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1. Introduction and main results

In a recent paper [7], we showed that for a slightly larger class of elliptic operators than 
the Dahlberg-Kenig-Pipher operators on the upper half-space Rd+1

+ , the Green function 
is well approximated by affine functions. The current paper extends this result to higher 
co-dimensions. That is, we consider the Green function on Rn \ Rd, with d < n − 1, 
for operators satisfying a condition analogous to the Dahlberg-Kenig-Pipher condition 
on Rn \ Rd and show that it is close, in a suitable sense, to affine functions. There are 
multiple challenges specific to the higher-codimensional setting, but before discussing 
those, let us provide some context for this work.

There has been a wide success in establishing connections between the geometry 
of the boundary of Ω ⊂ Rn and properties of solutions of an elliptic PDE on Ω
([11], [13], [12], [1], etc). However, when the boundary of Ω has dimension lower than 
n −1, results are relatively rare. Essentially the only characterization of the uniform recti-
fiability of a lower-dimensional set by a PDE property is the recent work [8]. However, it 
pertains to weak rather than strong estimates on the solutions and, in particular, yields 
qualitative rather than quantitative results. This not merely a technical obstacle: the 
proofs in [8], relying on the blow-up techniques, are not amenable to a more quantitative 
analysis. On the other hand, the free boundary results obtained in [8] are even stronger 
than perhaps is natural to expect. Specifically, the authors show that even weak estimates 
on the Green function imply uniform rectifiability, and hence, if one can show that the 
Green function is close to the distance to the boundary in a strong, quantifiable sense, 
this would furnish the first quantifiable PDE characterization of the lower-dimensional 
uniform rectifiability. The present paper is the first step in this direction.

Aside from the aforementioned weak results, it has two important pre-runners. In [7], 
we managed to prove that the Green function is close to the distance function in a precise, 
quantitative way in the upper half-space (that is, in co-dimension 1). In [6], a different 
in form but similar in spirit, quantitative estimate for the Green function is obtained 
on domains with uniformly rectifiable sets of dimension strictly less than n − 1 using a 
completely different method. The goal of this paper is to obtain a precise estimate for 
the Green function for more general operators than the ones considered in [8] and [6] on 
domains with lower dimensional boundary. Roughly speaking, the operators considered 
in [8] and [6] are close to the analogues of the Laplacian. In the present paper, we consider 
operators with much more oscillatory coefficients, albeit trading off by considering only 
flat boundary. Let us be more precise.

Consider Ω = Rn \ Γ, where Γ ⊂ Rn is Ahlfors-regular of dimension d < n − 1. This 
means that there is a constant C0 ≥ 1 such that

C−1
0 rd ≤ Hd(Γ ∩ Br(x)) ≤ C0rd, (1.1)
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for all balls Br(x) centered on x ∈ Γ, with radius r > 0. Classical elliptic operators are 
not appropriate for boundary value problems on Ω, as their solutions cannot “see” the 
lower dimensional set Γ. To overcome this obstacle, the first and third authors of the 
present paper, together with J. Feneuil, developed an elliptic theory on such domains 
with degenerate elliptic operators ([2]). It was shown that the general results, such as the 
maximum principle, trace and extension theorems, existence of the harmonic measure 
and Green function, all hold for the operators

L = − div(A dist(·, Γ)d+1−n∇),

where dist(·, Γ) is the Euclidean distance to the boundary, and A is a matrix of real, 
bounded, measurable functions that satisfies the usual ellipticity conditions. That is, 
there is some μ0 > 1 such that

〈A(X)ξ, ζ〉 ≤ μ0 |ξ| |ζ| for X ∈ Ω and ξ, η ∈ Rn,

〈A(X)ξ, ξ〉 ≥ μ−1
0 |ξ|2 for X ∈ Ω and ξ ∈ Rn.

(1.2)

Some of the results in this general setting are included in Section 2.
For the purpose of this paper, we focus only on Γ = {(x, t) ∈ Rn : t = 0} ∼= Rd, and 

our domain is Ω = Rn \ Rd =
{

(x, t) ∈ Rd × Rn−d : t �= 0
}

. Notice that in this case, for 
a point X = (x, t) ∈ Rn, dist(X, Γ) = |t|.

Before introducing our conditions on the operator, let us define Carleson measures on 
the upper half-space Rd+1

+ . We shall systematically use lower case letters for points in 
Rd and capital letters for points in Rn. It will be necessary to distinguish a ball in Rn

from a ball in Rd+1, so we use the cumbersome notation B(d+1)
r (x) for a ball in Rd+1

with radius r centered at (x, 0) ∈ Rd+1. The main purpose of defining balls in Rd+1 is to 
define Carleson balls in Rd+1

+ , that is, we let T (x, r) = B
(d+1)
r (x) ∩ Rd+1

+ . Although we 
do not emphasize it in notation, T (x, r) is (d +1)-dimensional. For x ∈ Rd and r > 0, we 
denote by Δ(x, r) the surface ball Br(x) ∩ Γ. Thus Δ(x, r) is a ball in Rd, and T (x, r) is 
a half ball in Rd+1

+ over Δ(x, r). We may simply write TΔ for a half ball over Δ ⊂ Rd.

Definition 1.3 (Carleson measures on Rd+1
+ ). We say that a nonnegative Borel measure 

μ is a Carleson measure on Rd+1
+ , if its Carleson norm

‖μ‖C := sup
Δ⊂Rd

μ(TΔ)
|Δ|

is finite, where the supremum is over all the surface balls Δ and |Δ| is the Lebesgue 
measure of Δ in Rd. We use C to denote the set of Carleson measures on Rd+1

+ .
For any surface ball Δ0 ⊂ Rd, we use C(Δ0) to denote the set of Borel measures 

satisfying the Carleson condition restricted to Δ0, i.e., such that

‖μ‖C(Δ0) := sup μ(TΔ)
|Δ| < +∞.
Δ⊂Δ0
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Next we want to define our conditions that say that the matrix A = A(X) is often 
close to a “constant” coefficient matrix A0. But since our operators have a singular 
weight |t|d+1−n, we need to impose some structural assumptions on the matrix A0 so 
that the operator L0 := − div(A0 |t|d+1−n ∇) behaves like a constant coefficient operator 
in Rn \ Rd.

It was observed in [4] that given an elliptic operator L = − div(Ã∇) defined on Rd+1
+ , 

one can construct a degenerate elliptic operator L = − div(A∇) so that if v is a solution 
to Lv = 0 in Rd+1

+ , then the function u defined on Rn \ Rd by u(x, t) = v(x, |t|) is a 
solution to Lu = 0 on Rn \ Rd. The precise construction is the following. Consider a 
(d + 1) × (d + 1) matrix Ã written in a block form as

Ã =
[

A b
c d

]
,

where A is a d × d matrix, b is a d × 1 vector, c is a 1 × d vector, and d is a scalar 
function. Then for n > d + 1, the n × n matrix A is constructed from Ã as

A =

⎡⎢⎢⎢⎣
A

b t

|t|
tT c
|t| dIn−d

⎤⎥⎥⎥⎦ , (1.4)

where In−d is the identity matrix of size n − d, t is seen as a horizontal vector in Rn−d, 
and thus b t is a d × (n − d) matrix and tT c is a (n − d) × d matrix.

Inspired by this observation, we fix the aforementioned class of matrices constructed 
from constant matrices in Rd+1.

Definition 1.5 (The class A0(μ0)). We define A0(μ0) to be the class of n × n matrices 
satisfying the ellipticity conditions (1.2) with constant μ0 that can be written as the 
following block matrix

A0 = A0(x, t) =

⎡⎢⎢⎢⎣
A0

b0t

|t|
tT c0

|t| d0In−d

⎤⎥⎥⎥⎦ . (1.6)

Here, A0 is a d × d constant matrix, b0 is a d × 1 constant vector, c0 is a 1 × d constant 
vector, d0 is a real number.

The reason that this class of matrices plays the role of constant matrices for our 
purpose is actually different from the above observation made in [4]. We want them to 
relate back to constant-coefficient operators in Rd+1, not the other way around. In fact, 
it is shown in Section 3 that for any A0 ∈ A0(μ0), any solution of − div(A0∇u) = 0 can 
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be transformed into a solution of an elliptic equation in Rd+1. Notice that a solution 
u(x, t) of − div(A0∇u) = 0 is not necessarily radial in t, while a solution constructed 
from a solution of an elliptic equation in Rd+1

+ as above is radial in t.
Now let us return to conditions on A. Since we shall compare A and A0 ∈ A0(μ0) at 

every scale, we introduce Whitney regions in Rn: for any (x, r) ∈ Rd+1
+ , define

W (x, r) :=
{

(y, t) ∈ Rn : y ∈ Δ(x, r), r

2 ≤ |t| ≤ r
}

. (1.7)

Notice that W (x, r) is an annular region in Rn whose distance to Γ is r/2.
The difference between A and some matrix A0 ∈ A0(μ0) at a given scale is measured 

by the following quantity. For x ∈ Rd and r > 0, define

α(x, r) := inf
A0∈A0(μ0)

{
1

m(W (x, r))

ˆ

(y,t)∈W (x,r)

|A(y, t) − A0|2 dydt

|t|n−d−1

}1/2

(1.8)

Here, m(W (x, r)) is the measure of W (x, r) with weight |t|−n+d+1.

Definition 1.9 (Weak DKP condition). We say that the coefficient matrix A satisfies the 
weak DKP condition with constant M > 0, if α(x, r)2 dxdr

r is a Carleson measure on 
Rd+1

+ , with norm

N(A) :=
∥∥∥∥α(x, r)2 dxdr

r

∥∥∥∥
C

≤ M. (1.10)

The name comes from Dalhberg, Kenig and Pipher. In 1984, Dahlberg first conjectured 
that a Carleson condition on the coefficients, which is roughly that |∇A|2 dxdr/r be a 
Carleson measure on Rd+1

+ , guarantees the absolute continuity of the elliptic measure 
with respect to the Lebesgue measure. In 2001, Kenig and Pipher [14] proved Dahlberg’s 
conjecture.

The condition we consider here is weaker than the classical DKP condition in the 
following sense. Consider a matrix A of bounded, measurable functions defined on Rn

that can be written as (1.4), but with the coefficients depending on x, t. Assume that A, 
b, c and d all satisfy the usual DKP condition with Carleson norm M . That is,∥∥∥∥∥ sup

(y,t)∈W (x,r)
|∇A(y, t)|2 rdxdr

∥∥∥∥∥
C

≤ M,

and similarly for b, c and d. One can verify that under this assumption, the matrix A
satisfies the weak DKP condition with constant M . We point out that from our definition, 
a matrix A that satisfies the weak DKP condition does not have to be of the form (1.4). 
Moreover, we can always add to A a matrix D that satisfies
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dμ(x, r) = sup
(y,t)∈W (x,r)

D(y, t)2 dxdr

r
∈ C,

and the new matrix still satisfies the weak DKP condition if A does. We remark that 
our Definition 1.9 is the higher co-dimensional analogue of what we defined in [7], where 
we say that a (d + 1) × (d + 1) matrix satisfies the weak DKP condition with constant 
M , if (1.10) holds with A0 replaced by some constant (d + 1) × (d + 1) matrix in the 
definition (1.8) of α(x, r).

Let us now turn to the approximation of the Green function by affine functions in 
higher co-dimension. In [7], we showed that any solution in T (x0, R) that vanishes on 
Δ(x0, R) is locally well approximated by affine functions in T (x0, R/2), with essentially 
uniform Carleson bounds. More precisely, we proved the following result.

Theorem 1.11 ([7] Theorem 1.13). Let Ã be a (d + 1) × (d + 1) matrix of real-valued 
functions on Rd+1

+ satisfying the ellipticity conditions with constant μ0. If Ã satisfies 
the weak DKP condition with some constant M ∈ (0, ∞), and if we are given x0 ∈ Rd, 
R > 0, and a positive solution u of Lu = − div

(
Ã∇u

)
= 0 in T (x0, R), with u = 0 on 

Δ(x0, R), then for some C depending only on d and μ0, there holds∥∥∥∥βu(x, r)dxdr

r

∥∥∥∥
C(Δ(x0,R/2))

≤ C + CM,

where

βu(x, r) =

ffl
T (x,r) |∇ (u(y, t) − λx,r(u) t)|2 dydtffl

T (x,r) |∇u(y, t)|2dydt
,

and λx,r(u) =
ffl

T (x,r) ∂tu(z, t)dzdt.

