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1. Introduction and main results

In a recent paper [7], we showed that for a slightly larger class of elliptic operators than
the Dahlberg-Kenig-Pipher operators on the upper half-space Riﬂ, the Green function
is well approximated by affine functions. The current paper extends this result to higher
co-dimensions. That is, we consider the Green function on R"™ \ R?, with d < n — 1,
for operators satisfying a condition analogous to the Dahlberg-Kenig-Pipher condition
on R” \ R? and show that it is close, in a suitable sense, to affine functions. There are
multiple challenges specific to the higher-codimensional setting, but before discussing
those, let us provide some context for this work.

There has been a wide success in establishing connections between the geometry
of the boundary of @ C R"™ and properties of solutions of an elliptic PDE on ()
([11], [13], [12], [1], etc). However, when the boundary of Q has dimension lower than
n—1, results are relatively rare. Essentially the only characterization of the uniform recti-
fiability of a lower-dimensional set by a PDE property is the recent work [8]. However, it
pertains to weak rather than strong estimates on the solutions and, in particular, yields
qualitative rather than quantitative results. This not merely a technical obstacle: the
proofs in [8], relying on the blow-up techniques, are not amenable to a more quantitative
analysis. On the other hand, the free boundary results obtained in [8] are even stronger
than perhaps is natural to expect. Specifically, the authors show that even weak estimates
on the Green function imply uniform rectifiability, and hence, if one can show that the
Green function is close to the distance to the boundary in a strong, quantifiable sense,
this would furnish the first quantifiable PDE characterization of the lower-dimensional
uniform rectifiability. The present paper is the first step in this direction.

Aside from the aforementioned weak results, it has two important pre-runners. In [7],
we managed to prove that the Green function is close to the distance function in a precise,
quantitative way in the upper half-space (that is, in co-dimension 1). In [6], a different
in form but similar in spirit, quantitative estimate for the Green function is obtained
on domains with uniformly rectifiable sets of dimension strictly less than n — 1 using a
completely different method. The goal of this paper is to obtain a precise estimate for
the Green function for more general operators than the ones considered in [8] and [6] on
domains with lower dimensional boundary. Roughly speaking, the operators considered
in [8] and [6] are close to the analogues of the Laplacian. In the present paper, we consider
operators with much more oscillatory coefficients, albeit trading off by considering only
flat boundary. Let us be more precise.

Consider 2 = R™\ T', where I' C R™ is Ahlfors-regular of dimension d < n — 1. This
means that there is a constant Cy > 1 such that

Citrt <HYT N B, (x)) < Cor?, (1.1)
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for all balls B, (z) centered on z € I', with radius r > 0. Classical elliptic operators are
not appropriate for boundary value problems on €, as their solutions cannot “see” the
lower dimensional set I'. To overcome this obstacle, the first and third authors of the
present paper, together with J. Feneuil, developed an elliptic theory on such domains
with degenerate elliptic operators ([2]). It was shown that the general results, such as the
maximum principle, trace and extension theorems, existence of the harmonic measure
and Green function, all hold for the operators

L = —div(Adist(-, [)H1="V),

where dist(-,T") is the Euclidean distance to the boundary, and A is a matrix of real,
bounded, measurable functions that satisfies the usual ellipticity conditions. That is,
there is some pg > 1 such that

(A(X)E, Q) < po €[ [¢] for X € Q and §,n € R™,

1.2
(AX)E,€) > gt €]* for X € Q and € € R™. (12)

Some of the results in this general setting are included in Section 2.

For the purpose of this paper, we focus only on I' = {(x,t) € R" : t = 0} = R?, and
our domain is @ = R" \ R% = {(z,1) € R x R"~¢: ¢ # 0}. Notice that in this case, for
a point X = (z,t) € R™, dist(X,T") = [t].

Before introducing our conditions on the operator, let us define Carleson measures on
the upper half-space ]R‘f’l. We shall systematically use lower case letters for points in
R? and capital letters for points in R™. It will be necessary to distinguish a ball in R™
from a ball in R, so we use the cumbersome notation Bﬁdﬂ)(x) for a ball in R+!
with radius r centered at (z,0) € R4*!. The main purpose of defining balls in R%*! is to
define Carleson balls in R4, that is, we let T'(z,7) = B§d+1)(x) AR Although we
do not emphasize it in notation, T'(x, r) is (d+ 1)-dimensional. For € R% and r > 0, we
denote by A(z,r) the surface ball B,.(z) NT. Thus A(z,7) is a ball in R?, and T'(z,r) is
a half ball in Riﬂ over A(x,r). We may simply write Ta for a half ball over A C R

Definition 1.3 (Carleson measures on Rffrl ). We say that a nonnegative Borel measure
1 is a Carleson measure on Rf’l, if its Carleson norm

w(Ta)
a A

[plle = sup
ACR

is finite, where the supremum is over all the surface balls A and |A| is the Lebesgue
measure of A in R%. We use C to denote the set of Carleson measures on R‘fl.

For any surface ball Aqg C R?, we use C(Ag) to denote the set of Borel measures
satisfying the Carleson condition restricted to Ay, i.e., such that

1(Ta)
”ﬂ“c(Ao) = Asélgo N <+
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Next we want to define our conditions that say that the matrix A = A(X) is often

7

close to a “constant” coefficient matrix Ap. But since our operators have a singular

weight |t|d+17n, we need to impose some structural assumptions on the matrix Ag so
that the operator Ly := —div(Ap |t|d+17" V) behaves like a constant coefficient operator
in R™\ R<.

It was observed in [4] that given an elliptic operator L = — div(/TV) defined on Riﬂ,
one can construct a degenerate elliptic operator £ = — div(AV) so that if v is a solution
to Lv = 0 in R, then the function u defined on R™ \ R? by u(z,t) = v(z,|t]) is a
solution to Lu = 0 on R™ \ R The precise construction is the following. Consider a
(d+ 1) x (d+ 1) matrix A written in a block form as

where A is a d X d matrix, b is a d x 1 vector, ¢ is a 1 x d vector, and d is a scalar
function. Then for n > d + 1, the n x n matrix A is constructed from A as

bt
:o]t]
A= tTC ........... , (1.4)
——dl, _
e e

where I,,_4 is the identity matrix of size n — d, t is seen as a horizontal vector in R"~¢,
and thus bt is a d x (n — d) matrix and tT'c is a (n — d) x d matrix.

Inspired by this observation, we fix the aforementioned class of matrices constructed
from constant matrices in R4+,

Definition 1.5 (The class o(10)). We define 2g(uo) to be the class of n X n matrices
satisfying the ellipticity conditions (1.2) with constant po that can be written as the
following block matrix

Aoon(x,t): g ........... - (1.6)
Feotyr
00dn—d
]

Here, Ag is a d X d constant matrix, bg is a d x 1 constant vector, cg is a 1 X d constant
vector, dg is a real number.

The reason that this class of matrices plays the role of constant matrices for our
purpose is actually different from the above observation made in [4]. We want them to
relate back to constant-coefficient operators in R%1, not the other way around. In fact,
it is shown in Section 3 that for any Ay € 2Ag(po), any solution of — div(AgVu) = 0 can
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be transformed into a solution of an elliptic equation in R4t!. Notice that a solution
u(z,t) of —div(AoVu) = 0 is not necessarily radial in ¢, while a solution constructed
from a solution of an elliptic equation in Ri“ as above is radial in t.

Now let us return to conditions on A. Since we shall compare A and Ay € o(uo) at
every scale, we introduce Whitney regions in R™: for any (z,r) € ]R‘fl, define

W(z,r) = {(y,t) ER":yeAlx,r), - <Jt| < r} : (1.7)

r
2
Notice that W (x,r) is an annular region in R™ whose distance to I is r/2.

The difference between A and some matrix Ay € Ap(uo) at a given scale is measured
by the following quantity. For € R? and r > 0, define

1 dydt “?

= inf _— t) — 2 1.8

o(z,7) Aoelarllo(uo){m(W(x,r)) / A, &) = Aol |t|n_d_1} (18)
(y,t)EW (z,r)

Here, m(W (z,r)) is the measure of W (x,r) with weight |t\7"+d+1,

Definition 1.9 (Weak DKP condition). We say that the coefficient matrix A satisfies the
weak DKP condition with constant M > 0, if oz(x,r)zd“;—rdr is a Carleson measure on
Rf‘l, with norm

o dxdr

r

N(A) :=

a(z,r) < M. (1.10)

C

The name comes from Dalhberg, Kenig and Pipher. In 1984, Dahlberg first conjectured
that a Carleson condition on the coefficients, which is roughly that |[VA|* dzdr/r be a
Carleson measure on Rffl, guarantees the absolute continuity of the elliptic measure
with respect to the Lebesgue measure. In 2001, Kenig and Pipher [14] proved Dahlberg’s
conjecture.

The condition we consider here is weaker than the classical DKP condition in the
following sense. Consider a matrix A of bounded, measurable functions defined on R"
that can be written as (1.4), but with the coefficients depending on z,t. Assume that A,
b, ¢ and d all satisfy the usual DKP condition with Carleson norm M. That is,

sup  |VA(y,t)|° rdzdr
(y,t)eW (z,r)

§M7
C

and similarly for b, ¢ and d. One can verify that under this assumption, the matrix A
satisfies the weak DKP condition with constant M. We point out that from our definition,
a matrix A that satisfies the weak DKP condition does not have to be of the form (1.4).
Moreover, we can always add to A a matrix D that satisfies
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o dxdr

dua,r) = swp Dyt ec,

(y,t)eW (z,r)
and the new matrix still satisfies the weak DKP condition if A does. We remark that
our Definition 1.9 is the higher co-dimensional analogue of what we defined in [7], where
we say that a (d+ 1) x (d 4+ 1) matrix satisfies the weak DKP condition with constant
M, if (1.10) holds with Ag replaced by some constant (d 4+ 1) x (d 4+ 1) matrix in the
definition (1.8) of a(x,r).

Let us now turn to the approximation of the Green function by affine functions in
higher co-dimension. In [7], we showed that any solution in T'(zg, R) that vanishes on
A(zo, R) is locally well approximated by affine functions in T'(zq, R/2), with essentially
uniform Carleson bounds. More precisely, we proved the following result.

