the commutativity of e−t2L and
L1/2, the L p estimate for the square root, and a change of variables. The square function
(´∞

0

∣
∣L1/2e−t L f

∣
∣
2
dt

)1/2
is defined to be gL( f ) in [1], and it has been proved to be L p

bounded by ‖ f ‖L p with the range of p ∈ (1,∞) same as the one of boundedness of the
semigroup, up to endpoints. In other words, (5.10) holds for 1 < p < ∞. (5.10) can be
proved ([1] p.78–80) using Lemma 4.70 for p < 2 and Lemma 4.74 for p > 2. ��
Remark 5.11 For 2 ≤ p < ∞, (5.8) can be alternatively proved by showing that
∣
∣
∣t Le−t2L F(x)

∣
∣
∣

2
dxdt
t is a Carleson measure in R

n+1+ , and then using tent space interpo-

lation, as well as local estimates for ∂t e−t2L F(x). To show that
∣
∣
∣t Le−t2L F(x)

∣
∣
∣

2
dxdt
t is a

Carlesonmeasure one needs the Gaussian decay estimate for the kernel of ∂t e−t2L (see (4.4)).
This method is used in [8] to show (5.8) for p ≥ 2 and for L being an elliptic operator with
L∞ coefficients.

We now derive L p estimates for the functional
( ´∞

0

∣
∣
∣t2∇Le−t2 L

∣
∣
∣

2
dt
t

)1/2
.
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Proposition 5.12 Let 1 < p < 2 + ε1, where ε1 is as in Proposition 4.38. And let F ∈
W 1,2 ∩ W 1,p. Then

∥
∥
∥
∥

(ˆ ∞

0

∣
∣
∣t2∇Le−t2L F

∣
∣
∣

2 dt

t

)1/2
∥
∥
∥
∥
L p(Rn)

≤ Cp ‖∇F‖L p(Rn) . (5.13)

Or equivalently,
∥
∥
∥
∥

( ˆ ∞

0

∣
∣
∣t∇∂t e

−t2L F
∣
∣
∣

2 dt

t

)1/2
∥
∥
∥
∥
L p(Rn)

≤ Cp ‖∇F‖L p(Rn) .

Proof We shall establish the following
∥
∥
∥
∥

(ˆ ∞

0

∣
∣
∣t2∇L1/2e−t2L f

∣
∣
∣

2 dt

t

)1/2
∥
∥
∥
∥
L p(Rn)

≤ Cp ‖ f ‖L p(Rn) (5.14)

for 1 < p < 2 + ε1 and f ∈ L2 ∩ L p . Once this is proved, setting f = L1/2F ∈ L2 ∩ L p

and then using
∥
∥L1/2F

∥
∥
L p � ‖∇F‖L p , ∀ 1 < p < ∞

one obtains (5.13).
We now prove (5.14) by cases.
Case 1: p = 2. We write e−t2L = e−t2L/2e−t2L/2, and use the fact that t∇e−t2L/2 is

bounded on L2(Rn), uniformly in t (by (4.6)), to obtain
ˆ
Rn

ˆ ∞

0

∣
∣
∣t2∇L1/2e−t2L f

∣
∣
∣

2 dt

t
dx =

ˆ ∞

0
t
ˆ
Rn

∣
∣
∣t∇e−t2L/2(L1/2e−t2L/2 f )

∣
∣
∣

2
dxdt

≤ C
ˆ ∞

0
t
ˆ
Rn

∣
∣
∣L1/2e−t2L/2 f

∣
∣
∣

2
dxdt

= C
ˆ
Rn

ˆ ∞

0
t
∣
∣
∣L1/2e−t2L/2 f

∣
∣
∣

2
dtdx .

By Proposition 5.2,
ˆ
Rn

ˆ ∞

0
t
∣
∣
∣L1/2e−t2L/2 f

∣
∣
∣

2
dtdx � ‖ f ‖2L2(Rn)

,

which finishes the proof of L2 boundedness.
Case 2: 2 < p < 2 + ε1. We exploit Lemma 4.74 in this case. Note that Lemma 4.74

requires T f ∈ L p when f ∈ L p ∩ L2 and the purpose of the statement is to bound the
L p norm of T f . In practice, we would apply this lemma to suitable approximation of the
operator T and obtain uniform L p bounds. The uniformity of the bounds allows a limiting
argument to deduce L p boundedness of T .