In higher co-dimension, we want to measure in a similar way the closeness between a 
solution and an affine function in Rn \ Rd. Given a positive solution u of Lu = 0 in a 
ball Br(x) centered on Γ, the best affine function that approximates u in Br(x) should 
be λx,r(u) |t|, where

λx,r(u) = 1
m(Br(x))

ˆ

Br(x)

∇tu(z, t) · t

|t|
dzdt

|t|n−d−1 . (1.12)

In Section 3, we will see that this λx,r(u) is indeed the best coefficient of |t| to approximate 
u in Br(x), and that it is closely related to the best coefficient in the co-dimension one 
setting.

As in the co-dimension one case, the proximity of the two functions is measured by 
the weighted L2 average of the difference of the gradients divided by the weighted local 
energy of u. That is, we set
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Ju(x, r) := 1
m(Br(x))

ˆ

Br(x)

|∇y,t (u(y, t) − λx,r(u) |t|)|2 dydt

|t|n−d−1 , (1.13)

and then divide by

Eu(x, r) := 1
m(Br(x))

ˆ

Br(x)

|∇u(y, t)|2 dydt

|t|n−d−1 , (1.14)

to get the number

βu(x, r) := Ju(x, r)
Eu(x, r) . (1.15)

The solutions considered here are all weak solutions in a weighted Sobolev space. 
Their values on the boundary Γ = Rd are considered in the trace sense. All this is made 
precise in Section 2, and also in Section 4.1. Our main result is the following.

Theorem 1.16. Let A be an n ×n matrix of bounded, real-valued functions on Rn satisfying 
the ellipticity conditions (1.2). If A satisfies the weak DKP condition with some constant 
M ∈ (0, ∞), and if we are given x0 ∈ Rd, R > 0, and a nonnegative solution u ∈
Wr(BR(x0)) of Lu = − divx,t

(
A(x, t) |t|d+1−n ∇x,tu

)
= 0 in BR(x0) \ Γ, with Tu = 0

on Γ ∩ BR(x0), then the function βu defined by (1.15) satisfies a Carleson condition in 
T (x0, R/2), and more precisely∥∥∥∥βu(x, r)dxdr

r

∥∥∥∥
C(Δ(x0,R/2))

≤ C + CM (1.17)

where C depend only on d, n and μ0.

The next theorem is an improvement of Theorem 1.16, which says that we can have 
Carleson norms for βu that are as small as we want, provided that we take a small DKP 
constant and a suitably large ball where u is a positive solution that vanishes on the 
boundary.

Theorem 1.18. Let x0 ∈ Rd, R > 0, μ0 > 0 be given, let u satisfy the assumptions of 
Theorem 1.16, and let A satisfy the weak DKP condition in Δ(x0, R). Then for τ ≤ 1/2∥∥∥∥βu(x, r)dxdr

r

∥∥∥∥
C(Δ(x0,τR))

≤ Cτa + C

∥∥∥∥α2(x, r)2 dxdr

r

∥∥∥∥
C(Δ(x0,R))

, (1.19)

where C and a > 0 depends only on d, n and μ0.

Finally, let us comment that our results are essentially optimal. In [7], we constructed 
an example that shows that βG∞(x, r)dxdr may not be a Carleson measure if an operator 
L r
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L = − div(Ã∇) does not satisfy the DKP condition. Here, G∞
L is the Green function with 

pole at infinity for L on the upper half-plane R2
+. Construct an operator L = − div(A∇)

from the 2- dimensional operator L as in (1.4). One can show that this operator does 
not satisfy the DKP condition either. Moreover, the corresponding Green function is 
G∞

L (x, t) = G∞
L (x, |t|), and a similar computation as in the co-dimensional one setting 

shows that βG∞
L (x, r)dxdr

r cannot be a Carleson measure on R2
+.

The main differences in the proof, compared to the setting of co-dimension 1, lie in 
the decay estimates for the non-affine part of solutions to equations with a coefficient 
matrix in the class A0(μ0). In the co-dimension one case, we have good estimates for the 
second derivatives of solutions to equations with constant coefficients. This enables us to 
control the oscillations of the gradient of solutions. However, in the higher co-dimensional 
setting, the coefficients have a singular weight |t|−n+d+1, which prevents us from getting 
an estimate for the second derivatives of solutions. To overcome this difficulty, we split the 
solution into one part which is radial in t, and the other part which is purely rotational 
in t. The radial part can be treated similarly to the co-dimension one case, while the 
rotational part requires a compactness argument and other properties of solutions. The 
entire Section 4 is devoted to implementing this idea. The decay estimate is proved in 
the key lemma (Lemma 4.13).

The rest of the paper is organized as follows. In Section 2, we collect some results 
that will be used frequently in the rest of the paper; most of them are proved in [2]. In 
Section 3, we relate the n-dimensional operator L0 back to a d +1- dimensional operator 
L, and transform solutions of L0u = 0 into solution of Lv = 0. Also, we study the 
properties of λx,r in that section. In Section 5, we show how to generalize the decay 
estimates from operators with a coefficient matrix in A0(μ0) to weak DKP operators. 
The ideas in that section are similar to those in the co-dimensional one case, and we 
mainly illustrate the modifications needed in the higher co-dimension. We give a proof 
of the reverse Hölder inequalities for the gradient of solutions, where we have to address 
the issue of mixed-dimensional boundaries.

2. Preliminaries

In this section we recall, mostly from [2], how to extend standard results for elliptic 
PDE’s in the upper half space (or NTA domains) to the setting of co-dimension > 1. The 
familiar reader can probably jump to Section 3 and return to this section when needed.

Consider Ω = Rn \ Γ, where Γ ⊂ Rn is Ahlfors-regular of dimension d < n − 1. In 
all the other sections, Γ will be simply Rd. For X ∈ Ω, write δ(X) := dist(X, Γ). Define 
the weight function w(X) := δ(X)−n+d+1, and a measure dm(X) = w(X)dX. Denote 
by Br(X) the open ball in Rn centered at X with radius r. One can show that

m(Br(X)) ≈ rnw(X) if δ(X) ≥ 2r, (2.1)

m(Br(X)) ≈ rd+1 if δ(X) ≤ 2r. (2.2)
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In particular, this implies that m is a doubling measure. See [2], Chapter 2 for details.
Denote by W = Ẇ 1,2

w (Ω) the weighted Sobolev space of functions f ∈ L1
loc(Ω) whose 

distributional gradient in Ω lies in L2(Ω, w):

W :=
{

f ∈ L1
loc(Ω) : ∇f ∈ L2(Ω, w)

}
=

{
f ∈ L1

loc(Rn) : ∇f ∈ L2(Rn, w)
}

, (2.3)

and set ‖f‖W =
(´

Ω |∇f(X)|2 w(X)dX
)1/2

for f ∈ W . Here, the identity (i.e., the fact 
that the distribution derivative of f on Ω can also be used as a derivative on Rn) is 
proved in [2], Lemma 3.2. We shall also use the following local version of the space W . 
Let O ⊂ Rn be an open set, then

Wr(O) :=
{

f ∈ L1
loc(O) : ϕf ∈ W for any ϕ ∈ C∞

0 (O)
}

. (2.4)

Note that Wr(O) =
{

f ∈ L1
loc(O) : ∇f ∈ L2

loc(O, w)
}

; see [2] Chapter 8 for details.
For functions in W or Wr(O), it is shown in [2] that there exists a well-defined trace 

on Γ, or Γ ∩ O, respectively. The trace of u ∈ W is such that for Hd-almost every x ∈ Γ,

Tu(x) = lim
r→0

 

B(x,r)

u(Y )dY := lim
r→0

1
|B(x, r)|

ˆ

B(x,r)

u(Y )dY. (2.5)

For u ∈ Wr(O), the trace is defined in the same way for Hd-almost every x ∈ Γ ∩ O.
Consider the divergence-form operator L = − divX(A(X)w(X)∇X), where A is an 

n × n matrix of real, bounded, measurable functions defined in Ω, that satisfies the 
ellipticity conditions (1.2).

Definition 2.6. We say that u ∈ W is a (weak) solution of Lu = 0 in Ω if for any 
ϕ ∈ C∞

0 (Ω),
ˆ

Ω

A∇u · ∇ϕ dm = 0.

Let O ⊂ Rn be an open set. We say that u ∈ Wr(O) is a (weak) solution of Lu =
0 in O if for any ϕ ∈ C∞

0 (O), 
´

O
A∇u · ∇ϕdm = 0. We say that u ∈ Wr(O) is a 

subsolution (respectively, supersolution) in O if for any ϕ ∈ C∞
0 (O) such that ϕ ≥ 0, ´

O
A∇u · ∇ϕdm ≤ 0 (respectively, ≥ 0).

We collect some basic properties for functions in W and solutions of Lu = 0 in this 
section. The constant C below might be different from line to line, but depends only on 
d, n, the Ahlfors constant C0, and the ellipticity constant μ0 unless otherwise stated.

Lemma 2.7 (Poincaré inequality ([2], Lemma 4.2)). Let p ∈ [1, 2n
n−2 ] (or p ∈ [1, +∞) if 

n = 2). Then for any u ∈ W , any ball B ⊂ Rn with radius r > 0, there is some constant 
C depending only on n, d and C0, such that
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⎛⎝ 1
m(B)

ˆ

B

|u − uB |p dm

⎞⎠1/p

≤ Cr

⎛⎝ 1
m(B)

ˆ

B

|∇u|2 dm

⎞⎠1/2

where uB denotes either 
ffl

B
u or m(B)−1 ´

B
udm. If B is centered on Γ and if, in addi-

tion, Tu = 0 on Γ ∩ B, then⎛⎝ 1
m(B)

ˆ

B

|u|p dm

⎞⎠1/p

≤ Cr

(
1

m(B) |∇u|2 dm

)1/2

.

Remark 2.8. One also has (see the proof of Lemma 4.2 in [2])

⎛⎝ 1
m(B)

ˆ

B

|u − uB |2 dm

⎞⎠1/2

≤ Cr

⎛⎝ 1
m(B)

ˆ

B

|∇u|
2n

n+2 dm

⎞⎠
n+2
2n

. (2.9)

Moreover, if B is centered on Γ and if, in addition, Tu = 0 on Γ ∩ B, then

⎛⎝ 1
m(B)

ˆ

B

|u|2 dm

⎞⎠1/2

≤ Cr

⎛⎝ 1
m(B)

ˆ

B

|∇u|
2n

n+2 dm

⎞⎠
n+2
2n

. (2.10)

To see (2.10), write

⎛⎝ 1
m(B)

ˆ

B

|u|2 dm

⎞⎠1/2

≤ C

⎛⎜⎝ 1
m(B)

ˆ

B

∣∣∣∣∣∣u −
 

B

u

∣∣∣∣∣∣
2

dm

⎞⎟⎠
1/2

+ C

 

B

|u(X)| dX.

By Lemma 4.1 of [2] and Hölder’s inequality,

 

B

|u(X)| dX ≤ Cr

⎛⎝ 1
rd+1

ˆ

B

|∇u|
2n

n+2 dm

⎞⎠
n+2
2n

.

Note that since B is centered on Γ, m(B) ≈ rd+1. Thus, (2.10) follows from the above 
observation and (2.9).

Lemma 2.11 (Interior Caccioppoli inequality ([2], Lemma 8.6)). Let B be a ball of radius 
r such that 2B ⊂ Ω and u ∈ Wr(2B) is a nonnegative subsolution of L in 2B. Then there 
exists a constant C > 0 depending only on d, n, C0 and μ0, such that for any constant 
c ∈ R,

ˆ

B

|∇u|2 dm ≤ Cr−2
ˆ

3

|u − c|2 dm.
2 B
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Lemma 2.12 (Caccioppoli inequality on the boundary ([2] Lemma 8.11)). Let B ⊂ Rn be 
a ball of radius r centered on Γ, and let u ∈ Wr(2B) be a nonnegative subsolution in 
2B \ Γ such that Tu = 0 on 2B ∩ Γ. Then

ˆ

B

|∇u|2 dm ≤ Cr−2
ˆ

3
2 B

u2dm.

Lemma 2.13 (Moser estimates on the boundary ([2] Lemma 8.12)). Let B and u be as 
in Lemma 2.12. Then

sup
B

u ≤ C

⎛⎜⎝m (B)−1
ˆ

3
2 B

u2dm

⎞⎟⎠
1/2

.

Here, the constant C depends only on d, n and μ0 as usual.

Let B be a ball centered on Γ with radius r. We say that a point XB is a corkscrew 
point for B if XB ∈ B and δ(XB) ≥ εr for some ε depending only on d, n and the 
Ahlfors constant C0 of Γ.

Lemma 2.14 (Boundary Harnack’s inequality ([2], Lemma 11.8)). Let x0 ∈ Γ and r >

0 be given, and let Xr be a corkscrew point for Br(x0). Let u ∈ Wr(B2r(x0)) be a 
nonnegative solution of Lu = 0 in B2r(x0) \ Γ, such that Tu = 0 on B2r(x0) ∩ Γ. Then

u(X) ≤ Cu(Xr) for X ∈ Br(x0).