Theorem 1.11 ([7] Theorem 1.13). Let A be a (d + 1) x (d + 1) matriz of real-valued
functions on ]Ri“ satisfying the ellipticity conditions with constant pg. If A satisfies
the weak DKP condition with some constant M € (0,00), and if we are given xq € R?,

R > 0, and a positive solution u of Lu = — div (AVU) =0 in T(xg, R), with u =0 on
A(xg, R), then for some C depending only on d and g, there holds

dxdr
r

Bu(z,T)

<C+CM,
C(A(z0,R/2))

where

fT(a:,’r) |v (U(y, t) - /\Jc,r(u) t)|2 dydt

Bulz,r) = Foor IVl 0Py ;

and Ay - (u) = fT(m)T) Oyu(z, t)dzdt.

In higher co-dimension, we want to measure in a similar way the closeness between a
solution and an affine function in R™ \ R%. Given a positive solution u of Lu = 0 in a
ball B,.(z) centered on I', the best affine function that approximates w in B, (z) should
be Az r(u) |t], where

z,t) -t dzdt

. 1 Vtu(
Az,r(u) = 7m(BT(x))BZ) m T (1.12)

In Section 3, we will see that this A, ,(u) is indeed the best coefficient of |¢| to approximate
u in B,(x), and that it is closely related to the best coefficient in the co-dimension one
setting.

As in the co-dimension one case, the proximity of the two functions is measured by
the weighted L? average of the difference of the gradients divided by the weighted local
energy of u. That is, we set
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T im s [ V) = A D S (113)
m(B,()) wt T
B (z)
and then divide by
Bz, r) = ———= / Vu(y,t)|” ———, 1.14
@)=y | Vet (114)
B, (x)
to get the number
Ju(z,7)
(2,7 = 1.1
Bularr) = B (1.15)

The solutions considered here are all weak solutions in a weighted Sobolev space.
Their values on the boundary I' = R? are considered in the trace sense. All this is made
precise in Section 2, and also in Section 4.1. Our main result is the following.

Theorem 1.16. Let A be an nxn matriz of bounded, real-valued functions on R™ satisfying
the ellipticity conditions (1.2). If A satisfies the weak DKP condition with some constant
M € (0,00), and if we are given g € R4, R > 0, and a nonnegative solution u €
W, (Br(xo)) of Lu = —divy (A(ac,t) | Vx’tu) =0 in Br(zo) \ T, with Tu =0
on I'N Br(xo), then the function B, defined by (1.15) satisfies a Carleson condition in
T(xo, R/2), and more precisely

where C' depend only on d, n and pyg.

dxdr
r

Bulx, 1)

<C+COM (1.17)
C(A(x0.R/2))

The next theorem is an improvement of Theorem 1.16, which says that we can have
Carleson norms for (3, that are as small as we want, provided that we take a small DKP
constant and a suitably large ball where u is a positive solution that vanishes on the
boundary.

Theorem 1.18. Let 9 € R?, R > 0, po > 0 be given, let u satisfy the assumptions of
Theorem 1.16, and let A satisfy the weak DKP condition in A(xzg, R). Then for T <1/2

where C' and a > 0 depends only on d, n and pyg.

dxdr
r

o dxdr
r

<Cr*+C
C(A(.To,TR))

Bu(z,7) : (1.19)

C(A(zo0,R))

as(z,r)

Finally, let us comment that our results are essentially optimal. In [7], we constructed

dxdr
r

an example that shows that Sge (,7) may not be a Carleson measure if an operator
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L=- div(ﬁV) does not satisfy the DKP condition. Here, G¢° is the Green function with
pole at infinity for L on the upper half-plane Rf_. Construct an operator £ = — div(AV)
from the 2- dimensional operator L as in (1.4). One can show that this operator does
not satisfy the DKP condition either. Moreover, the corresponding Green function is
G¥(z,t) = G{°(x,|t]), and a similar computation as in the co-dimensional one setting

shows that Bge=(z,7) dlrdr cannot be a Carleson measure on R?.

The main differences in the proof, compared to the setting of co-dimension 1, lie in
the decay estimates for the non-affine part of solutions to equations with a coefficient
matrix in the class 2o(uo). In the co-dimension one case, we have good estimates for the
second derivatives of solutions to equations with constant coefficients. This enables us to
control the oscillations of the gradient of solutions. However, in the higher co-dimensional

"L which prevents us from getting

setting, the coefficients have a singular weight |¢|
an estimate for the second derivatives of solutions. To overcome this difficulty, we split the
solution into one part which is radial in ¢, and the other part which is purely rotational
in t. The radial part can be treated similarly to the co-dimension one case, while the
rotational part requires a compactness argument and other properties of solutions. The
entire Section 4 is devoted to implementing this idea. The decay estimate is proved in
the key lemma (Lemma 4.13).

The rest of the paper is organized as follows. In Section 2, we collect some results
that will be used frequently in the rest of the paper; most of them are proved in [2]. In
Section 3, we relate the n-dimensional operator £y back to a d+ 1- dimensional operator
L, and transform solutions of Lou = 0 into solution of Lv = 0. Also, we study the
properties of A, in that section. In Section 5, we show how to generalize the decay
estimates from operators with a coefficient matrix in 2y(pg) to weak DKP operators.
The ideas in that section are similar to those in the co-dimensional one case, and we
mainly illustrate the modifications needed in the higher co-dimension. We give a proof
of the reverse Holder inequalities for the gradient of solutions, where we have to address
the issue of mixed-dimensional boundaries.

2. Preliminaries

In this section we recall, mostly from [2], how to extend standard results for elliptic
PDE’s in the upper half space (or NTA domains) to the setting of co-dimension > 1. The
familiar reader can probably jump to Section 3 and return to this section when needed.

Consider Q = R™ \ I, where I' C R"™ is Ahlfors-regular of dimension d < n — 1. In
all the other sections, I' will be simply R%. For X € 0, write §(X) := dist(X,T"). Define
the weight function w(X) := §(X)™"*9*! and a measure dm(X) = w(X)dX. Denote
by B,(X) the open ball in R™ centered at X with radius r. One can show that

m(B, (X)) =~ r"w(X) if 6(X) > 2r,
m(B, (X)) = ritt if §(X) < 2r.

~—~
Ot
N =
—
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In particular, this implies that m is a doubling measure. See [2], Chapter 2 for details.
Denote by W = W.2(Q) the weighted Sobolev space of functions f € L}, () whose
distributional gradient in € lies in L?(Q, w):

Wi={f€L,(Q):VfeL*Qu)}={f€L,(R"):VfeL*R"w)}, (2.3)

9 1/2
and set || fl|,, = (fQ V(X)) w(X)dX) for f € W. Here, the identity (i.e., the fact
that the distribution derivative of f on € can also be used as a derivative on R") is

proved in [2], Lemma 3.2. We shall also use the following local version of the space W.
Let O C R™ be an open set, then

W, (0) == {f € L,.(0) : of € W for any ¢ € C3°(0)}. (2.4)

loc loc
For functions in W or W,.(0), it is shown in [2] that there exists a well-defined trace

Note that W,.(0) = {f € L} .(0) : Vf € L}, (O, w)}; see [2] Chapter 8 for details.

on I', or I'N O, respectively. The trace of u € W is such that for H%almost every x € T,

. ) 1
B(z,r) B(z,r)

For u € W,.(O), the trace is defined in the same way for H%almost every = € T' N O.

Consider the divergence-form operator £ = — divx (A(X)w(X)Vx), where A is an
n X n matrix of real, bounded, measurable functions defined in 2, that satisfies the
ellipticity conditions (1.2).

Definition 2.6. We say that v € W is a (weak) solution of Lu = 0 in Q if for any
v € G5 (),

/AVU'Vgpdmzo.
Q

Let O C R™ be an open set. We say that u € W,.(O) is a (weak) solution of Lu =
0 in O if for any ¢ € C§°(0), [, AVu - Vodm = 0. We say that v € W,(0) is a
subsolution (respectively, supersolution) in O if for any ¢ € C§°(O) such that ¢ > 0,
fo AVu - Viodm < 0 (respectively, > 0).

We collect some basic properties for functions in W and solutions of L« = 0 in this
section. The constant C' below might be different from line to line, but depends only on
d, n, the Ahlfors constant Cy, and the ellipticity constant o unless otherwise stated.
Lemma 2.7 (Poincaré inequality ([2], Lemma 4.2)). Let p € [1,-2%] (or p € [1,+00) if
n =2). Then for any u € W, any ball B C R™ with radius r > 0, there is some constant
C depending only on n, d and Cy, such that
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1/p 1/2

1 » 1 2

R — < R

( )/|u ug|” dm Cr ( )/|Vu| dm
B B

where up denotes either {5 u or m(B)~! Jgudm. If B is centered on T and if, in addi-
tion, Tu =0 on I' N B, then

1/p

1 ) 1 ) 1/2
- < _— .
m(B)/|u| dm < Cr (m(B) |Vul dm)
B

Remark 2.8. One also has (see the proof of Lemma 4.2 in [2])

1/2 s

]_ 2 ]_ 2n
I _ < R n+2 . .
m(B) /|u up|®dm <Cr m(B) /|Vu| dm (2.9)
B B

Moreover, if B is centered on I' and if, in addition, Tu = 0 on I' N B, then

1/2 2n
L /| Zdmn| <cC ! /|v | %42 dm (2.10)
—— [ |u r| —— ul™ ) )
m(B) - m(B)
B B
To see (2.10), write
1/2 2 1/2
1 ) 1
—_— d < —_— — d X)|dX.
m(B)/'ul m <C m(B)/u ][u m +C][|u( )|
B B B B
By Lemma 4.1 of [2] and Holder’s inequality,
n+2

2n

1 2n_
f|U(X)‘dX S Cr m/|vu‘n2+2 dm
B B

Note that since B is centered on I', m(B) =~ r?*!. Thus, (2.10) follows from the above
observation and (2.9).