With this in mind, we define

G( f ) :=
(ˆ ∞

0

∣
∣
∣t2∇L1/2e−t2L f

∣
∣
∣

2 dt

t

)1/2
,

and define Gε to be the approximation of G

Gε( f ) :=
(ˆ ∞

ε

∣
∣
∣t2∇L1/2e−t2L f

∣
∣
∣

2 dt

t

)1/2

.
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We shall first show Gε( f ) ∈ L p for f ∈ L p ∩ L2, and then derive the uniform estimates for
Gε( f ). Namely,

(
1

|B|
ˆ
B

∣
∣
∣Gε(I − e−r2L)m f

∣
∣
∣

2
)1/2

� (M(| f |2))1/2(y) ∀ y ∈ B (5.15)

and
(

1

|B|
ˆ
B

∣
∣
∣Gε(e

−r2L f )
∣
∣
∣

p0
)1/p0

� (M(|Gε f |2))1/2(y) ∀ y ∈ B (5.16)

uniformly in ε, for any ball B with radius r , and for some integer m large enough. We
shall prove (5.16) with p0 = 2 + ε1. Then by Lemma 4.74, ‖Gε( f )‖L p � ‖ f ‖L p for
all 2 < p < p0, uniformly in ε. Letting ε → 0, one obtains ‖G f ‖L p � ‖ f ‖L p for all
2 < p < p0.

Proof of Gε( f ) ∈ L p for f ∈ L p ∩ L2.

We rewrite Gε( f ) to be

Gε( f ) =
(ˆ ∞

ε2

∣
∣
∣t∇L1/2e−t L f

∣
∣
∣

2 dt

t

)1/2

.

By Minkowski’s inequality,

‖Gε( f )‖L p ≤
{ ˆ ∞

ε2

(ˆ
Rn

(

t
∣
∣
∣∇L1/2e−t L f

∣
∣
∣

2
)p/2

dx

)2/p

dt
}1/2

=
{ˆ ∞

ε2

(ˆ
Rn

∣
∣
∣

√
t∇L1/2e−t L f

∣
∣
∣

p
dx

)2/p

dt
}1/2

=
{ˆ ∞

ε2

(ˆ
Rn

∣
∣
∣

√
t∇e−t L/2L1/2e−t L/2 f

∣
∣
∣

p
dx

)2/p

dt
}1/2

.

We first use the L2 − L p bounds for (
√
t∇e−t L)t>0, then (4.43), and finally the L2 bounds

for (
√
t∇e−t L)t>0 to obtain

‖Gε( f )‖L p �
(ˆ ∞

ε2
t−γp

ˆ
Rn

∣
∣
∣L1/2e−t L/2 f

∣
∣
∣

2
dxdt

)1/2

�
(ˆ ∞

ε2
t−γp

ˆ
Rn

∣
∣
∣∇e−t L/2 f

∣
∣
∣

2
dxdt

)1/2

�
(ˆ ∞

ε2
t−γp−1dt

)1/2

‖ f ‖L2 ≤ Cε,p ‖ f ‖L2 .

Proof of (5.16)
Since the domain of e−t L is L2, the operators commute for f ∈ L2:

∇L1/2e−t2L(e−r2L f ) = ∇e−r2L L1/2e−t2L f .

By Minkowski inequality,

{ 1

|B|
ˆ
B

(ˆ ∞

ε

∣
∣
∣t2∇L1/2e−t2 L(e−r2 L f )

∣
∣
∣

2 dt

t

) p0
2
dx

} 2
p0

≤
ˆ ∞

ε

( 1

|B|
ˆ
B

∣
∣
∣t2∇L1/2e−t2 L(e−r2 L f )

∣
∣
∣

p0
dx

) 2
p0 dt

t
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=
ˆ ∞

ε

( 1

|B|
ˆ
B

∣
∣
∣t2∇e−r2 L(L1/2e−t2 L f )

∣
∣
∣

p0
dx

) 2
p0 dt

t
(5.17)