Lemma 2.15. Let x0 ∈ Γ and R > 0 be given. Suppose u ∈ Wr(BR(x0)) is a nonnegative 
solution of Lu = 0 in BR(x0) \ Γ with Tu = 0 on BR(x0) ∩ Γ. Then for all 0 < r < R/2,

u2(Xr)
r2 ≈ 1

m(Br(x0))

ˆ

Br(x0)

|∇u|2 dm,

where Xr is a corkscrew point of Br(x0).

Proof. By translation invariance, we may assume that the origin is on Γ and that x0 is 
the origin. To see the less than or equal to direction, we say that Tu = 0 on the boundary 
and use Lemma 2.13 followed by Sobolev’s inequality to get

u2(Xr)
r2 ≤ Cr−2

m(Br)

ˆ

Br

u2dm ≤ C

m(Br)

ˆ

Br

|∇u|2 dm.

To see the other direction, we use the boundary Caccioppoli and boundary Harnack 
inequalities to get
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1
m(B2r)

ˆ

Br

|∇u|2 dm ≤ C

r2
1

m(B2r)

ˆ

B2r

|u|2 dm ≤ C

r2 u2(Xr). �

Lemma 2.16 (Comparison principle ([2], Theorem 11.17)). Let x0 ∈ Γ and r > 0, and 
let Xr be a corkscrew point. Let u, v ∈ Wr(B2r(x0)) be two nonnegative, not identically 
zero, solutions of Lu = Lv = 0 in B2r(x0) \ Γ, such that Tu = Tv = 0 on Γ ∩ B2r(x0). 
Then

C−1 u(Xr)
v(Xr) ≤ u(X)

v(X) ≤ C
u(Xr)
v(Xr) for all X ∈ Br(x0) \ Γ,

where C > 1 depends only on n, d, C0 and μ0.

Corollary 2.17 ([3], Corollary 6.4). Let u, v, r, x0 be as in Lemma 2.16. There exists 
C > 0 and γ ∈ (0, 1) depending only on n, d, C0 and μ0, such that∣∣∣∣u(X)v(Y )

u(Y )v(X) − 1
∣∣∣∣ ≤ C

(ρ

r

)γ

for all X, Y ∈ Bρ(x0) \ Γ, as long as ρ < r/4.

We have the following reverse Hölder inequality for the gradient of solutions.

Lemma 2.18. Let B ⊂ Rn be a ball centered on Γ. Let u ∈ Wr(3B) be a solution of 
Lu = 0 in 3B \ Γ with Tu = 0 on 3B ∩ Γ. Then there exist p > 2 depending only on d, n, 
C0 and μ0, and C > 0 depending on d, n, C0, μ0 and p, such that

⎛⎝ 1
m(B)

ˆ

B

|∇u|p dm

⎞⎠1/p

≤ C

⎛⎝ 1
m(2B)

ˆ

2B

|∇u|2 dm

⎞⎠1/2

. (2.19)

If in addition, u ≥ 0 in 3B, then

⎛⎝ 1
m(B)

ˆ

B

|∇u|p dm

⎞⎠1/p

≤ C

⎛⎝ 1
m(B)

ˆ

B

|∇u|2 dm

⎞⎠1/2

. (2.20)

To prove Lemma 2.18, we first derive the following inequality

Lemma 2.21. Let X ∈ Rn and r > 0 be given. Let u ∈ Wr(B4r(X)) be a solution of 
Lu = 0 in B4r(X) \ Γ, with Tu = 0 on B4r(X) ∩ Γ if B4r(X) ∩ Γ is not empty. Then

⎛⎜⎝ 1
m(Br(X))

ˆ
|∇u|2 dm

⎞⎟⎠
1/2

≤ C

⎛⎜⎝ 1
m(B3r(X))

ˆ
|∇u|

2n
n+2 dm

⎞⎟⎠
n+2
2n

. (2.22)

Br(X) B3r(X)
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Proof. Case 1: δ(X) ≤ 5
4r. Then there exists x0 ∈ Γ so that Br(X) ⊂ B 9

4 r(x0). Hence, 
by Caccioppoli’s inequality on the boundary and (2.10),

⎛⎜⎝ 1
m(Br(X))

ˆ

Br(X)

|∇u|2 dm

⎞⎟⎠
1/2

�

⎛⎜⎝ 1
m(B9r/4(x0))

ˆ

B9r/4(x0)

|∇u|2 dm

⎞⎟⎠
1/2

�

⎛⎜⎝ 1
m(B5r/2(x0))

ˆ

B5r/2(x0)

|∇u|
2n

n+2 dm

⎞⎟⎠
n+2
2n

.

Then (2.22) follows from the fact that B5r/2(x0) ⊂ B3r(X).
Case 2: δ(X) > 5

4r. Then B5r/4(X) ⊂ Rn \ Γ. By the interior Caccioppoli inequality 
and the Poincaré inequality (2.9),

( 1
m(Br(X))

ˆ

Br(X)

|∇u|2 dm
) 1

2 � 1
r

( 1
m(B 5r

4
(X))

ˆ

B 5r
4

(X)

∣∣∣u − uB5r/4(X)

∣∣∣2 dm
) 1

2

�
( 1

m(B 5r
4

(X))

ˆ

B 5r
4

(X)

|∇u|
2n

n+2 dm
)n+2

2n

. �

Sketch of proof of Lemma 2.18. One can deduce (2.19) in Lemma 2.18 from Lemma 2.21
and a modification of the argument in [9] (Theorem 1.2, Chapter V). Thanks to the fact 
that m is a doubling measure, the argument in [9] carries over. The only modification 
is that one should choose parameters everywhere in the argument in [9] according to 
the doubling constant of m instead of that of Lebesgue measure in Rn. Once we obtain 
(2.19) and assume additionally u is an nonnegative solution, (2.20) follows immediately 
from Lemma 2.15 and Harnack’s inequality. �
3. Connection with the co-dimensional one case: an analogue of constant-coefficient 
operators

From now on, we focus only on Ω = Rn\Γ with Γ = {(x, t) ∈ Rn : t = 0} ∼= Rd. Notice 
that in this setting, for a point (x, t) ∈ Rn, its distance to Γ is simply |t|. Therefore, we 
can simply define the weight function w as a function in Rn−d. That is, for t ∈ Rn−d, 
define

w(t) := |t|−n+d+1
.

Recall that Br(X) denotes the ball in Rn with radius r centered at X ∈ Rn. For x ∈ Rd, 
we write Br(x) := Br(x, 0), the ball in Rn with radius r centered at (x, 0) ∈ Rn. Recall 
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also that for a set E in Rn, m(E) =
´

E
w(t) dxdt. As the following computation shows, 

for a ball in Rn centered on Γ, its m measure is equal to the Lebesgue measure of a 
Carleson ball in Rd+1 multiplied by the surface area of the unit (n − d − 1)-dimensional 
sphere:

m(Br(x0)) =
ˆ

Br(x0)

w(t) dxdt =
ˆ

Br(x0)

|t|−n+d+1
dxdt

=
ˆ

|x−x0|≤r

√
r2−|x−x0|2ˆ

ρ=0

ˆ

ω∈Sn−d−1

dωdρdx

= |T (x0, r)| σ(Sn−d−1) = cn,drd+1. (3.1)

Let L = − divx,t(A(x, t)w(t)∇x,t) be an operator defined in Rn \ Γ, where A(x, t) =
[aij(x, t)] is an n × n matrix of real-valued, measurable functions on Rn, which satisfies 
the ellipticity conditions (1.2). We shall systematically use A0 to denote an n ×n matrix 
in the class A0(μ0), and write L0 = − divx,t(A0w(t)∇x,t).

The main benefit of taking A0 in this particular form is that the solutions of L0u = 0
can be converted to solutions of a constant-coefficient equation in Rd+1. Let us introduce 
the (d + 1)- dimensional constant-coefficient elliptic operator

L0 := − divx,ρ(Ã∇x,ρ), with Ã =
[

A0 b0
c0 d0

]
, (3.2)

where A0, b0, c0 and d0 are the same as in (1.6). Alternatively, we can write

L0 = − divx(A0∇x) − divx(b0∂ρ) − ∂ρ(c0∇x) − d0∂2
ρ . (3.3)

To relate solutions of L0u = 0 to those of L0v = 0, let us first give some definitions.

Definition 3.4. Let f = f(x, t) be a function defined on Rn. Write t = ρ ω in polar coor-
dinates, with ρ ∈ R+ and ω ∈ Sn−d−1. We still denote the function in polar coordinates 
as f , that is, f(x, t) and f(x, ρ ω) are the same function in different coordinates. For any 
(x, ρ) ∈ Rd+1

+ , define

fθ(x, ρ) :=
 

Sn−d−1

f(x, ρ ω)dω. (3.5)

For any (x, t) ∈ Rn, define

f̃θ(x, t) := fθ(x, |t|) =
 

f(x, |t| ω)dω. (3.6)

Sn−d−1
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In particular, f̃θ is a function of n variables and is radial in t.

Lemma 3.7. With the definitions above, the following statements hold:

(1) If u ∈ W , then uθ ∈ L1
loc(Rd+1

+ ), ∇uθ ∈ L2(Rd+1
+ ), and ũθ ∈ W .

(2) Let x0 ∈ Γ and r > 0. If u ∈ Wr(Br(x0)), then

uθ ∈ W 1,2
loc (T (x0, r)) =

{
f ∈ L2

loc(T (x0, r)) : ∇f ∈ L2
loc (T (x0, r))

}
,

and ũθ ∈ Wr(Br(x0)).

Proof. (1) We first show that uθ ∈ L1
loc(Rd+1

+ ). Let K be a compact set in Rd+1
+ . Then we 

can find x0 ∈ Rd, r > 0 and ε > 0 so that K ⊂ {(x, ρ) ∈ T (x0, r) : ρ ≥ ε}. By translation 
invariance, we can assume that x0 is the origin. Then we have

ˆ

K

|uθ(x, ρ)| dρdx ≤ ε−n+d+1
ˆ

|x|≤r

√
r2−|x|2ˆ

ε

|uθ(x, ρ)| ρn−d−1dρdx

≤ Cε,n,d

ˆ

|x|≤r

√
r2−|x|2ˆ

ε

ˆ

Sn−d−1

|u(x, ρω)| ρn−d−1dωdρdx

= Cε,n,d

ˆ

Br

|u(x, t)| dxdt < ∞,

where we have used u ∈ L1
loc(Rn) to get the finiteness of the last term. This shows 

uθ ∈ L1
loc(Rd+1

+ ).
Now we compute the L2 integral of |∇uθ| over a Carleson ball Tr centered at the 

origin. Observe that by the definition of uθ and ũθ, expressing the gradient in polar 
coordinates, we have |∇x,ρuθ(x, ρ)| = |∇x,tũθ(x, t)|, for ρ = |t|. Hence,

|∇x,ρuθ(x, ρ)|2 =

∣∣∣∣∣∣∇x,t

 

Sn−d−1

u(x, |t| ω)dω

∣∣∣∣∣∣
2

≤
 

Sn−d−1

|∇x,tu(x, |t| ω)|2 dω. (3.8)

Let s = |t| ω, then |s| = |t|, and ∂sk

∂tj
= tj

|t| ωk, for k, j = 1, 2, . . . , n − d. Thus,

|∇tu(x, |t| ω)|2 =
n−d∑
j=1

(
∂tj

u(x, s)
)2 =

n−d∑
j=1

(
n−d∑
k=1

∂sk
u(x, s) tj

|t|ωk

)2

≤ |∇su(x, s)|2 .

Combining this with (3.8), we obtain
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|∇x,ρuθ(x, ρ)|2 ≤ 1
σ(Sn−d−1)

ˆ

ρSn−d−1

|∇x,su(x, s)|2 ρ−n+d+1ds.

Therefore, integrating in polar coordinates, we can control the L2 integral of |∇uθ| as 
follows.

ˆ

Tr

|∇x,ρuθ(x, ρ)|2 dxdρ ≤ Cn,d

ˆ

|x|≤r

√
r2−|x|2ˆ

ρ=0

ˆ

ρSn−d−1

|∇x,su(x, s)|2 dsdρdx

ρn−d−1

= Cn,d

ˆ

|x|≤r

ˆ

|t|≤
√

r2−|x|2

|∇x,tu(x, t)|2 dtdx

|t|n−d−1

= Cn,d

ˆ

Br

|∇x,tu(x, t)|2 w(t) dxdt ≤ Cn,d ‖∇u‖2
L2(Rn,w) . (3.9)

Letting r go to infinity we obtain ∇uθ ∈ L2(Rd+1) with

‖∇uθ‖L2(Rd+1
+ ) ≤ Cn,d ‖∇u‖L2(Rn,w) .