Lemma 2.11 (Interior Caccioppoli inequality ([2], Lemma 8.6)). Let B be a ball of radius
r such that 2B C Q and u € W,.(2B) is a nonnegative subsolution of L in 2B. Then there
exists a constant C > 0 depending only on d,n, Cy and pg, such that for any constant
ceR,

/|Vu|2 dm < Cr—2 / lu— c|” dm.
B ip
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Lemma 2.12 (Caccioppoli inequality on the boundary (/2] Lemma 8.11)). Let B C R™ be
a ball of radius v centered on T', and let w € W,.(2B) be a nonnegative subsolution in
2B\ T such that Tu=0 on 2BNT. Then

/\Vu\2dm§0r_2/u2dm.
B

3
5B

Lemma 2.13 (Moser estimates on the boundary ([2] Lemma 8.12)). Let B and u be as
in Lemma 2.12. Then

1/2

supu < C m(B)fl/uzdm
B
5B

Here, the constant C' depends only on d, n and pg as usual.
Let B be a ball centered on I' with radius r. We say that a point Xp is a corkscrew

point for B if Xp € B and 0(Xpg) > er for some e depending only on d, n and the
Ahlfors constant Cy of T'.

Lemma 2.14 (Boundary Harnack’s inequality ([2], Lemma 11.8)). Let g € T and r >
0 be given, and let X, be a corkscrew point for B,.(xo). Let w € W,(Ba.(z0)) be a
nonnegative solution of Lu =0 in Ba.(x9) \ T, such that Tu =0 on Ba,(xo) NT'. Then

u(X) < Cu(X,) for X € B,(zo).

Lemma 2.15. Let g € T and R > 0 be given. Suppose u € W,.(Br(z¢)) s a nonnegative
solution of Lu =0 in Br(xo) \I' with Tu = 0 on Br(xo) NT'. Then for all0 <r < R/2,

uw?(X,) 1 ul® dm
T gy | T

BT(:Eo)

where X, is a corkscrew point of B,.(xg).

Proof. By translation invariance, we may assume that the origin is on I' and that xg is
the origin. To see the less than or equal to direction, we say that Tuw = 0 on the boundary
and use Lemma 2.13 followed by Sobolev’s inequality to get

u?(X,) Cr—2 / 9 C / 9
< u dm < ——— Vul|” dm.
) B | 1

r2  ~ m(B,

"

To see the other direction, we use the boundary Caccioppoli and boundary Harnack
inequalities to get
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1 9 C
- YV < —
m(Bgr)/‘ ul”dm <

T

1 9 c ,
- dm < Zu2(X,).
r2 m(Bay) / [ul” dm < 2t (X,). O
Ba,.

Lemma 2.16 (Comparison principle ([2], Theorem 11.17)). Let xg € T' and r > 0, and
let X, be a corkscrew point. Let u,v € W,.(Ba,(20)) be two nonnegative, not identically
zero, solutions of Lu = Lv =0 in Ba,(x0) \ T, such that Tu = Tv =0 on I' N Ba,(x).
Then

qu(Xy)  u(X) u(X,)
< < X e B, r,

C o) = o(X) _CU(X,,) for all X € B.(x0) \
where C' > 1 depends only on n,d, Cy and pyg.

Corollary 2.17 ([3], Corollary 6.4). Let u, v, r, o be as in Lemma 2.16. There exists
C >0 and v € (0,1) depending only on n,d, Cy and ug, such that

u(X)’U(Y; _ 1’ e (8)’7

r

for all X, Y € B,(x0) \T, as long as p < r/4.
We have the following reverse Holder inequality for the gradient of solutions.

Lemma 2.18. Let B C R™ be a ball centered on T'. Let uw € W,(3B) be a solution of
Lu=01in3B\T with Tu =0 on 3BNT. Then there exist p > 2 depending only on d,n,
Co and pg, and C > 0 depending on d,n, Cy, o and p, such that

1/p 1/2
1 » 1 9
— < _— . 2.1
m(B)/IWI dm <C m(2B)/Vu| dm (2.19)
B 2B
If in addition, u > 0 in 3B, then
1/p 1/2
! /|v Pd <ot /|v ? d (2.20)
— ul” dm — ul” dm . .
m(B) - \m(B)
B B

To prove Lemma 2.18, we first derive the following inequality

Lemma 2.21. Let X € R™ and r > 0 be given. Let u € W,(By- (X)) be a solution of
Lu=0 in By (X)\ T, with Tu =0 on By (X) NT if By,-(X)NT is not empty. Then

1/2 nt2

1

1 2n
— Vul® dm <C| —— / [Vu|"+2 dm . (2.22)
m(B, (X)) / [Vul m(Bsy (X))
B, (X) B3 (X)
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Proof. Case 1: 6(X) < 2r. Then there exists = € I so that B.(X) C B
by Caccioppoli’s inequality on the boundary and (2.10),

9,.(20). Hence,

1/2 1/2
1 / ) 1 / )
L valdm| <|—r Vul? dm
mBx) )V 71(Borya(20)) [Vul
B, (X) Byy./4(wo)
n+2
2n
< ! / V|72 d
S| —————F— u| "2 dm
m(Bsr/z(on))
Bsr/2(900)

Then (2.22) follows from the fact that Bs, /2(20) C Bsq(X).
Case 2: 6(X) > 2r. Then Bs,/4(X) C R™\I'. By the interior Caccioppoli inequality
and the Poincaré inequality (2.9),

1
2

(m}gr(/x) |Vu|2 dm>§ < %(m}gfﬂ[x) ‘u—uBer(X)’Qdm)

+2
]. 71‘2 n

|vu|n%dm) .o

Bs, (X)
4

Sketch of proof of Lemma 2.18. One can deduce (2.19) in Lemma 2.18 from Lemma 2.21
and a modification of the argument in [9] (Theorem 1.2, Chapter V). Thanks to the fact
that m is a doubling measure, the argument in [9] carries over. The only modification
is that one should choose parameters everywhere in the argument in [9] according to
the doubling constant of m instead of that of Lebesgue measure in R™. Once we obtain
(2.19) and assume additionally u is an nonnegative solution, (2.20) follows immediately
from Lemma 2.15 and Harnack’s inequality. O

3. Connection with the co-dimensional one case: an analogue of constant-coefficient
operators

From now on, we focus only on Q = R™\T with ' = {(x,t) € R" : t = 0} = R<. Notice
that in this setting, for a point (x,t) € R™, its distance to T is simply [¢|. Therefore, we
can simply define the weight function w as a function in R”~?. That is, for t € R"~ ¢,
define

w(t) == [¢| T

Recall that B,.(X) denotes the ball in R” with radius r centered at X € R™. For z € R,
we write B,.(z) := B,(x,0), the ball in R™ with radius r centered at (z,0) € R™. Recall
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also that for a set £ in R™, m = [Lw p w(t) dxdt. As the following computation shows,
for a ball in R™ centered on I‘, 1ts m measure is equal to the Lebesgue measure of a
Carleson ball in R%*! multiplied by the surface area of the unit (n — d — 1)-dimensional
sphere:

m(B,(z0)) = / w(t) dedt / e e

B, (xo) B, (z0)
VrE[a—aol®
/ / / dwdpdx
|z—z0|<r wesn—d—1
= |T(zo,7)| U(S"_d_l) = cn’drd'*'l. (3.1)

Let £ = —divg(A(z,t)w(t)Vy,) be an operator defined in R™ \ I', where A(zx,t) =
[asj(x,t)] is an n x n matrix of real-valued, measurable functions on R™, which satisfies
the ellipticity conditions (1.2). We shall systematically use Ag to denote an n X n matrix
in the class Ao (po), and write Lo = — divg  (Aow(t)Vy,.).

The main benefit of taking Ag in this particular form is that the solutions of Lou =0
can be converted to solutions of a constant-coefficient equation in R%*1. Let us introduce
the (d 4 1)- dimensional constant-coefficient elliptic operator

Lo = —div, ,(AV,,),  with A= {49@-'99-] , (3.2)
Co do
where Ay, bg, co and dy are the same as in (1.6). Alternatively, we can write
Ly = —divy(A4oV,) — dive(bod,) — 0,(coVa) — dod. (3.3)

To relate solutions of Lou = 0 to those of Lgv = 0, let us first give some definitions.

Definition 3.4. Let f = f(x,t) be a function defined on R™. Write ¢ = pw in polar coor-
dinates, with p € R, and w € S"~9~1. We still denote the function in polar coordinates
as f, that is, f(z,t) and f(x, pw) are the same function in different coordinates. For any
(x,p) € Riﬂ, define

fo(x,p) = ][ flz, pw)dw. (3.5)
Sn—d—1
For any (z,t) € R™, define

Fola,t) = fola, [t) = ][ (@, [ w)deo. (3.6)

gn—d—1
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In particular, JA”;; is a function of n variables and is radial in ¢.
Lemma 3.7. With the definitions above, the following statements hold:

(1) If u e W, then up € Llop(]R‘f'l), Vug € LQ(RT'I), and ug € W.
(2) Let zg €T and r > 0. If u € W,.(B,(xg)), then

ug € Wik (T(zo,7)) = {f € LL,o(T(x0,7)) : Vf € L, (T(0,7))}
and ug € Wy.(By(x0)).
Proof. (1) We first show that up € L}, (R%T"). Let K be a compact set in RT™. Then we

can find 7o € R%, r > 0 and ¢ > 0 so that K C {(z, p) € T(z0,7) : p > £}. By translation
invariance, we can assume that xq is the origin. Then we have

Vr2—z[?
/\ue x, p)|dpdx < e~nFdtH! / / lug(xz, p)| p" = Ldpda
|z|<r €
Vr2—|al?
< Cend / / / lu(z, pw)| P~ L dwdpda:
|| <r gn—d=1

= Uen,d / |U(5E,t)‘ drdt < 0,
B,

where we have used u € L}, .(R™) to get the finiteness of the last term. This shows
up € Lloc(Ri+1)'

Now we compute the L? integral of |Vuy| over a Carleson ball T, centered at the
origin. Observe that by the definition of uy and wug, expressing the gradient in polar

coordinates, we have |V, ,uq(z, p)| = |Vattg(z,t)|, for p = |t|. Hence,
2
Ve ptio (2, p)]* = Vi f u(z, |t w)dw| < ][ \Vaou(z, [tw)dw.  (3.8)
gn—d—1 gn—d—1

Let s = [t|w, then |s| = |¢|, and as’“ = %wk, for k,j=1,2,...,n—d. Thus,

n—d n—d — 2
|Viu(z, |t )| = Z (O, u(z,s))” = Z <Z Os, u(x, s) k) < |V5u(gc,s)|2.

j=1 j=1 \k=

Combining this with (3.8), we obtain
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1

2 —n+td+1
(ST / |V, su(z, s)|” p ds.

pSnfdfl

‘Vm,pUQ('Tap)F S

Therefore, integrating in polar coordinates, we can control the L? integral of |Vugy| as

follows.
el dsdpd
S X
/|v suola o) dedp<Coa [ [ [ Vasalas)® p——
lej<r  p=0 pgn—d—1

2 dtdx
=Cnd / / |Vm,tu(x,t)| W
ol <r 4] </rP—[al?