Using the L2−L p0 off-diagonal estimates for (
√
r∇e−r L)r>0, as well as Poincaré inequality,

one can show
( 1

|B|
ˆ
B

∣
∣
∣∇e−r2L f

∣
∣
∣

p0 )1/p0 ≤
∑

j≥1

g( j)
( 1

∣
∣2 j+1B

∣
∣

ˆ
2 j+1B

|∇ f |2
)1/2

with
∑

j≥1 g( j) < ∞. By this and Hölder inequality we can bound (5.17) by

ˆ ∞

ε

{ ∑

j≥1

g( j)
( 1

∣
∣2 j+1B

∣
∣

ˆ
2 j+1B

∣
∣
∣t2∇L1/2e−t2 L f

∣
∣
∣

2
dx

)1/2}2 dt

t

≤ C
ˆ ∞

ε

∑

j≥1

g( j)
1

∣
∣2 j+1B

∣
∣

ˆ
2 j+1B

∣
∣
∣t2∇L1/2e−t2 L f

∣
∣
∣

2
dx

dt

t

≤ C sup
j≥1

1
∣
∣2 j+1B

∣
∣

ˆ
2 j+1B

ˆ ∞

ε

∣
∣
∣t2∇L1/2e−t2 L f

∣
∣
∣

2 dt

t
dx

≤ C(M |Gε f |2)1/2(y) ∀ y ∈ B. (5.18)

Proof of (5.15)
Now write f = ∑

j≥1 f j , where

{

f j = ( f − ( f )4B)12 j+1B\2 j B j ≥ 2,

f1 = ( f − ( f )4B)14B .

Then
(

1

|B|
ˆ
B

∣
∣
∣Gε(I − e−r2L)m f

∣
∣
∣

2
)1/2

≤
∑

j≥1

(
1

|B|
ˆ
B

∣
∣
∣Gε(I − e−r2L)m f j

∣
∣
∣

2
)1/2

.

For f1, the L2 bound of G and that of (I − e−r2L)m (the latter is a consequence of the
holomorphic functional calculus on L2) imply

(
1

|B|
ˆ
B

∣
∣
∣Gε(I − e−r2L)m f1

∣
∣
∣

2
)1/2

≤ C

(
1

|B|
ˆ
Rn

| f1|2
)1/2

≤ C

(
1

|B|
ˆ
4B

| f |2
)1/2

≤ C(M | f |2)1/2(y) ∀ y ∈ B.

For f j with j ≥ 2, let ϕ(z) = t z1/2e−t2z(1 − e−r2z)m . Then (see e.g. [1] section 3.2)

t L1/2e−t2L(1 − e−r2L)m = ϕ(L) =
ˆ

Γ+
e−zLη+(z)dz +

ˆ
Γ−

e−zLη−(z)dz,

where Γ± is the half-ray R+e±i( π
2 −θ),

η±(z) = 1

2π i

ˆ
γ±

eζ zϕ(ζ )dζ, z ∈ Γ±,
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with γ± being the half-rayR+e±iν , and 0 < ω0 < θ < ν < π
2 , where ω0 is as in Proposition

(4.9). One can show

|η±(z)| ≤ Ct

(|z| + t2)3/2
inf(1,

r2m

(|z| + t2)m
), z ∈ Γ±, (5.19)

whose proof is postponed to the end. Then,

1

|B|
ˆ
B

∣
∣
∣Gε(I − e−r2 L)m f j

∣
∣
∣

2
dx

=
ˆ ∞

ε

t

|B|
ˆ
B

∣
∣
∣
∣

ˆ
Γ+

∇e−zLη+(z)dz f j +
ˆ

Γ−
∇e−zLη−(z)dz f j

∣
∣
∣
∣

2

dxdt

≤ C
ˆ ∞

0

t

|B|
ˆ
B

∣
∣
∣
∣

ˆ
Γ+

∇e−zLη+(z)dz f j

∣
∣
∣
∣

2

dxdt

+
ˆ ∞

0

t

|B|
ˆ
B

∣
∣
∣
∣

ˆ
Γ−

∇e−zLη−(z)dz f j

∣
∣
∣
∣

2

dxdt

=: I+ + I−. (5.20)

By Minkowski inequality and (5.19),

I+ ≤
ˆ ∞

0

t

|B|
{ˆ

Γ+

(ˆ
B

∣
∣
∣∇e−zLη+(z) f j

∣
∣
∣

2
dx

)1/2 |dz|
}2
dt

�
ˆ ∞

0

t

|B|
{ ˆ

Γ+

( ˆ
B

∣
∣
∣
∣

√
z∇e−zL t

|z|1/2 (|z| + t2)3/2
r2m

(|z| + t2)m
f j

∣
∣
∣
∣

2

dx
)1/2 |dz|

}2
dt .