As for ũθ, let us fix any r > 0 and evaluate the integral of ũθ over the ball Br.

ˆ

Br

|ũθ(x, t)|2 dxdt =
ˆ

|x|≤r

√
r2−|x|2ˆ

0

ˆ

Sn−d−1

|uθ(x, ρ)| ρn−d−1dωdρdx

≤
ˆ

|x|≤r

√
r2−|x|2ˆ

0

ˆ

Sn−d−1

|u(x, ρω′)| dω′ρn−d−1dρdx =
ˆ

Br

|u(x, t)| dxdt.

This shows that ũθ ∈ L1
loc(Rn). Finally, we compute

ˆ

Br

|∇x,tũθ(x, t)|2 w(t) dxdt =
ˆ

|x|≤r

√
r2−|x|2ˆ

0

ˆ

Sn−d−1

|∇x,ρuθ(x, ρ)|2 dωdρdx

= σ(Sn−d−1)
ˆ

Tr

|∇x,ρuθ(x, ρ)|2 dρdx.

This and (3.9) give ∇ũθ ∈ L2(Rn, w). Thus, ũθ ∈ W .
(2) By translation and dilation invariance, we can assume that x0 is the origin and 

r = 1. By a similar argument as in (1), one sees that if u ∈ Wr(B1), then uθ ∈ L1
loc(T1), 

∇uθ ∈ L2
loc(T1), and ũθ ∈ Wr(B1). So it remains to show uθ ∈ L2

loc(T1). Notice however 
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that uθ lives in the upper half space, where there is no disturbing weight w; then we 
can apply the usual Poincaré estimate, in the homogeneous space of locally integrable 
functions f such that ∇f ∈ L2, and indeed get that uθ ∈ L2

loc(T1). This gives uθ ∈
W 1,2

loc (T1). �
Now we can show how solutions of equations in Rd+1

+ and Rn \ Rd are related.

Lemma 3.10. Let B be a ball centered on Γ. If u ∈ Wr(B) is a solution of L0u = 0 in 
B \ Γ, where A0 is in block form (1.6), then uθ ∈ W 1,2

loc (T ) is a solution of L0uθ = 0 in 
T , and ũθ ∈ Wr(B) is a solution of L0ũθ = 0 in B \ Γ.

Proof. Let us assume that u is a C2 function and thus a strong solution. Writing out 
the derivatives, we see that

L0 = −1
|t|n−d−1

(
divx(A0∇x) + divx

(b0t · ∇t

|t|
)

+ divt

( tT c0∇x

|t|
)

+ divt(d0∇t)
)

+ n − d − 1
|t|n−d

c0∇x + n − d − 1
|t|n−d+1 d0t · ∇t .

Fortunately, some of these terms cancel. In fact,

divt

(
tT c0∇x

|t|

)
= (n − d − 1)c0∇x

|t| + t · ∇t(c0∇x)
|t| ,

and thus

L0 = − 1
|t|n−d−1

(
divx(A0∇x) + divx

(
b0t · ∇t

|t|

)
+ t · ∇t(c0∇x)

|t| + d0Δt

)
+ n − d − 1

|t|n−d+1 d0t · ∇t .

Changing to polar coordinates t = ρ ω, we have t · ∇t = ρ∂ρ, and

Δt = ∂2
ρ + (n − d − 1)1

ρ
∂ρ + 1

ρ2 Δω,

where Δω is the Laplacian on the sphere Sn−d−1. Then L0 can be simplified as

L0 = − 1
ρn−d−1

(
divx(A0∇x) + divx(b0∂ρ) + ∂ρ(c0∇x) + d0∂2

ρ

)
− d0

ρn−d+1 Δω. (3.11)

Notice that the quantity in the first parenthesis is exactly what we have for L0 in (3.3). 
Now since ũθ is radial in t, Δωũθ = 0, and thus,
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L0ũθ = 1
ρn−d−1 L0uθ. (3.12)

Notice that 
´

Sn−d−1 Δωu(x, ρ ω)dω = 0 by the divergence theorem, so that we can add 
this term for free and get the following.

L0ũθ = − 1
ρn−d−1 L0uθ + d0

ρn−d+1

 

Sn−d−1

Δωu(x, ρ ω)dω.

Exchanging the order of integration and differentiation, we obtain

L0ũθ = − 1
ρn−d−1

 

Sn−d−1

(
L0 + d0

ρ2 Δω

)
u(x, ρ ω)dω =

 

Sn−d−1

L0u dω = 0.

This and (3.12) show that L0ũθ = 0 = L0uθ.
The smoothness assumption on solutions is harmless. First, we have checked in 

Lemma 3.7 that given u ∈ Wr(B), uθ and ũθ are in the right spaces stated in the 
lemma. Now if u ∈ Wr(B) is a weak solution, it is a strong solution in any compact set 
in B \ Γ. This is because on these sets, |t| ≥ δ for some δ > 0, and thus the coefficients 
are smooth. Then we use our results for strong solutions and conclude that uθ and ũθ are 
strong solutions in any compact set in T and B \Γ, respectively. Then they are of course 
weak solutions in these compact sets. But this is all we need as in the weak formulation 
of equations, the test functions are compactly supported in T (for uθ) and in B \ Γ (for 
ũθ). �
Remark 3.13. Writing L0 in polar coordinates as in (3.11), one immediately sees L0 |t| = 0
in Rn \ Rd. We shall use this property of |t| in the future.

We now turn to the quantity λx,r(u). First we show that λx,r(u) |t| is the best ap-
proximation of a given function u in Br(x) by a multiple of |t|.

Lemma 3.14 (Orthogonality). For any (x, r) ∈ Rd+1
+ , for any function u(x, t),

1
m(Br(x))

ˆ

Br(x)

∇(u(y, t) − λx,r(u) |t|) · ∇ |t| w(t)dydt = 0. (3.15)

Moreover,

inf
λ∈R

1
m(Br(x))

ˆ

Br(x)

|∇(u(y, t) − λ |t|)|2 w(t)dydt = Ju(x, r), (3.16)

where Ju(x, r) is defined in (1.13).
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Proof. For any λ ∈ R, we compute

∇(u − λ |t|) · ∇ |t| =
n−d∑
i=1

(
∂ti

u − λti

|t|

)
ti

|t| = ∇tu · t

|t| − λ. (3.17)

By the definition of λx,r(u) in (1.12), ∇tu·t
|t| − λx,r(u) is orthogonal to constants in 

L2(Br(x), w). Therefore, using (3.17) with λ = λx,r(u), one sees that (3.15) holds. Turn-
ing to (3.16), we see that for any λ ∈ R,

1
m(Br(x))

ˆ

Br(x)

|∇(u(y, t) − λ |t|)|2 w(t)dydt

= 1
m(Br(x))

ˆ

Br(x)

|∇(u(y, t) − λx,r(u) |t|)|2 w(t)dydt

+ |λx,r(u) − λ|2

m(Br(x))

ˆ

Br(x)

|∇ |t||2 w(t)dydyt

= Ju(x, r) + |λx,r(u) − λ|2 ≥ Ju(x, r),

where in the first equality we have used (3.15). �
It follows from (3.16) that Ju(x, r) ≤ Eu(x, r), which implies

βu(x, r) ≤ 1 for any (x, r) ∈ Rd+1
+ . (3.18)

The following lemma shows that the best approximation of u by a multiple of |t| in Br(x)
is the same as the best approximation of uθ in T (x, r).

Lemma 3.19. Let x ∈ Rd, r > 0, and u be as in Lemma 3.14. Define uθ as in Defini-
tion 3.4. Then

λx,r(u) =
 

T (x,r)

∂ρuθ(y, ρ)dydρ.

Proof. Without loss of generality, we may assume that x is the origin and r = 1. Passing 
to polar coordinates t = ρω, and noticing that t·∇tu

|t| = ρ∂ρu
ρ , we have

1
m(B)

ˆ

B

∇tu · t

|t| w(t) dxdt = 1
m(B)

ˆ

|x|≤1

ˆ
√

2

∇tu(x, t) · t

|t| w(t) dxdt
|t|≤ 1−|x|
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= 1
m(B)

ˆ

|x|≤1

√
1−|x|2ˆ

0

ˆ

Sn−d−1

∂ρu(x, ρω)dωdρdx.

Exchanging the order of integration and differentiation,

1
m(B)

ˆ

B

∇tu · t

|t| w(t) dxdt = 1
m(B)

ˆ

T1

⎛⎝∂ρ

ˆ

Sn−d−1

u(x, ρω)dω

⎞⎠ dρdx

=
 

T1

⎛⎝∂ρ

 

Sn−d−1

u(x, ρω)dω

⎞⎠ dρdx =
 

T1

∂ρuθ(x, ρ)dxdρ,

because |T1| = m(B)σ(Sn−d−1) and as desired. �
4. Estimates for solutions of L0u = 0

4.1. More about function spaces

When proving estimates for (weak) solutions, it is useful to allow test functions that 
lie in a bigger space than C∞

0 . For this reason, we now define some new spaces.

Definition 4.1. Let O ⊂ Rn be an open, bounded set. Define

W (O) :=
{

u ∈ L1
loc(O) : ∇u ∈ L2(O, w)

}
. (4.2)

Here L1
loc(O) is for the Lebesgue measure, which is more natural if we want to see u as 

a distribution and talk about its gradient. Equip W (O) with the seminorm ‖f‖W (O) =(´
O

|∇f |2 dm
)1/2

. Define W0(O) to be the closure of C∞
0 (O) under ‖·‖W (O).

As we shall see, W (O) plays the same role as the usual Sobolev space W 1,2(O), and 
Wr(O) should be compared with W 1,2

loc (O).
For the purposes of this paper, we are only interested in the simple case when O is a 

ball B centered on Γ, or O = B \ Γ.

Lemma 4.3. Let B ⊂ Rn be a ball centered on Γ. Then

(1) W (B \ Γ) = W (B) =
{

u ∈ L1(B) : ∇u ∈ L2(B, w)
}

;
(2) W (B) ⊂ W 1,2(B) = {u ∈ L2(B, dX) : ∇u ∈ L2(B, w);
(3) If u ∈ Wr(2B), then u ∈ W (B).

Proof. (1) Let u ∈ W (B \ Γ) be given. By definition, u ∈ L1
loc(B \ Γ, dX) = L1

loc(B \
Γ, wdX), and by Lemma 3.2 in [2], u ∈ L1

loc(B, dX). So u ∈ W (B); we still need to check 
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that u ∈ L1(B, dX). However Poincaré’s inequality (Lemma 2.7, with p = 1) says that 
u ∈ L1(B, wdX), and then an easy estimate ((2.13) in [2]) shows that u ∈ L1(B, dX). 
Notice that although our assumptions, for instance in Lemma 2.7, appear to be global, 
we never use the values of u outside of B.

(2) For u ∈ W (B), we now apply Poincaré’s inequality (Lemma 2.7), now with p = 2, 
to find that

ˆ

B

|u − uB |2 wdX ≤ C

ˆ

B

|∇u|2 dm,

Then again u ∈ L2(B, dX) by (2.13) in [2], this time applied to g = |u − uB |2.
(3) follows immediately from (1) and the definition (2.4). �
Next we claim that if u ∈ W (B) is a (weak) solution of Lu = 0 in B \ Γ, we can take 

test functions in the space W0(B \ Γ). That is,
ˆ

B

A∇u · ∇ϕ dm = 0 for every ϕ ∈ W0(B \ Γ). (4.4)

In fact, since ϕ ∈ W0(B \ Γ) we can find a sequence {ϕk} in C∞
0 (B \ Γ) that converges 

to ϕ in W (B \ Γ). Then

∣∣∣∣∣∣
ˆ

B

A∇u · ∇ϕkdm−
ˆ

B

A∇u · ∇ϕdm

∣∣∣∣∣∣≤μ0

⎛⎝ˆ

B

|∇u|2 dm

⎞⎠1/2 ⎛⎝ˆ

B

|∇ϕk −∇ϕ|2 dm

⎞⎠1/2

.

The right-hand side is finite and vanishes as k go to infinity. So (4.4) follows from taking 
limits.

Let us also discuss the trace on ∂(B \ Γ) = ∂B ∪ (Γ ∩ B). Since W (B) is a subset of 
Wr(B), for u ∈ W (B), its trace Tu on B ∩ Γ can be defined by (2.5) for almost every 
x ∈ B ∩ Γ, and Tu ∈ L1

loc(B ∩ Γ, dx). Moreover, by slightly modifying the proof of [2], 
Theorem 3.4, one can show that

‖Tu‖L2(B∩Γ,dx) � ‖u‖L1(B) + ‖∇u‖L2(B,w) .

