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This is the first part of a series of two papers where we study perturbations of divergence form second-
order elliptic operators — div AV by complex-valued first- and zeroth-order terms, whose coefficients lie
in critical spaces, via the method of layer potentials. In the present paper, we establish L? control of the
square function via a vector-valued T'b theorem and abstract layer potentials, and use these square function
bounds to obtain uniform slice bounds for solutions. For instance, an operator for which our results are new
is the generalized magnetic Schrodinger operator —(V —ia)A(V —ia)+ V when the magnetic potential a
and the electric potential V are accordingly small in the norm of a scale-invariant Lebesgue space.
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1. Introduction

In this paper, the first in a two-part series, we lay the groundwork for the study of the L? Dirichlet,
Neumann and regularity problems for critical perturbations of second-order divergence form equations
by lower-order terms. In particular, we produce the natural (L?) square function estimates for (abstract)
layer potential operators. We consider differential operators of the form

L:=—div(AV+B|))+B,-V+V (1.1)
defined on R"” x R = {(x, )}, n > 3, where A = A(x) is an (n + 1) x (n + 1) matrix of L* complex
coefficients, defined on R" (independent of ¢) and satisfying a uniform ellipticity condition:

n+1
MEP < Ne(A()E, &) :=Ne Z Aij(0)EjE, N AllLo@ny < A, (1.2)

i,j=1
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for some A, A > 0, and for all £ € C"tl x € R™. The first-order complex coefficients B} = By(x), B, =
B(x) € (L"(R™))"*! (independent of ¢) and the complex potential V = V (x) € L"2(RY) (again inde-
pendent of ¢) are such that

max{|| By || La ey, | B2llLr@nys 1V | o2 ey} < €0

for some &y depending on dimension and the ellipticity of A in order to ensure the accretivity of the form
associated to the operator £ on the space

Yl,Z([RI’H-l) = {M e LZ*(RVZ+1) “Vu e LZ(RI’H-])}
equipped with the norm

||M||Y1,2(Rn+l) = “M”LZ*(R"JH) + ||VM||L2(Rn+l),

where p* := ((n + 1)p)/(n + 1 — p). We interpret solutions of Lu = 0 in the weak sense; that is,
ue WI’Q(R"“) is a solution of Lu = 0 in Q c R+ if for every ¢ € C2°(2) it holds that

loc

f/ +1((AW +Biu)-Vo+ B> -Vug) =0.
Rn

Examples of operators of the type defined above include the Schrodinger operator —A + V' with
t-independent electric potential V € L"/?(R") having a small L"/? norm, and the generalized magnetic
Schrodinger operator —(V —ia)A(V —ia), where A is a t-independent complex matrix satisfying (1.2),

and the magnetic potential a € L™ (R")"+!

is t-independent and has small L" norm. We treat the case
n > 3 because the Sobolev spaces we encounter are of the form V.VLZ(R”) N L* for some s > 1, and in
this case, these spaces embed continuously into Lebesgue spaces. This is not the situation when n = 2, in
which case the Sobolev spaces considered embed continuously into BMO. If one were to treat the case
n = 2, it would be natural to assume that V =0 and that B;, i =1, 2, are divergence-free. Under these
additional hypotheses, one can use a compensated compactness argument [19] to obtain the boundedness
and invertibility of the form associated to £ (see [33]).

However, there are several considerations in the case n > 3 that set it qualitatively apart from n = 2.
For instance, when n = 2, all solutions are locally Holder continuous and this is certainly not the case
when n > 3. Indeed, let u(x) = —In|x|, x € R”, and build V (x) or B;(x) so that either —Au+ Vu =0 or
—Au+div Bju =0 in the n-dimensional ball B (0, %) By extending u to be a function on B (O, %) x R by
u(x,t) =u(x), we may see that the analogous equations in n + 1 dimensions are satisfied by u(x, ¢), and
yet u(x, t) fails to be locally bounded despite the fact that V2, B; € L"(R"). Moreover, by considering
u(x,t) on a smaller ball and replacing V or By by V. = Vilp, or (B1) = Bilp(.e) respectively,
we may ensure that VE2 or (B1). have arbitrarily small L"(R") norm, provided that we choose ¢ > 0
small enough. Therefore, solutions in our perturbative regime fail to be locally bounded and hence fail
(miserably) to be locally Holder continuous.

The lack of local Holder continuity (or local boundedness) is one reason our results are not at all
a straightforward adaptation of related works. For instance, in [1] the authors are able to treat the
fundamental solution as a Calderén—Zygmund-Littlewood—Paley kernel using pointwise estimates on
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the fundamental solution (and its 7-derivatives) presented in [37]. Additionally, although establishing
a Caccioppoli inequality (Proposition 3.1) is easy, constants are not necessarily null solutions to our
operator and thus this Caccioppoli inequality does not yield the usual “reverse” Poincaré inequality
for solutions. We remind the reader that if there are no lower-order terms, the Caccioppoli inequality
(becomes a “reverse” Poincaré inequality and) improves to an L”-L? version; more precisely, we have
that for each ball B, and some p > 2, the estimate

1/p 1 1/2
(][ IVuI”dx) §—<][ |u|2dx>
B, r B>,

holds [32; 34; 57]. We do not manage to obtain the above LP-L? inequality, but rather a suitable L”-L”
version (Proposition 3.9). The unavailability of these desirable estimates makes it far less clear whether
constructing the fundamental solution will be useful for us, and so we do not attempt it. We still endeavor
to use the method of layer potentials, whence we appeal to (and adapt) the abstract constructions of [12],
which avoid the use of fundamental solutions entirely. Fundamental solutions have been constructed in
other situations with lower-order terms in [22; 53], but they rely on sign conditions.

Our results in this series of papers concern the unique solvability of some classical L? boundary value
problems in the upper half-space [R{Tl :=R" x Ry. To state them, we ought to recall the definition of the
(Lz-averaged) nontangential maximal operator N. Given xg € R", define the cone y (xg) = {(x, t) € R'jfl :

|x — xo| < t}. Then, for u : erl — C we write

172
Nu(xg) := sup (]6[ |u(y,s)|2dyds) .
(x,t)ey (x9) |x—y|<t,|s—t|<t/2

Given f:R" — C, we say u — f nontangentially if, for almost every x € R", lim(, ;) (x,0) u(y, 1) = f(x),
where the limit runs over (y, 1) € y (x).
We consider the following boundary value problems: the Dirichlet problem

Lu=0 inRY,
lim; ,ou(-,t)=f strongly in L>(R"),
NueL*(R") and u— f nontangentially, (D2)
ffmﬂ tVu(x, t)|*dx dt < oo,
lim u(-,¢) =0 in the sense of distributions,

—00
the Neumann problem
Lu=0 inR.,
du/v” = —ey 1 (AVu+ Biu)(-,0) =g € L2 (R"), !
N(Vu) € L*(R"), (N2)

Sl 119 Vu(x, )| dx dr < oo,
tlim Vu(-,t) =0 in the sense of distributions,
—00
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and the regularity problem
Lu=0 inRY,
u(-,t)— f weakly in Y2(R"),
N(Vu) e L*(R") and u — f nontangentially, (R2)
ffmﬂ t18; Vu(x, t)|? dx dt < oo,
lim; o0 Vu(-,t) =0 in the sense of distributions.

The idea is to follow a (by now) familiar process for proving L? existence and uniqueness for these
boundary value problems. This process has three steps, which can be (very) roughly summarized as:

(1) Show square function (and/or nontangential maximal function) bounds for a linear operator defined,
perhaps by continuous extension, on L2, where the operator necessarily produces weak solutions to
the elliptic equation (for us, this operator is either the single or double layer potential).

(2) Show the boundedness and invertibility of the appropriate boundary trace of the operator.

(3) Show that any solution with square function (and/or nontangential maximal function) bounds is, in
fact, the solution produced by the linear operator with appropriate data.

This paper is concerned with establishing the square function bounds for abstract layer potential operators,
that is, step (1) in the process above. We prove the following.

Theorem 1.3 (square function bound for the single layer potential). Suppose that Lo = —div AV is
a divergence form elliptic operator with t-independent coefficients, and that the matrix A is elliptic.
Then, there exists g9 > 0, depending on n, A, and A, such that if M € M, 1 (R",C), V € L"/Z(R”) and
B; € L"(R") are (all) t-independent with

| M1 Loo@ny + | Bill e ey + | B2l Loy + 1V | o2 ey < €0,

then, for each m € N, we have the estimate
dxdt
J[ e peor A < 1R g,
R1+l t
where C depends on m, n, A, and A\, and
L:=—div[A+M]V+B)+B,-V+ V.

Under the same hypothesis, analogous bounds hold for L replaced by L* and for [R{'fl replaced by R" 11,

We point out that in the previous result, there is no restriction on the matrix A, other than that it be
t-independent and satisfy the complex ellipticity condition (1.2). In the homogeneous, purely second-order
case (i.e., the case that By, B, and V are all zero), this result is due to [63]; an alternative proof, with an
extra hypothesis of De Giorgi—-Nash—Moser regularity, appears in [35].

We also obtain a uniform estimate on horizontal slices in terms of the square function.

IThe boundary data is achieved in the distributional sense; see Section 4. We elaborate on this in the upcoming paper.
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Theorem 1.4 (uniform control of ¥*>(R") norm on each horizontal slice). Suppose that u € Y 1’2([F\R’3r+1)
and Lu=0in RTF] in the weak sense. Then, for every T > 0,

[e.¢]
2 2 2
” Trr u”LZn/(n—Z)(Rn) + ” Trr VZ/[||L2(Rn) S / / tan+1u| dx dt < |”tDn+1M|”, (15)
T JR"

where the traces exist in the sense of Lemma 2.3, and C depends on m, n, A, and A, provided that
max{|| By |ln, | B2lln, IV lln/2} is sufficiently small depending on m, n, A, and A. Under the same hypothesis,
analogous bounds hold for L replaced by L* and for [Ri’fl replaced by R"™.

Now we make the following important remark. Consider the modified Dirichlet, Neumann, and
regularity problems (D2'), (N2') and (R2’) where the third condition in each problem is deleted; that is,

(D2), (N2') and (R2') are the problems with only square function bounds
and neither nontangential maximal function estimates nor nontangential limits. (1.6)

In this case, our Theorems 1.3 and 1.4, when combined with well-known techniques in the literature, give
the unique L? solvability of the modified Dirichlet, Neumann, and regularity problems within a perturbative
regime (see Theorem 1.7). Indeed, the boundedness and invertibility of the boundary trace operators>
require little more than the “slice bounds” produced here along with analytic perturbation theory, while the

uniqueness of solutions with square function bounds is an exercise?

in “pushing” a representation formula
(Green’s identity) to the boundary and exploiting the invertibility of the trace operators. We mention
that uniqueness, that is, pushing a representation formula to the boundary, can be established under
weak hypotheses that are implied by either square function or nontangential maximal function estimates.
Therefore, the significant contributions from the forthcoming paper are the nontangential estimates which
will allow us to obtain a stronger result than Theorem 1.7 below. For that reason, in this article we omit
further details of the exercise that yields the L? solvability of the modified problems from the square
function estimates and uniform slice estimates (but the full details will be given in the forthcoming paper).

We summarize our observations in the following result.

Theorem 1.7. Suppose that Lo = — div AV is a divergence form operator with complex, bounded, elliptic,
t-independent coefficients. Suppose further that
£+ Ko LA(R") — LR,
11+ Kp  LPRY) — LY R,
(So)e : LA(R") — Y2 (R")
are all bounded and invertible for L = Ly, L, where K, K ¢ and (So) o are the “boundary operators”

associated to L. Then there exists £y > 0 depending on dimension, ellipticity of A and the constants in
the operator norms of :I:%I + K, :I:%I + K and (So)z, £ = Lo, L and their inverses, such that if

2This invertibility gives the existence of solutions to the boundary value problems.
3Especially if one reads and is inspired by [3].
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MeM (R, C), Ve L"*(R") and B; € L"(R") are (all) t-independent with
| M|l L@y + | Bill Lo @wey + I B2l Lo weny + 1V | 2y < €0
then the modified problems (D2'), (N2') and (R2') (see (1.6)) are uniquely solvable for L1, where
L1:=—div([A+MIV+B)+B,-V+V.

Moreover, the solutions to (D2'), (N2') and (R2') for Ly can be represented by layer potentials, and have
the natural square function bounds in terms of the data.

This paper is organized as follows. In Section 3 we prove some elementary but essential PDE estimates,
and in Section 4 we develop the notion of abstract layer potentials. Next, we show that for gy > 0 small
enough the single and double layer potentials have square function estimates (Theorems 1.3 and 5.5, and
Lemma 6.2), which, in turn, give us “slice space” estimates for the single and double layer potentials
(Theorems 6.12 and 6.17). In passing, we remark that this analysis already allows us to establish the jump
relations (as weak limits in L2(R"))

Dif — (F3I+K)f.
1 fx)

(VS i=xs f = F5

ent1+Tf
2An+l,n+1 "

for f in L2, where D and S are the double and single layer potentials.

Our results in this series may be best thought of as extensions of the results in [1] to lower-order terms as
well as complex matrices (and not only those arising from perturbations of real symmetric coefficients or
constant coefficients), albeit with the important distinction that we do not require De Giorgi—-Nash—Moser
estimates [23; 60; 62]; this allows us to consider any complex elliptic matrix for A. Let us mention a few
applications of our theorems. For the magnetic Schrodinger operator —(V — ia)”> when a € L" (R")"*!
is t-independent and has small L"(R") norm, we obtain in this paper the first estimate for the square
function and solvability of the modified problems (D2'), (N2'), (R2') in the unbounded setting of the
half-space. In fact, since our methods do not rely on an algebraic structure other than 7-independence, we
have similar novel conclusions for the generalized magnetic Schrodinger operators —(V —ia)A(V —ia),
where A is a real, symmetric, t-independent, elliptic, bounded matrix, and a is as above.

We will now review some of the extensive history of boundary value problems for second-order
divergence form elliptic operators in Lipschitz domains. Unless otherwise stated, the results below will
always be results for operators without lower-order terms. For Laplace equation (£ = —A) in a Lipschitz
domain, solvability of (D2) was obtained by Dahlberg [20], and solvability of (N2) and (R2) was shown
by Jerison and Kenig [45]; these were also shown later by Verchota [72] via the method of layer potentials,
using the celebrated result of Coifman, McIntosh and Meyer [18]. For real, symmetric and #-independent
coefficients, the solvability of (D2) was shown by Jerison and Kenig [44], and the solvability of (N2) and
(R2) was shown by Kenig and Pipher [48]. The solvability via the method of layer potentials in the case
of real, symmetric and f-independent coefficients was shown in [1] (and previously in [58] with some
additional smoothness assumptions on the coefficients).
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Aside from the results in [1; 7; 8], which we describe further below, the known results for nonsym-
metric, ¢-independent matrices can be split into three categories: complex perturbations of constant
coefficient matrices, “block” form matrices and real ¢-independent coefficients. In [28], Fabes, Jerison and
Kenig showed solvability of (D2) for small complex L°°-perturbations of constant coefficient operators;
the solvability of (D2), (N2) and (R2) in this setting was shown via layer potentials in [1] (see their
Theorem 1.15).

Solvability of L? boundary value problems in the case of all block form matrices

where B(x) is an n x n matrix, is, in the case of (D2), a consequence of the semigroup theory and, in
the case of (N2) and (R2), a consequence of the solution to the Kato problem [6] on R". In particular, if
we let J := —div, B(x)V;, then one obtains the solvability of (R2) by solving the Kato problem for J,
and one obtains the solvability of (N2) from solving the Kato problem for adj(J). In fact, for (N2), one
may equivalently show that the Riesz transforms associated to J, VJ~!/2 are L? bounded, which can, in
turn, be interpreted as a statement about the boundedness of the single layer potential from L2 into w2,
These results were obtained in [18] (n + 1 =2) and in [6] (n + 1 > 3); see also [5; 39; 40].

In the case of real, ¢-independent coefficients, the results available are of the form (D p) (for some p < 0o
sufficiently large), (Np) and (R p) (for some p > 1, typically dual to the Dirichlet exponent), where (Dp),
(Np), and (Rp) are L? analogues of (D2), (N2), and (R2) respectively. This is the best one can hope for by
a counterexample in [52] (but see also [10]), where the authors show that for any fixed p < oo, there exists
areal (nonsymmetric) coefficient matrix A, such that (D p) fails to be solvable for the associated divergence
form elliptic operator. In [52], the authors show that for all real z-independent coefficients with n+1=2, the
problem (D p) is solvable for some p < co. In the same setting, Kenig and Rule [51] showed the solvability
of (Ng) and (Rg) for g the Holder conjugate of the exponent p from the aforementioned result [52].
More recently, Barton [11] perturbed these solvability results to deduce that (Dp), (Ng), and (Rg) remain
solvable in the half-plane when the matrix consists of almost-real coefficients, and the methods of [52] were
extended by Hofmann, Kenig, Mayboroda and Pipher [41; 42] to show the solvability of (Dp) for some
p < oo for all real #-independent coefficients when n+1 > 3 and solvability of (Rg), again with g dual to p.