Since z ∈ Γ+ = R
+ei( π

2 −θ) and θ < ω0, we can apply the L2 − L2 off-diagonal estimates
for

(√
z∇e−zL

)

z∈Σ π
2 −θ

, and bound the expression above by

ˆ ∞

0

t

|B|
(ˆ

Γ+
e− c4 j r2

|z| t

|z|1/2 (|z| + t2)3/2
r2m

(|z| + t2)m
|dz| ∥∥ f j

∥
∥
L2

)2
dt (5.21)

We use the following lemma to estimate (5.21)

Lemma 5.22 ([1] Lemma 5.5) Let γ, α ≥ 0, m > 0 be fixed parameters, and c a positive
constant. For some C independent of j ∈ N, r , t > 0, the integral

I =
ˆ ∞

0
e− c4 j r2

s
1

sγ /2

tα

(s + t)1+α

r2m

(s + t)m
ds

satisfies the estimate

I ≤ C

4 jm(2 j r)γ
inf

(

(
t

4 j r2
)α, (

4 j r2

t
)m

)

.
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Letting γ = 1, α = 1
2 , and t replaced by t2 in the lemma, we obtain

(5.21) �
ˆ ∞

0

t

(4 jm(2 j r))2
inf

(

(
t2

4 j r2
), (

4 j r2

t2
)2m

)

dt
1

|B|
ˆ
2 j+1B

| f |2 dx

� 2 jn4−2 jm
ˆ ∞

0

t

(2 j r)2
inf

( t2

4 j r2
, (
4 j r2

t2
)2m

)

dt
1

∣
∣2 j+1B

∣
∣

ˆ
2 j+1B

| f |2 dx

� 2 j(n−4m)M | f |2 (y) ∀ y ∈ B.

I− can be estimated similarly. Choose 4m > n, we get

1

|B|
ˆ
B

∣
∣
∣Gε(I − e−r2L)m f

∣
∣
∣

2
� M | f |2 (y) ∀ y ∈ B,

which proves (5.15).
Case 3: 1 < p < 2. We use Lemma 4.70 to prove (5.13) holds for 1 < p < 2. Define G

as before. Then by letting T = G and Ar = I − (I − e−r2L)m in Lemma 4.70, it suffices to
show the following: let 1 < p0 < 2,

(

1
∣
∣2 j+1B

∣
∣

ˆ
C j (B)

∣
∣
∣G(I − e−r2L)m f

∣
∣
∣

2
)1/2

≤ g( j)

(
1

|B|
ˆ
B

| f |p0
)1/p0

for j ≥ 2,

(5.23)

and for j ≥ 1

(

1
∣
∣2 j+1B

∣
∣

ˆ
C j (B)

∣
∣
∣(e−kr2L f )

∣
∣
∣

2
)1/2

≤ g( j)

(
1

|B|
ˆ
B

| f |p0
)1/p0

(5.24)

for any ball B with radius r , for all f supported in B, for some integer m sufficiently large,
1 ≤ k ≤ m, and

∑

j g( j)2
nj < ∞.

(5.24) follows directly from the L p0 − L2 off-diagonal estimate of (e−t L)t>0. We now
turn to (5.23). As in the proof of (5.15), we have

1
∣
∣2 j+1(B)

∣
∣

ˆ
C j (B)

∣
∣
∣G(I − e−r2 L)m f

∣
∣
∣

2
dx

≤ C
ˆ ∞

0

t
∣
∣2 j+1B

∣
∣

ˆ
C j (B)

∣
∣
∣
∣

ˆ
Γ+

∇e−zLη+(z)dz f

∣
∣
∣
∣

2

dxdt

+
ˆ ∞

0

t
∣
∣2 j+1B

∣
∣

ˆ
C j (B)