For u ∈ W (B), we can define its trace on ∂B by

Tu(X) := lim
r→0

 

Br(X)∩B

u(Y )dY for X ∈ ∂B,

and one can show that ‖Tu‖L2(∂B) � ‖u‖L1(B) + ‖∇u‖L2(B,w). Alternatively, since we 
proved that W (B) ⊂ W 1,2(B), the trace theorem for Sobolev spaces applies. We remark 
that in [5], a trace theorem is developed in a much more general setting and is different 
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from what we have discussed here. But for the purposes of this paper, this simpler 
approach suffices.

4.2. Decay estimates for the non-affine part of solutions

We want to show that for a solution of L0u = 0 that vanishes on Γ = Rd, its non-affine 
part Ju(x, r) decreases in r. In the case when d = n − 1, this property can be obtained 
from Moser estimates for solutions on the boundary. We state it in T1 = T (0, 1), for the 
constant coefficient operator L0 that was defined in (3.2), to simplify the notation.

Lemma 4.5 (d = n − 1 case, [7], Lemma 3.4 ). Let u ∈ W 1,2(T1) be a solution of L0u = 0
in T1 with u = 0 on Δ1. Then there exists some constant C depending only on d and μ0, 
such that for 0 < r < 1/2,

 

Tr

|∇ (u(x, t) − λr(u) t)|2 dxdt ≤ Cr2
 

T1

|∇(u(x, t) − λ1(u) t)|2 dxdt, (4.6)

where λr(u) =
ffl

Tr
∂su(y, s)dyds.1

The way we show this decay estimate is by controlling the non-affine part of the so-
lution in Tr by the oscillation of the derivative of some solution in Tr, which is further 
controlled by the energy of the solution in T1 multiplied by r2. The bound on the oscil-
lation of the first derivative of solutions is essentially a consequence of estimates for the 
second derivatives of solutions. However, when d < n −1, we do not have a good estimate 
for the second derivatives because the coefficients involve |t|−n+d+1, which is singular 
on the boundary. Fortunately, we still have an analogue of Lemma 4.5 in the case of 
d < n − 1. The first step is to show that solutions of L0u = 0 with a vanishing trace on 
Γ are roughly Lipschitz in t near the boundary. To be precise, we have the following.

Lemma 4.7. Let B be a ball centered on Γ and let u ∈ Wr(2B) be a solution of L0u = 0
in 2B \ Γ, with Tu = 0 on Γ ∩ 2B. Then there is some constant C > 0 depending only 
on d, n and μ0, such that

|u(x, t)| ≤ C

⎛⎝ 1
m(B)

ˆ

B

|∇u|2 dm

⎞⎠1/2

|t| , for all (x, t) ∈ B. (4.8)

Proof. Observe that if u is nonnegative, then (4.8) simply follows from the comparison 
principle and the fact that |t| is a solution of L0 |t| = 0 that vanishes on Γ. In fact, by 
the comparison principle (Lemma 2.16), for (x, t) ∈ B \ Γ,

1 Note that we are using the same notation λr(u) to denote different quantities in d = n −1 and d < n −1.
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u(x, t)
|t| ≤ C

u(XB)
r(B) ≤ C

⎛⎝ 1
m(B)

ˆ

B

|∇u|2 dm

⎞⎠1/2

,

where XB is a corkscrew point for B, r(B) denotes its radius, and the second inequality 
is due to Lemma 2.15.

If u changes signs in 2B, we write u = u1 − u2, with u1 = sup {u, 0} and u2 =
sup {−u, 0}. Notice that by Lemma 4.3 (3), u ∈ W (B). Then by [2], Lemma 6.1, ui ∈
W (B) for i = 1, 2, with

ˆ

B

|∇ui|2 dm ≤
ˆ

B

|∇u|2 dm, and Tui = 0 on Γ ∩ B, i = 1, 2.

Moreover, the Hölder continuity of solutions (see [2], Lemma 8.8 and Lemma 8.16) implies 
that u ∈ C(B), and thus ui ∈ C(B) for i = 1, 2.

We want to look at the solutions vi to L0vi = 0 in B \ Γ, with data ui on ∂(B \ Γ)
(and in a suitable weak sense). First, the nonhomogeneous problem L0ṽi = −L0ui in 
B \ Γ has a unique solution ṽi ∈ W0(B \ Γ) due to the Lax-Milgram Theorem. Setting 
vi = ṽi + ui, one sees that vi ∈ W (B) and verifies{

L0vi = 0 in B \ Γ,

vi − ui ∈ W0(B \ Γ).
(4.9)

We claim that the W (B) seminorm of vi is controlled by that of ui. To see this, take 
vi − ui as a test function for L0vi = 0, which is allowed because vi ∈ W (B) and 
vi − ui ∈ W0(B \ Γ) (see the remark around (4.4)). Then

ˆ

B

A0∇vi · ∇(vi − ui)dm = 0.

Therefore, using the ellipticity conditions and the Cauchy-Schwarz inequality,

ˆ

B

|∇vi|2 dm ≤ μ0

ˆ

B

A0∇vi · ∇vi dm = μ0

ˆ

B

A0∇vi · ∇ui dm

≤ μ2
0

⎛⎝ˆ

B

|∇vi|2 dm

⎞⎠1/2 ⎛⎝ˆ

B

|∇ui|2 dm

⎞⎠1/2

,

which implies that
ˆ

|∇vi|2 dm ≤ μ4
0

ˆ
|∇ui|2 dm ≤ μ4

0

ˆ
|∇u|2 dm, i = 1, 2. (4.10)
B B B
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Next, vi is nonnegative in B, for i = 1, 2. To see this, we first show that vi is continuous 
in B. Since Tui = Tvi = 0 on Γ ∩ B, the Poincaré inequality implies that their weighted 
L2(B, w) norm is controlled by their W (B) seminorm. Therefore, both of them belong to 
the weighted Sobolev space W 1,2(B, w). In particular, ui ∈ W 1,2(B, w) ∩ C(B). Notice 
that w(t) is an A2 weight with respect to the Lebesgue measure on Rn. That is, there 
holds

sup
B⊂Rn

⎛⎝ 1
|B|

ˆ

B

|t|−n+d+1
dxdt

⎞⎠⎛⎝ 1
|B|

ˆ

B

|t|n−d−1
dxdt

⎞⎠ < ∞.

So we can apply [10], Theorems 6.27 and 6.31, to get that for any X ∈ ∂B, 
limX→X0 vi(X) = ui(X0). This takes care of continuity on ∂B, so it remains to treat the 
interior and Γ ∩B. But since Tvi = 0 on Γ ∩B, Hölder estimates for solutions ([2] Lemma 
8.8 and Lemma 8.16) guarantee that vi ∈ C(B). So we conclude that vi ∈ C(B), i = 1, 2. 
Next, we show vi ≥ 0 in B, using a standard argument. Set vi

ε = min {vi, −ε} + ε. Then 
vi

ε ≤ 0 in B. Since vi ∈ C(B) is nonnegative on ∂(B \ Γ), vi
ε is compactly supported in 

B \ Γ. Moreover,

∇vi
ε =

{
∇vi vi < −ε

0 vi ≥ −ε.
(4.11)

We take vi
ε as a test function and get

0 =
ˆ

B

A0∇v · ∇vεdm =
ˆ

B

A0∇vi
ε · ∇vi

εdm ≥ μ−1
0

ˆ

B

∣∣∇vi
ε

∣∣2 dm.

This implies that ∇vi
ε = 0 a.e. in B, and, since it is compactly supported in B \ Γ, we 

get that vi
ε = 0 a.e. and vi ≥ −ε in B. Since ε > 0 is arbitrary, we obtain vi ≥ 0 in B

for i = 1, 2, as desired.
Now we can apply the result for nonnegative solutions to vi, and use (4.10) to conclude 

that

vi(x, t) ≤ C

⎛⎝ 1
m(B)

ˆ

B

|∇u|2 dm

⎞⎠1/2

|t| , for (x, t) ∈ B, i = 1, 2. (4.12)

Finally, let v = v1 −v2. Then v = u on ∂(B\Γ) (both in pointwise sense and in W0(B\Γ)
sense), and so the uniqueness of the solution implies u = v in B. The desired estimate 
for |u(x, t)| follows from (4.12) and the fact that |u| ≤ v1 + v2 in B. �

Now we derive the decay estimate for solutions of L0u = 0, which is an analogue of 
Lemma 4.5 for d < n − 1. By the translation and dilation invariance of the problem, we 
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only need to consider the problem on the unit ball. We shall use Ju(r) to denote Ju(0, r). 
Similarly, Eu(r) and βu(r) are shorthand for Eu(0, r) and βu(0, r), respectively.

Lemma 4.13 (Key lemma). For any θ0 ∈ (0, 1), there exists r0 = r0(n, d, μ0, θ0) ∈ (0, 1)
such that for any solution u ∈ W (B1) of L0u = 0 in B1 \ Γ, with Tu = 0 on Γ ∩ B1, 
there holds

Ju(r) ≤ θ0Ju(1), for 0 < r ≤ r0. (4.14)

Proof. We first show that for any r1 ∈ (0, 1) and any θ1 ∈ (0, 1), there exists r0 =
r0(θ1, r1, n, d) < r1, such that for any solution u ∈ W (B1) of L0u = 0 in B1 \ Γ, with 
Tu = 0 on Γ ∩ B1, there holds

1
m(Br)

ˆ

Br

|∇ (u − ũθ)|2 dm ≤ θ1

m(Br1)

ˆ

Br1

|∇ (u − ũθ)|2 dm for r ≤ r0, (4.15)

where ũθ is defined in (3.6). We prove (4.15) by contradiction. If the statement is not true, 
then there is a θ1 ∈ (0, 1), a sequence of operators L(k)

0 ∈ A0(μ0), a sequence {rk}∞
k=1

decreasing to 0, and a sequence of solutions 
{

u(k)}∞
k=1 ⊂ W (B1) verifying L(k)

0 u(k) = 0
in B1 \ Γ and Tu(k) = 0 on B1 ∩ Γ, such that

1
m(Brk

)

ˆ

Brk

∣∣∣∇(u(k) − ũ
(k)
θ )

∣∣∣2 dm >
θ1

m(Br1)

ˆ

Br1

∣∣∣∇(u(k) − ũ
(k)
θ )

∣∣∣2 dm, (4.16)

for k = 1, 2, . . . . Define

vk =
u(k) − ũ

(k)
θ(

m(Br1)−1
´

Br1

∣∣∣∇(
u(k) − ũ

(k)
θ

)∣∣∣2 dm

)1/2 .

Notice that we do not need to worry about the denominator being equal to 0 because in 
that case, both sides of (4.16) are 0, making the inequality false. By Lemma 3.10, ũ(k)

θ

verifies L(k)
0 ũ

(k)
θ = 0, and thus vk verifies L(k)

0 vk = 0 in B1 \ Γ, with Tvk = 0 on B1 ∩ Γ. 
Moreover, vk is constructed in a way that guarantees the following properties:

 

∂B(0,r)

vk dω = 0 for 0 < r ≤ 1,

1
m(Br1)

ˆ

Br1

|∇vk|2 dm = 1, (4.17)

r−2
k

m(B2rk
)

ˆ

B2rk

|vk|2 dm ≥ θ1/C,
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where the last inequality follows from (4.16) and the Caccioppoli inequality on the bound-
ary.

Set Vk(X) := 1
rk

vk(rkX). Then L(k)
0 Vk = 0 in B1/rk

\ Γ, with TVk = 0 on B1/rk
∩ Γ. 

Moreover,
 

∂B(0,r)

Vk dω = 0 for 0 < r ≤ 1/rk, (4.18)

m(B2)−1
ˆ

B2

|Vk|2 dm ≥ θ1/C. (4.19)

Notice that (4.19) implies that there exists (xk, tk) ∈ B2 such that

|Vk(xk, tk)| ≥
√

θ1/C. (4.20)

Observe that by (4.17),

1
m(B r1

rk

)

ˆ

B r1
rk

|∇Vk|2 dm = 1. (4.21)

By (4.21) and Lemma 4.7, there is some constant c > 0 depending only on d, n and μ0, 
such that

|Vk(x, t)| ≤ c |t| for all (x, t) ∈ B r1
2rk

. (4.22)

Now (4.20) and (4.22) imply that the tk in (4.20) has to satisfy

2 ≥ |tk| ≥ C ′θ
1/2
1 . (4.23)

Moreover, on any compact set in Rn, (4.22) implies that the sequence {Vk}∞
k=1 is uni-

formly bounded, and the regularity of solutions implies that {Vk}∞
k=1 is equicontinuous. 