—Cs / V. a(, ) w(t) dadt < Cog [Vl oy - (3:9)

r

Letting r go to infinity we obtain Vuy € L*(R%+!) with
||Vu0||L2(1R<1+1) <Cna HVU||L2(Rn,w) :

As for ug, let us fix any r > 0 and evaluate the integral of uy over the ball B,..

Vr2—|z?
/ g (z, t)|* dedt = / / / lug(x, p)| "~ Ldwdpdx
B, lzj<r 0 gna-1
VrZ—|z[?
< / / lu(z, pw')| du’ p" = dpda: :/|u(x,t)\dxdt.
lzj<r 0 gnla- B,

This shows that uy € Li,.(R™). Finally, we compute

Vr2—la?
/ Vo g (1) w(t) dedt = / / / |V ptio (2, p) | dwdpdax
B,

lg|[<r 0 gn—d-1

= (5" ) [ 1ol ) dpd.

This and (3.9) give Vg € L?*(R™,w). Thus, up € W.

(2) By translation and dilation invariance, we can assume that x¢ is the origin and
r = 1. By a similar argument as in (1), one sees that if u € W,.(By), then ug € L}, (T1),
Vug € L (T1), and g € W,.(By). So it remains to show uy € L? (T}). Notice however



G. David et al. / Journal of Functional Analysis 283 (2022) 109553 17

that wug lives in the upper half space, where there is no disturbing weight w; then we
can apply the usual Poincaré estimate, in the homogeneous space of locally integrable
functions f such that Vf € L2, and indeed get that ug € L? (T1). This gives up €
Wi (T1). O

Now we can show how solutions of equations in ]R{‘_f“l and R™ \ R? are related.

Lemma 3.10. Let B be a ball centered on T. If u € W,.(B) is a solution of Lou = 0 in
B\ T, where Ay is in block form (1.6), then ug € W,52(T) is a solution of Loug = 0 in
T, and ug € W,.(B) is a solution of Loug =0 in B\T.

Proof. Let us assume that v is a C? function and thus a strong solution. Writing out
the derivatives, we see that

-1
= W (divic(AOV,ﬁ) + div,, (

bot - Vt) . tTCOVac
— | +divy (
It] lt]

n—d—1 n—d—1
‘t|n—d CoVa + ‘t|n—d+1

Eo ) + din (dovt))
dot - V.

Fortunately, some of these terms cancel. In fact,

din (tTT:;VI> _ (n —d —ﬂ].)Cng + t- vtrjovz)7

and thus

1
_W <diVI(A0Vw) + div, (

bot . Vt) t- Vt(Covx)
Lo=

A
7 i )

n—d—1

n—d+1

dot - V.
|t

Changing to polar coordinates t = pw, we have t - V, = pd,, and
) 1 1
Ay =0, +(n—d—-1)=0,+ A,
P P
where A, is the Laplacian on the sphere S”~9~1. Then £y can be simplified as

do A, (3.11)

Lo = 1o

1
T a1 (divy (Ao V) + divy (bod,) + 9y(co V) + dod?) —

Notice that the quantity in the first parenthesis is exactly what we have for Ly in (3.3).
Now since g is radial in ¢, A, ug = 0, and thus,
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1
ﬁLoue. (312)

Loty = —
p
Notice that fsn,d,l A, u(x, pw)dw = 0 by the divergence theorem, so that we can add
this term for free and get the following.

do
= Loug + pn_4

Loug = ~ o Apu(z, pw)dw.

Sn—d—1

Exchanging the order of integration and differentiation, we obtain

1 d
Loty = _W ][ (Lo + p—gAw> u(z, pw)dw = ][ Loudw = 0.

Sn—d—1 Sn—d—1

This and (3.12) show that Loty = 0 = Loug.

The smoothness assumption on solutions is harmless. First, we have checked in
Lemma 3.7 that given u € W,(B), ug and uy are in the right spaces stated in the
lemma. Now if u € W,.(B) is a weak solution, it is a strong solution in any compact set
in B\ T. This is because on these sets, |t| > § for some § > 0, and thus the coefficients
are smooth. Then we use our results for strong solutions and conclude that ug and uy are
strong solutions in any compact set in 7" and B\ T, respectively. Then they are of course
weak solutions in these compact sets. But this is all we need as in the weak formulation
of equations, the test functions are compactly supported in T (for up) and in B\ T' (for
179). O

Remark 3.13. Writing Ly in polar coordinates as in (3.11), one immediately sees Lo |t| = 0
in R™ \ R?. We shall use this property of |¢| in the future.

We now turn to the quantity A ,(u). First we show that A, .(u)|t| is the best ap-
proximation of a given function v in B,(x) by a multiple of |¢|.

Lemma 3.14 (Orthogonality). For any (z,r) € ]Ri“, for any function u(z,t),

1
By | V) = A (W) ) -V [t w(t)dydt = 0. (3.15)
By (z)
Moreover,
| 1 ? = Ju(z,r
Ak WB(/) IV (uly, t) = Mt w(t)dydt = Ju(w,7), (3.16)

where J,,(z,7) is defined in (1.13).
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Proof. For any A € R, we compute

ti v t
V(u—Alt])- V]t = Z (at, ) ALY (3.17)
Pt VAT
By the definition of A, ,(u) in (1.12), V‘ftl — Azr(u) is orthogonal to constants in

L?(B,(z),w). Therefore, using (3.17) with A = A, ,.(u), one sees that (3.15) holds. Turn-
ing to (3.16), we see that for any A € R,

1 2
@By ) VD = Al w(t)dydt
B,.(x)
- m / IV (u(y, t) — Ao (w) [E])] w(t)dydt
B
2
% / [V [¢]1* w(t)dydyt

B, (x)

= Ju(z, ) + Nar(u) = A > Ju(z,7),
where in the first equality we have used (3.15). O
It follows from (3.16) that J,(z,r) < E,(x,r), which implies
Bu(z,r) <1 for any (z,7) € R (3.18)

The following lemma shows that the best approximation of u by a multiple of |t| in B, ()
is the same as the best approximation of ug in T'(x,r).

Lemma 3.19. Let = € R, » > 0, and u be as in Lemma 5.1/. Define ug as in Defini-
tion 3.4. Then

Mo (1) = ][ B,us(y, p)dydp.
T(z,r)

Proof. Without loss of generality, we may assume that x is the origin and r = 1. Passing

to polar coordinates t = pw, and noticing that t'lvt‘*“ = pru7 we have

1 Vtu'tw wdit — 1 Vtu(x,t)~tw -
By | O /] ) ddt

[z|<1|¢1</T=|z|?
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Vi=[z]?
:ﬁ / / / 8, u(w, pw)dwdpda.

|I|S1 0 Sn—d—1

Exchanging the order of integration and differentiation,

1 Vou-t 1 / /
— w(t) dedt = —— 0 u(z, pw)dw | dpdx
By ] T Oy f %) e

T Sn—d—1

:][ 0p ][ u(z, pw)dw dpd:c:][E)pug(:lc,p)davdp7
T:

i Sgn—d—1

because |T}| = m(B)o(S"~9!) and as desired. O
4. Estimates for solutions of Lou = 0
4.1. More about function spaces

When proving estimates for (weak) solutions, it is useful to allow test functions that
lie in a bigger space than C§°. For this reason, we now define some new spaces.

Definition 4.1. Let O C R™ be an open, bounded set. Define
W(0) :={u € L},,(0) : Vu € L*(O,w)} . (4.2)

Here L}

1oc(0) is for the Lebesgue measure, which is more natural if we want to see u as

a distribution and talk about its gradient. Equip W/(O) with the seminorm || flyy o) =
1/2
(fo i dm) - Define Wy(O) to be the closure of C5°(O) under ||-[|y o

As we shall see, W (O) plays the same role as the usual Sobolev space W2(0), and
W,(O) should be compared with Wllof (0).
For the purposes of this paper, we are only interested in the simple case when O is a

ball B centered on I', or O = B\ T.

Lemma 4.3. Let B C R"™ be a ball centered on I'. Then

(1) W(B\T)=W(B) ={ue L'(B): Vue L*(B,w)};
(2) W(B) C W'2(B) = {u € LX(B,dX) : Vu € L2(B,w);
(3) If u e W,.(2B), then u € W(B).

Proof. (1) Let u € W(B\T') be given. By definition, v € Lj,,(B\T',dX) = L},.(B\
I',wdX), and by Lemma 3.2 in [2], u € L}, (B,dX). So u € W(B); we still need to check

loc
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that u € L'(B,dX). However Poincaré’s inequality (Lemma 2.7, with p = 1) says that
u € L'(B,wdX), and then an easy estimate ((2.13) in [2]) shows that u € L(B,dX).
Notice that although our assumptions, for instance in Lemma 2.7, appear to be global,
we never use the values of u outside of B.

(2) For uw € W(B), we now apply Poincaré’s inequality (Lemma 2.7), now with p = 2,
to find that

/\u—u3|2de§C’/|Vu|2dm,
B B

Then again u € L2(B,dX) by (2.13) in [2], this time applied to g = |u — up|>.
(3) follows immediately from (1) and the definition (2.4). O

Next we claim that if u € W(B) is a (weak) solution of Lu = 0 in B\ T, we can take
test functions in the space Wy(B \ T'). That is,

/.AVu -Veodm =0 for every ¢ € Wy(B\T). (4.4)
B

In fact, since p € Wy(B\T') we can find a sequence {¢r} in C§5°(B \T') that converges
to ¢ in W(B\T). Then

1/2 1/2

/AVU-chkdm—/AVu~V<pdm <o /|Vu|2dm /\V(pk—Vgo|2dm
B B B B

The right-hand side is finite and vanishes as k go to infinity. So (4.4) follows from taking
limits.