∣
∣
∣
∣

ˆ
Γ−

∇e−zLη−(z)dz f

∣
∣
∣
∣

2

dxdt

=: I+ + I− (5.25)

where η± andΓ± are same as before.We only estimate I+, as I− can be estimated in a similar
manner. By Minkowski inequality and (5.19), I+ is bounded up to a constant by

ˆ ∞

0

t
∣
∣2 j+1B

∣
∣

{ˆ
Γ+

( ˆ
C j (B)

∣
∣
∣
∣

√
z∇e−zL t

|z|1/2 (|z| + t2)3/2
r2m

(|z| +t2)m
f

∣
∣
∣
∣

2

dx
)1/2 |dz|

}2
dt .
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The L p0 − L2 off-diagonal estimates for
(√

z∇e−zL
)

z∈Σ π
2 −θ

implies that the expression

above is bounded up to a constant by
ˆ ∞

0

t
∣
∣2 j+1B

∣
∣

(ˆ
Γ+

e− c4 j r2
|z| t

|z|(1+γp0 )/2 (|z| + t2)3/2
r2m

(|z| + t2)m
|dz| ‖ f ‖L p0 (B)

)2
dt .

Applying Lemma 5.22 with γ = 1 + γp0 and α = 1
2 , this is bounded up to a constant by

4−2 jm(2 j r)−2γp0
‖ f ‖2L p0 (B)
∣
∣2 j+1B

∣
∣

ˆ ∞

0

t

(2 j r)2
inf

(

t2

4 j r2
,

(
4 j r2

t2

)2m
)

dt

� 2− j(4m+n+2γp0 )

(
1

|B|
ˆ
B

| f |p0
) 2

p0
.

Combining this with (5.25) gives (5.23) with g( j) = 2− j(2m+ n
2 +γp0 ). And thus by choosing

m to be an integer such that 2m + γp0 > n
2 , we obtain the desired result.

Proof of (5.19)
We only show the estimate for η+. The proof for η− is similar.

Write ζ = ρeiν , and z = |z| ei( π
2 −θ). Then

∣
∣eζ z

∣
∣ = e−ρ|z| sin (ν−θ),

∣
∣
∣e−t2ζ

∣
∣
∣ = e−t2ρ cos ν .

Since 0 < θ < ν < π
2 ,

∣
∣
∣eζ ze−t2ζ

∣
∣
∣ ≤ e−cρ(|z|+t2) for some 0 < c < 1. So

|η+(z)| � t
ˆ ∞

0
ρ1/2e−cρ(|z|+t2)H(ρ)mdρ,

where H(ρ) = ∣
∣1 − exp(−r2ρeiν)

∣
∣. Observe that H(0) = 0, H(ρ) ≤ 2, and that H is a

Lipschitz function with [H ]C0,1 ≤ r2. So we have

H(ρ) ≤ C inf(1, r2ρ).

Using this estimate of H , we can bound |η+(z)| by

Ct
ˆ ∞

0
ρ

1
2 e−cρ(|z|+t2)dρ = Ct

(|z| + t2)3/2

ˆ ∞

0
s
1
2 e−sds = CtΓ ( 32 )

(|z| + t2)3/2
,

and by

Ctr2m
ˆ ∞

0
ρ

1
2+me−cρ(|z|+t2)dρ = CtΓ (m + 3

2 )r
2m

(|z| + t2)m+3/2 .

Combining the two bounds we obtain

|η+(z)| ≤ Ct

(|z| + t2)3/2
inf(1,

r2m

(|z| + t2)m
).

��
We also have a similar estimate when the derivative falls on t . But in this case, the L p

estimates hold for any 1 < p < ∞:

Proposition 5.26
∥
∥
∥
∥

(ˆ ∞

0

∣
∣
∣t2∂t Le

−t2L F
∣
∣
∣

2 dt

t

)1/2
∥
∥
∥
∥
L p(Rn)

≤ Cp ‖∇F‖L p(Rn) (5.27)

for all 1 < p < ∞, and all F ∈ W 1,2 ∩ W 1,p.
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Proof Let

G( f ) =
( ˆ ∞

0

∣
∣
∣t2∂t L

1/2e−t2L f
∣
∣
∣

2 dt

t

)1/2
. (5.28)