Therefore, there is a subsequence of {Vk}, still denoted by {Vk}, converges pointwise to 
a V∞. We can also find a limit L0 ∈ A0(μ0) of the L(k)

0 , and it is easy to verify that 
V∞ ∈ Wr(Rn) is a solution of L0V∞ = 0 in Rn \ Γ, with V∞(x, 0) = 0 on Γ. For sure 
there is a convergent subsequence of {(xk, tk)} in B2; let us denote the limit point by 
(x∞, t∞) ∈ B2. Then by (4.20) and (4.23),

|t∞| > C ′θ
1/2
1 , |V∞(x∞, t∞)| ≥

√
θ1/C. (4.24)

By (4.22) (and the fact that rk tends to 0), 2c |t| − V∞(x, t) > 0 everywhere. So 2c |t| −
V∞(x, t) ∈ Wr(Rn) is a positive solution in Rn \ Γ that vanishes on Γ. On the other 
hand, |t| ∈ Wr(Rn) is also a positive solution in Rn \ Γ that vanishes on Γ. Therefore, 
we can apply the Corollary 2.17 to 2c |t| − V∞(x, t) and |t|, and obtain
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∣∣∣∣2c |t| − V∞(x, t)
α |t| − 1

∣∣∣∣ ≤ C

(
|(x, t) − (0, 1)|

R

)γ

for all R ≥ 2,

where α = 2c − V∞(0, 1) > 0. Letting R → ∞ one sees that 2c |t| − V∞(x, t) = α |t|, 
and thus V∞(x, t) = α′ |t| for (x, t) ∈ Rn. Thanks to (4.24), α′ �= 0. Therefore, ffl

Sn−d−1 V∞dω �= 0, which is impossible since (4.18) holds for all k. This proves (4.15).
Now we show (4.14). Fix r1 ∈ (0, 1/2) and θ1 ∈ (0, 1) to be determined later, and let 

r0 = r0(θ1, r1, n, d) < r1 be as in (4.15). Then for any 0 < r ≤ r0, we write

Ju(r) = 1
m(Br)

ˆ

Br

|∇(u(x, t) − λr(u) |t|)|2 w(t) dxdt

≤ 2
m(Br)

ˆ

Br

|∇(u − ũθ)|2 dm + 2
m(Br)

ˆ

Br

|∇(ũθ − λr(u) |t|)|2 w(t) dxdt,

where we recall from (1.12) that

λr(u) = λ0,r(u) = 1
m(Br)

ˆ

Br

∇tu(x, t) · t

|t| w(t) dxdt.

Apply (4.15) to get

Ju(r) ≤ 2θ1

m(Br1)

ˆ

Br1

|∇(u − ũθ)|2 dm + 2
m(Br)

ˆ

Br

|∇(ũθ − λr(u) |t|)|2 w(t) dxdt.

Inserting λr1(u) |t| in the first integral on the right-hand side,

Ju(r) ≤ 4θ1

m(Br1)

ˆ

Br1

|∇(u − λr1(u) |t|)|2 w(t) dxdt

+ 4θ1

m(Br1)

ˆ

Br1

|∇(ũθ − λr1(u) |t|)|2 w(t) dxdt

+ 2
m(Br)

ˆ

Br

|∇(ũθ − λr(u) |t|)|2 w(t) dxdt. (4.25)

We estimate the last two terms in (4.25) using decay estimates for the case d = n − 1. 
First, changing to polar coordinates as in (3.1), one sees that

1
m(Br)

ˆ
|∇(ũθ(x, t) − λr(u) |t|)|2 w(t) dxdt
Br



28 G. David et al. / Journal of Functional Analysis 283 (2022) 109553
= 1
m(Br)

ˆ

|x|≤r

√
r2−|x|2ˆ

0

|∇x,ρ (uθ(x, ρ) − λr(u)ρ)|2
⎛⎝ ˆ

Sn−d−1

dω

⎞⎠ dρdx

=
 

Tr

|∇x,ρ(uθ(x, ρ) − λr(u)ρ)|2 dρdx. (4.26)

Recall from Lemma 3.19 that λr(u) =
ffl

Tr
∂ρuθ(y, ρ)dydρ. Since uθ verifies L0uθ = 0 (see 

Lemma 3.10), we can apply Lemma 4.5 to uθ and get
 

Tr

|∇x,ρ(uθ(x, ρ) − λr(u)ρ)|2 dρdx ≤ Cr2
 

T1

|∇x,ρ(uθ(x, ρ) − λ1(u)ρ)|2 dρdx. (4.27)

Notice that

|∇x,ρ (uθ(x, ρ) − λ1(u)ρ)|2 = |∇x,t (ũθ(x, t) − λ1(u) |t|)|2

≤
 

Sn−d−1

|∇x,t (u(x, |t| ω) − λ1(u) |t|)|2 dω.

By a computation similar to that in the proof of Lemma 3.7, this yields
 

T1

|∇x,ρ(uθ(x, ρ) − λ1(u)ρ)|2 dρdx ≤ 1
m(B1)

ˆ

B1

|∇(u(x, t) − λ1(u) |t|)|2 w(t) dxdt.

Combining this with (4.27) and (4.26), we obtain

1
m(Br)

ˆ

Br

|∇(ũθ(x, t) − λr(u) |t|)|2 dw(t) dxdt

≤ Cr2

m(B1)

ˆ

B1

|∇(u(x, t) − λ1(u) |t|)|2 w(t) dxdt. (4.28)

Now we return to the first term in the right-hand side of (4.25). Since λr is a minimizer 
(see (3.16)),

4θ1

m(Br1)

ˆ

Br1

|∇(u − λr1(u) |t|)|2 w(t) ≤ 4θ1

m(Br1)

ˆ

Br1

|∇(u − λ1(u) |t|)|2 w(t).

Enlarging the ball, the right-hand side is bounded by

4θ1

rd+1
1

1
m(B1)

ˆ
|∇(u(x, t) − λ1 |t|)|2 w(t) dxdt.
B1
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This estimate, together with (4.28) and (4.25), gives

1
m(Br)

ˆ

Br

|∇(u(x, t) − λr(u) |t|)|2 w(t) dxdt

≤
(

4θ1

rd+1
1

+ Cθ1r2
1 + Cr2

1

)
1

m(B1)

ˆ

B1

|∇(u − λ1(u) |t|)|2 w(t) dxdt

for 0 < r ≤ r0. Now we only need to choose θ1 and r1 properly. Let for instance, 
θ1 = rd+2

1 , and then choose r1 = r1(θ0, n, d, μ0) ∈ (0, 1) sufficiently small so that 4r1 +
Crd+4

1 + Cr2
1 ≤ θ0. Recall that r0 is determined by θ1 and r1, and thus depends only on 

θ0, n, d, and μ0. This completes the proof of the key lemma. �
Ultimately, we want to derive a decay estimate for the normalized non-affine part 

of the local energy of u, i.e. βr(u). So we need to compare the local energy of positive 
solutions of L0u = 0 for different scales.

Lemma 4.29. Let u ∈ W (B1) be a positive solution of L0u = 0 in B1 \ Γ with Tu = 0 on 
Γ ∩ B1. Then

Eu(r) ≥ C(1 − C ′r2)Eu(1) for 0 < r <
1
2 ,

where C and C ′ are positive constants depending only on d, n and μ0.

Proof. Recall that by Lemma 3.10, uθ is a solution of the (d + 1) dimensional operator 
L0, and that by Lemma 3.19, λr(u) =

ffl
Tr

∂ρuθ(x, ρ)dxdρ. So by the boundary regularity 

of the solutions of constant-coefficient operator L0 in Rd+1
+ (see [7] Lemma 2.10),

|λr(u) − λs(u)| ≤ osc
Tr

∂ρuθ ≤ Cr

⎛⎝ 

T1

|∇x,ρuθ(x, ρ)|2 dxdρ

⎞⎠1/2

≤ Cr

⎛⎝ 1
m(B1)

ˆ

B1

|∇u(x, t)|2 w(t) dxdt

⎞⎠1/2

(4.30)

for 0 < s < r < 1/2. Hence λ0(u) = lims→0 λs(u) exists, and since we even have a 
bound on osc

Tr

∂ρuθ, we see that λ0(u) = ∂ρuθ(0, 0). Since L0 |t| = 0, we can apply the 

comparison principle (Lemma 2.16) to get that

u(x, t) ≈ u(x, t0) for all (x, t) ∈ B1/2 and any t0 such that |t0| = 1
.
|t| 2
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So by Lemma 2.15,

u(x, t)
|t| ≈

⎛⎝ 1
m(B1)

ˆ

B1

|∇u|2 dm

⎞⎠1/2

for all (x, t) ∈ B1/2,

which implies that

uθ(x, ρ)
ρ

=
ffl

Sn−d−1 u(x, ρω)dω

ρ
≈

⎛⎝ 1
m(B1)

ˆ

B1

|∇u|2 dm

⎞⎠1/2

(4.31)

for any (x, ρ) ∈ T1/2. Letting ρ → 0, this yields a bound

λ0(u) = ∂ρuθ(0, 0) �

⎛⎝ 1
m(B1)

ˆ

B1

|∇u|2 dm

⎞⎠1/2

.

Combining it with (4.30), we get

1
m(Br)

ˆ

Br

|∇u|2 dm ≥ λ2
r(u) ≥ λ2

0(u)
2 − (λr(u) − λ0(u))2

≥
(
C − C ′r2) 1

m(B1)

ˆ

B1

|∇u|2 dm,

as desired. �
5. Extension to a general operator L

5.1. Decay estimates

In this subsection, we shall follow the approach that is used in [7] to obtain a decay 
estimate for the normalized non-affine part of the energy of solutions of Lu = 0. Namely, 
we shall approximate βu(r) by βu0(r), with u0 verifying L0u0 = 0, and show that the 
error is a Carleson measure. Since the strategy is the same as in the d = n − 1 setting, 
we shall focus less on motivation but more on technical details that are different from 
the co-dimension 1 case. For the same reason, many proofs will be omitted if they can 
be borrowed from [7] without substantial changes.

We start with comparing solutions of Lu = 0 and solutions of L0u0 = 0 with the 
same boundary data. The following two lemmas hold for any matrix A0 satisfying the 
ellipticity conditions (1.2). Ultimately, we will apply them to A0 ∈ A0(μ0).
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Lemma 5.1. Let u ∈ W (B1) be a solution to Lu = 0 in B1 \ Γ with Tu = 0 on Γ ∩ B1. 
Let u0 ∈ W (B1) be a solution to L0u0 = 0 in B1 \ Γ with u0 − u ∈ W0(B1 \ Γ). Then 
there is a constant C > 0 depending only on the ellipticity constant μ0, d and n, such 
that

ˆ

B1

∣∣∇(u − u0)
∣∣2 dm ≤ μ2

0 min

⎧⎨⎩
ˆ

B1

|A − A0|2 |∇u|2 dm,

ˆ

B1

|A − A0|2
∣∣∇u0∣∣2 dm

⎫⎬⎭ . (5.2)

Proof. First of all, the existence of u0 is guaranteed by the Lax-Milgram Theorem. 
Taking u − u0 ∈ W0(B1 \ Γ) as a test function in the equation Lu = 0, using ellipticity 
conditions and Young’s inequality, we can get

μ−1
0

ˆ

B1

∣∣∇(u − u0)
∣∣2 dm ≤

ˆ

B1

A∇(u − u0) · ∇(u − u0)dm

= −
ˆ

B1

A∇u0 · ∇(u − u0)dm =
ˆ

B1

(A0 − A)∇u0 · ∇(u − u0)dm

≤ μ0

2

ˆ

B1

|A − A0|2
∣∣∇u0∣∣2 dm + 1

2μ0

ˆ

B1

∣∣∇(u − u0)
∣∣2 dm.

This yields
ˆ

B1

∣∣∇(u − u0)
∣∣2 dm ≤ μ2

0

ˆ

B1

|A − A0|2
∣∣∇u0∣∣2 dm.

Interchanging the roles of u and u0, and A and A0, we also obtain the other bound. �
Lemma 5.3. Let u and u0 be as in Lemma 5.1. Then

C−1
ˆ

B1

∣∣∇u0∣∣2 dm ≤
ˆ

B1

|∇u|2 dm ≤ C

ˆ

B1

∣∣∇u0∣∣2 dm,

where C = μ4
0.

The triangle inequality would almost give this directly; the proof (with C = μ4
0) is 

the same as when d = n − 1 and is thus omitted; see [7], Lemma 3.13.
Define

γ(x, r) = inf
A0∈A0(μ0)

{
m(B(x, r))−1

ˆ

(y,t)∈B(x,r)

|A(y, t) − A0|2w(t) dydt

}1/2

. (5.4)

Notice that the domain of integration is larger than what we have in (1.8).