Let us also discuss the trace on (B \T') = 9B U (I' N B). Since W (DB) is a subset of
W,(B), for u € W(B), its trace Tu on BNT can be defined by (2.5) for almost every
z € BNT, and Tu € L}, .(BNT,dz). Moreover, by slightly modifying the proof of [2],
Theorem 3.4, one can show that

1Tull 22 (par,ar) S ullp sy + 1Vl g2 5 ) -

For u € W(B), we can define its trace on B by

r—0
B, (X)NB

Tu(X) := lim ][ w(Y)dY for X € 0B,

and one can show that |[Tull ;255 S ullpis) + [IVUllp2(p,,,)- Alternatively, since we
proved that W (B) C W12(B), the trace theorem for Sobolev spaces applies. We remark
that in [5], a trace theorem is developed in a much more general setting and is different
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from what we have discussed here. But for the purposes of this paper, this simpler
approach suffices.

4.2. Decay estimates for the non-affine part of solutions

We want to show that for a solution of Lou = 0 that vanishes on I' = R, its non-affine
part J,(z,r) decreases in 7. In the case when d = n — 1, this property can be obtained
from Moser estimates for solutions on the boundary. We state it in 77 = T'(0, 1), for the
constant, coefficient operator Lo that was defined in (3.2), to simplify the notation.

Lemma 4.5 (d = n—1 case, [7], Lemma 8.4 ). Let u € W12(T1) be a solution of Lou =0
in Ty withw =0 on Ay. Then there exists some constant C depending only on d and g,
such that for 0 <r < 1/2,

][|v (@, 8) — A () D)2 dadt < Cr? ][|v (,) = () )P dedt,  (4.6)

where A fT Osu(y, s)dyds."

The way we show this decay estimate is by controlling the non-affine part of the so-
lution in T} by the oscillation of the derivative of some solution in 7)., which is further
controlled by the energy of the solution in 77 multiplied by r2. The bound on the oscil-
lation of the first derivative of solutions is essentially a consequence of estimates for the
second derivatives of solutions. However, when d < n—1, we do not have a good estimate

- 1 S
et , which is singular

for the second derivatives because the coefficients involve |t|
on the boundary. Fortunately, we still have an analogue of Lemma 4.5 in the case of
d < n — 1. The first step is to show that solutions of Lou = 0 with a vanishing trace on

T" are roughly Lipschitz in ¢ near the boundary. To be precise, we have the following.

Lemma 4.7. Let B be a ball centered on T and let u € W,.(2B) be a solution of Lou =0
in 2B\ T, with Tu = 0 on I' N 2B. Then there is some constant C > 0 depending only
on d,n and gy, such that

1/2

1
lu(z,t)] < C W/wuﬁdm [t|,  forall (x,t) € B. (4.8)
B

Proof. Observe that if u is nonnegative, then (4.8) simply follows from the comparison
principle and the fact that |¢| is a solution of Lg |t| = 0 that vanishes on I'. In fact, by
the comparison principle (Lemma 2.16), for (z,t) € B\ T,

! Note that we are using the same notation Ar(u) to denote different quantitiesind =n—1and d < n—1.
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1/2

U(XB> 1 / 2
<C <C|——= [ |Vul"dm ,

i = m =\ wm )

where Xp is a corkscrew point for B, r(B) denotes its radius, and the second inequality
is due to Lemma 2.15.

If u changes signs in 2B, we write © = uj — ug, with u; = sup {u,0} and uy =
sup {—u, 0}. Notice that by Lemma 4.3 (3), u € W(B). Then by [2], Lemma 6.1, u; €
W(B) for i = 1,2, with

/|Vui|2dm§/|Vu|2dm, and Tu; =0onI'NB, i=1,2.
B B

Moreover, the Holder continuity of solutions (see [2], Lemma 8.8 and Lemma 8.16) implies
that u € C(B), and thus u; € C(B) for i = 1,2.

We want to look at the solutions v; to Lov; = 0 in B\ I', with data u; on (B \ T
(and in a suitable weak sense). First, the nonhomogeneous problem Lyv; = —Lou; in
B\ T has a unique solution v; € Wy(B \T') due to the Lax-Milgram Theorem. Setting
v; = U; + u;, one sees that v; € W(B) and verifies

Lov;i =0  in B\T,
{ov in B\ (4.9)

V; — U; € Wo(B \ F).

We claim that the W(B) seminorm of v; is controlled by that of u;. To see this, take
v; — u; as a test function for Lov; = 0, which is allowed because v; € W(B) and
v; —u; € Wo(B\T) (see the remark around (4.4)). Then

/AonZ- -V (v; — u;)dm = 0.
B
Therefore, using the ellipticity conditions and the Cauchy-Schwarz inequality,

/ \Vvi|2 dm < ,uo/Aoni - Vv, dm = pg /.onvi -Vu; dm
B B B

1/2

1/2
<pud /\Vvi|2 dm /|Vui|2dm )
B B
which implies that

/|Vvi\2dm < Mé/|Vui|2 dm < ,ué/|Vu|2dm, i=1,2. (4.10)
B B B
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Next, v; is nonnegative in B, for i = 1, 2. To see this, we first show that v; is continuous
in B. Since Tu; = Tw; = 0 on I'N B, the Poincaré inequality implies that their weighted
L?(B,w) norm is controlled by their W (B) seminorm. Therefore, both of them belong to
the weighted Sobolev space W12(B,w). In particular, u; € W2(B,w) N C(B). Notice
that w(t) is an As weight with respect to the Lebesgue measure on R™. That is, there
holds

Bsg]gn ﬁ / [t| 7" dzdt |—;‘ / " dadt | < 0.
B B

So we can apply [10], Theorems 6.27 and 6.31, to get that for any X € 9B,
lim x —, x, v;(X) = u;(Xp). This takes care of continuity on 0B, so it remains to treat the
interior and I'NB. But since Tv; = 0 on I'N B, Holder estimates for solutions ([2] Lemma
8.8 and Lemma 8.16) guarantee that v; € C(B). So we conclude that v; € C(B), i = 1, 2.
Next, we show v; > 0 in B, using a standard argument. Set v{ = min {v;, —¢} + . Then
vl <0 in B. Since v; € C(B) is nonnegative on (B \ T'), v} is compactly supported in
B\ T. Moreover,

‘ Vv, v; < —€
Vv, = (4.11)
0 (O 2 —€.

We take v? as a test function and get

0= /onv - Vvedm = /onv;' - Voldm > u51/|wg\2dm.
B B B

This implies that Vol = 0 a.e. in B, and, since it is compactly supported in B\ T, we
get that v = 0 a.e. and v; > —¢ in B. Since ¢ > 0 is arbitrary, we obtain v; > 0 in B
for i = 1,2, as desired.

Now we can apply the result for nonnegative solutions to v;, and use (4.10) to conclude
that

1/2
1 .
vi(x,t) < C m(B) / |Vul® dm It], for (z,t) € B, i=1,2. (4.12)
B

Finally, let v = v1 —vg. Then v = v on (B\T') (both in pointwise sense and in Wy(B\T)
sense), and so the uniqueness of the solution implies v = v in B. The desired estimate
for |u(z,t)| follows from (4.12) and the fact that |u| < vy + vy in B. O

Now we derive the decay estimate for solutions of Lou = 0, which is an analogue of
Lemma 4.5 for d < n — 1. By the translation and dilation invariance of the problem, we
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only need to consider the problem on the unit ball. We shall use J,,(r) to denote J,,(0,7).
Similarly, E, (r) and 8,(r) are shorthand for E,(0,r) and £,(0,r), respectively.

Lemma 4.13 (Key lemma). For any 0y € (0,1), there exists ro = ro(n,d, po,6o) € (0,1)
such that for any solution w € W(By) of Lou = 0 in By \ T, with Tu = 0 on T'N By,
there holds

Ju(r) < 00Ju(1), for 0<r <. (4.14)

Proof. We first show that for any r; € (0,1) and any 6; € (0,1), there exists ro =
ro(61,71,n,d) < ry, such that for any solution u € W(Bj) of Lou = 0 in By \ T', with
Tu =0 on I' N By, there holds

/|V g)|? dm <

where Uy is defined in (3.6). We prove (4.15) by contradiction. If the statement is not true,
then there is a 6; € (0,1), a sequence of operators ,C ) € Ao (o), a bequence {retie,
decreasing to 0, and a sequence of solutions {u(k }k C W(By) veritying L Ru®) =0
in B; \T' and Tu® = 0 on B; NT, such that

B,) / v | dm>m5§n>

for k=1,2,.... Define

g)|? dm for r < ro, (4.15)

71

/ ’V(u(k) — @[’ dm, (4.16)

uk) — ﬂgk)

/2"
<m(BT1)1 I, v(u( _ug’@)\ dm)

Notice that we do not need to worry about the denominator being equal to 0 because in
~(k)

Vg =

that case, both sides of (4.16) are 0, makmg the inequality false. By Lemma 3.10, i,
verifies Eék) Uy k) = 0, and thus vy verifies EO v =0 in By \ T, with Tvy =0 on By NT.
Moreover, vy is constructed in a way that guarantees the following properties:

][ vpdw =0 for 0 <r <1,
oB(0,r)

1 2
— =1 4.1
B [ 1o am =1, (4.17)

T1

S / ol dm > 6,/C.
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where the last inequality follows from (4.16) and the Caccioppoli inequality on the bound-
ary.