As mentioned above, perhaps the closest results to the current exposition are [1; 7; 8], where L
solvability of boundary value problems was explored for full complex matrices, either by the method of
layer potentials [1] or the “first-order approach” [7; 8] (which relies on the functional calculus of Dirac
operators associated to divergence form elliptic operators). In [1], the authors show solvability of (D2),
(N2) and (R2) via the method of layer potentials for L°° perturbations of real, symmetric 7-independent
coefficients, and L*° perturbations of constant coefficients. In [7], the authors show solvability of (D2),
(N2) and (R2) in the same cases as [1], as well as perturbations from block form matrices. In [8], the
authors treat the previous cases of [7] as well as perturbations of Hermitian coefficient matrices.
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We mention also the work of Gesztesy, Nichols, and the second author of this paper [33], where the
authors studied the n-dimensional Kato problem related to our perturbations. The works [1; 7; 8; 33] as
well as [35; 43; 63] served as an indication that the present results should hold. The techniques from the
solution to the (original) Kato problem are integral to our analysis. In particular, we adapt the methods
from [1; 35; 43] to prove our square function estimates for the single layer potential (Theorems 1.3
and 5.5) via the generalized Tb theory developed in the resolution of the Kato problem [6] and since
refined in [35].

Let us remark on the assumption of ¢-independence. Given a second-order divergence form elliptic
operator (no lower-order terms), define the transverse modulus of continuity w(7) : (0, o0) — [0, 0o] as
o(t):= sup sup |A(x,t) —A(x,0)].

xeR*te(0,7)
Caffarelli, Fabes and Kenig [14] showed that given any function w(r) : (0, 00) — [0, oo] such that
fol [w(7)]> dt/T = 00, there exists a real, symmetric elliptic matrix with transverse modulus of continuity
(1) such that the corresponding elliptic measure and n-dimensional Lebesgue measure (on R" x {0})
are mutually singular, and hence (D2) (or even (Dp) for any p) fails to be solvable. On the other hand,
in [28], the authors show that (D2) is uniquely solvable provided that fol [w(1)]?dt/T < 00 and that
A(x, 0) is sufficiently close to a constant matrix. Later, refinements of this condition were introduced
and investigated; in these refinements one measures some discrepancy on Whitney boxes quantified by a
Carleson measure condition; see, for instance, [2; 21; 25; 26; 27; 30; 31; 43; 49; 50]. In light of these
constructions, it is natural to consider z-independent coefficients as an entry point to our investigations.

We end this review of the history of the work on the homogeneous (i.e., no lower-order terms) operators
by noting that the a priori connections between the different problems (Dp), (Np’) and (Rp’) have also
been of great interest. In some instances (say, A is real, f-independent), one has that the solvability of
(Rp) for L implies the solvability of (Dp’) for the adjoint operator L*, and vice versa (where p’ is the
Holder conjugate to p) (see [47]), but it was found in [56] that such implications need not hold in the
general setting of complex coefficients, even for f-independent matrices. We refer to [56] for a more
systematic review of these connections.

The literature in the setting with lower-order terms present (that is, not all of by, b, V are identically 0)
is much sparser. In [38], parabolic operators with singular drift terms b, were studied, and their results
would later be applied toward (D p) for elliptic operators with singular drift terms b, in [26; 50]. When
A=1, by =by=0and V > 0 satisfies certain conditions, Shen [65] proved the solvability of (Np) on
Lipschitz domains. His results were later extended in [69; 70] to (Rp) and under weaker assumptions on
the potential V. It is a critical element of the proof that the leading term of L = —A + V is the Laplacian,
and the question of (N p)-solvability for Schrodinger operators on rough domains in the case that A # [
remain open, even under generous assumptions on V.

More recently, the problems (D2) and (R2) for equations with lower-order terms were considered
in [64] in bounded Lipschitz domains, under some continuity and sign assumptions on the coefficients.
Solvability results for the variational Dirichlet problem of equations with lower-order terms on unbounded
domains were obtained in [61]. Finally, we bring attention to [59], where, through the development of a
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holomorphic functional calculus, the authors proved the L? well-posedness of the Dirichlet, Neumann,
and regularity problems in the ¢-independent half-space setting for the Schrédinger operator — div AV+V
with Hermitian A and potential V in the reverse Holder class RH"/.

2. Preliminaries

As stated above, our standing assumption will be that n > 3, and the ambient space will always be
R = {x,:x € R", t € R}. We employ the following standard notation:

» We will use lowercase x, y, z to denote points in R” and lowercase ¢, s, T to denote real numbers. By
convention, x = (x1, ..., x,) and x,4+; = ¢. We will use capital X, Y, Z to denote points in R"+1. The
symbols ey, ..., e,y are reserved for the standard basis vectors in R+,

* We will often be breaking up vectors into their parallel and perpendicular parts. For an (n+1)-
dimensional vector V = (V1, ..., V,, V,41), we define its “horizontal” or “parallel” component as

VH = (V], ey Vn),

and its “vertical” or “transverse” component as V| = V,;. Similarly, we label the horizontal component
of the (n+1)-dimensional gradient operator as

VH =V, := (3xl, ey 8;5,,),

and the vertical component as Dy, or V.

 Given the (n + 1) x (n + 1) complex-valued matrix A, foreachi, j =1,...,n+1, we denote by A;;
the ij-th entry of A. We denote by A the (n + 1) x n submatrix of A consisting of the first n columns
of A. We define g,-, . as the (n+1)-dimensional row vector made up of the i-th row of A; similarly we let
A .,j be the (n+1)-dimensional column vector made up of the j-th row of A.

o We set [R{T] = R" x (0, +00) and B[R{’ﬂ] :=R" x {0}. We define R"*! similarly and often we write
R" in place of IR when confusion may not arise. For € R, we define R/ ™' = R%"! := R" x (7, 00),
and R"T := R" x (—o00, 1).

e The letter Q will always denote a cube in R". By £(Q) and xp we denote the side length and center
of O, respectively. We write Q(x, r) to denote the cube with center x and sides of length r, parallel to
the coordinate axes.

* Given a (closed) n-dimensional cube Q = Q(x, r), its concentric dilate by a factor of ¥ > 0 will be
denoted by « Q := Q(x, kr). Similar dilations are defined for cubes in R"*! as well as (open) balls in R”
and R+,

e Fora,be[—o0, 0], we set B2 := {X=(x,1) e R"" : 1 € (a, b)}.

« Given a Borel set £ and Borel measure w, for any | g-measurable function f we define the w-average

][Efdu :=ﬁfEfdu.

of f over E as
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« For a Borel set E C R"*!, we let 1 denote the usual indicator function of E; that is, 1g(x) = 1 if
xeE,and 1g(x)=0ifx ¢ E.

 For a Banach space X, we let B(X) denote the space of bounded linear operators on X. Similarly, if X
and Y are Banach spaces, we denote by B(X, Y) the space of bounded linear operators X — Y.

We will work with several function spaces; let us briefly describe them. For the rest of the paper, we
assume that the reader is familiar with the basics of the theory of distributions and the Fourier transform
and the basics of the theory of Sobolev spaces; see [54]. We delegate some of the basic definitions and
results to this and other introductory texts.

Let Q be an open set in R* for some k € N. For any m € N and any p € [1, 00), the space L?(Q)" =
LP (2, C™) consists of the complex-valued p-th integrable m-dimensional vector functions over 2. We
equip L? (2, C™) with the norm

1/p
£l e .om = (mew) L f=

For simplicity of notation, we often write || f l, =l f lzr) =l f |7, cm) when the domain €2 and the
dimension of the vector function f are clear from the context (most often, when 2 is the ambient space,
which for us means either Q = R” or Q = R*t1).

The space C2°(£2) consists of all compactly supported smooth complex-valued functions in 2. As
usual, we let 2 = C°(R"*1), and we let 2’ = 2* be the space of distributions on R"*!, The space .
consists of the Schwartz functions on R"*!, and .’ =.#* is the space of tempered distributions on R"*!,

For p € [1, 00), we denote by W7 () the usual Sobolev space of functions in L (£2) whose weak
gradients exist and lie in (L? (€2))"1. We endow this space with the norm

lullwir) == llullLr@) + 1 VullLr ).

We define Wl’p (€2) as the completion of C OO(SZ) in the above norm. We shall have occasion to discuss

the homogeneous Sobolev spaces as well: by W1 P(2) we denote the space of functions in Ll (Q) whose

loc
weak gradients exist and lie in L? (£2). We equip this space with the seminorm

|u|vi/11p(9) =[Vulrre),

and point out that Wi (€2) coincides with the completion of the quotient space C*°(§2)/Cin the | - [y 1., (q)
(quotient) norm. For p € (1, n+ 1) and Q C R"*! an open set, we define the space Y7 () as

Y2 (Q) i= {u e LOTVP/HI=PN(Q) 1 Vu e LP ().
Write p* :=(n+ 1)p/(n+ 1 — p). We equip this space with the norm
lullyrr@) = llullpr @)+ 1IVullLr)-

We define Y P (Q) as the completlon of C2°(£2) in this norm. By virtue of the Sobolev embedding, when
p € (1,n+ 1) we have that Y "P(Q) coincides with the completion of C 2°(R2) in the W1 P(€2) seminorm.
Moreover, we have that YO1 p(R”“) =yl (R,
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The Y2 spaces exhibit the following useful property.

Lemma 2.1 (integrability up to a constant of a function with square integrable gradient on a half-space).

Suppose that u € Llloc

the distributional gradient satisfies Vu € LZ(ZS ). Then there exists ¢ € C such thatu —ceY 1’2(25 ).

(Eg)for somea <b, a,b e[—00, 00], with either a = —o00 or b = +00, and that

The proof is very similar to that of Theorem 1.78 in [55]; thus we omit it.
In our paper, whenever we write u(¢) for t € R, we mean

ut) =u(-,1); (2.2)

thus u(¢) is a measurable function on R". Let us present a fact regarding the regularity of functions in
Y 12(R"*1) when seen as single-variable vector-valued maps. The proof is omitted as it is straightforward.

Lemma 2.3 (local Holder continuity in the transversal direction). Suppose that u € YI’Z(EZ ) for some
a < b. Then it holds that u € Cy ((a, b); L¥ (R")) for some exponent a > 0 (see (2.2)). Moreover, if
o,Vu € LZ(ES), then we also have Vu € Cl’zc((a, b); L*(R")) for some > 0.

Remark 2.4. Note that the functions above are representatives of u(z) and Vu(z), but that these retain
the same properties as their smooth counterparts when acting on functions defined on the slice {x,1; = t}.

More precisely, for any ¢ € C2°(R"; C") and any 7 € (a, b), we have the identity

/ u(x, t)divy ¢(x)dx = —/ Viu(x, 1) - ¢(x)dx.
n Rn
The above identity is already true for a.e. ¢ € (a, b) and is seen to be true for arbitrary ¢ € (a, b) by the
continuity of u and Vu.
Analogously, we introduce Y12(R") as
YP2(R?) = {u e L*/" P (R") : Vu € L*(R")),

and equip it with the norm

||M||Y1~2(R") = ”””LZH/("*Z)(R") + ”Vu”LZ(R”)-
Note carefully that in our convention,

. 2(n+1) 2n

2*
n—1 n—2"

Some fractional Sobolev spaces will be useful for us when discussing trace operators. Let F : L(R") —
L?(R") be the Fourier transform. Throughout this paper, we shall also set & := Fu. We write

H'>(R") = {u e L2 (R") : /Rn(l +EDAE) > dE < —i—oo}.

The space H'/?(R") consists of those tempered distributions u € .” whose Fourier transform @ € .’ is a

measurable function satisfying fR” |E|16(£)|> d& < +00. Naturally, this space comes equipped with the
seminorm |u| /2 ey = fR" |E|16(€)|* d&. We define the space H(}/Z(IR”) = H(l)/z([RR") as the completion
of C2°(R") under the H'/(R") seminorm. We write H ~1/2(R") := (HOI/Z([R?"))*, and emphasize that we
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are departing from notation used elsewhere in the literature. Since HO1 / 2(IR") 2H 172(R™), it follows that
H~'2(R") is contained in the dual space of H 172(R™), which is the usual (inhomogeneous) fractional
Sobolev space of order —% that coincides with the space

{u e RY: | L+ aE)) de < —i—oo}.
Rn
For a survey on the properties of fractional Sobolev spaces, see [24]. We state without proof two easy

results which are nevertheless useful.

Proposition 2.5 (Sobolev embeddings of the fractional Sobolev spaces). Let p4 :=2n/(n—1) and p_ :=
2n/(n+ 1). Then we have the continuous embeddings HOI/Z([R”) < LP+(R"), LP-(R") — H~/2(R").
Proposition 2.6. The map V : HO1 2(RYY = HV2(R") is bounded.

For fixed ¢ € R and any open set  C R"*! with nice enough (but possibly unbounded) boundary such
that R" x {t =t} C 2, we define the trace operator

Tr, : C°(Q) — CXRY), Trou=u(-,1). (2.7)

The relevance of the fractional Sobolev spaces to our theory comes from the following trace result; we
cite a paper with the proof for traces of functions in W!-%(R?), but the result is straightforwardly extended
to our situation.

Lemma 2.8 (traces of Y2 functions; [68]). Fixt > 0. Let Q be either R"*!, R, or R'f,l. Then, for
each s € R such that there exists x € R" with (x, s) € Q, the trace operator Tr (see (2.7)) extends uniquely
to a bounded linear operator Y'">(Q) — H(; /Z(R").

Definition 2.9 (Iocal weak solutions). Let 2 C R"*! be an open set with Lipschitz (but possibly unbounded)
boundary, and fix f € L} (Q), F e Ll (Q,C"), andu e le’CZ(Q). We say that u solves the equation

loc loc

Lu = f —div F in Q in the weak sense if, for every ¢ € C2°(2), the following identity holds:

[ cavirsu Yo+ mvip = [[ o+F o). .10)
Rn+1 n+1

Remark 2.11. Suppose that Q is as in Lemma 2.8. By a standard density argument, if u € ¥ :2(Q) solves
Lu = f+div F in Q in the weak sense and either

e« FeL?(Q) and f € LC2/0+3)(Q), or

e Q=D x I, where D is a domain with nice enough (but possibly unbounded) boundary and / is an
interval, and

FeL*(Q), felL*(I; L®/0+D(pyy4 @2/t (0 (2.12)

then (2.10) holds for all ¢ € Yol ’Z(Q). A similar observation to the second item can be made if €2 is a ball
in R,
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For an infinite interval / C R and a Banach space X, let C(’)‘(I ; X) be the space of functions f: ] — X
such that all their first k derivatives f® : I — X, 0 <[ <k, exist, are continuous on /, and satisfy that
limy oo | FP)||x =0 for all 0 <[ < k. When k = 0, we will omit the superscript and simply write
c'=c.

Definition 2.13 (slice spaces). For n > 3, we define
DY :={v € Co((0, 00); LAR") : [lull pz < 00},
with norm given by ”U”Di =sup,.o v 2wy (see (2.2)). We also define
83 = {u € C3((0, 00); Y'2(RM) 11/ (1) € Co((0, 00); L*(RM), [lullgz < 00},
with norm given by

lulls2 2= sup (@) [l yr2(wn) 4 sup llu' () L2y + sup |21 (1) Iy 1.2 ey + sUp ||12M//(f)||yl~2(w)-
t>0 t>0 >0 t>0

In particular, both Di and S%r are Banach spaces. Similarly, with obvious modifications, we can define
the slice spaces S2 and D? in the negative half line (—oo, 0).

We also state, without proof, the following criterion for the existence of weak derivatives in L*(I; X).
See [15] for further results and definitions.

Theorem 2.14 (vector-valued weak derivatives; [15, Theorem 1.4.40]). Suppose that X is a reflexive
Banach space and let I C R be a (not necessarily bounded) interval. Let [ € L%*(I; X). Then f €

WUL2(I; X) if and only if there exists ¢ € L*>(I; R) such that, for anyt, s € I, the estimate
t
/ @(r)dr
S
holds. Moreover, for a.e. t € I, the difference quotients
L0

AWV%————Z———,heRJM<L

If (@)= f)llx =

converge weakly in X to f'(t) as h — O.

Remark 2.15. We will see that if u € Wl’z([RR'jfl) N Si and Lu =0 in [R’fl, then by Caccioppoli’s

loc
inequality (on slices) we have

llulls2 A sup [lu(®) [ y12gn) + sup llu" ()| 2y 2 sup V) Trz |l 2y + sup || Tr (Do 120) || 12 gy
t>0 t>0 t>0 t>0
We now state a trace theorem in cubes. We set
I;eIE =(—R,R)"x(0,£R), Ir:=(—R, R)”“, AR :=(—R, R)" x {0}.