32 G. David et al. / Journal of Functional Analysis 283 (2022) 109553
Lemma 5.5. If the matrix-valued function A satisfies the weak DKP condition of Defi-
nition 1.9, with constant ε > 0, then γ(x, r)2 dxdr

r is a Carleson measure on Rd+1
+ , with 

the norm ∥∥∥∥γ(x, r)2 dxdr

r

∥∥∥∥
C

≤ CN(A) ≤ Cε, (5.6)

where N(A) =
∥∥α(x, r)2 dxdr

r

∥∥
C is as in (1.8) - (1.10), and

γ(x, r)2 ≤ CN(A) ≤ Cε for (x, r) ∈ Rd+1
+ . (5.7)

Here, C depends only on d, n, and μ0.

Proof. This lemma can be proved quite similarly as the d = n − 1 case. Here, we only 
mention some modifications and refer the readers to [7], Section 4.1, for details.

We want to show γ(x, r)2 dxdr
r is a Carleson measure on Rd+1

+ . Let Δ0 = Δ(x0, r0) be 
given. We claim that we can control γ(x0, r0) in terms of α as in the case of d = n − 1. 
That is, we want to show that

γ(x0, r0)2 ≤ Cα2(x0, r0)2 + C
∑
m≥0

σ
m
2

 

Δ′
0

α2(y, σmr0)2dy, (5.8)

where σ = 4
5 , and Δ′

0 = Δ(x0, 3r0/2). To this end, for each pair (x, r), choose a Ax,r ∈
A0(μ0) such that

m(W (x, r))−1
ˆ

W (x,r)

|A(y, t) − Ax,r|2 w(t) dydt = α(x, r)2.

Let A0 = Ax0,r0 . Then

γ(x0, r0)2 ≤ m(B(x0, r0))−1
ˆ

(y,t)∈B(x0,r0)

|A(y, t) − A0|2w(t)dydt

≤ 1
m(B(x0, r0))

ˆ

y∈Δ0

ˆ

|t|≤r0

|A(y, t) − A0|2w(t)dtdy.

Let Q0 = {(x, t) : x ∈ Δ0, |t| ≤ r0}. As in the case of d = n −1, we cut Q0 into horizontal 
slices Hm associated to radii rm = σmr0, m ≥ 0. The only difference is that now these 
slices are annular regions. That is, Hm = {(x, t) : x ∈ Δ0, rm+1 < |t| ≤ rm}. Once we 
have set this up, (5.8) can be obtained by showing that

ˆ
|A(y, t) − A0|2 w(t)dydt ≤ Crmα2(x0, r0)2|Δ0| + Crm

ˆ
′

{ m∑
j=0

α2(y, rj)
}2

dy
Hm Δ0
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as for d = n − 1.
Now (5.6) and (5.7) can be obtained verbatim from the proof in the d = n − 1 case, 

since we have (5.8) and both γ and α are functions on Rd+1
+ . �

The following estimate on ∇u can be proved similarly to in the case d = n − 1. One 
only needs to replace Carleson balls in Rd+1

+ with balls centered on Γ in Rn. One needs 
to use the reverse Hölder estimate Lemma 2.18, which gives an exponent greater than 
2 that depends only on d, n and μ0. We refer readers to [7], Lemma 3.19, for details of 
the proof.

Lemma 5.9. Let u ∈ Wr(B5) be a positive solution to Lu = 0 in B5 \Γ, such that Tu = 0
on Γ ∩ B5. Choose a matrix A0 ∈ A0(μ0) that attains the infimum in the definition (5.4)
for γ(0, 1), and let u0 be the solution from Lemma 5.1 (with this choice of A0). Then for 
any δ > 0,

ˆ

B1

∣∣∇u − ∇u0∣∣2 dm ≤
(
δ + Cδγ(0, 1)2)Eu(1), (5.10)

where Cδ depends on d, n, μ0, and δ.

We can now derive the decay estimates for the non-affine part of solutions u. The 
following is an analogue of Lemma 4.13, and should be compared to Lemma 3.24 in [7]
for the case d = n − 1.

Lemma 5.11. Let u ∈ W (B1) be a solution to Lu = 0 in B1 \ Γ with Tu = 0 on Γ ∩ B1. 
Then there exist constants p = p(d, n, μ0) ∈ (2, ∞), C = C(d, n, μ0) ∈ (0, ∞) such that 
for any θ0 ∈ (0, 1), there exists r0 = r0(θ0, d, n, μ0) ∈ (0, 1/4), such that

Ju(r) ≤ C
(

θ0 + K
2−p

2 r−d−1
)

Ju(1) + CK

rd+1 γ(0, 1)2Eu(1) (5.12)

for any 0 < r ≤ r0, and any K > 0. Here, CK depends on K, and d, n, μ0.

Proof. In what follows, we shall follow rather closely the proof of the d = n − 1 case, 
and refer to [7] for an occasional missing detail. We shall choose a u0 verifying L0u0 = 0, 
use the decay estimates for Ju0(r) to get a decay estimate for Ju(r) with an error (5.16). 
Then using some reverse Hölder estimates, we shall control the error by terms on the 
right-hand side of (4.14).

We write u as an affine part plus its complement on B1, i.e.

u(x, t) = v(x, t) + λ1(u) |t| .

Notice that Ev(1) = Ju(1) by the definitions near (1.12), and in addition
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λ1(u)2 ≤ 1
m(B1)

ˆ

B1

|∇tu|2 w(t) dxdt ≤ Eu(1) (5.13)

Choose a matrix A0 in the compact set A0(μ0), that attains the infimum in the 
definition (5.4) of γ(0, 1), and let L0 = − div (A0w(t)∇) as usual.

Now consider the L0-harmonic extension u0 of the restriction of u to ∂(B1/2 \Γ), that 
is, the unique solution u0 ∈ W (B1/2) to L0u0 = 0 in B1/2 \Γ, with u0 −u ∈ W0(B1/2 \Γ). 
Write

u0(x, t) = v0(x, t) + λ1(u) |t| . (5.14)

Since L0 |t| = 0, v0 ∈ W (B1/2) verifies

L0v0 = 0 in B1/2 \ Γ and v0 − v ∈ W0(B1/2 \ Γ). (5.15)

In particular, Tv0 = Tv = 0 on B1/2 ∩ Γ.
We claim that for any θ0 ∈ (0, 1), there exists r0 ∈ (0, 1/4) depending on θ0, d, n and 

μ0, and a constant C depending only on d, n, μ0, such that

Ju(r) ≤ Cθ0Ju(1) + C(θ0 + r−d−1)
m(B1/2)

ˆ

B1/2

|A − A0|2 |∇u0|2 dm, (5.16)

for any 0 < r ≤ r0.
To see this, we use the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) to write

Ju(r) ≤ 3
m(Br)

ˆ

Br

|∇(u0 − λr(u0) t)|2 dm + 3
m(Br)

ˆ

Br

|∇(u − u0)|2 dm

+ 3
m(Br)

ˆ

Br

|∇(λr(u0) |t| − λr(u) |t|)|2 dm. (5.17)

The last integral can be controlled by the second integral on the right-hand side of (5.17), 
as follows:

1
m(Br)

ˆ

Br

|∇(λr(u0) |t| − λr(u) |t|)|2 dm = (λr(u0) − λr(u))2

=

⎛⎝ 1
m(Br)

ˆ

Br

∇t(u − u0) · t

|t| dm

⎞⎠2

≤ 1
m(Br)

ˆ

Br

|∇(u − u0)|2 dm. (5.18)

For the second integral on the right-hand side of (5.17), we enlarge Br and apply 
Lemma 5.1 to get
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1
m(Br)

ˆ

Br

|∇(u − u0)|2 dm ≤ r−(d+1)

m(B1/2)

ˆ

B1/2

|∇(u − u0)|2 dm

≤ Cr−(d+1)

m(B1/2)

ˆ

B1/2

|A − A0|2 |∇u0|2 dm. (5.19)

Finally, by Lemma 4.13, for any fixed θ0 ∈ (0, 1), there is some r0 = r0(θ0, n, d, μ0) ∈
(0, 1/4) such that the first integral in (5.17) is bounded by θ0

3 Ju0(1/2). On the other 
hand, the same sort of computation as above gives

Ju0(1/2) ≤ 3Ju(1/2) + 3
m(B1/2)

ˆ

B1/2

|∇(u − u0)|2 dm + 3(λ1/2(u) − λ1/2(u0))2

≤ 3Ju(1/2) + C

m(B1/2)

ˆ

B1/2

|A − A0|2 |∇u0|2 dm.

Combining this with (5.17), (5.18) and (5.19), we obtain

Ju(r) ≤ θ0Ju(1/2) + C(θ0 + r−d−1)
m(B1/2)

ˆ

B1/2

|A − A0|2 |∇u0|2 dm,

which is almost (5.16). To show (5.16), we only need to observe that by the minimizing 
property of λ1/2(u) (see (3.16)),

Ju(1/2) ≤ m(B1/2)−1
ˆ

B1/2

|∇(u(x, t) − λ1(u) |t|)|2 w(t) dxdt ≤ CJu(1).

This finishes the proof of (5.16).
Now it suffices to control the second term on the right-hand side of (5.16). We use 

the decomposition of u0 as in (5.14), as well as (5.13) to write

m(B1/2)−1
ˆ

B1/2

|A − A0|2 |∇u0|2 dm

≤ 2
m(B1/2)

ˆ

B1/2

|A − A0|2 |∇v0|2 dm + 2λ1(u)2

m(B1/2)

ˆ

B1/2

|A − A0|2 |∇ |t||2 dm

≤ 2
m(B1/2)

ˆ

B1/2

|A − A0|2 |∇v0|2 dm + 2Eu(1)γ(0, 1)2. (5.20)
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We claim that m(B1/2)−1 ´
B1/2

|A − A0|2 |∇v0|2 dm can be estimated as in the d = n −1
case as long as one has the following reverse Hölder type estimates.

For some p = p(d, n, μ0) > 2 sufficiently close to 2,

⎛⎜⎝ ˆ

B1/2

|∇v0|p dm

⎞⎟⎠
1/p

�

⎛⎜⎝ ˆ

B1/2

|∇v0|2 dm

⎞⎟⎠
1/2

+

⎛⎜⎝ ˆ

B1/2

|∇v|p dm

⎞⎟⎠
1/p

, (5.21)

and⎛⎜⎝ ˆ

B1/2

|∇v|p dm

⎞⎟⎠
1/p

�

⎛⎝ˆ

B1

|∇v|2 dm

⎞⎠1/2

+ |λ1(u)|

⎛⎝ˆ

B1

|A − A0|p dm

⎞⎠1/p

, (5.22)

where the implicit constants depend on d, n, μ0 and p. We postpone the proof of these 
two inequalities to Section 5.2.

Now fix any K > 0. Assuming (5.21) and (5.22), we can control the contribution from 
the set

B 1
2

\
{

X ∈ B 1
2

\ Γ : |∇v0(X)|2 ≤ KEu(1)
}

to the integral, much as in the case d = n − 1, and finally obtain
ˆ

B1/2

|A − A0|2 |∇v0|2 dm ≤ CK
2−p

2 Ju(1) + C
(

K + K
2−p

2

)
γ(0, 1)2Eu(1).

From this and (5.20), the desired estimate (5.12) follows. �
Using Lemma 4.29, Lemma 5.9 and Lemma 5.3, one obtains the following analogue 

of Lemma 4.29 for positive solutions of Lu = 0.

Lemma 5.23. Let u ∈ Wr(B5) be a positive solution of Lu = 0 in B5 \ Γ, with Tu = 0 on 
Γ ∩ B5. Then for any δ > 0 and 0 < r < 1/2,

Eu(r) ≥
(

1 − C ′r2

C
−

C ′′ (δ + Cδγ(0, 1)2)
rd+1

)
Eu(1), (5.24)

where C, C ′, C ′′ are positive constants depending only on d, n and μ0.

As before, we will only find this useful when the parenthesis is under control.