Then by the L p bounds of the square root of L , it suffices to show

‖G f ‖L p ≤ Cp ‖ f ‖L p . (5.29)

Case 1: p = 2. The argument can be copied almost verbatim from the proof in Propo-
sition 5.12. The only difference is that we would use the uniform L2 boundedness of
(t∂t e−t2L/2)t>0, rather than that of (t∇e−t2 L/2)t>0.
Case 2: p > 2. We shall apply Lemma 4.74 again. And as in the proof of Proposition 5.12,
we should derive the analog of (5.15) and (5.16) for the approximation operator Gε . We omit
this limiting process here for simplicity, and only derive the analogous estimates for G.

Let p0 > 2. We wish to prove
(

1

|B|
ˆ
B

∣
∣
∣G(e−r2L f )

∣
∣
∣

p0
)1/p0

� (M(|G f |2))1/2(y) ∀ y ∈ B.

To this end, we first claim that

t2∂t L
1/2e−t2L(e−r2L f ) = −2t3e−r2L L1/2Le−t2L f , ∀ f ∈ L2. (5.30)

Then by this and Minkowski inequality,

{ 1

|B|
ˆ
B

(ˆ ∞

0

∣
∣
∣t2∂t L

1/2e−t2 L(e−r2 L f )
∣
∣
∣

2 dt

t

) p0
2
dx

} 2
p0

≤
ˆ ∞

0

( 1

|B|
ˆ
B

∣
∣
∣t2∂t L

1/2e−t2 L(e−r2 L f )
∣
∣
∣

p0
dx

) 2
p0 dt

t

= 4
ˆ ∞

0

( 1

|B|
ˆ
B

∣
∣
∣t3e−r2 L L1/2Le−t2 L f

∣
∣
∣

p0
dx

) 2
p0 dt

t
.

Using the L2 − L p0 off-diagonal estimates for (e−r2L)r>0, one can show
( 1

|B|
ˆ
B

∣
∣
∣e−r2L f

∣
∣
∣

p0 )2/p0 ≤
∑

j≥1

C j
∣
∣2 j+1B

∣
∣

ˆ
2 j+1B

| f |2

with C j = Ce−c4 j
. So

{ 1

|B|
ˆ
B

(ˆ ∞

0

∣
∣
∣t2∂t L

1/2e−t2 L(e−r2 L f )
∣
∣
∣

2 dt

t

) p0
2
dx

} 2
p0

≤ 4
ˆ ∞

0

∑

j≥1

C j
∣
∣2 j+1B

∣
∣

ˆ
2 j+1B

∣
∣
∣t3 L1/2Le−t2 L f

∣
∣
∣

2
dx

dt

t

� sup
j

1
∣
∣2 j+1B

∣
∣

ˆ
2 j+1B

ˆ ∞

0

∣
∣
∣t2∂t L

1/2e−t2 L f
∣
∣
∣

2 dt

t
dx

� M(|G( f )|2)(y) ∀ y ∈ B.

Now we prove
(

1

|B|
ˆ
B

∣
∣
∣G(I − e−r2L)m f

∣
∣
∣

2
)1/2

� (M(| f |2))1/2(y) ∀ y ∈ B. (5.31)
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Define { f j } j≥1 as in the proof of Proposition 5.12. The estimates for f1 again follows

from the L2 bound of G and that of (I − e−r2L)m . For f j with j ≥ 2, we let ϕ(z) =
t3z3/2e−t2z(1 − e−r2z)m . Then

− 1

2
t2∂t L

1/2e−t2 L(I − e−r2 L)m = t3 L1/2Le−t2 L(I − e−r2 L)m

= ϕ(L) =
ˆ

Γ+
e−zLη+(z)dz +

ˆ
Γ−

e−zLη−(z)dz,

where η± and Γ± are defined as in the proof of Proposition 5.12. By a similar argument as
in the proof of (5.19), one can show

|η±(z)| � t3
ˆ ∞

0
ρ3/2e−cρ(|z|+t2)H(ρ)mdρ ≤ Ct3

(|z| + t2)5/2
inf(1,

r2m

(|z| + t2)m
).