Set Vi(X) := Lug(rX). Then £§”Vi, = 0 in By, \ T, with TV; = 0 on By, NI
Moreover,

Vidw=0 for 0 <r <1/rg, (4.18)
aB(0,r)
m(B2) ! [ Wil am = 6,/C. (4.19)
B

Notice that (4.19) implies that there exists (zy,t;) € By such that

|Vk($katk)| 2 \ 91/0 (420)
Observe that by (4.17),
1 / IVVi|? dm = (4.21)
ey

By (4.21) and Lemma 4.7, there is some constant ¢ > 0 depending only on d,n and uy,
such that

[Vi(z,t)] <clt| forall (x,t)€ Bri. (4.22)

27y,
Now (4.20) and (4.22) imply that the ¢ in (4.20) has to satisfy

2> |te| > C'67/°. (4.23)
Moreover, on any compact set in R™, (4.22) implies that the sequence {V;}%2, is uni-
formly bounded, and the regularity of solutions implies that {Vj}72 , is equicontinuous.
Therefore, there is a subsequence of {V}, still denoted by {Vi}, converges pointwise to
a V. We can also find a limit £y € g(po) of the Egk), and it is easy to verify that
Voo € Wi(R™) is a solution of LoVe = 0 in R™ \ T', with V(2,0) = 0 on I'. For sure
there is a convergent subsequence of {(z,tx)} in Bs; let us denote the limit point by
(Zoo,s too) € Ba. Then by (4.20) and (4.23),

ltoo| > C'0F2, |[Vie(Zoo, too)| = /01/C. (4.24)

By (4.22) (and the fact that ry tends to 0), 2¢|t| — Vo (z,t) > 0 everywhere. So 2¢|t| —
Voo(x,t) € W,.(R™) is a positive solution in R™ \ T' that vanishes on T'. On the other
hand, |t| € W,.(R™) is also a positive solution in R™ \ T" that vanishes on I'. Therefore,
we can apply the Corollary 2.17 to 2¢|t| — Voo (x,t) and |¢|, and obtain
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_ ¥
2cft] = Voo(,t) <C [(z,2) = (0, 1)] for all R > 2,
alt] R
where o = 2¢ — Vo (0,1) > 0. Letting R — oo one sees that 2c|t| — Voo(x,t) = alt],
and thus Vi (z,t) = o' |t| for (z,t) € R™ Thanks to (4.24), o’ # 0. Therefore,

fsn,d,l Voodw # 0, which is impossible since (4.18) holds for all k. This proves (4.15).
Now we show (4.14). Fix r; € (0,1/2) and 6, € (0,1) to be determined later, and let
ro =ro(f1,71,n,d) < rq be as in (4.15). Then for any 0 < r < r(, we write

w(z,t) — A (u) || w(t) dedt

/|V(u—179)|2dm+ /|v g — A (w) |t w(t) dzdt,

By

m(B;)

where we recall from (1.12) that

1 Viu(x,t) -t
r = r = t) dxdt.
B,
Apply (4.15) to get
291
Ju(r IV (u — ) |? dm—|— |V g — A () [8]) ] w(t) dadt.

Inserting A, (w) |¢| in the first integral on the right-hand side,

Ju(r 4"1 / IV (= Ay (u1) )2 (t) et

40
I 1

) / IV (i — Ar, () [t])[* w(t) dadt

/ IV (g — A (u) [t]) > w(t) dadt.  (4.25)

Br

m(B;)

We estimate the last two terms in (4.25) using decay estimates for the case d = n — 1.
First, changing to polar coordinates as in (3.1), one sees that

A (u) [E))? w(t) dadt
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1 Vr2—z[?
= _ 2
~ m(B,) / / Va,p (us(2; p) = Ar(u)p)| / dw | dpda
|z|<r 0 a1
][pr ug(z, p) — M (u)p)|” dpda.  (4.26)
Recall from Lemma 3.19 that A.(u) = f;, 9,ue(y, p)dydp. Since ug verifies Loug = 0 (see

Lemma 3.10), we can apply Lemma 4.5 to ug and get
fmp (2, p) — A(w)p) | dpdas < O ][ww w(z,p) — M (w)p) [ dpde. (4.27)

Notice that

Ve (@, p) = M (@)p)|* = Vi (g (. 8) = M (u) [t])[*

< T e ) = M) o) do

gn—d—1

By a computation similar to that in the proof of Lemma 3.7, this yields

f Ve oo, p) — M ()p) P dpdr < — / 19 (e, 1) — A () [#) P wl(t) dudt.

T

Combining this with (4.27) and (4.26), we obtain

L U 2
W/V(“G(”C’t)—N(U) ()2 duw(t) dadt

Cr? ,
= Bl)B/W(U(%t)—)q(u) It w(t) dadt. (4.28)

Now we return to the first term in the right-hand side of (4.25). Since A, is a minimizer
(see (3.16)),

491 /|v (@) )P w 491 /|v w) |t P w(t).

Enlarging the ball, the right-hand side is bounded by

40
d+11 /|V u(x,t) — A\ |t|)| w(t) dadt.
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This estimate, together with (4.28) and (4.25), gives

1 2
i B/ 9 (s £) — A (ar) 1)) () ddt

m(
< (2% g2 L /|V(u—)\1(u)|t|)|2w(t)d:rdt
- rf—H ! ! m(B)
By

for 0 < r < rg. Now we only need to choose 6; and r; properly. Let for instance,
0, = r‘f”, and then choose 1, = r1(0g, n,d, po) € (0,1) sufficiently small so that 4r; +
Crf+4 + Cr? < 0. Recall that rg is determined by #; and ry, and thus depends only on

0o, n,d, and pg. This completes the proof of the key lemma. 0O

Ultimately, we want to derive a decay estimate for the normalized non-affine part
of the local energy of u, i.e. 8,.(u). So we need to compare the local energy of positive
solutions of Lou = 0 for different scales.

Lemma 4.29. Let v € W(B1) be a positive solution of Lou =0 in By \T with Tu =0 on
I'NBy. Then

1
E,(r)>C(1—-CrE,(1) for0<r< 3

where C and C' are positive constants depending only on d,n and pyg.

Proof. Recall that by Lemma 3.10, up is a solution of the (d + 1) dimensional operator
Ly, and that by Lemma 3.19, \,.(u) = fT Opug(z, p)dxdp. So by the boundary regularity
of the solutions of constant-coefficient operator Ly in Ri“ (see [7] Lemma 2.10),

1/2
[Ar(u) — As(u)] < 08¢ Opug < Cr f|VI7puo(x, )| dadp
1/2
1 2
<Cr —/ Vu(x,t)|” w(t) dxdt 4.30
Sl Tt ARG (4.30)

for 0 < s < r < 1/2. Hence A\g(u) = lims_,0 As(u) exists, and since we even have a
bound on osc Opug, we see that Ag(u) = 9,ue(0,0). Since Ly [t| = 0, we can apply the

comparison principle (Lemma 2.16) to get that

u(x,t)
|t

1
~ u(z, to) for all (z,t) € Byj2 and any tg such that [to] = 3
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So by Lemma 2.15,

1/2
u(x,t 1
(t| ) ~ (B /|Vu|2dm for all (x,t) € By,
B,
which implies that
1/2
n—d— ; d 1
us (2, p) = fs o U@, pw)du ~ /\Vu\Qdm (4.31)
1

for any (x, p) € Ty /2. Letting p — 0, this yields a bound

1/2

1
)\O(U) = 3pua(070) Z mé/ ‘V’LLlQ dm

Combining it with (4.30), we get

1
m(B,;)
B

A3 (u)
2

Vul* dm > X2 (u) > — (Ar(u) = Ao(w)?

r

1
> 2 2
> (C Cr)m(Bl)/|Vu| dm,
By

as desired. O
5. Extension to a general operator £
5.1. Decay estimates

In this subsection, we shall follow the approach that is used in [7] to obtain a decay
estimate for the normalized non-affine part of the energy of solutions of Lu = 0. Namely,
we shall approximate S, (r) by Bu,(r), with ug verifying Loup = 0, and show that the
error is a Carleson measure. Since the strategy is the same as in the d = n — 1 setting,
we shall focus less on motivation but more on technical details that are different from
the co-dimension 1 case. For the same reason, many proofs will be omitted if they can
be borrowed from [7] without substantial changes.

We start with comparing solutions of Lu = 0 and solutions of Loug = 0 with the
same boundary data. The following two lemmas hold for any matrix Ay satisfying the
ellipticity conditions (1.2). Ultimately, we will apply them to Ag € o(uo)-
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Lemma 5.1. Let u € W(By) be a solution to Lu = 0 in By \T' with Tu =0 on I'N B;.
Let u® € W(By) be a solution to Lou® = 0 in By \ T with u® —u € Wo(By \T'). Then
there is a constant C > 0 depending only on the ellipticity constant pg, d and n, such
that

/yV(u—u0)|2dm§u%min /|A—A0|2|Vu|2dm,/|A—Ao\2|Vu0|2dm . (5.2)
Bq 1 By

Proof. First of all, the existence of u® is guaranteed by the Lax-Milgram Theorem.
Taking u — u® € Wy(B; \ T') as a test function in the equation Lu = 0, using ellipticity
conditions and Young’s inequality, we can get

po' / |V (1 —u)|* dm < /AV(u — %) V(u — u®)dm
By B

= f/AVuo -V(u—u®)dm = /(Ao — AV - V(u—u®)dm

Bl Bl

1 2 1 2
< 70/|A—A0|2‘Vu0| dm+2—uo/‘V(u—uO)| dm.
Bl Bl

This yields
/ IV (u—u0)|* dm < pi2 / A — Ao[* [Vl | dm.
Bl Bl

Interchanging the roles of u and u°, and A and Ay, we also obtain the other bound. O

Lemma 5.3. Let w and u° be as in Lemma 5.1. Then
Cil/|VuO|2dm§/|Vu|2dm§0/’Vu0|2dm,
B4 B4 B

where C = .

The triangle inequality would almost give this directly; the proof (with C = ug) is
the same as when d = n — 1 and is thus omitted; see [7], Lemma 3.13.
Define

1/2
v(x,r) =  inf {m(B(x,T))1 / |A(y,t) — Ao|*w(t) dydt} . (5.4)

Ao €0 (o)
(y,t)eB(z,r)

Notice that the domain of integration is larger than what we have in (1.8).
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Lemma 5.5. If the matriz-valued function A satisfies the weak DKP condition of Defi-

nition 1.9, with constant € > 0, then 7(:5,7“)2@ is a Carleson measure on Ri“, with
the norm
dxd
H'y(x,r)2 T < om(a) < ek, (5.6)
r
C

where N(A) = Ha(x,r)Q@ is as in (1.8) - (1.10), and

le

y(z,r)? < CN(A) < Ce  for (z,7) € RIH (5.7)
Here, C' depends only on d, n, and pyg.