Proposition 2.16 (trace operator on a cube). Let H'/?>(AR) be the space consisting of pointwise re-
strictions of functions in H'2(R") to Ag. There exists a bounded linear operator Tro™ : Wl’z(llzet) —
H'2(AR) (called the trace operator associated to Ilf) with the following properties:
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(1) Foreachu € C“(IE), we have TroT u(-) = u(-, 0).

(ii) For each ® € C2°(IR), the identity

- _ _
(Tro" w)p =F // WDy 1@+ Dyyud)
AR I
holds, where ¢ (-) = ®(-, 0).
In particular, the traces are consistent in the sense that, for every R’ < R, the restriction to | Ij;, of the
trace operator associated to I;f, agrees with the trace in Ilf.

Proof. The result follows from the usual trace theorem on Lipschitz domains (see, for instance, [54,
Theorem 15.23] and the results which follow this theorem) and the fact that I;{ is an extension domain
for W'2 (see [54, Theorem 12.15]). O

We now remark that the zeroth-order term V in our differential equation can be absorbed into the
first-order terms.

Lemma 2.17 (zeroth-order term absorbed by first-order terms). Let L be as in (1.1) with

max{|| Billx, | B2llns IV lln/2} < €0-
Then
L=—div(AV+B)+ B, -V,
where
max{[|Billn. | B2lln} < Cueo.
Proof. We write
V(x) = —div, ViV (x) = ¢, div, RV (x),

where I, is the w-order Riesz potential

1
(Iaf)(x)=—/w AN

Co lx — y|*

and R is the Riesz transform on R". For definitions and properties, see [67]. To conclude the lemma, we
note that I; : L"/?(R") — L"(R") and R is a bounded operator L" (R") — [L"(R")]". 0O

Observe that it suffices that V € I:’i  ={Ve 2' . 1,V € L™}, with small norm. Thus, our results hold
under this slightly more general assumption on V.

Accordingly, from now on we drop the term V from our operator. We obtain invertibility of the
operator £ on the Hilbert space ¥ >(R"*!) when the size of the lower-order terms is small enough.

Definition 2.18 (sesquilinear form and associated operator). Define the sesquilinear form
Bp: COMR'™) x COR™!) — €
via
Belu, v] = // [AVu-Vv+uBy-Vo+9By-Vul, u,veCPR.
Rn+1
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Define the operator £ : 2 — 2’ via the identity

(Cu,v) = Brlu,v], u,veCPR"™M.
It is clear that £ is linear.
In fact, the form B, extends to a bounded, coercive form on Y1 2(R"*!) x Y1.2(R"*!), and the

operator £ extends to an isomorphism Y -2(R"*!) — (Y 1-2(R**1))* This is precisely the content of the
following result.

Proposition 2.19 (extension of operator to Y 1.2 The form B/ extends to a bounded form on YL2(Rrtly;
that is,
|Beu, v]| S IVull2Volly  forallu, v e CPR"™),

with the implicit constant depending on n, A, A, and max{|| By ||, || Bz2|l»}. Hence L extends to a bounded
operator Y"2(R"T1) — (Y L2(R* 1))

Moreover, there exists a constant &g = go(n, A, A) > 0 such that if max{|| B ||, || B2ll»} < &0, then B
is also coercive in Yl*z([RR”“) with lower bound A /2; that is,

%nwn% < e Belu,u] forallu e CRR™),
In particular, if max{||Bill,, ||B2ll.} < €o, then by the Lax—Milgram theorem the operator L' :
(YL2(RHY)y* — YL2(RMY) exists as a bounded linear operator:
Proof. The proof is straightforward, and thus is omitted. O

Remark 2.20. We will always assume that max{|| B ||,, || B2lln} < €0, as above. The value of &y may be
made smaller, but it will always depend only on n, A and A, and we will explicitly state when we impose
further smallness.

Definition 2.21 (dual operator). Associated to £ we also have the dual operator, denoted £*: Y L2(rrtly
(YL2(R"1))* defined by the relation
(Lu, v) = (u, L*v).
It is a matter of algebra to check that
L*v = —div(A*Vv + Bov) + B - Vv
holds in the weak sense.

In particular, £* is an operator of the same type as £ and if max{|| By ||, | B2ll»} < €o so that £ 'is
defined, then (£*)~! is well-defined, bounded, and satisfies (£*)~! = (£~ 1)*,

2A. Generalized Littlewood—Paley theory. In this subsection, we review some of the known results
from the generalized Littlewood—Paley theory. Here, the generalization is that one replaces the classical
smoothness assumption by a so-called quasi-orthogonality condition, and one replaces the classical
pointwise decay condition by off-diagonal decay in an L? sense.
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First, we introduce the square function norm || - |||. We define

1/2 1/2
dx dt dx dt

|||F|||i:=(// |F(x,0)> 240 ) : |||F|||au:=(f/ |F(x, 1) S48 ) :
Ri+1 t n+1 t

For a family of linear operators on L*(R™), {6,}:=0, we define

MO lll+0p := sup 6 flll,
Ifll2=1

and similarly define |||6;]| and |16 [llan,op- We will often drop the sign in the subscript when in context

|—,op
it is understood that we work in the upper half-space.

Recall that a Borel measure i on [R{’ﬂ] is called Carleson if there exists a constant C such that
1(Rg) < C|Q] for all cubes Q C R", where Rgp = Q x (0, £(Q)) is the Carleson box above Q. Given a

measurable function Y on [Ri'jfl, we define

1[4 dx dt
ITe :=sup—/ /mx,mz 2Ly
o 1210 Jo

t

where the supremum is taken over all cubes QO C R™ In other words, || Y|¢ < oo if and only if
I (x, t)|*(dx dt /t) is a Carleson measure; in this case, we say that Y € C. There is a deep connection
between Carleson measures and square function estimates, as seen in the 7'1 theorem for square functions
of [16]. In this article, we use a generalized version of that result [35, Theorem 4.3].

We record several results from [1], which will be crucial in establishing square function estimates for
solutions.

Definition 2.22 (good off-diagonal decay). We say that a family of linear operators on L*(R™), {6;}¢~0,
has good off-diagonal decay if there exist M > 0 and C > 0 such that for all f € L>(R"), the estimate

. ¢ 2M+2
||01(f:n-2k+'Q\2kQ)||iZ(Q) SM 27" (ZkE(Q)> ”f”i2(2k+lQ\2kQ)

holds for every cube Q C R”, every k > 2 and all 0 < ¢t < C£(Q). Here, the implicit constants may depend
only on dimension, M, and on the family of operators.

If b € L*°(R"), then for any cube Q in R" and any ¢ € (0, C£(Q)), it can be shown via the good oft-
diagonal decay that 6; (bl o) € L?(Q). This allows us to define 6,5 := 0(blg) + 6, (blgn o) € L*(Q)
for any ¢ > 0 and Q with £(Q) > t/C (the independence of 6,0 over Q is given by the linearity). Thus,
for b € L®¥(R"), 6,b € L? (R") for each t > 0. We omit further details.

loc

Lemma 2.23 (consequences of off-diagonal decay; [1, Lemma 3.2; 29]). Suppose that {0;},~¢ is a family
of linear operators on L>(R") with good off-diagonal decay which satisfies |||6; llop < C. Then, for every
b € L*®(R") (see the above remarks), the family {0;},~¢ satisfies the estimate

16:bllc < A+ 6 M) 1511%-
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Moreover, if 16|22 < 1and6;1 =0 forallt > 0, then, for every b € BMO(R"),

16:blle S (1 + 16: 112 1611 Fpo-

Lemma 2.24 [1, Lemma 3.11]. Suppose that {6;},~0 is a family of linear operators on L*(R") with good
off-diagonal decay and which satisfies 0;||;2_;2 S 1 forall t > 0. For each t > 0, let A; denote a
self-adjoint averaging operator on L>(R"), given as A, f = fR,, F e (-, y)dy, whose kernel satisfies

0<g¢(x,y) St "Lx—y<cr and f(pt(x,y)dy=1-
Rn

Then for each t > 0 and any b € L (R"), the function 0,b is well-defined as an element of LIZOC(R”), and
we have

sup [|(6:0) As fll 2wy S 16l f N12-

t>0

Lemma 2.25 [1, Lemma 3.5]. Suppose that {R,};~o is a family of operators on L>(R") with good
off-diagonal decay, and suppose further that |R;||;2_ 12 < 1 and R,1 =0 for all t > 0 (note that by
Lemma 2.24, R, 1 is defined as an element ofL2 (R™)). Then for each h € WL2(RM), we have

loc
Rk S t2f Vah?.
R~ R»
If, in addition, || R, divy || 2_ ;2 < 1/t, then we also have for each f € L*(R") that

dx dt
[ Rreor A Sy 15,
Rn

+

The following definition is important in establishing quasi-orthogonality estimates (compare to the
notion of an e-family in [16]).

Definition 2.26 (CLP family). We say that a family of convolution operators on L*(R™), {Qy}s=0, is a
CLP family (Calderén-Littlewood—Paley family), if there exist o > 0 and ¥ € L!(R") satisfying

WIS A+1xD™ and [ (&)] < min(€]%, |67
such that the following four statements hold:
(1) The representation Q; f = s~ (- /s) % f holds for each f € L>(R").

(2) For each f € L2(R"), we have control of the following L? norms uniformly in s:

sup(1Qs fll2 + IIsVQs flI2) S I f1l2.

s>0

(3) For each f € L?(R"), we have the square function estimate
q

| ] 1erwr e <y
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(4) Let I : L>(R") — L?*(R") be the identity operator. The equation

o0
[t
0 N

holds in the sense that the Bochner integrals fSR Q? ds/s converge to I in the strong operator topology on
B(L*(R")) as § — 0 and R — oo.

Proposition 2.27 (qualitative mappings). Let f € Y12(R") and {Qy}y~0 be either

(a) a standard Littlewood—Paley family as in Definition 2.26, with kernel v, with the additional condition
that there exists o > 1 such that |1/7(.§)| < min(|§|%, |&]7?), or

(b) Oy =1 — Py, where Py is a nice approximate identity.

Then, for all s > 0, we have O, f € Wl’z([R{").

Proof. In either case, via Plancherel’s theorem, it will suffice to estimate the L? norm of é;f . In case (a),
by basic properties of the Fourier transform, we see that

y 1O, (§)* dg = /R 19 (s f (©)PdE < /R min(|s& (77", 1s£]77 D2 1E P £ (€)1 dé,

whence the desired conclusion follows in this case. For case (b), we similarly compute, using Plancherel’s
theorem and the fundamental theorem of calculus, that if ¢ is the radial kernel of the nice approximate
identity P,

— N R slgl 2
QT ®Pds = | 1= gGIENFIf ) df = Rﬂ|f<s>|2/0 ¢(r)dr| di
) sl&|
s/w s2|s|2|f<s>|2]£ ¢’ (0 d dt
< I [ 6P de. =

3. Elliptic theory estimates

In this section, we establish several estimates for the operators under consideration, which are standard in
the elliptic theory. We begin with Caccioppoli-type estimates.

3A. Caccioppoli-type inequalities. Let us first show:

Proposition 3.1 (Caccioppoli inequality, [22]). Let Q C R™*! be an open set. Suppose that u € wl(Q),

loc

feL? (Q), Fel? ()", and that Lu = f — div F in Q in the weak sense. Then, for every ball

loc loc

B C 2B C 2, the estimate

//B|Vu|25//23<r(113)2|u|2+|ﬁ|2+r<B>2|f|2>

holds, with the implicit constant depending only on n, A, A.
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The above estimate is a particular case of a Caccioppoli inequality obtained in a very general setting of
elliptic systems in [22]. Since our techniques will be exploited in several calculations later, we present
here a self-contained proof.

Proof. Consider n € C2°(2B) such that 0 < < 1,7 =1in B and |Vn| < r(B)~L. Note that un? is a
valid testing function in (2.10), and therefore we obtain

f/ k|Vu|2n2§// AVu-Vun?
Rn-H Rn-H

= f/ (—Z(AVM-VU)HIZ—FB]M-V(unz)—Bz-Vuld_772)+// (ﬁ-V(un%-i—fW)
Rn+1

Rn+1

= I1+1+1T+1V+V.

To handle the term I, we use Cauchy’s inequality with ¢ > 0 and the boundedness of A to obtain

A
|1|52A// |Vu|n|Vn||u|sAe/f IVu|2n2+—// P VP2,
Rr+1 Rn+1 e Re+1

with & small enough (depending only on A, A) that we can hide the first term. The second term is seen to
be of a desired form after using the bound on |V7].

For the term /11, we use the Holder and Sobolev inequalities in R” coupled with the 7-independence
of B>, as follows:

o0

o0

[1I1] Sf |Bz|(|VM|77)|M|77dde§/ | B2l L ey I Vel g2 ey lm || p20/0-2) oy
—o0 J R —00

0,0)

< 1Ballen / 1l 2 |V ) 2 di
o0

o0
< [1Ball @) / UV ull 22 gy + 1092l 2y V0] 2y it
—0oQ

Using the Cauchy inequality on the second term, we arrive at the estimate

S 1Bl [ A9+ Vo)

If we choose || B2||, < &g (see Proposition 2.19) with gy small enough (depending only on n, A, A), we
can hide the first term, while the second term is of a desired form.
To handle the term /I, notice that the product rule allows us to write the estimate

1= [ Bl 1Vula? + 281 WP = i1 411

The first term is handled similarly to I71. As for /15, we appeal again to the Holder and Sobolev inequalities,
together with the ¢-independence of Bj, to see that

(o.¢]

o0
|11} 5/ I Blln@n luVnll 2@y lun |l 2nm-2gny dt S ||Bl||L"(R")/ luVall 2@ Vi@l 2wy dt,
— o0

00 —

and this last expression may be handled in the same way as in 1.
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For the term IV, we use the product rule to obtain

|IV|§f/ +I(u?“mmm+2|1?“|n|u||vm) = IV, + IV>.
Rn

The first term may be estimated with Cauchy’s inequality with ¢,

1 -
Ivls/f (—|F|2+8IWI2772),
2B \ €

and we can hide the second term. For the term /V,, by Cauchy’s inequality, we have

Ivszf (FP + Vi),
2B

Combining these estimates gives

1 -
W%// |W|2n2s—/f (ul+ 1P +1VI.
//z; R+ r(B)? J)p

To handle the term V, we use the Cauchy inequality to obtain

1
IVlfffM|f||u|n2if/ZB(r(B)ZIfIZJrWIuIz)- 0

Remark 3.2 (Y!:? form a complex interpolation scale). In the case of purely second-order operators
(that is, By = B, = 0), we may exploit the fact that constants are always null-solutions. Applying the
Poincaré inequality, we obtain a weak reverse Holder inequality for Vu, which in particular implies
L? integrability for the gradient for some p > 2. We do not obtain the analogous estimate here, but rather
a suitable substitute. More precisely, we shall muster an L? version of the Caccioppoli inequality. In
order to prove this result, we remark that the spaces Y7 (R"*!) and their dual spaces, (Y"?)*, form a
complex interpolation scale, with

I 1-0 0
i yhrly =y, — = ——
Pe P1 D2

for 6 € (0,1) and 1 < p; < p» < n. We can show this fact by gathering the following two ingredients.

First, the homogeneous spaces WP form a complex interpolation scale (see [71]). Next, one uses that the
map that sends an element in WP toits unique representative in Y7 is a “retract”; see [46, Lemma 7.11]
and the discussion preceding it. Thus, we employ that lemma and conclude that the spaces Y!:? form
a complex interpolation scale. The fact that (Y''7)* form a complex interpolation scale is a general
consequence of the interpolation scale for ¥ !-?; see, for instance, [13, Theorem 4.5.1].

The L? Caccioppoli inequality will also make use of the well-known lemma of [66]. The (explicitly)
quantitative version stated here appears in [9].

Theorem 3.3 (Shneiberg’s lemma [9, Theorem A.1; 66]). Let X = (Xo, X1) and Y = (Yo, Y1) be
interpolation couples of Banach spaces, and T € B(X, Y). Suppose that, for some 0* € (0, 1) and some
k > 0, the lower bound ||Tx||y,. > «l|x|lx,. holds for all x € Xy+. Then the following statements are true.
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(1) Given0 <¢e < %, the lower bound ||Tx ||y, > ek || x| x, holds for all x € Xy, provided that
k(1 —4e) min{6*, 1 — 6*}

0—0% <
| = 3k +6M

’

where M = max o1 |7 ||x;—v;-
(1) If T : Xo» — Yy= is invertible, then the same is true for T : X9 — Yy if 0 is as in (i). The inverse
mappings agree on Xg N Xg+ and their norms are bounded by 1/(ek).
Using the above result, we can easily obtain:
Lemma 3.4 (invertibility of £ in a window around 2). Let p € (1, n) be such that p' < n, where p’ is

the Hélder conjugate of p. The operator L extends to a bounded operator Y -7 (R" 1) — (Y L.P/(Rr+1))*,
Moreover, the operator is invertible if | p — 2| is small enough depending on n, A, and A.