(5.32)

Then,

1

|B|
ˆ
B

∣
∣
∣G(I − e−r2L)m f j

∣
∣
∣

2

= 4
ˆ ∞

0

1

|B|
ˆ
B

∣
∣
∣t3L1/2Le−t2L(I − e−r2L)m f j

∣
∣
∣

2
dx

dt

t

= 4
ˆ ∞

0

1

|B|
ˆ
B

∣
∣
∣
∣

ˆ
Γ+

e−zLη+(z)dz f j +
ˆ

Γ−
e−zLη−(z)dz f j

∣
∣
∣
∣

2

dx
dt

t

�
ˆ ∞

0

1

|B|
ˆ
B

∣
∣
∣
∣

ˆ
Γ+

e−zLη+(z)dz f j

∣
∣
∣
∣

2

dx
dt

t

+
ˆ ∞

0

1

|B|
ˆ
B

∣
∣
∣
∣

ˆ
Γ−

e−zLη−(z)dz f j

∣
∣
∣
∣

2

dx
dt

t
=: I+ + I−.

By Minkowski inequality and (5.32),

I+ �
ˆ ∞

0

1

|B|
{ ˆ

Γ+

(ˆ
B

∣
∣
∣
∣
∣
t3e−zL r2m

(|z| + t2)
5
2+m

f j

∣
∣
∣
∣
∣

2

dx
)1/2 |dz|

}2 dt

t
.

We use the L2 off-diagonal estimate for (ezL )z∈Σ π
2 −θ

to bound the above expression by

ˆ ∞

0

1

|B|
( ˆ

Γ+
e− c4 j r2

|z| t3r2m

(|z| + t2)5/2+m
|dz| ∥∥ f j

∥
∥
L2

)2 dt

t
.

Applying Lemma 5.22 and letting α = 3
2 , γ = 0 and t = t2 there, we obtain

I+ �
ˆ ∞

0
(

1

4 jm
)2 inf

(

(
t2

4 j r2
)3, (

4 j r2

t2
)2m

) 1

|B| ‖ f ‖2L2(2 j+1B)

dt

t

� 2 jn−4 jm
∣
∣2 j+1B

∣
∣
‖ f ‖2L2(2 j+1B)

(ˆ 2 j r

0

t5

(4 j r2)3
dt +

ˆ ∞

2 j r

(4 j r2)2m

t4m+1 dt
)

� 2 jn−4 jmM(| f |2)(y) ∀ y ∈ B.

I− can be estimated similarly. Choose 4m > n, we get

1

|B|
ˆ
B

∣
∣
∣G(I − e−r2L)m f

∣
∣
∣

2
� M | f |2 (y) ∀ y ∈ B.
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Therefore, (5.29) holds for all 2 ≤ p < p0. And since p0 > 2 is arbitrary, (5.29) holds for
all 2 ≤ p < ∞.
Case 3: 1 < p < 2.Applying Lemma 4.70 and letting 1 < p0 < 2, it suffices to show (5.23)
and (5.24), where G is defined in (5.28). Note that (5.24) is independent of the operator G
and is verified in the proof of Proposition 5.12. To see (5.23), we proceed similarly as the
proof of (5.31). Using the L p0 − L2 off-diagonal estimate of (ezL )z∈Σ π

2 −θ
, we obtain

1
∣
∣2 j+1B

∣
∣

ˆ
C j (B)

∣
∣
∣G(I − e−r2 L)m f

∣
∣
∣

2

� 1
∣
∣2 j+1B

∣
∣

ˆ ∞

0

{ˆ
Γ+

|z|− γp0
2 e− c(2 j r)2

|z| t3r2m

(|z| + t2)
5
2+m

‖ f ‖L p0 (B) |dz|
}2 dt

t

plus an integral over Γ− with the same integrand. Applying Lemma 5.22 with γ = γp0 and
α = 3

2 , we have

1
∣
∣2 j+1B

∣
∣

ˆ
C j (B)

∣
∣
∣G(I − e−r2 L)m f

∣
∣
∣

2

� 4−2 jm(2 j r)−2γp0
‖ f ‖2L p0 (B)
∣
∣2 j+1B

∣
∣

ˆ ∞

0
inf

((
t2

4 j r2

)3

,

(
4 j r2

t2

)2m
)

dt

t

� 2− j(n+4m+2γp0 )r−2γp0
‖ f ‖2L p0 (B)

|B|

� 2− j(n+4m+2γp0 )

(
1

|B|
ˆ
B

| f |p0
) 2

p0
.