With Lemma 5.11, Lemma 5.23, and Lemma 5.5 at hand, we are finally ready to prove 
the decay estimate for βu(x, r), the normalized non-affine energy of solutions of Lu = 0.
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Let u be as in Lemma 5.23. We first choose a θ0 ∈ (0, 1) so that Cθ0 < 1
16C in 

Lemma 5.11. By Lemma 5.11, this choice of θ0 gives an r0 ∈ (0, 1/4) such that (5.12)
holds for any r ≤ r0. Now we choose r = τ0 ≤ r0 so that C ′r2 < 1/2 in (5.24). Then we 
require

γ(0, 1)2 ≤ ε0, (5.25)

and choose ε0 and δ > 0 sufficiently small (depending on τ0) so that

C ′′ (δ + Cδε0) τ−d−1
0 <

1
4C

in (5.24). This way, (5.24) implies that

Eu(r) ≥ 1
4C

Eu(1). (5.26)

We divide both sides of (5.12) by Eu(r) and get that

βu(0, r) ≤ C
(

θ0 + K
2−p

2 r−d−1
) Ju(1)

Eu(r) + CK

rd+1 γ(0, 1)2 Eu(1)
Eu(r) . (5.27)

Then we choose K > 0 sufficiently small (depending on τ0) so that CK
2−p

2 τ−d−1
0 < 1

16C . 
Now assuming (5.25), our choice of θ, ε0, δ and K guarantees that we can apply (5.26)
and deduce from (5.27) that

βu(0, τ0) ≤ 1
2βu(1) + Cτ0γ(0, 1)2. (5.28)

We recapitulate what we obtained in the next corollary. Of course, by translation and 
dilation invariance, what was done on the unit ball B1 can also be done for any other 
BR(x), x ∈ Γ, R > 0. We use this opportunity to state the general case, which of course 
can easily be deduced from the case of B1 by homogeneity.

Corollary 5.29. There exist constants τ0 ∈ (0, 10−1) and C > 0 which depend only on d, 
n and μ0, such that if u ∈ Wr(B5R(x)) is a positive solution of Lu = 0 in B5R(x) \ Γ, 
with Tu = 0 on Γ ∩ B5R(x), then

βu(x, τ0R) ≤ 1
2βu(x, R) + Cγ(x, R)2. (5.30)

Proof. The discussion above gives the result under the additional condition that 
γ(x, R) ≤ ε0. But we now have chosen τ0 and ε0, and if γ(x, R) > ε0, (5.30) holds 
trivially (maybe with a larger constant), because βu(x, τ0R) ≤ 1 by (3.18). �
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Finally, Theorems 1.16 and 1.18 can be deduced from the decay estimate (5.30) exactly 
as what was done in the d = n − 1 case, as βu(x, r) is a function in Rd+1

+ and the goal is 
to prove a Carleson estimate in Rd+1

+ . We refer readers to Section 4.2 in [7] for details.

5.2. Proof of the reverse Hölder inequalities

Proof of (5.21). The idea of the proof is essentially from [9], Chapter V. However, we 
need to treat the boundary estimates more carefully as this time the boundary is of 
mixed co-dimensions.

Recall that L0v0 = 0 in B1/2 \ Γ, with v0 − v ∈ W0(B1/2 \ Γ). Since v ∈ W (B1/2) with 
Tv = 0 on B1 ∩ Γ, Tv0 = 0 on B1/2 ∩ Γ. Let R0 = 10−2n−1/2. Set

QR(X) := {Y ∈ Rn : |Yi − Xi| < R for i = 1, 2, . . . , n} , R > 0.

We claim that there exists p = p(d, n, μ0) > 2 such that

⎛⎜⎝m(QR0/2(X0))−1
ˆ

QR0/2(X0)∩B1/2

|∇v0|p dm

⎞⎟⎠
1/p

�

⎛⎜⎝m(QR0(X0))−1
ˆ

QR0 (X0)∩B1/2

|∇v0|2 dm

⎞⎟⎠
1/2

+

⎛⎜⎝m(QR0(X0))−1
ˆ

QR0 (X0)∩B1/2

|∇v|p dm

⎞⎟⎠
1/p

(5.31)

for any QR0(X0) ⊂ Rn with QR0(X0) ∩ B1/2 �= ∅. Notice that the first integral concerns 
the cube QR0/2(X0), while the two other ones are on the larger QR0(X0); this will allow 
the localization argument below. Once this is proved, one can obtain the desired estimate 
(5.21) by covering B1/2 with finitely many cubes QR0(X0).

Fix QR0(X0) with QR0/2(X0) ∩ B1/2 �= ∅. Let X ∈ QR0(X0) be given, and pick any 
radius R < 1

12 dist(X, ∂QR0(X0)). We need to introduce R because we will apply a local 
result soon.

Let q := 2n
n+2 . There are three possibilities: (1) Q3R(X) ⊂ B1/2, (2) Q3R(X) ∩B1/2 �= ∅

and Q3R(X) ∩ B1/2
c �= ∅, (3) Q3R(X) ⊂ B1/2

c. The last situation is trivial.
If Q3R(X) ⊂ B1/2, then we can apply Lemma 2.21 to get

m(QR(X))−1
ˆ

|∇v0|2 dm ≤ C

m(Q3R(X))

ˆ
|∇v0|q dm. (5.32)
QR(X) Q3R(X)
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We will see later how to continue in this case, but let us first discuss (2). If Q3R(X) ∩
B1/2 �= ∅ and Q3R(X) ∩ B1/2

c �= ∅, choose η ∈ C∞
0 (Q3R(X)) with η = 1 on QR(X) and 

|∇η| � 1
R . Taking (v − v0)η2 ∈ W0(B1/2 \ Γ) as a test function in L0v0 = 0, and using 

the ellipticity conditions on A0, and then the Cauchy-Schwarz inequality, one can get 
the estimate

ˆ

QR(X)∩B1/2

|∇v0|2 dm ≤ C

ˆ

Q3R(X)∩B1/2

|∇v|2 dm + C

R2

ˆ

Q3R(X)∩B1/2

|v0 − v|2 dm. (5.33)

We want to control 
´

Q3R(X)∩B1/2
|v0 − v|2 dm using the Poincaré inequality. Extend v0−v

by zero outside B1/2 and denote by h the extended function. We need to discuss two 
cases.

Case 1: Q4R(X) ∩ Γ = ∅. Then δ(X) ≥ 4R, where δ(X) = dist(X, Γ) as usual. Since 
for any Z ∈ Q3R(X), δ(X) − 3R ≤ δ(Z) ≤ δ(X) + 3R, we have 1

4 ≤ δ(Z)
δ(X) ≤ 7

4 . This 
implies that

Cn,dw(X) ≤ w(Z) ≤ Cn,dw(X) for Z ∈ Q3R(X),

and thus
ˆ

Q3R(X)

|h(Z)|2 w(Z)dZ ≤ Cn,dw(X)
ˆ

Q3R(X)

|h(Z)|2 dZ.

Since ∂B1/2 is smooth, Q3R(X) ∩ B1/2
c �= ∅ implies that 

∣∣Q7R/2(X) \ B1/2
∣∣ ≥

γ
∣∣Q7R/2(X)

∣∣ for some γ > 0. Recalling that h = 0 in B1/2
c, we can apply the Sobolev 

inequality to get

ˆ

Q3R(X)

|h(Z)|2 w(Z)dZ ≤ Cw(X)
( ˆ

Q7R/2(X)

|∇h|q dZ
) 2

q

≤ Cw(X)− 2
n

( ˆ

Q7R/2(X)

|∇h|q w(Z)dZ
) 2

q

.

Notice that by (2.1), m(Q3R(X)) ≈ m(Q7R/2(X)) ≈ Rnw(X). Hence,

1
m(Q3R(X))

ˆ

Q3R(X)

h2dm ≤ CR2
(

m(Q7R/2(X))−1
ˆ

Q7R/2(X)

|∇h|q w(Z)dZ
) 2

q

.

Case 2: Q4R(X) ∩ Γ �= ∅. Then there is x0 ∈ Γ so that Q3R(X) ⊂ Q7R(x0) ⊂ Q11R(X). 
Enlarging Q3R(X) and applying (2.10), one has
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1
m(Q3R(X))

ˆ

Q3R(X)

h2dm ≤ C

m(Q7R(x0))

ˆ

Q7R(x0)

h2dm

≤ CR2
(

m(Q7R(x0))−1
ˆ

Q7R(x0)

|∇h|q dm
)2/q

≤ CR2
(

m(Q11R(X))−1
ˆ

Q11R(X)

|∇h|q dm
)2/q

.

To summarize, in both Case 1 and Case 2, we have

1
m(Q3R(X))

ˆ

Q3R(X)∩B1/2

|v0 − v|2 dm

≤ CR2
( 1

m(Q11R(X))

ˆ

Q11R(X)∩B1/2

|∇(v0 − v)|q dm
) 2

q

. (5.34)

Notice that we have chosen R < 1
12 dist(X, ∂QR0(X0)) to make sure Q11R(X) ⊂

QR0(X0). Set

g(X) =
{

|∇v0(X)|q for X ∈ QR0(X0) ∩ B1/2,

0 otherwise,

f(X) =
{

|∇v(X)|q for X ∈ QR0(X0) ∩ B1/2,

0 otherwise.

By (5.34), (5.33) and (5.32), we obtain

1
m(QR)

ˆ

QR

grdm ≤ C

m(Q3R)

ˆ

Q3R

frdm

+ C
( 1

m(Q11R)

ˆ

Q11R

gdm
)r

+ C
( 1

m(Q11R)

ˆ

Q11R

fdm
)r

≤ C

m(Q11R)

ˆ

Q3R

frdm + C
( 1

m(Q11R)

ˆ

Q11R

gdm
)r

,

where r = n+2
n . As we noted in the proof of Lemma 2.18, we can still apply Proposition 

1.1 in Chapter V of [9] when the Lebesgue measure is replaced with the doubling measure 
m. Then (5.31) follows. �
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Proof of (5.22). The proof is similar to that in the d = n − 1 case. We present the proof 
for the sake of completeness.

Set R0 = 10−2n−1/2. For any X0 = (x0, t0) ∈ B1/2 \ Γ and 0 < R ≤ R0, 
choose η ∈ C∞

0 (QR(X0)), with η ≡ 1 in Q2R/3(X0), |∇η| � 1/R. Here, QR(X) =
{Y ∈ Rn : |Yi − Xi| < R i = 1, 2, . . . , n} as before. We shall write QR for QR(X0)
when this does not cause a confusion. Since u ∈ W (B1/2) verifies Lu = 0 in B1 \ Γ, 
we can take any ϕ ∈ W0(B1 \ Γ) as test function (see (4.4)). Moreover, recall that 
v(x, t) = u(x, t) − λ |t|, with λ = λ1(u), and that L0 |t| = 0. Therefore, for any 
ϕ ∈ W0(B1 \ Γ),

0 =
ˆ

B1

A∇u · ∇ϕdm =
ˆ

B1

A∇v · ∇ϕdm +
ˆ

B1

A∇(λ |t|) · ∇ϕdm

=
ˆ

B1

A∇v · ∇ϕdm +
ˆ

B1

(A − A0)∇(λ |t|) · ∇ϕdm. (5.35)

When |t0| ≤ R, we choose ϕ(X) = v(X)η2(X); when instead |t0| > R, we take 
ϕ(X) = (v(X) − vQR

) η2(X), with vQR
= m(QR)−1 ´

QR
vdm. One can check that in 

both cases ϕ ∈ W0(B1 \ Γ). As in the proof of (3.34) in [7], we plug ϕ into (5.35), 
compute the derivatives, estimate some terms brutally, and finally use Cauchy-Schwarz 
inequality, and get the following estimates.
Case 1: |t0| ≤ R. In this case, we obtain

ˆ

Q2R/3

|∇v|2 dm ≤ Cμ0

R2

ˆ

QR

v2dm + Cμ0 |λ|2
ˆ

QR

|A − A0|2 dm.

There is x0 ∈ Γ such that QR ⊂ Q2R(x0) ⊂ Q3R. Since Tv = 0 on Γ ∩B1, we can enlarge 
QR and apply (2.10) to control 

´
QR

v2dm and deduce from the above that

1
m(Q2R/3)

ˆ

Q2R/3

|∇v|2 dm

≤ C

⎛⎝ 1
m(Q3R)

ˆ

Q3R

|∇v|
2n

n+2 dm

⎞⎠
n+2

n

+ C |λ|2

m(QR)

ˆ

QR

|A − A0|2 dm. (5.36)

Case 2: |t0| > R. The same computation as in Case 1 gives
ˆ

Q2R/3

|∇v|2 dm ≤ C

R2

ˆ

QR

|v − vQR
|2 dm + C |λ|2

ˆ

QR

|A − A0|2 dm.

Then by Lemma 2.7, (5.36) holds.
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Now it follows from [9] V, Proposition 1.1 that

1
m(QR0/2)

ˆ

QR0/2

|∇v|p dm ≤ C

⎛⎜⎝ 1
m(QR0)

ˆ

QR0

|∇v|2 dm

⎞⎟⎠
p
2

+ C |λ|p

m(QR0)

ˆ

QR0

|A − A0|p dm,

for some p = p(d, n, μ0) > 2, which implies the desired reverse Hölder type estimate since 
B1/2 can be covered by finitely many QR0/2. �
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