Remark 3.5. Here and throughout, we assume that the range of p near 2 in Lemma 3.4 is such that
px=n+Dp/(n+1+p) <2
The following lemma details the modification to the operator output upon multiplying a solution by a

cut-off function.
Lemma 3.6. Let Q C R"*! be an open set. Suppose that u € Wllo’cz(Q) satisfies Lu = 0 in Q2 in the weak
sense. Then for any x € C°(2, R), we have

L(xu)=divF+ f (3.7)
in R"*! in the weak sense, where F= A(VY)u,and f = —AVu-Vy — BiuVyx + BuVy.

Proof. We apply the operator £ to ux and test against ¢ € C2° (R"*1) with the goal in mind of extracting
a term of the form (Lu, ¢ x) = 0. Observe that

/ AV(uX)-V_(p:/ AVu-V(X(p)—i-/ uAVX-V_go—f [AVu -V,
Rn+1 Rn+1 Rn+1

Rn+1

/ (BWX)'V_<P=/ BIMV(XQD)_f [BiuVxlp,
Rn+1 Rn+1

Rn+1
/ Bzv(ux)¢=/ Bzwx_fﬂ-l-/ [BouVxlg,
Rn+1 Rn+1 Rn+1

where we use that x is real-valued. Collecting the first terms in each inequality and noting that px €
C°(R2), we realize that the contribution of these terms is (Lu, ¢ x) = 0. Then we have (L(xu), ¢) =
(div F+ f, @), as desired. O

We are now ready to combine the past few results and obtain the local high integrability of the gradient.

Lemma 3.8 (local high integrability of the gradient of a solution). Let 2 be an open set. Suppose that

ue WI})’CZ(Q) solves Lu =0 in Q in the weak sense. Then u ngcp

only onn, A, A, and 9. Moreover, for any x € C°(2, R), we have the estimate

(2), where p is close to 2 and depends

Ixullyro ey < IV F 4+ Ollyiogeey STE +1F 1.

where F and f are as in Lemma 3.6.
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Proof. Let F and f be as in the previous lemma. One may verify, using the Sobolev embedding
and the fact that x is smooth and compactly supported, that Fe L' (RN L¥ (R*!) and that f €
LY (R"THN L2(R"*1). Choosing p > 2 with | p — 2| sufficiently small, we may apply Lemma 3.4 to show
that the operator £ extends to a bounded and invertible operator YL @®Rh - (v 1’P/(IR”“))*. Hence
£~ is bounded. Applying £~ to each side of (3.7), we obtain

Ixullyre < 1£7'(div F + Dyt STF + 1 1p.-

Here, we note that L7+ embeds continuously into (Y 1’1’/)*, and div F € Y 1’*”/)* since F € LP. This
observation uses the identity [(p")*]' = p, and the continuous embedding Y ! ’P/([RR”“) s [P ®R*hH., O

Finally, we provide a more precise version of the above lemma, namely the L? Caccioppoli inequality.

Proposition 3.9 (L? Caccioppoli inequality). Let Q C R**! be an open set and let u € le)’cz(Q) solve
Lu = 0in Q in the weak sense. Suppose that B is a ball such that k B C Q2 for some k > 1. Then, for
every p > 0 such that |p — 2| is small enough that the conditions of Lemma 3.8 are satisfied, the estimate

1
IVullrgy S mﬂullu’(/{lz) (3.10)

holds, where the implicit constants depend on k, p, n, ., A, and &y.

Proof. Set r :=r(B) and let x = n* with n € CX(B(1+k)/2,R), 0<n <1, |Vn| S1/r. Note that x
has the same properties as 1. The estimate (3.10) will follow immediately from the estimate

1
luxllyrr@eny S ;”u”LP(KB)v (3.11)
since |Vullzrgy S I1(Vu) x|, and (the reverse triangle inequality yields)
IV x Il — ICVOull, SUV@Ol, < lluxllyie g

We immediately note that we have already established (3.11) in the case p = 2; this is the classical
Caccioppoli inequality. Applying Lemma 3.8, we have

Ixullyir@ery S NWENp+ 1 1p. (3.12)

where F and f are as in Lemma 3.6. The bound

- 1
IFllp = IIAVXMIIpS;IIMIILP(KB) (3.13)

is trivial from the properties of A and x and desirable from the standpoint of (3.11). It remains to find
appropriate bounds for the terms appearing in the expression for f. To this end, we have by Minkowski’s
inequality that

1fllp. < IAVu -V xllp, + 1BV xll p, + [1Bo2uV x|l p, =1 + 1T + 1.

Before continuing, we remark that the relation

n+1 n+1 n+1
= [+ 1)+ pl=""
pe (it Dp b

+1
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holds. Using the L? Caccioppoli inequality, Jensen’s inequality and the fact that p > 2, we have

12 1/2
I:||AVM'VX||p*§’"(n+1)/p(][ |W|2) s—r““””(][ |u|2>
(14+«)/2B r KB
1 1/p 1 1/p
5—r<"+“/"(][ |u|”) 5—(] |u|”) : (3.14)
r kB r kB

Next we bound I and III. The Sobolev embedding on R" and the Caccioppoli inequality* yield for
i =1, 2 the estimate

1/ps
| B; (b“?)|p*>
(14+x)/2
1 2 172
< Zpt D)/ pey—(nt1)/2 (/ |B; (MU)|2) < _p(tD/pey—(nt1)/2 (/ |V(W7)|2)
r B(144)/2 r Rect!

| 12 1/p
§—r("+1)/p(][ |u|2> 5_(/ |u|l’> . (3.15)
r kB r kB

Combining (3.13), (3.14) and (3.15) with (3.12) and the definitions of F and f, we obtain (3.11). As we
had reduced the proof of the statement of the proposition to (3.11), we have thus shown our claim. [J

1
IBie(Vy) I, < = ||B<un>||pw ‘”“)“’*(][
B

3B. Properties of solutions and their gradients on slices. Our next goal is to study the ¢-regularity of
our solutions as well as their properties on “slices”, which are sets of the form {(x, ) : t =1#p}. Let us first
note that ¢-derivatives of solutions are solutions.

Proposition 3.16 (the 7- derivatives of solutions are solutions). Let Q@ C R"*! be an open set, let f, Fe

lOC(SZ) and suppose that u € W loc (Q) satisfies Lu = f —div F in Q in the weak sense Assume further
that f; =0, f € L? () and F, = 8,F € L2 oc(82). Then the function v = d,u lies in W (Q) and satisfies
Lv = f; —div F; in Q in the weak sense.

loc

Proof. Fix aball B C 2B C Q2 and consider the difference quotients

YA —u(-
uy = 1T e]iff) uC) ) < dist(B. 99).

We define f;, and ﬁh similarly. By ¢-independence of the coefficients, we have Lu;, = f; — div Ij"h in B
for any such /. By the Caccioppoli inequality (Proposition 3.1), we obtain, for any 4 as above,

1 > 1 N
2 < 2 2 212\ < 2 2 21 £ 12
/fBIWhI N//23<r(3)2|uh| +1FaP +r(B) |fh|)N//23(r(B)2|atu| +IFP+r(B) |ﬁ|).

In particular, the difference quotients of Vu are bounded, which implies ou e W,

loc (Q) Consequently,
we must have that the difference quotients u;, converge weakly (in W, loc (Q)) to v = d,u (and s1m11arly
for f; and ﬁh). From (2.10) and the fact that Luy, = f;, — div ﬁh, we conclude that Lv = f; — div F,, as
desired. O

4More precisely, we use (3.11) with p =2.
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We now check that 7-derivatives of solutions are well-behaved on horizontal strips.

Lemma 3.17 (good integrability of the 7-derivative of a solution on a strip). Define 25 ={(x,1) e R+ :
a <t < b}. Suppose that u and v := 0;u are as in Proposition 3.16 with Q = 23, and suppose further
that v € L*>(X0). Then Vv € LZ(ES,,) foreacha <a <b' <b.

Proof. Let xg = ¢ (x)¥(¢) be a product of infinitely smooth cut-off functions with 0 < ¢g, ¥ <1, Yy =1
on (a’,b'), ¥ € C¥(a,b), and g =1 on Bg, ¢p € C°(Bag). Then, for all R > min{a’ —a,b—b'},
we claim that

// [Vl dxdt<// XR IVUI2<// (WP + IF P+ 1DV +1)
Bg Rn+1 Rr+1

(P +IEP+1£1).

(rmn{a —a,b—", l})2/ R

We provide the details of the second line in a moment; note that in the third line we used that the dominant
contribution for the gradient of yr is its £-component when R is large. Sending R — oo finishes the
proof modulo the aforementioned line.

To see the computation above, let x := yz and observe that

// x| V> < // x*Re(AVVV)
RVH—I Rn-H
< %e[/f AVuV(vx?) —2// Xl_)AVUVX] =: Re[l + II].
Rn+1 Rn+1

1
1) ge/f VP41 // Vol
Rn-H & Rn-H

and the first term can be absorbed to the left-hand side. It remains to handle /. We use the equation
Lv = f; —div F; to write I = I + I, + I + 14, where each [; is a term of the equation and each will be
given explicitly below. First, note that

|14|:=‘/ szXZSf/ |vx|2+/f ixl
RnJrl R"*l n+1

which handles this term. Next, we have
sff |Fvi|2+// |Fx Vxvl.
R)H»l Rn+1

) = V/ EN i)
Rn+l

We handle the first term as in /I, and we handle the second term as /4. Moving on, we see that

|11|:=W Blvvwx%sf/ |(BIUX)VUX|+/f (Brox)Vxol.
Rn+l n+1 Rn+l

Clearly,
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Both of the terms above are handled by using the smallness of Bj as in the proof of the Caccioppoli
inequality. Now, for the last term, we have

|12|:=W ByVux2i 5ff (Baxv) Vo,
RnJrl Rn+l

so that we may handle this term exactly as we did /;. O

Remark 3.18. We may bring the above lemma and Lemma 2.3 together to conclude that if # solves
Lu =0in Ei’ , then automatically we have the transversal Holder continuity of its gradient, and u €
CY ((a, b), L*/"=2(R")) for some & > 0.

Next, we present a formula for our equation on a slice. Recall that A denotes the (n+ 1) x n submatrix
of A consisting of the first n columns of A.

Proposition 3.19 (integration by parts on slices for £). Let u € Y'2(X2) and suppose that Lu = g in X2
for some g € CSO(R”“). Then, for everyt € (a, b) and ¢ € W-2(R"), the identity

/n((A(x)Vu(x, D))+ (B)ju(x, 1)) - Vyp(x) dx + / Bo(x) - Vu(x, )o(x) dx

= / (Apsr, - (X) -3, Vulx, ) + (B1(x)) 1 du(x, 1)) p(x) dx + / g(x, He(x)dx
n Rn

holds. If v, 0;v € Y1’2(Ei’), and L*v =0 in EZ for some g € CX(R"), then, for everyt € (a, b) and
o € WH2(RM), the identity

/R[V|<P-((Ez)uv(t))-l-fivnw'Vv(f)-l-Blfp'Vv(t)]= R[‘/’(EZ)J_Dn+1U(t)+¢A-,n+1VDn+1U(t)]

holds. Finally, for v and ¢ as above, we also have the identity

)

| 510 @ oy = [ oZ Do VieEpo+] eEww-[ By,

Proof. Fix ¢ € C°(R") and t € (a, b). Let ¢ (x, s5) := @(x)n(t —s) with ¢ <min{b —¢, t —a}, where
ne(-)=¢e"n(- /e), ne C(—1,1), fR n = 1. In particular, ¢, € Cé’o(Zg) is an admissible test function
in the definition of the weak solution. Thus, from the definition of Lu = g, we have

//WH{((A(X)VM(X, SN+ (B ju(x, s)) - Vige(x, 5) + Ba(x) - Vu(x, $)ps (x, 5) } dx ds

= // 1(An+1’ . (x)0sVu(x,s)+ (Bi(x)) 1 0su(x,s)+ g(x, s))(pg(x, s)dxds.
Rn+
Notice, for instance, that the map

t— . ((AX)Vulx, )+ (B u(x, 1) - Vip(x) dx

is continuous in (a, b), owing to Lemma 2.3 and the continuity of the duality pairings in each of its
entries. A similar statement holds for all the other integrals. The desired conclusion now follows from
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the fact that for any continuous function % : (a, b) — C, we have lim,_, ¢ fR ne(t — -)h = h(t) for each
t €(a,b). O

As in [1], but now employing Proposition 3.9, the ¢-independence of our coefficients allows us to
obtain L7 estimates on cubes lying in horizontal slices.

Lemma 3.20 (L? estimates on slices [1, Proposition 2.1]). Lett € R, Q C R" be a cube, and 1y be
the box Ig =40 x (t —£(Q), t +£(Q)). Let p > 2 with |p — 2| small enough that the conclusion of
Lemma 3.4 holds. Suppose that u € W"2(1 o) satisfies Lu =0 in 1g. Then the estimates

1 » 1/I7< 1 ) 1/p
— Vu(x, S Vu(x, , 3.21
(a1 f, 0w 5 (g f, oo 2
1 » 1/I7< 1 1 » 1/p
— Vu(x, N v , 3.22
(a1 f, w00) ™ 50 25 (g [ o) o

hold, where Q* :=20 x (t —€(Q)/4,t + £(Q)/4) is an (n+1)-dimensional rectangle, and Q** =
30 x (t—4€(Q)/2,t+4£(Q)/2) is a slight dilation of Q*.

In [1], the analogue of the preceding lemma is proved in the purely second-order case. However, the

argument there extends almost verbatim to the present situation, given Proposition 3.9. We omit the
details.

Let us consider how the shift operator acts on £~!. For each T € R, denote by .77 the (positive) shift
by 7 in the t-direction: if u € CSO(R"“), then (Z77u) = u(-,- + t). More generally, if f € 2" is a
distribution, we define the distribution 77 f by (77 f, ) = (f, 7 "¢) for each ¢ € 2.

Proposition 3.23. Suppose that u € le’cz(RTl) solves Lu =0 in [R{’fl. Then:
() Let f e YP2(R"™Y))* and fix s € R. Then 7L~ f € YV'2(R'™Y) and satisfies L7 f = L7175 f.
(i) Lets > 0. Then 7°u € W2 (R and L75u =0 in R1H.

(iii) We have D yu € W2 (R™) and LD, u =0 in R

(iv) For any s > 0, we have D, 17 u € YI’Z(RTF]) N LZ(RTH) = WI’Z(RTFI). In particular, for any
t > 0, the trace Tr; D, u is an element of H'/*(R") = LA (R") N HOI/Z([R{”). Moreover, for eacht > 0,
the estimate

I Ty Yl oy S Nl (3.24)

holds. In particular, for each s > 0 we have

sup || (¢ +s) Tr, Va,ysuan(Rn) < ”””YLZ(RTI)' (3.25)

t>0

Finally, for eacht > 0 and { € H™'/>(R"), we have the identity
d
(Tr; Dyyu, §) = E(Trzu,é). (3.26)

Proof. The proofs of (1), (ii), and (iii) are very similar to the proof of Proposition 3.16, and are thus omitted.
We prove (iv), and to this end fix s > 0. By assumption, it is clear that 7°u € Y I’Z(Rf’:’l), and by (ii), we
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have £7°u = 0 in R"*'. Hence, by (iii), we have D, 7%u € W2 (R and £D,41.7%u =0 in R

ocC

Let G(s/2) be a grid of pairwise disjoint cubes R C R"*! such that R"*! = URE@(S/Z) R and ¢(R) =s/2.

Consider the estimate
> [ 9D
R

f/ |VDn+19‘"u|2=// IV Dysrul =
R Ry ReG(s/2)

S Y slz f i 1Duirul* S slz||Dn+1u||iz(Rw) < Siz||u||zyl,2(m+l),
ReG(s/2)

which proves that VD, 1.7 u e LZ(R'J’FH). Since D,,. 17 ue LZ(RTI) by the assumption u € Y1’2(R'jr+1),
we have D, 1. 7°u € WI’Z(RTI). Hence, foreach t >0, Tr; D, 1 7°u € H'2(R"). But Tr, Dy 1 T%u =
Try4+5 Dp+1u. The estimate (3.24) is true by Caccioppoli on slices (Lemma 3.20), as follows: break R”
into a grid G, (¢/2) of cubes Q C R", £(Q) = t/2, and use Caccioppoli on slices in each cube.

It remains to check the identity (3.26), so fix ¢t > 0. We have seen that Tr; D,y u € HO1 / 2([R”) for
each t > 0. Fix ¢ € H~'/2(R"), and define g(t) := (Tr; u, ¢) for each T > 0. We will show that g is
differentiable at ¢, and compute its derivative. To this end, note that

gt+h)—gt) (Trpu,t)— (Tryu, ) T —u ThT'w — T'u
h = h = Tr,T,g' - TrOT, .