Choosingm to be an integer such that 2m+γp0 > n
2 gives (5.23). And this shows that (5.29)

holds for all 1 < p < 2.
Proof of (5.30).
We know that for any g ∈ L2, e−t2 Lg ∈ D(L), and ∂t e−t2 Lg ∈ W 1,2 = D(L1/2). The

latter follows from analyticity of the semigroup

∂ j e
−t2Lg = 1

2π i

ˆ
Γ

eλt2∂ j (λI + L)−1(g)dλ,

as taking the derivative in t gives that

∂t∂ j e
−t2Lg = 2t

2π i

ˆ
Γ

eλt2λ∂ j (λI + L)−1(g)dλ ∈ L2.

Since e−r2L f ∈ D(L) ⊂ D(L1/2) and that e−t2L is a bounded, linear operator on L2, the
lemma implies

t2∂t L
1/2e−t2L(e−r2L f ) = t2∂t e

−t2L L1/2(e−r2L f ). (5.33)

So

t2∂t L
1/2e−t2 L (e−r2 L f ) = −2t3Le−t2 L (L1/2e−r2 L f )

= −2t3 L1/2L1/2e−t2 L (L1/2e−r2 L f ) = −2t3 L1/2Le−t2 Le−r2 L f (5.34)

where the last equality follows from Lemma A.3 and L1/2L1/2 = L .

−2t3 L1/2Le−t2 Le−r2 L f = −2t3 L1/2Le−r2 Le−t2 L f
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= −2t3 L1/2e−r2 L Le−t2 L f = t2 L1/2e−r2 L∂t e
−t2 L f

= −2t3e−r2 L L1/2Le−t2 L f , (5.35)

where in the last step we have used −2t Le−t2 L f = ∂t e−t2 L f ∈ W 1,2 = D(L1/2) and
Lemma A.3. Combining (5.33)-(5.35), we have proved (5.30). ��

A Appendix

We include some frequently used results in this appendix for reader’s convenience.

Lemma A.1 ([7] Chapter V Proposition 1.1) Let Q be a cube in R
n. Let g ∈ Lq(Q), q > 1,

and f ∈ Ls(Q), s > q, be two nonnegative functions. Suppose
 
QR(x0)

gqdx ≤ b

( 
Q2R(x0)

gdx

)q

+
 
Q2R(x0)

f qdx + θ

 
Q2R(x0)

gqdx

for each x0 ∈ Q and each R < min
{ 1
2 dist(x0, ∂Q), R0

}

, where R0, b, θ are constants with
b > 1, R0 > 0, 0 ≤ θ < 1. Then g ∈ L p

loc (Q) for p ∈ [q, q + ε) and
( 

QR

gpdx

)1/p

≤ c

{ ( 
Q2R

gqdx

)1/q

+
( 

Q2R

f pdx

)1/p }

for Q2R ⊂ Q, R < R0, where c and ε are positive constants depending only on b, θ , q, n
(and s).

Lemma A.2 Supposeu, v ∈ L2
(

(0, T ),W 1,2(Rn)
)

with ∂t u, ∂tv ∈ L2
(

(0, T ), W̃−1,2(Rn)
)

.
Then

(i) u ∈ C
([0, T ], L2(Rn)

)

;
(ii) The mapping t �→ ‖u(·, t)‖L2(Rn) is absolutely continuous, with

d

dt
‖u(·, t)‖2L2(Rn)

= 2�〈∂t u(·, t), u(·, t)〉W̃−1,2,W 1,2 for a.e. t ∈ [0, T ].
As a consequence,

d

dt
(u(·, t), v(·, t))L2(Rn ) = 〈∂t u(·, t), v(·, t)〉W̃−1,2,W 1,2 + 〈∂tv(·, t), u(·, t)〉W̃−1,2,W 1,2 a.e..

For its proof see e.g. [6] Section 5.9.2 Theorem 3.

Lemma A.3 ([15] Chapter V, Theorem 3.35) For any bounded linear operator B on L2, if
BL = LB in D(L), then L1/2B = BL1/2 in D(L1/2).
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