Proof. This lemma can be proved quite similarly as the d = n — 1 case. Here, we only

mention some modifications and refer the readers to [7], Section 4.1, for details.
)2 dxdr

“ is a Carleson measure on Ri“. Let Ag = A(xg,70) be

We want to show ~y(z,r
given. We claim that we can control y(zg,ro) in terms of « as in the case of d = n — 1.

That is, we want to show that

Y(x0,70)% < Can(wo,m0)* +C Y 0¥ fazw, ™) dy, (5.8)

m>0 Al
where o = %, and Ay = A(zg,3r9/2). To this end, for each pair (x,r), choose a A, , €
o (o) such that

m(W (z,r)) ™ / |A(y, 1) — Ay |? w(t) dydt = a(x,r)2.

W (x,r)

Let Ag = Ayq,r- Then

(xo,70)* < m(B(zo,70)) " |A(y, ) — Aol *w(t)dydt
(yﬂf)EB(wo,’r‘o)
1

= m(B@o.r0))

[ [ 1A - Ay

YyEAo [t|<ro

Let Qo = {(z,t) : © € Ao, |t| < 7o}. Asin the case of d = n—1, we cut @ into horizontal
slices H,, associated to radii ,,, = ¢™rg, m > 0. The only difference is that now these
slices are annular regions. That is, H,, = {(z,t) : © € Ag, i1 < [t| < 7). Once we
have set this up, (5.8) can be obtained by showing that

2
[ 400 = AP ity < Cranstan,ro)80] + Cr [ {3 ctyors)}
H,,

=
Ay J
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asford=n—-1.
Now (5.6) and (5.7) can be obtained verbatim from the proof in the d = n — 1 case,
since we have (5.8) and both v and « are functions on Ri“. a

The following estimate on Vu can be proved similarly to in the case d =n — 1. One
only needs to replace Carleson balls in Riﬂ with balls centered on I' in R™. One needs
to use the reverse Holder estimate Lemma 2.18, which gives an exponent greater than
2 that depends only on d, n and pg. We refer readers to [7], Lemma 3.19, for details of
the proof.

Lemma 5.9. Let u € W,.(Bs) be a positive solution to Lu = 0 in Bs\T', such that Tu = 0
on I'N Bs. Choose a matriz Ag € Ao(uo) that attains the infimum in the definition (5.4)
for v(0,1), and let u® be the solution from Lemma 5.1 (with this choice of Ag). Then for
any § > 0,

/ |Vu — Vu0’2 dm < (6 4+ Cs7(0,1)%) E,(1), (5.10)

B

where Cs depends on d, n, o, and d.

We can now derive the decay estimates for the non-affine part of solutions u. The
following is an analogue of Lemma 4.13, and should be compared to Lemma 3.24 in [7]
for the case d =n — 1.

Lemma 5.11. Let uw € W(By) be a solution to Lu =0 in By \T with Tu =0 on T'N B;.
Then there exist constants p = p(d,n, po) € (2,00), C = C(d,n, po) € (0,00) such that
for any 6y € (0,1), there exists 1o = ro(0o,d,n, o) € (0,1/4), such that

2—p C
Julr) < € (80 + K507 ) Ju(1) + —259(0,1)% By (1) (5.12)

for any 0 <r <1y, and any K > 0. Here, Cx depends on K, and d,n, pg.

Proof. In what follows, we shall follow rather closely the proof of the d = n — 1 case,
and refer to [7] for an occasional missing detail. We shall choose a ug verifying Loug = 0,
use the decay estimates for J,,(r) to get a decay estimate for J,,(r) with an error (5.16).
Then using some reverse Holder estimates, we shall control the error by terms on the
right-hand side of (4.14).

We write u as an affine part plus its complement on By, i.e.

u(z,t) = vz, t) + A (u) [¢].

Notice that E,(1) = J,(1) by the definitions near (1.12), and in addition
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/\1(u)2 < 1

= m(Bl)/Wtu| w(t) drdt < Eu(1) (5.13)

By

Choose a matrix Ap in the compact set p(po), that attains the infimum in the
definition (5.4) of v(0,1), and let £y = — div (Apw(t)V) as usual.

Now consider the Lo-harmonic extension ug of the restriction of u to d(Bi /2 \T), that
is, the unique solution ug € W (B /2) to Loug = 01in By o \T', with ug—u € Wo(By2\T).
Write

uo(x,t) = vo(x,t) + A1 (u) |t]. (5.14)
Since Lo [t| = 0, vo € W (By5) verifies
Lovg=0 1in Bl/g \F and vg — v € WQ(BI/Q \F) (515)

In particular, Tvg =Tv =0 on By, NT.
We claim that for any 6y € (0, 1), there exists rg € (0,1/4) depending on 8y, d, n and
1o, and a constant C' depending only on d, n, ug, such that

0(90 + ’I“_d_l)

Ju(r) < COyJyu(1) + m(B1)

/ A = Aof? [Vauo | dm, (5.16)

B2

for any 0 < r < rg.
To see this, we use the inequality (a + b+ ¢)? < 3(a® + b* + ¢2) to write

3 9 3 )
BT)B/|V(uO_/\T(UO)t)| dm+ WB/V(U—Uo) dm

Ju(r) < o

/|V()\T(u0) t] — A (u) [ED)? dm.  (5.17)

By

m(Br)

The last integral can be controlled by the second integral on the right-hand side of (5.17),
as follows:

| o
5 B/ V(o) 1 = M) DI dim = (e (ag) — A u)

2

= ! Vi(u = uo) -t m ! u—u)l? dm
- m(BT)B/ a Sm(BT)B/W( o)[*dm. (5.18)

For the second integral on the right-hand side of (5.17), we enlarge B, and apply
Lemma 5.1 to get



G. David et al. / Journal of Functional Analysis 283 (2022) 109553 35

, —(d+1)
) dm < ———— /\Vu—u0|dm
131/2

By /o
Crf(dJrl)

<= A — Aol? |Vug|* dm. 5.19
- m(Bl/z) /| ol [Vo[dm ( )

B2

Finally, by Lemma 4.13, for any fixed 6y € (0, 1), there is some r¢ = ro(6o, n,d, o) €
(0,1/4) such that the first integral in (5.17) is bounded by %"Juo(l/2). On the other
hand, the same sort of computation as above gives

Jus(1/2) < 3Ju(1/2) + Tl/ / V(= o) 2 dim + (A ja(11) — A ja(u))?

Bz

§3Ju(1/2)+%/2) / A — Ao|? [Vuo|? dm.

m
B2

Combining this with (5.17), (5.18) and (5.19), we obtain

C<90 + rd- 1

Ju(r) < 00Ju(1/2) + m(Br2)

/|A Aof2 (Vo[ dm,

By s

which is almost (5.16). To show (5.16), we only need to observe that by the minimizing
property of Ajp(u) (see (3.16)),

Ju(1/2) < m(By )" / IV (e, ) — A (w) [¢]) 2 w(t) dedt < CTu(1).
By /o

This finishes the proof of (5.16).
Now it suffices to control the second term on the right-hand side of (5.16). We use
the decomposition of ug as in (5.14), as well as (5.13) to write

m(Bl/Z)_l / |A_A()|2|VU()|2dm

B2
2 2 21 (u)? / 2 2
< A — A" [Vu|"dm + ————— A— A" IV |t]]”" d
= m(Bra) /\ of* Vool m(Br o) | ol [V [t]]” dm
By /s By /o
2 2 2 2
< — A—A \% dm +2F,(1)y(0,1)*. (5.20
i | A=A T 28, 0070.0% (520)

By s
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We claim that m(By/2) ! fBl/2 | A — Ao|? |Vwo|® dm can be estimated as in the d = n—1
case as long as one has the following reverse Holder type estimates.
For some p = p(d, n, o) > 2 sufficiently close to 2,

1/p 1/2 1/p
/ [Vuol|” dm S / Vol dm + / [Vol” dm , (5.21)
Bl Bi /2 Bi/>
and
1/p 1/2 1/p
/|W|pdm < /|Vv|2dm + A1 (u)] /|A—Ao\pdm . (5.22)
Bi/2 1 1

where the implicit constants depend on d, n, ug and p. We postpone the proof of these
two inequalities to Section 5.2.

Now fix any K > 0. Assuming (5.21) and (5.22), we can control the contribution from
the set

By \ {X € By \T: [Voo(X)* < KEu(l)}
to the integral, much as in the case d = n — 1, and finally obtain
[ 1A= Aol [Vl dm < CRF 1, (1) 4 € (K + K5 ) 20,10, (1),
B2

From this and (5.20), the desired estimate (5.12) follows. O

Using Lemma 4.29, Lemma 5.9 and Lemma 5.3, one obtains the following analogue
of Lemma 4.29 for positive solutions of Lu = 0.

Lemma 5.23. Let u € W,.(B5) be a positive solution of Lu =0 in Bs\ T, with Tu =0 on
N Bs. Then for any 6 >0 and 0 < r < 1/2,

Lo o (5+Cw(071)2)> (1), (5.24)

Eu(r) = ( C pd+1

where C, C', C" are positive constants depending only on d, n and pg.

As before, we will only find this useful when the parenthesis is under control.

With Lemma 5.11, Lemma 5.23, and Lemma 5.5 at hand, we are finally ready to prove
the decay estimate for 3, (z, ), the normalized non-affine energy of solutions of Lu = 0.
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Let u be as in Lemma 5.23. We first choose a 6y € (0,1) so that C8y < ﬁ in
Lemma 5.11. By Lemma 5.11, this choice of 6y gives an 7o € (0,1/4) such that (5.12)
holds for any r < ry. Now we choose r = 79 < 1 so that C'r? < 1/2 in (5.24). Then we
require

7(0,1)* < e, (5.25)

and choose €p and 6 > 0 sufficiently small (depending on 73) so that

1
" —d—1
C ((5+05€0)T0 < c
in (5.24). This way, (5.24) implies that
Eu(r) > = E.(1) (5.26)
W =g '

We divide both sides of (5.12) by E,(r) and get that

Ju(l)  Ck 5 Eyu(1)

0,7) < C (9 K" *‘H) =K 0,1 . 5.27
/Bu( T) = 0 + 2r EU(T‘) + 7"d+1 7( ) Eu('r) ( )
Then we choose K > 0 sufficiently small (depending on 79) so that CK 277@7'07 =1 < ﬁ.