By our previous computations, we have

Thgty — Tty

p — Dpy1 7w in YR ash — 0,

which implies

(ﬁhﬁ’u—ﬂ’u
Tro T

) — Trg Dyy1.7'u in Hy'*(R") as h — 0,

and hence we have

gt+h)—g(

- — (Trg Dpi17'u, &) = (Tr; Dypqu, &) as h — 0. O

4. Abstract layer potential theory

In this section, we develop the abstract layer potential theory. Our methods often closely follow the
constructions of Ariel Barton [12]; but see also [63].

Definition 4.1 (single layer potential). Define the single layer potential of L as the operator S* :
H~'2(R") — YL2(R"*1) given by S* := (Trg o(£L~")*)* which is well-defined by virtue of Lemma 2.8
and Proposition 2.19. For t € R, we define Sf := Tr; oS*. When the operator under consideration is
clear from the context, we will sometimes drop the superscript, so that we write S = S*. For each
teR, f:R" > Cland f: R* — C, define (S£V))f := —SE(div f), SED,y1 = —3,SE, and
(SEVYf = (SEV) fi + SF Dt fuia-

Let us elucidate a few properties of this “abstract” single layer potential.
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Proposition 4.2 (properties of the single layer potential). Fix y € H~'/2(R"). The following statements
hold:

(i) The function S*y € YL2(R"1) is the unique element in Y2 (R"*1) such that
B[S y, 1= (y, Trog®) forall ® € Y 2R, (4.3)

Accordingly, St : H™'/2(R") — Y 2(R"*) is a bounded linear operator:
.. . . . +1 +1
(i) The function S*y satisfies LS*y =0 in Q, where Q = R R*H
(iii) Suppose that y has compact support. Then LS*y = 0 in R\ supp y.
(iv) Define p_, p+ as in Proposition 2.5 and suppose that y € LP-(R"). Then the bound

|| Tr, SLJ/”LH([R") Sy llee-@e
holds for each t € R.

(v) For each t € R, the operators S;C and Sf: are adjoint to one another. That is, for each vy, €
H~V2(R"), the identity (SFy, V) = (y, S5, ¥) holds.

(vi) Foreacht € R, we have the characterization
T8y = (Tr, o(L™HH)*. (4.4)

(vii) For each t € R\{0}, we have Tr; Dn_HSE]/ € Hol/Z(IR"). Moreover, for each t € R\{0} and each
¢ e HV2(R"), we have
d *
(Tr; Du1 85y, &) = 7Sy, O ==y, Trs Dui S° ),
(viii) Let t € R\{0}. Let g = (g, 81) : R* — C"! be such that g|, g, € C2(R"). In the sense of

distributions, we have the adjoint relation
(VSy. 8)7.2 = (V. (S5 V&) o1 ny i - (4.5)

Proof. Fix y € H™'2(R™).

(i) Since Trg: Y2(R"T!) — HO1 /2(R") is a bounded linear operator, T, := (y, Tro - ) is a bounded linear

functional on Y1-2(R"*!). By the Lax-Milgram theorem, there exists a unique u, € ¥-2(R"*!) such that
Beluy,, ®1=(T,, ®) = (y, Tro @) for all ® € Y12(R"*!). Now let ¥ e (Y!2(R"*1))* be arbitrary, and
observe that
(W, 8Ey) = (U, (Trg o(L™H")*y) = (Trg o(L™H*W, )
= (T, (L7W) = Br[u,, (£9)~1W]

= (Luy, (LHYTIW) = (u,, V) = (U, u,).

(ii) Let ® € CSO(RTI), and let ® be an extension of ® to C°(R"1) with ® =0 on R""!\ supp ®. In
particular, Try ® = 0. Then (4.3) gives B[;[Sﬁy, D)= BL[Sﬁy, 5] =0. Since ® was arbitrary, the claim
follows.
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(iii) Let Q := R"*!\ supp y, and let ® € CX(R2). Let ® be an extension of ® to Cé’o([RE”“) with @ =0
on R"*1\ supp y. In particular, the supports of ® and y are disjoint. It follows that (y, Try 5) =0. Using
(4.3) now yields the result.

(iv) By the boundedness of S* and the Sobolev embeddings, we have
17 g lrs@n S ISE8I 12, S 1S5glyiagen S Iglla-12gn S I8llLr-@n.

(v) Fixt e Rand y, ¢ € H~!/2(R"). By the Lax-Milgram theorem, there exists a unique v¢* € Y L.2(R"+1)
such that By«[vé!, ®] = (¢, Tr; ®) for all ® € Y2(R"*!). Observe that

(Tr, 8%y, ) = (¢, Tr; SEy) = Br«[v5!, SEy 1 = Be[SEy, v5'] = (y, Tro v*7).

Thus it suffices to show that Tro v%’ and Sf;kg“ coincide as elements in HO1 / 2([RR”). In turn, this will follow
if we prove that S£°¢ = 7105 = v&! (-, - +1), in YL2(R"). Let ® € Y2(R*t!) be arbitrary. Note
then that .7’ ® also lies in Y "2(R"*!). By the r-independence of the coefficients of £ and a change of
variables we have

B[ T8, 7'®] = Bp[0%, ®] = (y, Tr, ®) = (y, Trg 7' ®).

By (4.3) with £ replaced by £* throughout, S£'¢ is the unique element of ¥'-2(R**!) for which the
above identity can hold for all ® € Y12(R"*1), as desired.

(vi) In (v), we proved that for each y € H™'/*(R"), 8%y = 7'L7(T}), where T| € (Y"*(R"T1))* is
given by (T}ﬁ, ®) = (y, Tr, ®) for & € Y2(R"+!). Hence 7 'SFy = E_I(T]ﬁ). Reproduce the proof of
(i) in reverse to obtain the claim.

(vii) Let ¢ > O (the case t < 0 is analogous). By (ii) we have £S*y = 0 in [RR'J’FH. Therefore, using
Proposition 3.23(iv) we have Tr; D, + 1Sy e H0] / 2([Ri”) for each T > 0. Using (3.26) and (v), we calculate
that

a L _4d c ‘
d'f(TrTS V»Z) t=t_dT<§’TrTS V)

d «
p (Tr_, S£°¢,y)

=t T =t

d x
= (Tr—: S¥°¢,y)

“d(=1) = —(Tr_ D1 S50, y) = — (. Tr_ Dp1 S°'¢).

—T=—t

(viii) It is clear by an easy induction procedure that (vii) holds for higher ¢-derivatives in the expected
manner. Note that
(VS£y. 8)9.9 = (VISF V. 81) 9.9 + (Tt Du1 S5y, 81) 5.9
= —(Sfy. divgi)or.o = (¥ Trot Dui S 81) v guny g1y
= (¥, S5 AV &) 12y iy (Vs (S5 Dus)8L) 12y i
= (. (S5 V)g). =
In preparation for defining the double layer potential, let us make the following remark.

Remark. Givenge H,'*(R"), there exists ® € ¥ 2(R" 1) with Tro ®=g and [|® ||y 1.2 g1 S 10112 gy
0
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For a fixed u € YL2(RE), let .Z;F be the functional on ¥ 2(R"*!) defined by

(F

u

V) 1= By o [u, ] =// [AVu-Vv+ Biu-Vv+ By - Vut]
’ Rn-H

for each v € Y'2(R"*!). Then .Z, is clearly bounded on Y!'?(R"*!). We define B, rett and 7" in a
similar way (using R"*! instead of [RR'J’FH), and we note that if u € Y12(R"*1), then Lu = Z} + 7, .

Definition 4.6 (double layer potential). Given ¢ € H,, 1/ 2([R{”) let ® € Y2(R!) be any extension of ¢ to
R"*!. Define D% () := —® g Yz R (see below for a proof that this is well-defined). We
call the operator D~ : “H, !/ 2([RR”) —yh 2([R”Jrl) the double layer potential associated to the operator £ on
the upper half-space. Analogously, we define D“ ~, the double layer potential associated to the operator £
on the lower half-space, by extending ¢ to R""!. We define D"+ similarly, by replacing £ with £*.

Proposition 4.7 (properties of the double layer potential). Fix ¢ € H(} / 2([R{”) and let ® be any Y2 (R"1)-
extension of ¢ to R'+! with Trg ® = ¢. The following statements hold:

(i) The double layer potential D=7 is well-defined.
(i1) We have the characterizations
DAY= LT (T, DETo= LT (T |ge (4.8)
(iii) The bound ||DE,+¢||YL2(R1+1) < ||<p||H01/z(Rn) holds.
. . c, . L, Y . +1
(iv) The function D= "¢ satisfies LD“ ¢ = 0 in the weak sense in R',".

Proof. (i) Let ®, &' € Y1 2(R"*!) be any two extensions of ¢ to R"*!. Then (& — ®')(-,0) = 0. If
w is defined as wanH ® — @' with W|grt1 =0, then w € Y 2(R"+1). Thus observe that (Lw, ) =
Brlw, V] = (S 4, V) forall ¥ € Y!'2(R"), whence we conclude that w = £71(Z] ). Hence

-
[~®+ L7 (FHIpn — [~ @'+ L7H( T )t = [ — @+ LTH(FG — Tg) g
= [0~ @+ L7 (Fy_g)]gun =0.
(i) Simply note that
DEF Y= [0+ LTI gt = [L7H(LO+ T lgrn = [L7 (= F ) s
(iii)) Owing to (4.8) we write
IDEFpllyragsy = 1£7 () Iyra@rty S 1-Fg 2@y
Let 0 # W e Y2(R"!). We have
[(Fg W =B gret [@, WIS NPy 12 geey Wy 2oy,

whence we deduce that ||.74 || 121y S ||¢||Y1_2(Rn+1) < el 12 Putting these estimates together
- 0

(R)”
we obtain the desired result.
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@iv) Let ¥ € C é’O(R'jf]) and extend it as a function in ¥ € C° (R"*1) so that ¥ =0 in R"*! Observe

that
B g [D5 Y0, W] = B ot [-L71(Fg), W] = BL[-L7(F), V]

—(Zp, V) =—B£7Rri+1[¢‘, v]=0. ]

We may now introduce the definition of the conormal derivative. First let us make the quick observation
that since ¥, *(R™1) < Y'2(R™), we have a surjection (¥"2(R™1))* — (¥, 2(R""1))* given by
restriction of the test space for the functional. In particular, if f € (Yl'z([R’fl))*, then we can also think
of f e (Y, (R

Definition 4.9 (conormal derivative). Suppose that u € Y]’Z([R{Tl), fe (Yl’z([R{’}fl))* (note carefully
that this space is not (YOI’Z(RTI))*), and that Lu = f in [Ri'jfl in the sense that for each ® ¢ Cfo([RR’}rH)
the identity

B[l Rn+l[l/l D] = (f, CD)(Yl 2Ry P AR (4.10)
holds. Define the conormal derivative of u associated to £ with respect to [F\R'fl, 35 u e H=V2(R™) by
1/2
(5 Y u. ) = By grilu, @1 = (f, @) yragrrtyy yrogetys @€ Hy*(®"),

where © € Y1’2([F\ET1) is any bounded extension of ¢ to [RR’J’rH. Note that we also define the objects
85**+u, 35~ u, 35" ~u similarly.

When f = f — div F and f, |}7| satisfy the assumptions in (2.12) (with Q = [R{”“, D =R", and
I = (0, 00)), the sense (4.10) of weak solutions coincides with the one previously given in Definition 2.9
(see Remark 2.11). In particular, if f = 0, the two senses (2.10), (4.10) of weak solutions coincide, and
there is no ambiguity.
Let us show that 85*+u is well-defined. Let ®, ®" be Y l’2(|R’}r+1)—extensions of ¢ with Trg ® =
Trg ® = ¢. Then ® — &’ € Y()]’Z([R{Tl), and so
BE,RTI [u, ] — BE’erl [u, d']= LR (u,® - 1=(f, &— >(Y1 2RIy P AR
since u solves Lu = f in R’ﬁ] in the sense (4.10). Finally, observe that
(o @) ragpypagyy = U ) ragpryy, yagey = U0 @ = @) ragy ya@y)
=(f,d— @’ >(Y1 Z(RrH»l))* 12(Rn+1),

so that, upon subtracting these two identities, we see that 35+ u does not depend on the particular
extension & taken. It remains to show that 8§’+u € H~'2(R"). Observe that

|<auﬁ’+u’ Pl = |B£,R"++' [, @1 + [/, qD)(Y1.2(R1+1))*’Y1,2(R1+1)|
5 (”u”Yl,Z(R'rrl) + ”f||(Y1,2(R’:r1))*)||CD||YI,2([R’_;_+1)
5 (””“yll(mjl) + ”f“(Yl’z(R'fl))*)||¢||H01/2([R")'

It will also be helpful to consider conormal derivatives on slices other than ¢+ = 0, denoted by 85 ’ti
The definition is entirely analogous.
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The following identities tie these definitions of the conormal derivatives together.
Lemma 4.11. Let y € H~Y/2(R"). The following statements are true:

(1) Suppose that u € YI’Z(R”H) solves Lu = 0 in [R{’fl in the weak sense. Then, for any t > 0,
ST Ty = 85, u. Moreover, for anyt > 0, 8§;+u e L*(R"), and we have the identity

05 u=—eni1 - Tr[AVu+ Biul in LX(R"). (4.12)

(i) Suppose that u € Y'2(R"Y) solves Lu = 0 in R"™\. Then, for anyt > 0, 3o~ = 85__,u

(iii) Let t > 0. Then, for each y € H™'/*(R"), the identity =0, _,Sﬁy = 85:353/ holds in the space
l/Z(Rn)

Proof. (1), (ii) Let ¢ € HO1 / 2([RR”), and ¢ € YI’Z(R’J‘FH) is any extension of ¢. Then

(85’+9tu,<p)=B£’R1+1[9tu,d>]= B goeilu, 7 '] = (0 , tu, Tr, 77'®) = <a§t u, ).

We turn our attention now to (4.12). By Remark 3.18, we have that F(x, t) = —e, 41 - Tr;,[AVu + Bju] is
continuous in ¢ taking values in L2(R"). In order to prove the lemma we will regularize our coefficients
and solution simultaneously.

Let P, be an (n+1)-dimensional approximate identity; that is, P.(f) = n. x f, where n.(X) =
(1/e"™Hn(X/e), X e R pe C>(B(0, 1)), n nonnegative and radially decreasing with fRnH n=1.
We claim that

—euy1 - Pe(AVu+ Biu)(x, to) = —epy1 - (AVu+ Biu)(x, 1) (4.13)

strongly in L?(R™). Assume (4.13) for a moment. Then to show (i) and (ii) in the lemma, it is enough to
show that for every ® € CSO(R"“) with ®(x, #9) = ¢(x), we have

111% —ent1 - Po(AVu + Biu)(x, to)(p(x)dx—// AVuV® + BiuV®+ B, - Vud.
E—> R» Rn+

To prove the above equality, first define, for any cube Q C R”, := 0 X [ty, to+£(Q)]. Now choose any

cube Q C R” such that supp @N{r > 1y} C RQ/2 Integrating by parts we have for 0 < e <K min{£(Q), tp}
the identity

/ —en+1 - Pc(AVu + Biu)(x, to)e(x) dx

:// div[P:(AVu + Biu)®]
RY

:// diV[PE(AVu—i—Blu)]CT)—i—// P.(AVu+ Biu)-Vo. (4.14)
Rg kG
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Now let X = (x,t) € supp P N{r > 19}, and ¢ < t9/2. Then, since Lu =0 in [F\R’f], we have
divy[P.(AVu+ Biu)|(X) =divy // Ne(X —Y)(AVyu + Biu)(Y)dY
Rll+l
:—// Vyne(X = Y)(AVyu + Biu)(Y)dY
Rn+l

= // Ne(X = Y)BoVyu(Y)dY = P.(B,Vu)(X),
Ri+l

and therefore the identity
/f div[P.(AVu + Biu)|® = // P.(B:Vu)® 4.15)
Rto Rto
9] Q

holds. Finally, we want to pass in the limit as ¢ — 0 the identity (4.14), while using (4.15), so we use the
Lebesgue dominated convergence theorem. Observe that, for some p > 1, |AVu|+ |Bju|+ |ByVu| €
LP(U), where U := R{ + B(0, 1o/4) (the fo/4-neighborhood of Ry). It follows that for & € (0, 10/4),

P (AVu+ Biu)(x,t) + P.(BoVu)(x, t) < #([|AVu| + |Biu| + |B2Vu|]]lUg))(x, 1)

for all (x,1) € Rg, where .# is the usual Hardy-Littlewood maximal operator in R"*!. Hence we have

lim | —epy1 - P.(AVu+ Biu)(x, to)@(x) dx = lim /f P.(AVu + Biu)V® + P.(B,Vu)d
e—=>0 Jpn e—0 R’é)

= f/ AVu+ BiuVd + B, Vud.
R
Thus it remains to prove (4.13). Set

Fe(x,t) := —eyt1- P:(AVu+ Bu)(x, 1),
F(x,t):=—ept1- (AVu+ Biu)(x, t).

For ¢ < 1y/2, we have

limsup || Fe (-, to) — Fo(-, t0)ll2

£—0 2 12
= lim sup (/ dx)
e—0 R

1/2
§limsup// n(y,s)[/ |F0(x—ey,to—es)—Fo(x,t0)|2dxi| dyds
Rn+l Rn

e—0

// N [Fo(x — ey, to—&s) — Fo(x, 10)In:(y, s)dyds
R)l

<limsup sup [ Fo(-—ey,to—es)— Fo(-, 1)l

e—>0 |yl,ls|<1

<limsup sup |[[Fo(-=Y,t0—5)— Fo(- =, t0)ll2+ [[Fo(- =¥, t0) — Fo(-, to)ll2,

e—=>0 |y],|5|<e

which drops to 0 as ¢ — 0, finishing the proof.
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(ii1) Let ¢ € HOI/Z(R”) and let ® € Y 2(R*t!) be any extension of ¢. Note that LSy =0in R’ff_l,,
while £§%y = T, in R%*!, in the sense (4.10), where T, € (Y 2(R"*1))* is the distribution given by
(T), ¥) = (y, Tro ¥), for ¥ € Y1-2(R"!). Then,

(004,55, 9) = B o1 187y, @1 = (, Trg @)
=B, g [S5y, @1+ B[Sy, @]~ (v, Trg D)
= =By gt [S5y, @1+ (v, Tro @) — (v, Tro @) = —(9,7, 8%y, ). O
4A. Green’s formula and jump relations. Note that the functional .7, makes sense even if we only have

ue Yl’z(lR’fl) and u ¢ Y'2(R"1). Also, if @ C R"*! is an open set with Lipschitz boundary, and f €
(Y12(Q))* define the functional 1 f € (Y 2(R"1))* by (1o f, V) :=(f, 1qW¥) foreach ¥ e Y L2(R"*1).

Theorem 4.16 (Green’s formula). Suppose that u € Y 1’Z(RC’:’l) solves Lu = f in [RQTI for some f €
(Yl*z(lR{Tl))* in the sense (4.10). Then the following statements hold:

(i) We have the identity
SE@y Ty = LTI — L7 Qg /) in YRR, (4.17)
(ii) The identity u = —D**(Trou) + sﬁ(a§’+u)|m+l +7! (Lges1 f)lge1 holds in YR2RE.
(iii) We have —L£~! (Lget1 f)lget = DA~ (Trou) + SEOEHu) o in YE2RIFY.
(iv) Suppose that Lu =0 in R™™. Then D** (Trou) = —S*(d5 ~u) holds in R™",
Proof. (i) Let ¥ € (Y2(R"*1))* Then
(W, SE05Fu)y = (Tro(L£*) ™', 95V u)
= By gl (L)W= (£ (L) 710) sty yrae
= (T (L)) = (Lt £, (L)) = (L7HFS), W) = (L7 Lt ), W)
= (W, L) — L7 Agan )

(i) Let ¥ € (Y 2(R"*1))* have compact support within R""". Using (4.17), we have
(W, §“8,u—D"F Trou) = (W, L7H(F,)) — (W, L7 g1 ) = [= (W, el )+, L7H(F ) |gen)]
= (V, u—ﬁ_l(lan++1f)).
(iii) Let W e (Y 2(R"*1))* have compact support within R""!. Using (4.8) and (4.17), we have
(U, D5 (Trou) + S5y T u)) = (W, —L™(F) ot + L7HUF) = L7 Aan 1))
= (W, £ (L1 ).
(iv) The proof of (iv) is the same as (iii) and is thus omitted. Il

Let us now consider some adjoint relations for the double layer potential. First, for any u € Y 1-2(R"**+1),
denote by .Z;* € (Y12(R"*1))* the functional given by (Z*, v) := B greilu, v] for v e YL2(RMH),
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Proposition 4.18. We have the following identities:
(i) Foreach ¢,y € HOUZ(R”), the identity (35+ D5, ¥r) = (@, 35 TDEF) holds.
(i) Foreachy € H-V2(R"), ¢ € Hy/>(R"), t > 0, the adjoint relation
(. T D5T ) = =3~ 7785y, ) = =05 TS5y, 0) = (078 v 0)  (419)
holds. In the case that t = 0, we may write
(v. Tro DY) = —(y. ) + (0 5y, 9). (4.20)
(iii) Fix ¢ € H'/2(R"). For eacht > 0, and every ¢ € H™Y/?(R"), we have the identity
(Tt, D1 D5, £) = (T, DE g, £) = (g, 0577 Din €)1 10,
(iv) Fixt>0. Let g = (g, g1) : R" — C"*! be such that gl 81 € CZ(R™). In the sense of distributions,
we have the adjoint relation

(V Tt Dy1 D540, )9 = (9, Da1 3.7 (S5 V)g) 12 12 4.21)
Proof. (i) Let ®, ¥ be extensions of ¢, ¥ respectively to Y"2(R"*!). Then,
(@5 DEY 9, ) = B gu [D5 T, Wl = =B ot [0, W]+ By gt [L7H(F), W]

= B g1 [V, @]+ B ot [V, L71(Fg)]

= B it [DE" T, @] = By g [(L)7HFG D), @+ B ot [W, L7H(FY]

= (@ 07 DY) [ B e (L9 7HFGD), @1+ B gt [W, L7HFDI,

where in the first equality we used the definition of the conormal derivative and in the second equality we
used the definition of the double layer potential. Hence it suffices to show that B X s (v, £~ (7 ;; )] =
B gini [(£H ™1 (#E™), @1 Simply note that

B g [V, LH(FD = (74, LTI = (LHFD), 7§)

= B gt [, (L) (FG D] = B g (L) TH(FG ), @1,

where in the first equality we used the definition of the functional ﬁ\’fﬁ, and in the third equality we used
the definition of ﬂ‘; . The desired identity follows.

(i) Lety e H™'2(RM), g € HOI/Z([R{"), and let ® € Y2(R"*1) be an extension of ¢ such that Trg ® = ¢.
By the definition of D%+ ¢, we have (y, Tr, D5 o) = —(y, Tr, @)+ (y, Tr, L7 (F)). By (4.4), we have

(v, Tr, L7UFED)) = (Try oLy, ) = (TS  y, Z4)
=(F4, 7185 y) = Bogri[®, TS y] = By [ 7785y, @]
=B [T 'S8y, @1 = By g [77'SE y, @1 = (y, Tr, @) — (35~ 778y, 9),

where in the last equality we used (4.4) combined with (4.3) for the first term, and for the second term
we used the definition of the conormal derivative and the fact that £7~'S£" = 0 in R**!. From this
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calculation, the first equality in (4.19) follows. The second and third equalities are straightforward
consequences of Lemma 4.11. To see that (4.20) is true, simply observe that when ¢ = 0, we have
L£*8%y =0in R’frl and in R"*!, whence we deduce that

(057708 y + 0 T T 0S  y, @) = B[ SS Ty, @1 = (v, Tro @).
Adding and subtracting (85*’+3 ~1SE"y, ) to the right-hand side of (4.19) now proves the claim.

(iii) Let ¢ > 0. By Proposition 4.7(iv), we have £LD*T¢ =01in [RR’:LH. Therefore, using Proposition 3.23(iv)
we see that Tr, Dn+1D£’+g0 € H%([Ri") for each T > 0. Similarly, we have Tr_; VD,IHS‘*{ e L*(R")
for each t > 0. Using (3.26) and (ii), we calculate that

d d . _
LD )| ==t 0S5 )

T=t
Now we use the characterization of the conormal derivative, (4.12), to obtain
d 5 of* d = *
~ S 0527 SE 0| ==L lenn - Tr(A'V 4 B)SE ¢ |
= (¢, [ens1 - Tr_ (A*V + B2) Dy 1 ¥ ¢ 122

Finally, (iv) follows from (iii) much as in Proposition 4.2(viii). Il
Let us now establish standard jump relations.
Proposition 4.22 (jump relations). Let ¢ € Hy'>(R") and y € H™'/*(R").
(i) The identity Try D%+ 4 Trg D5+ = —¢ holds in Hy'>(R").
(i) The identity 35+ Sy +35~S%y =y holds in H='/2(R").
(iii) The identity 3+ D5 = 35 =D~ ¢ holds in H=/2(R").
(iv) The identity Tro(S“ |grn) = Tro(SEy Igr1) holds in Hy>(RM).
Proof. (i) Let y € H~Y/2(R"), and let ® € Y2(R"*!) be any extension of ¢. Using (4.20), we see that
(v, Tro[ DT + D57 9l) = =20y, 9) + (3, y +0 755y, 9)
= —2(y, ) + B[Sy, @1 = =2(y, ) + (r, Tio @) = (1, 9).
(ii) This follows from the definition of the conormal derivative and the fact that £L5%y =0 in R"T!\ {r =0}.

(iii) Let ¢ € HOI/Z(R”), and let &, ¥ € Y"2(R"*!) be extensions of ¢, 1 respectively such that Try ® = ¢,
Tro W = . Also recall that £D%+¢ =0 in R*", and £D%~¢ =0 in R"". Then,

(O DT, ¥) = By gu [P0, Wl = =By o [0, W1+ By o [L71(F), W]
=~ B g1 [®, W]+ BL[L7(F), W] = By g [L71(F), V]
= =B g [0, W]+ (Fg, W) = By o [L71 (L), W]+ By gt [L71(F), W]
= =B, gt [®, W]+ B, gt [L71(Fg), W] = B, puei [D5 "9, W] = (07" D5, ¥).

(iv) This is immediate from the fact that Sy € Y12(R*t1). O
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4B. Initial L* estimates for the single layer potential. We now establish several estimates for the single
layer potential. This will allow us to prove the square function estimates, via a 7'b theorem, in the next
section. We begin with a perturbation result.

Proposition 4.23 (initial slice estimates). The following statements hold provided that max{|| B ||,, || B2||x}
is small enough, depending only on n, A, and A:

(i) Foreach f € C°(R"), each a > 0, and each m > 1, we have the estimate

2a
F [ umvarse e ar <015, (4.24)
a JR?
(ii) For each f € CX°(R"), eacht > 0, and each m > 2, we have the estimate
1"V SE fll 2y Sm L fl2- (4.25)

Proof. First we see that the second estimate is a consequence of the first by the Caccioppoli inequality on
slices (3.22). In particular, we have

2t
le"VorSEflz= Y / "V "SE fI?dx < ][ |s" V" LSE £1? dx ds,
0eD, 0] t JR®

where D is a grid of n-dimensional cubes of side length ¢. Thus it suffices to show (i).
To this end, we know from [1] that (i) holds with S* replaced by S*°, where £y = —A. Thus, to prove
(i), we show that fj“ S 167V (SE — S50) f2dt < || £ 2. Observe that

85 =8 = (Tro o((£) ™! = (£5) ™))"
= (Tro o (L) ' (Lh — £ (LM
= (L — LHLHTH* S = L£71(Ly — £)S™
=—div(l — A)VS® — £~ div(B;S*) — L' B, - VS©o,

Now let f € C°(R"). Then we have
2a 2a
][ "V DT (S5 =S5 fIPdt ][ [tV DI L7 div(I — A)VS f)|* dt
a R" a Rn
2a
+][ "V DI L7 div(BiS© f)* dt
a R)l

2a
+][ [t"V D! L7'B, - VS f|* dt
a JR?
= [+ 11+l

We prove only the bound 1T < || f ||§, as the bounds for I and [II are entirely analogous, and we will
indicate the small differences after we bound /1. Let = v (¢) be such that € C°(—a/5,a/5), ¥y =1
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on (—a/10,a/10), 0 <y <1, (d*/dt*)y < (1/a)k. Writing 1 = + (1 — ), we have

2a
1< ][ "V DT L7 div(B S® f)| dt
a n

R
2a 2a
5][ |th1),’§’+1£1div(¢31850f)|2dt+][f "V DI L7 div((1 = ¢) BIS™ f)|* dt
a R~ a n

=1L + II,.

To bound II;, we notice that if g = div(y B1S“ f), then g = 0 on R" x (a/5, 00). It follows that each
Di . L7'¢=L7'Df g, k=0,1,...,m,is a (null) solution in R" x (a/5, ). Let D, be a grid of
n-dimensional cubes with side length a. Applying the Caccioppoli inequality m times and using that

t ~aon (a,2a), we see that
2a
1 <a?! / / VD L7 div(y B1S™ f)[?
a R~

San_l Z/

2a
VD L7 div(y B1S™ f)[?
0ep, v 2

4a
<a 'y 1Dy £ div(y B S )2 Sa™! VL div(y BiS® )P
w220 R JRn

QeD, 2

als
5a1fR : lwslsﬁmzs][ BISSSIE S I3,

—a/5 JRn

where we used that sup, . || Ble" 22 @)= 22y SSUPs2 |l VS,LO Il L2(®n)— L2y <C (see [1, Lemma 4.18])
and that V£~ div: L>(R"T!) — L>(R"*1).
Now we deal with II,. Set g = (1 — ) B; S0 f. Then, we have

m m
Dyg=0—BD), SYf+Y Yy OBDI SN f = Fo+ ) Fr,

k=1 k=1

where ¥ ® = (d¥ /dt*)yr. The triangle inequality yields that

m 2a m
mn=<> ][ VD LT div(F) P dt =) Il
k=0 va JR k=0

For I, ;, k=1,2..., m, we use that t & a in the region of integration, the properties of ¥, and that
VL~ ldiv: L? — L? to obtain

112,]( 5 a2m71 / |w(k)Blatm7kSL0f|2 dt S a2m72k71 f IBlatmkaL',of|2 dt
R JR" a/10<|t|<a/5 JR"
a/s
< ][ kB E S O f12dr SN FI3,
—a/5 JR"
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where we used [1, Lemma 2.10] in the last line. Finally, to handle /I, ¢, we use that (1 — ) =0 if
1| < a/10, and that VL div : L? — L? to obtain

IIZ,() §a2m—1/

|(1 =) B13"S* f|? dt gaz'"—l/ |B13"S“ f1* dt
R JR®

t|>a/10 JRn

1 Lo p2 dt 2
5] 1" B9 S™ f17 == S| fI3s
lt|>a/10 JR t

where we used the estimate [|#"+! B; 3" S0 f|||§ S e+ tamv S|l £ S II£ I3 in the last line. To see
this last estimate, we simply use the “traveling up” procedure for square functions (see Lemma 5.2 below)
and that £y = A has good square function estimates. We now observe that handling the term /I amounts
to replacing the use of the mapping property VL~ div: L? — L? by the fact that VL~ !B, : L? — L2,
The term [ is handled exactly the same way, using the L* bound for (/ — A), without appealing to the
mapping properties of multiplication by Bj. |

Remark 4.26. Note that, from now on, it makes sense to write the objects appearing in (4.24) and (4.25)
for f in L?(R") after we have made extensions by continuity.

Before proceeding, we will need some identities improving on the duality results in Section 4 for the
single and double layers. To ease the notation, we will use (G); to denote the trace at ¢ of a function G
defined in R

Proposition 4.27 (further distributional identities of the layer potentials). For any t = 0 and m > 1, the
following statements are true:
(i) Forany f € C(R") and any g € L*(R"; C"*1), we have
dm

S (VS(f.8) = (D} VSELS D ).
(ii) For any f € L*(R") and any § € C2(R"; C**'), we have
L (SEVIED-) = (—D"(F. (D (S5 VIED ).

(iii) If m > 2, then, for every f € L>(R") and g € L>(R", C"*1)), we have the identity
(D VSEL Dis &) = (D™ (f. (D (ST VED-0).

Proof. Let us first show the identities with f € C®(R") and g € C>°(R"; C"*!). For the first equality,
note that u := S*[f] € Y12(R"*!) and Lu = 0 in R"*!\ {x, | = 0}. In particular, 3,u € W'2(Z?) for
any a < b such that O ¢ [a, b], by Lemma 3.17. By iteration we have 9;"Vu € LZ(ES). In particular,
arguing as in Lemma 2.3, we realize that the map t — Vu( -, t) is smooth (with values in L2(R"; C"H1y).
The first equality for m = 1 then boils down to proving the weak convergence of the difference quotients
to the derivative in L>(R"), that is, showing that

Vu(t+h)—Vu(t
lim “(+2 WO _ o Vu(r) weakly in L2R").

But this follows from the smoothness of our map. The case of general m now follows by induction.
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For the second equality, by definition we have

(ST WIEDs = —(SF [divy gy D5 — (Dur1 S5 [g1])s,
and since g € C°(R"; C"*1), we can apply the same argument as above to conclude that

dm
dtm

The third equality now follows by duality: for f € C2°(R") and g € C>°(R"; C"*!), we have

(f, (SEVgh=s) = (=D™(f, (DI (S V)giD—r).

dﬂ’l dm

(DY VSEL D 8) = S (VSE L 8) = S (f (SEV)ED ) = (=1 (D)4 (S“V)IED ).