Now assuming (5.25), our choice of 0, gg, § and K guarantees that we can apply (5.26)
and deduce from (5.27) that

Bu(0,70) < %ﬂu(l) + Crr(0,1)2. (5.28)

We recapitulate what we obtained in the next corollary. Of course, by translation and
dilation invariance, what was done on the unit ball By can also be done for any other
Bg(x), z € T, R > 0. We use this opportunity to state the general case, which of course
can easily be deduced from the case of By by homogeneity.

Corollary 5.29. There exist constants 19 € (0,1071) and C > 0 which depend only on d,
n and o, such that if u € W,.(Bsgr(z)) is a positive solution of Lu = 0 in Bsg(x) \ T,
with Tu =0 on I' N Bsgr(x), then

Bz, 0R) < %m(x, R) + Cy(x, R)>. (5.30)

Proof. The discussion above gives the result under the additional condition that
v(z,R) < go. But we now have chosen 7y and &g, and if v(z, R) > €o, (5.30) holds
trivially (maybe with a larger constant), because 8, (x,79R) < 1 by (3.18). O
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Finally, Theorems 1.16 and 1.18 can be deduced from the decay estimate (5.30) exactly
as what was done in the d = n — 1 case, as B, (x,r) is a function in Rf‘l and the goal is
to prove a Carleson estimate in R%"'. We refer readers to Section 4.2 in [7] for details.

5.2. Proof of the reverse Hélder inequalities
Proof of (5.21). The idea of the proof is essentially from [9], Chapter V. However, we

need to treat the boundary estimates more carefully as this time the boundary is of
mixed co-dimensions.

Recall that Lovg = 0 in By \T', with vg —v € Wy(By /2 \T). Since v € W (B /) with
Tv=0on B NI, Tvy=0on By NI. Let Ry = 10~2n~1/2. Set
Qr(X) ={Y eR": |V, - Xi| <R fori=1,2,...,n}, R>0.

We claim that there exists p = p(d,n, 119) > 2 such that

1/p
m(Qry2(Xo)) ™! / Vol dim
QRry/2(X0)NB1/2

1/2

S | m@uxont [ [Tultdm
QRry(Xo0)NB1 /2

1/p
+ [ m(@n, (x0)) ! / Vol? dm (5.31)
QRry(X0)NBy 2

for any Qg,(Xo) C R"™ with Qg,(Xo) N By 2 # 0. Notice that the first integral concerns
the cube Qg, /2(Xo), while the two other ones are on the larger Qr,(Xo); this will allow
the localization argument below. Once this is proved, one can obtain the desired estimate
(5.21) by covering By /o with finitely many cubes Qr,(Xo).

Fix Qr,(Xo) with Qr,/2(Xo) N By/s # 0. Let X € Qg,(Xo) be given, and pick any
radius R < 75 dist(X, Qr,(Xo)). We need to introduce R because we will apply a local
result soon.

Let g := T?T’_g There are three possibilities: (1) Q3r(X) C By/g, (2) Q3r(X)NBy/2 # 0
and Q3r(X) N Byo" # 0, (3) Q3r(X) C By)o°. The last situation is trivial.

If Q3r(X) C By /2, then we can apply Lemma 2.21 to get

_ 2 c
m(Qr(X))™* / |Vuo|” dm < (a0 / |Vvol? dm. (5.32)
Qr(X) Qsr(X)
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We will see later how to continue in this case, but let us first discuss (2). If Qsr(X) N
By # 0 and Q3r(X) N By s # 0, choose n € C§°(Q3r(X)) with n =1 on Qr(X) and
|Vn| < . Taking (v — vo)n? € Wo(Bij2 \T) as a test function in Lovg = 0, and using
the ellipticity conditions on Ay, and then the Cauchy-Schwarz inequality, one can get
the estimate

/ Vuo|* dm < C / Vol? dm+]§2 / lvo — v)* dm. (5.33)

Qr(X)NBy /s Q3r(X)NBy /2 Q3r(X)NBy/2

We want to control f Qsn(X) |vg — v|2 dm using the Poincaré inequality. Extend vg—v

ﬂBl/2
by zero outside B;,; and denote by h the extended function. We need to discuss two

cases.
Case 1: Qur(X)NT = 0. Then 6(X) > 4R, where 6(X) = dist(X,I") as usual. Since
for any Z € Qsr(X), 6(X) — 3R < §(Z) < 6(X) + 3R, we have § < $& < 1. This

implies that
Craw(X) <w(Z) < Cypqw(X) for Z € Q3r(X),

and thus

/ W(2) 2 w(Z)dZ < Copaw(X) / h(2)[2 dZ.

Qsr(X) Q3r(X)

Since OBjp is smooth, Qsp(X) N Byp® # 0 implies that |Qrr/2(X)\ Bijs| >
~y |Q7R/2(X)| for some v > 0. Recalling that 2 = 0 in By /2, we can apply the Sobolev
inequality to get

W2 w(2)dZ < C’w(X)( / |Vh|‘1dz)%

Q3r(X) Q7r/2(X)

< Cu(x) % ( / VAl w(Z)dz)"
Qrr/2(X)

Notice that by (2.1), m(Qsr(X)) = m(Q7r/2(X)) = R"w(X). Hence,

1

m(Qsr(X)) / B2dm < CR? (m(Qrr/2(X)) ™! / |Vh|qw(Z)dZ)%

Q3r(X) Qrr/2(X)

Case 2: Q4r(X)NT # (. Then there is zyg € T so that Qsr(X) C Q7r(z0) C Qu1r(X).
Enlarging Q3 (X) and applying (2.10), one has
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C
h?dm < ———— / h%dm
QSR / m(Qrr(zo))
QsR (X) Q7r(z0)

2/
< CR* (m(Qrr(ro) ! / A dm) "
Q7r(zo)

§CR2(m(Q11R(X))*1 / |Vh|qdm)2/q.

Quir(X)

To summarize, in both Case 1 and Case 2, we have

1 2
m(Qar(X)) / [vo = vl dm

Q3r(X)NB1/2
1

< CR( )

/ |V (vo — v) | dm) % (5.34)

Q11r(X)NBy /2

Notice that we have chosen R < 5 dist(X,0Qr,(Xo)) to make sure Qi1p(X) C
QRO (Xo) Set

g(X) _ {|VU0(X)|Q for X € QRO(XO) N B1/27

0 otherwise,

F0X) = {|Vv(X)|q for X € Qr,(Xo) N Bya,

0 otherwise.

By (5.34), (5.33) and (5.32), we obtain

1 ) C .
m(Qr) / gdm < m<Q33>Q/ fdm

QRr
*C(m@lm) / gdm)rw(m(c;lum / fam)’

Q11Rr Q11r

= n(Qun) QllR / frdm * O( (QIIR)Q/ gdm) 7-7

”“ . As we noted in the proof of Lemma 2.18, we can still apply Proposition

where r =
1.1in Chapter V of [9] when the Lebesgue measure is replaced with the doubling measure

m. Then (5.31) follows. O
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Proof of (5.22). The proof is similar to that in the d = n — 1 case. We present the proof
for the sake of completeness.

Set Ry = 1072np~Y/2. For any Xo = (zo,t0) € Bijp \T and 0 < R < Ry,
choose n € C§°(Qr(Xo)), with n = 1 in Q2r/3(X0), |Vn| $ 1/R. Here, Qr(X) =
{YeR":|Y; - X;|<R i=1,2,...,n} as before. We shall write Qr for Qr(Xo)
when this does not cause a confusion. Since u € W (B,3) verifies Lu = 0 in By \ T,
we can take any ¢ € Wy(By \ T') as test function (see (4.4)). Moreover, recall that
v(z,t) = u(z,t) — Alt], with A = Ai(u), and that Lo|t| = 0. Therefore, for any
¢ € Wo(B1\ 1),

0= /AVU -Vodm = /AVv - Vodm + /AV()\ [t]) - Viodm
B B B

= /AVU - Vdm + /(A —Ao)V(AE]) - Vipdm. (5.35)

B1 Bl

When |tg] < R, we choose p(X) = v(X)n?(X); when instead |tg| > R, we take
P(X) = (v(X) — vgr)*(X), with vo, = m(Qr)™" [, vdm. One can check that in
both cases ¢ € Wy(By \T'). As in the proof of (3.34) in [7], we plug ¢ into (5.35),
compute the derivatives, estimate some terms brutally, and finally use Cauchy-Schwarz
inequality, and get the following estimates.

Case 1: |to| < R. In this case, we obtain

/ Vo> dm < %/ﬁdm—l—q‘o |/\|2/|A—A0|2dm.
Q2Rr/3 Qr Qr

There is ¢ € I" such that Qr C Qar(x0) C Q3r. Since Tv = 0 on I'N By, we can enlarge
Qr and apply (2.10) to control fQR v2dm and deduce from the above that

1 2
m(Q2ry3) / [Vol"dm

Q2r/3

n+2

n

<C _ bt / |Vv|”27f2dm + C|/\‘2 /|.A—.Ao|2dm (5.36)
- m(Q3R)Q m(QR)Q S

Case 2: |tg] > R. The same computation as in Case 1 gives

C
/ |Vv|2dm§ﬁ/|v—vQR\2dm+C|)\\2/\A—A0|2dm.
Q2r/3 Qr Qr

Then by Lemma 2.7, (5.36) holds.
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Now it follows from [9] V, Proposition 1.1 that

| 1 CIAP
- V”d<04/v2d +7/A—Apd,
O | 1ol dm < Q) Vol dm Q] A = Aol dm

Ro/2 R

for some p = p(d, n, po) > 2, which implies the desired reverse Hélder type estimate since
By /3 can be covered by finitely many Qr,/2. O
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