Finally, the identities are extended to the respective L? spaces via a straightforward density argument
using Proposition 4.23. 0

We now present an off-diagonal decay result.

Proposition 4.28 (good off-diagonal decay). Let Q C R" be a cube and g € L*(Q) with supp g C Q. If
p € (2, pi]is such that | p — 2| is small enough that Lemma 3.4 holds, we have

1/p
( |t’"<at>’"Vng<x>|”dx) <27 Dm0y 2P (0 gl 120y
Ro

provided t ~ £(Q). Moreover, for any k > 1 and any t € R, the estimate

1/p
( f |zm<at)"1Vng<x)|"dx) < prkekmtbymp 0y =nUR2=1P g (0) ™|l g ]l 120
Ry

holds, where o = a(p) = (1/p)(1 — p/ p+) and the annular regions Ry = Ry (Q) are defined by Ry :=20Q,
Ry :=2"1 0\ 2% Q for all k > 1. In particular, if t ~ £(Q) we have

1/p
< / |r'”<af>’"Vng<x>|f’dx> S 2rke=kmt D g0y =2 P e 1 .
Ry

By a straightforward duality argument, from the above proposition we deduce:

Corollary 4.29. Define ©; ,, :=t"9;"(S;V). Let g € L?(Q) and suppose that p € [2, p4] is such that
|p — 2| is small enough so that Lemma 3.4 holds. Then, for g = p/(p — 1) and k > 1, we have

1©0m (FLr) I 1200y S 27%* 27 Km0 ()™ W4~ 0( Q)™ | f |l o Ry
where o = a(p) is as in Proposition 4.28. Moreover, ift = £(Q), then, for all k > 0,
1©0m (FLr) I 1200y S 27** 27 KD Q) WA=V £l g g,y ~ 2R @2 Hm AV =nA/a=1D | £ 1 g,

Proof of Proposition 4.28. Notice that g € L>(Q) C L*/"+D(Q) ¢ H~1/2(R"), so that S-g is well-
defined.
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We treat first the case k > 1. Fix a small parameter § = 8(m) > 0 and let Ry = 2+ 810\ 2—-68)kQ
be a small (but fixed) dilation of R;. We may use that 9;"u is a solution (see Proposition 3.16), a slight
variant of Lemma 3.20 adapted to annular regions, and Proposition 3.9 to see that

. 1/p m - 1/p
t"™(0,)"VS-g|P < 0" SEo|P ,
(Rk' @) fg') N(2’<€(Q))‘+‘/1’(//Ik,l|’ ’g')

where I ;== {(y,s) e R"! .y e Rpp, s € (1 —2k£(Q) t+2k€(Q))} and R, ; is defined as Ry but with
8/(m+2 — j) instead of § (so that, in particular, Rk,m+1 Rk) Now, applying the (n+1)-dimensional
L? Caccioppoli m times (see Proposition 3.9), we further obtain

. 1/p i . 1/p
"MV SFol|P < SFolP .
( o OVl ) ~ @ke(Q)ym 1+ (f/I 158l )

Now, using Holder’s inequality in ¢ and the mapping properties of S* we see that

< " 1/p tm r
"9V glp) QLAY T
R 2O oty 2t o

2RO .
< = su 1S gl pre (R
REOT™ ennior ey EE D
_ m2ke Q) - t"2ke() 1
S g #1 @ S gy

The case k = 0 is treated similarly, except that we impose the restriction ¢ &~ £( Q) to guarantee that we

101" |Igll 12(0)-

are far away from the support of g. U

For the most part, the case ¢ = p =2 in the above proposition will be enough for our purposes; however,
the introduction of error terms in the 7'b theorem below will necessitate a certain quasi-orthogonality
result for which we use the case p > 2 > ¢.

Lemma 4.30 (quasi-orthogonality). Let m > n and let Qg be a CLP family (see Definition 2.26). Then
there exist y, C > 0 such that, for all s < t, we have

4
1©0nBi11Q2%8l2 = C(3) 18Iz (4.31)

for all g € L>(R™), where I is the standard fractional integral operator of order 1. Here, C and y depend
onm,n, A, A\, and the constants in the definition of Q.

Proof. Let us first note that if «(p) is given as in Proposition 4.28, then «(p) < 1/(2n). Therefore, for all
k >0 and Q with £(Q) ~ t, we have

1O m (fLrR) 120y S 22 Kot D= Ua=1D 11 g gy S27M " Wa=UDY £l gy (4.32)

for some B8 > n/2+ 1, where we use that m > n.
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We first establish a variant of (4.31) with a collection of CLP families. Let ¢ € C2°(B(0, 15)) be
real, radial and have zero average. Define le) f(x) == (& * f)(x), where &(x) = s7"¢(x/s). Set
ng) fi= s2Aes’D f. By renormalizing ¢ (multiplying by a constant) we may assume that

o ds
f Q§”Q§Z>T =1 (4.33)
0

in the strong operator topology of L. Indeed,
oo d o o J R o = 4
ﬁ(fo Q§1)Q§2)f TS):_/O {(S|§|)s2|§|2e €1 f(é)?sz—f(é)/o {(S)sze 2?S,

where E is the Fourier transform of ¢ and we abused notation by regarding ¢ and hence 2 as a function of
the radial variable. Then, to achieve the desired reproducing formula, (4.33), we may renormalize { so
that fooo E(s)sze”z(ds /s) = —1. Let g < 2 be such that the conclusion of Corollary 4.29 holds. We will

show that, for all s < ¢,

n(l/q—=1/2) -
100 B11 Q" Q% ¢l < (2) 199 Rgla, (4.34)

where R = I, V| is the vector-valued Riesz transform on R" and QP f = ser'A div) f- Before proving
(4.34), we establish a “local hypercontractivity” estimate. For Q C R" a cube and s < £(Q), we have

1 —n(1/2—(n—
IQP AN a0y S 82D/ @D R 12 (4.35)

for all k > 0, where Ro(Q) =20, Ry (Q) =210\ 2%Q for k > 1, and B¥(Q) = B(xg, 2T2£(Q)/n).
To verify (4.35), we use that s < £(Q), Young’s convolution inequality, and the properties of ;.

Now we are ready to prove (4.34). Let D, be a grid of cubes on R” with side length # and set F = I, g.
Consider the estimate

1/2
||®z,m31119§‘>952>g||2=||®,,m31@§”Q§2>F||2=(Z / |@t,mBIQ§“Q§2>F|2>
Q

(2

k>0 “QeD,

< Zzﬁktn(l/ql/2)< 3 (/
R

k>0 QeD, «(Q)

S 11Billn Zzﬂk;n(l/qm)( 3 ( /
R

kz() QGID, k(Q)

—Bk ,—n(1/q—1/2) .—n(1/2—(n—q)/(nq))
<Y ; (=]

k>0 QeDby, (Q)

1/2
sy Z—ﬂk,—na/q—l/z)s—n<1/2—<n—q>/(nq>>s( ) f |Q§3>V”F|2>
B(Q)

k>0 Qeby

1/2
/ |®t,m<[31Q§“Q§2>F]1Rk(g)><x)|2dx)
o

2/g\1/2
|B1Q§”Q§2)F|q) )

Do 2(n—q)/(nq)\1/2
|Q§ )QE )F|nq/(nq)) )

1/2
|Q§2>F|2)
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()T [

1/2
109V, F(x)|* dx dy)

k>0 Qeby k(Q)
s "(l/q_l/z)E : —Bk+nk/2 ©) 2 .
5 <_> 2 |Qs V”F(X)l dx dy
t k>0 S |x—yl<2¥

s\a(1/g=1/2) n(1/g=1/2) B,
< (%) 199V Fla=(£)" " 1e® Relo,

where first we used that I;g = F, then Minkowski’s inequality in the second line, (4.32) in the third
line, Holder’s inequality in the fourth line, (4.35) in the fifth line, and the mapping properties of the
Hardy—Littlewood maximal function in the last line. The above estimate proves (4.34).

Now we are ready to pass to an arbitrary CLP family Q;. We may obtain, using the Cauchy—Schwarz
inequality and (4.33), that

o0

1©.mB111Q%¢gll2 = OB 1,01 0® 92 g(x)

zdr

<c// max |®,m3111Q(1)Q(2)ng(x)| dx =1+ 11 +1II,

where 1, 11, III are, respectively, the 1ntegrals overtheintervals t <s <t, s<t <t,ands <t <t. On
the other hand, note that the kernel of QSS)R is, up to a constant multiple, the inverse Fourier transform
of s|€|e~*" 16", Therefore, if we set ¥ = O R, then we have

T S

max(10%Q, /1. 1920, £} < min( %, )7 71 (4.36)

for some y > 0 (and hence all smaller y). For convenience, set 0 =n(1/q — 1/2) and we assume that y
above is such that y < 20. By (4.34) and (4.36), we have

15/;(%))/(;) ||Q(4)th||2dt<<I>U||Qsh||§,

and observe that T < s in the present scenario. Similarly, we have

Hs/st(f)ye)z”(;) 13 48 < (2) 1e.ni3

since, in particular, y < 20. Finally, by (4.25) and the mapping B, : L>(R") — L*(R"), we have
OB 1O : L2(R") — L*(R") uniformly in ¢ and 7, and thus it follows that

s [C(5) 102 0meoit < [T(E) (2) 1emz 4 < (2) 1ok

where we used (4.36). O

We conclude this section with the following proposition, which summarizes the off-diagonal decay
given by Proposition 4.28 and Corollary 4.29.
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Proposition 4.37. Form e N, m > (n+1)/2 4 2, the operators t"93;" (5,V), t" 8tm+18t and ©}, defined
by
O[8(x) := (1" 9" S,V AZ + 1" 9" 5[ B2 g (x),

have good off diagonal-decay in the sense of Definition 2.22 with the implicit constants depending on n,
m, A, and A, provided that max{|| By ||, || B2ll»} < €0, where &g depends on n, A, and A.

Proof. By Corollary 4.29 with p = 2, for any cube Q C R” and k > 2, we have

2m
_ t
1O0m (FLRIF2(0) S2 k(zk o Q)) 1172k,

where R, = R, (Q) = 2k+1 0\ 2%¥Q. Thus, for all r € (0, C£(Q)), it follows that

2m—(n—1)
19w (FLr) 20 S 2740 (= I£12
t,m Rl 20y 2k£(Q) L2(Ry)?

so that if m > (n + 1)/2, we obtain the estimate

2
1O m (FLRI 200y S 2"‘"( ) 113 g, (4.38)

2ke(Q)
This bound provides the desired good off-diagonal decay for 9" (S, V), t™ 8;"“8, and 9" S, VAZ in
the sense of Definition 2.22. To obtain the good off-diagonal decay for the remainder of ®;, t9," (S, B ),
we return to the proof of Proposition 4.28 and make a slight modification. Let n be a smooth cut-off
adapted to Ry; thatis,n=1on Ry, n € Cfo(ﬁk) and |Vn| < 1/€(Q), where Ry is as in Proposition 4.28.
Then for g € L?(Q) with supp g € Q, from Holder’s inequality and the Sobolev embedding on R” we
have

107" BaySigll2ry S 1" 081812 aany < IOV 0 Sig12 g, + 170 IS 8112 7

S R R A L]

SHOrm-1)*8l 2z, T 1O 8727,

Dualizing these estimates, the off-diagonal decay for 1™ 9" (S; B)) follows from the off-diagonal decay
in (4.38), provided that m > (n+1)/2+ 1. O

Before continuing on to the next section we make two remarks.

Remarks 4.39. (1) In Section 5 we will use the off diagonal decay of the operators in Proposition 4.37
or similar ones. The proof of good off-diagonal decay for these operators is entirely analogous to those
above.

(2) As seen above, there may be some loss of z-derivatives (and hence decay) in our operators when we
obtain certain estimates. Therefore, when proving the first square function estimate (Theorem 5.1), we
ensure that m > n+ 10 > (n + 1) /2 + 10 so that Lemma 4.30 and Proposition 4.37 hold.
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5. Square function bounds via 7'b theory
The goal of this section is to prove Theorem 1.3.

SA. Reduction to high order t-derivatives. We will adapt the methods of [35; 43] to prove the square
function bound in Theorem 1.3 for m large:

Theorem 5.1 (square function bound for high ¢-derivatives). For each m € N with m > n + 10, we have
the estimate

m m dx dt
[ @S foR A < i,
+

where C depends on m, n, A, and A, provided that max{|| B ||, || B2ll»} is sufficiently small depending on
n, A, and A. Under the same hypotheses, the analogous bounds hold for L replaced by L*, and for [R?’fl
replaced by R" "',

Let us see that we may reduce the proof of Theorem 1.3 to that of Theorem 5.1. First, it is a fact that
square function estimates for solutions u of Lu = 0 “travel up” the ¢-derivatives:

Lemma 5.2 (square function bound “travels up” ¢-derivatives). Fix m, k € N withm > k > 1. Suppose
that u € WIL’CZ([RT,_H) solves Lu =0 in R’fﬁ] in the weak sense. Then there exists a constant C depending
only onm, n, X, A, and max{|| By |, | Balln}. such that |[|t" 8"~ Vul|| < C||t*dful].

The proof of the previous lemma is very straightforward (decompose into Whitney cubes and then use
the Caccioppoli inequality), and thus is omitted.

Now, the following proposition (and Lemma 5.2°) immediately allow us to reduce the proof of
Theorem 1.3 to that of Theorem 5.1, and is a partial converse to Lemma 5.2. Recall that L>(R") C
H—l /Z(Rn ).

Proposition 5.3 (square function bound “travels down” z-derivatives). The following estimates hold,
where the implicit constants depend on m, k, ., and A:

(i) For each f € L*(R") and eachm > 1, [t 3"VS f Il S N1 T IVS £l 4+ 11 f N2
(ii) For each f € L*(R") and eachm >k > 1,
N OEVS £l S Me™ IS £+ 11 £ 12 (5.4)

Proof. One may obtain (ii) as a consequence of (i) via induction on m, using Caccioppoli’s inequality
on Whitney boxes after increasing the number of ¢-derivatives appropriately. So it suffices to prove (i).
Fixm e N, N > 0 large, ¢ > 0 small and let f € L*(R"). Let Y € C2°(0, 0o) be a nonnegative function

acl) v=o w(oole)

1
4o (e : (12)
on (2,8), Y| <2e on o)

&

which satisfies

Y=
Y| <

SLemma 5.2 is used to show that &o can be chosen independently of m.
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Since Sf € Y12(R"1) and LS f =0 in R in the weak sense, 3"S f € W,o2(R"*!) and L3]S f =0

ocC
in [R{’ﬂ] in the weak sense. Observe that

1/e 2/e
/ / VS fI17 dt 5/ / 2NV S fIPy dt,
B(O,N) Je B(O,N) Je/2

and notice per our observations in Proposition 4.23 that the right-hand side above is finite. Now,
2/e 2/¢
/ / "NV S fI2yr dt =/ / 1AMV S £V S fr dt
B(O,N) Je/2 BO,N) Je/2
1 2/e
=—— / / 123, (0"VSfO'VS fr) dt
2m Jpo.ny Je2

2/e

<L [ emarvs s v dr

M JBwo.N) Je/2
1

& 2/e
+= [][ r2m|a;"v3f|2dt+][ 12'"|a;"v:5f|2dt].
m Jpo.NyLJe/2 1/e

The last two terms are controlled by (4.24). As for the first term, note that 2m = 2m —1)/2+ (2m+1)/2,
and we use Cauchy’s inequality and absorb one of the resulting summands to the left-hand side. Sending
N — oo and ¢ N\ 0 yields the desired result. U

Combining Lemma 5.26 below and Theorem 5.1, we will also obtain the following result.

Theorem 5.5 (square function bound for SV). For each m € N, with m > n + 10,

/ /R @SV FP dxtd’ Sl 2oy (5.6)

where C depends on m, n, A, A, provided that max{|| By ||,, || B2|l.} is sufficiently small depending on m,
n, A, A. These results hold for L* and in the lower half-space as the hypotheses are symmetric.

SB. Setup for the T b argument and testing functions. Having reduced matters to proving Theorem 5.1,
we fix m € N with m > n + 10. We define the space H to be the subspace of L*(R")" consisting of the
gradients of Y1-2(R")-functions. Thatis, H ={h’:h'=VF, F € Y'2(R")}. For i’ € H and h° € L>(R"),
we set 1 = (h', h°) and define, for each ¢ € R\{0},

Qn" ="t S A,
O = t" " (S, V)AL +1"(3,)"S,;(Byy - 1),

where we recall that A is the (n+1) x n submatrix of A consisting of the first n columns of A. We let
0, := (@), 8% : H x L*(R") — L*(R"), which acts on h = (h', h°) via the identity ®,1 = @’ + B"4",
For each ¢ > 0, we also define an auxiliary operator @,(“) : L2(R", C"*!) — L?(R"), which acts on

g = (g, g% via @,(“)g = " (3,)"™(S;V)(g’, g°). This auxiliary operator will play the role of an error
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term that allows us to integrate by parts. Accordingly, define O, acting on functions 1 = (h', h°, h") €
H x L>(R", C) x L*(R", C"*1) via
Ouh(x) = O, (1, ho) (x) + O " (x).
We need to define appropriate testing functions for our family {®,}. Let t € (0, %) be a small parameter
to be chosen later, and let ¥ be a smooth cut-off function in R"+! with the properties
Ve ([~ o) x[-3m57]), W=1 on [~ mee)” x [—57 47
0<W<l, VU < 1/7.

Let ¥ := cn,qu, where ¢, ; is chosen so that ||W||; = 1. Hence W is a normalization of . For any cube
0O C R", we define the measurable functions

1 1
Yo (X):= {Qy LIJ(Z(Q) [X — (xp, 0)]) (note that || Wo |1 = 1),

W5y, 8) = Wo(y. s F31L(Q)).
and \PSQ/(y, §) =Wy (y,s+s’) for each s € R. Let us make a few observations about W and W. The fact
that

L1—1/2000,1/2000" x [—7/4,7/4] < W < L[=1/1000,1/1000" x[7/2,7/2]
forces ¢, r ~ 1/t and || W |2, ~ t'/?. Consequently, |||, ~ ~'+1/%, and
1Wolla, ~ v~ 210 (Q)" 17112 = [re(Q) )~ 1/2HI/ 0D,

Of course, the same L?* estimate holds for \I!g and lD‘é. Now, we define for any cube and s’ € R the
quantities

+ . -1 + . — . -1 s’
Fo=L7(Vp), FQ.:Fg—FQ, Fj =L (V).

By our previous observations and the fact that L>(R"*!) embeds continuously into (¥ 12(R"+1))* we
easily see that, for any cube Q and any s’ € R, the estimate

max{|V Fglla. |VF5 2. [VF)ll2} S [re(Q)" ' =1/ (D (5.7)

holds. Notice that we have

31(Q)/2 314(Q)/2 ,
as/llf(y,s—i—s/)ds/:—/ 3s‘I’SQ(y,S)ds’.

WE (v, ) =W (v, 8) = —/
¢ ¢ —=374(0)/2

—314(Q)/2

Therefore, the identity

300(Q)/2 , 3rUQ)/2 , S
Fg= —/ L7 Dy V) ds' = —f L™ (W) ds' = —/ FHds (58)
=3t4(Q)/2 =374(Q)/2 —3t4(Q)/2
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is valid in Y'2(R"*1). For convenience, we write (Vy su)(y, 0) := (V, su(y, 5))|s=0. We are now ready
to define our testing functions by = (V/,, bOQ). Let b0 be defined via 5% o =10| (85’* Fo)(y,0), where

85’_14()7, 0) = €nt1- [A(Vy,su)(y: 0) — Biu(y, 0] = €n+1 - [A(Vy,su)(y: 0] — (Br)1u(y, 0).

(@) (a)

We define b/Q via b/ =|Q|V|Fg(y, 0), while we define the auxiliary testing function b via b

|Q|B1Fp(y, 0).

We will define a measure for each cube Q that corresponds to a smoothened characteristic function.
We do this exactly as in [35]. Let w > 0 to be chosen. For each cube, we let dug = ¢ dx, where
¢o : R" — [0, 1] is a smooth bump function supported in (1 + ) Q with ¢p =1 on %Q. Clearly, we can
choose ¢ so that ¢g > @ on Q and [|[Vog|l L= < 1/£(Q). We also let @ : R*T! — [0, 1] be a smooth
extension of ¢p; that is, ®o(y, 0) = ¢ (y), with @y supported in /(114)p and Po =1 on I(1/2)0, Where,
for any cube Q C R", we let Ig = Q x (—£(Q), £(Q)) denote the “double Carleson box™ associated to Q.
We may also ensure that |[V® g || oogniy S 1/£(Q).

5C. Properties of the testing functions. The testing functions defined above enjoy the following essential
properties which justify their use in the 75 argument.

Proposition 5.9 (properties of the testing functions). Let by = (b/,, bOQ), EQ, and ©, be as above. For any
n > 0, there exists T € (0, 1) depending on n, A, A, n, and Cy = Co(m, T), and there exists a measure (Lo
as described above, such that, for each cube Q, the estimates

[ Ibof = colol, (5.10)
woyp .
/ /|® b 24 < ¢y, 5.11)
0 0
1 gt /bod (5.12)
2= no(Q) o CH ) '
n
- 5.13
‘MQ(Q)/ 0 “Q‘ 2 615

hold, provided that max{|| By ||», | B2ll»} = em < T.

We note that while the smallness of ¢,, = max{|| By ||, | Bz|l»} apparently depends on m at this point,
we may prove Theorem 5.1 for a fixed sufficiently large m, and then use Lemma 5.2 and Proposition 5.3
to remove any dependence on m in the bound for max{|| Bi|,, || B2|l»}. For now, throughout the 7b
argument, we shall continue to use g, to denote this quantity.

We will establish several preliminary lemmas in anticipation of the proof of the above proposition.

Lemma 5.14 (estimate of the L2 norm of bp). The estimate

/ |bQ|25T*2+2/(H+1)|Q|

holds, where the implicit constant depends on n, A, and A.
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Proof. Set a := t£(Q)/1000 and observe that Fp solves LFp = 0 in the strip {(x, ?) : |t| < 50a}. Let
G, be the grid of pairwise disjoint n-dimensional cubes with sides of length a parallel to the coordinate
axes, and, for each P € G, define the (n+1)-dimensional box P*:=2P x [—2£(P), 2¢(P)]. Applying
Lemma 3.20 and the estimate (5.7), we obtain

/R VFo(-.OF = / VFo(LOPSL S f/ VFol?
n P %

PeG, PeG,

1 1 - - -
S IVFll3 < lre(Q) |70t g g2/l g =,

where we used that a ~ t£(Q) and the bounded overlap of {P*}pcc,. Upon multiplying the above
inequality by |Q|?, we have the desired estimate up to controlling || |Q|(B;) L F, 0(-,0) ||i2 (R We have
already shown that |V Fg (-, 0)[| .2 <00, and from Lemmas 2.3 and 3.17, we have Fg(-,0) € L% (RM),

so that F(-,0) € Y"?(R"). From this, we can deduce the estimate

1 Fo (-, Ol amm-2@mey STV Fo (-, 0l 2@y

2

Consequently, we may use the estimate for [[VFo (-, 0)[7, )

show that

obtained above and Holder’s inequality to

/ (B LFo(-, 0P < 1B IFo (-, Ol s gy S el V(- O 32y S et 20 017"
Rn

Upon multiplying the previous estimates by |Q|?, we easily obtain the claimed inequality from the
ellipticity of A. (|

The next lemma says that we have a Carleson estimate by including the error term.

Lemma 5.15 (good behavior of l;Q vis-a-vis Carleson norm of @z)- Let b, bOQ, and b(Qa) be as above.
Then, ifl;Q =0, b%, b(Qa)), we have the estimate

€(Q)
~ dx dt _
| Bibowr 4t < cigier.
0 Q

where B =2+4+2m —2/(n+1) > 0, and C depends on m, n, A, and A.
Proof. First, let us show the identity
Orbg(x) = Q1" (@)" ' Fy on R, (5.16)

By (an analogue of) Theorem 4.16(iii), to show the above identity, it suffices to show that, for each ¢ > 0,
the representation

Oy = 101" I (SE(BE ™ Fo) 4+ Dt (Trg Fp))
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holds in L?(R"). For notational convenience, we will write F 0:.=Try F 0. By definition, we have, for
any f € CX(R"),

A

(@:bo. f)= (101" (DIHSE[BE T Fol, £)+ (101" (DI, [ (SV)AV FS + BiF) Dy, f)
+( Q1™ (D SE By - Vi FQD:, f)
= (|QI" (D) S [95~ Fol. f) + (1) (AV Fg + B Fg. | Q1™ (D}, VS® [ f 1))
+ (=1)"™(Byy - V| F, |QI" (D) S L D).
Therefore, it suffices to show that
(| Q™ (DI DETFYD, f) = (=)™ (AV F) + BiFQ, | Q1™ (D VS® [f]) =)

+ (=1)"™(Byy - V| Fg. | QIt™ (D, SE T f D—r)
=: (=D)"|QI"I,.

We rewrite I; as follows, using Proposition 3.19, and the fact that F’ 8 e WH2([R"):
I = (AVyF)+ B\ F}, (VD S5 [ fD=i) + (Boy - V Fgy. (DI ST LD 1)
= (V| F). (A*VDp S“ [ fD— + BzH(DanC*[fD_ )+ (Fg, BI(VDI S5 [ f D)
= (=)™ EY, DAL VST L Do)smr + DM (Ba (S5 1 f D))

= (- 1)'““‘[,,1+1 AR A VSE D+ Bar (U D)

m—+1
=y R 0 = o o), )
= (=" (DI DRI £),

where we used (i) in Lemma 4.11 in the fifth equality, we used (ii) of Proposition 4.18 in the sixth equality,
and we justify the handling of the ¢-derivatives via Proposition 4.27. This concludes the proof of (5.16).

Now, we let a = 7£(Q)/1000 as before, and note that 3,)"2F Q_ is a solution in the half-space
{(x,t):t > 50a}. For P € G, and ¢t > 0, we set

P*=2P x (t—%a,t%—zl—oa) and P =4P x (t—%a,t—l—%a).

Then using (3.21) and then Proposition 3.9 repeatedly (m + 1 times), we obtain for ¢ € (0, £(Q)]

/|® bol> < | 11QI"@)" ' Fy(-, 0> =" | QP Z/Kat)'"“F (.0l
R PeG,
2m|Q|2a_l Z // |(a)m+1F |2<t2m 2 —1-2m Z /f |8tF |
PeG,

2m
— _ _ t
2m|Q|2 1— 2m||VF ”% < t2m|Q|2a 1— 2m[r£(Q)n+l —142/(n+1) < |Q| ,B(Z(Q)) ,
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where we used the bounded overlap of { P*}pcg,. Hence, we see that

Q) 4(9)] 2m
a7 dx dt - ! dx dt -
[ ] bowr i cions [ 5) 4 <ion . =
o Jo 0

€(Q) t
Observe that Lemma 5.14 and the properties of o allow us to establish that

f lboldig <11+ w)0\ Q1" *boll 2@y S w2V ), (5.17)
R\ Q

Let us furnish a smallness estimate for b’Q.

Lemma 5.18 (almost atomic behavior of b/Q). Let b/Q and g be as above. Then

‘ / bo dug‘ <1t A D, (5.19)
Rn

where the implicit constant depends on n, A, and A. In particular,

@),
b,du
1no(0) Jo 277°
Proof. We first show how to derive (5.20) from the first inequality. We have

[ Bodno|=|[ oduo|+ [ ibolduo.
Q RV! RII\Q

so that (5.20) readily follows from (5.19), (5.17), and the fact that ;o (Q) > (%)n |Q|. It remains to show
(5.19). To this end, we utilize the properties of ¢, (5.8), (3.21) and Holder’s inequality to see that

< 12414 172141/ (D) (5.20)

=<

f bydpg|= IQI‘/ VlFQ(‘aO)¢Q‘ = IQI‘/ FQ(’»O)V¢Q‘ SE(Q)"_]f [Fo(-,0)]
R* R” R" (1+@)0\(1/2)Q
324(Q)/2 /
<! / ‘ f 8 Fy (v, 0)ds’|dy
(1+w)O\(1/2)Q 1/ =37£(Q)/2
3U(Q)/2 ,
seort [ 16,5 (v, 0)|dy ds’
=31¢(0Q)/2 J(1+w) 0\(1/2) Q
0 L R Come ) 1/241/(n+1)
<UQ) — IVES(NPdY) ds' <10l ,
HD)7 J3ee0)2\J I no\1ase
where we used (5.7) in the last line and, in order to use (3.21), we used that for s € (—37£(Q)/2, 3t£(Q)/2)
each Fé, is a solution in 9 \ I(1/4)0- Ol

The last preliminary lemma we will need establishes a coercivity estimate for bOQ.

Lemma 5.21 (coercivity of b%). Let b% and dig = ¢o dx as above. Suppose that €, > 0 is a small
number depending on m. Then, if max{||Bi|l., | B2llx} < &m, the estimate

f)%e( 1 [ on d,bLQ) > (1 _C[T1/2+1/(n+1) —i—emt_l/ZH/("H) +w1/2t—1+1/(n+1)])
MQ(Q) 0

holds, where C depends on m, n, A, and A.
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Proof. By the definitions of o, bOQ, and the conormal derivative, we observe that
| Hodno=[ bovo=101 [ GEFor. 00000 dy

= |Q|(—<CI>Q, ,CFQ)RIH—I +// 1 AVFp -V®gy+ (BlFQ) Vo + (B, - VFQ)CDQ)
- Rnr+
=0\ +1II).

Since supp \Ilg R =g, ®p =1onsupp¥,, and feri-H v, =1, we have

I = —((DQ, ,CFQ)anl = _/_A;gnﬁ-l(_\pé) =1.

To bound 11, we write Il = Il + II, + 113, where the [I; correspond to each of the summands in the
integral defining /I. For the term, /1|, we use essentially the same estimates as in the previous lemma. In
particular we use the properties of ® o, Holder’s inequality, the Caccioppoli inequality, and (5.8) to obtain

1
11| 5// |AVFQ-V¢Q|§—f/ IVF]
Rn+1 K(Q) I(]«Hu)Q\I(l/Z)Q

172 172
S z(Q)“"””([/ |VF|2) S (f/ |F|2)
Tu+wo\/2)0 Ta+wo\ay2)0

314(0)/2 ) 2 1/2
S E(Q)(n—3)/2(/f / 8,F22(Y) ds/ dY) 5 T]/2+1/(n+1)-
Tavwyo\lay2)0

—310(Q)/2
To bound 11, we use the estimate || B Fpll2 S emllVFgll2 and (5.7) to see that

1
11 B F) Vo) < —— B F,
| 2|§.//;2Q|( 1 F) QlNE(Q)/‘/th 1Fol

£(Q)nth/2 12
. —<// |BIFQ|2) S eml(Q) V|V Fglly S g /A OED,
0Q) o

To bound I3 we use Holder’s inequality, || Bz ||, < &n, and (5.7) as follows:

20(Q) 20(Q) (n—1)/n
|113|5/ f |VFQ32|58mf (/ |VFQ|"/<"1>>
—24(0) v20 —20(0) \J20

2)/2 2HQ) 2 12 1)/2 2HQ) 2 1z
58,"@(@(")/] (/ |VFQ|) 5em£<Q><">/( /|VFQ|)
—20(0) \J20 =20(0) J20

S enl(Q) V2|V |2 < g /2D,

Combining the previous estimates gives
9;{6</ bOQ d,LLQ> > |Q|(1 _ C[T1/2+l/(n+l) +8mf_1/2+1/(n+1)]).
R)l

This estimate, in concert with (5.17) and the fact that ;o (Q) < 1, ends the proof. Il
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With g, and w at our disposal, we collapse the dependence of parameters to only t, leaving freedom
to take &,, even smaller. We ensure that ¢,, < 7 and set @ = 7°. Under these choices, we are ready for:

3

Proof of Proposition 5.9. When the choices ¢, < t and w = 7° are used in Lemma 5.21, we have

D‘ie( ! /b%d,u) > 1 — Cgl/2H1/e+D),
rno(Q) Jo -

where C depends on n, A, A. Accordingly, we may pick T small enough so that (5.12) holds. The choice

o = 73 used in (5.20) gives

‘ 1 < CrV/2HVt),

b, d
uQ<Q>/Q o @He

where C depends on n, A, and A. Hence, we may guarantee that (5.13) holds by choosing 7 small
depending on C and 5. Having chosen 7 so that (5.12) and (5.13) hold, (5.10) and (5.11) follow from
Lemmas 5.14 and 5.15 respectively. U

5D. Control of the auxiliary square functions. As a last preliminary step to presenting the proof of the
square function bound, we elucidate how to control the error terms involving @ﬁ“) and ©).

Proposition 5.22 (control of error terms). Let T; be either ®) or @t(a) . Then, for each fixed t > 0, T;1 is
well-defined as an element of L%OC([R”). Moreover, we have the estimates

ITi1]le < CIO ¢ + 1. (5.24)

I lllop < O + 1, (5.23)

where C depends on m, n, A, and A, provided that max{|| B ||, || B2|l»} is sufficiently small depending on
m, n, A, and A.

Remark 5.25. We will operate under the assumption that 7;1 and @?1 have finite || - ||¢ norm. Indeed,
otherwise for y > 0, we replace 7;1 by (7;1),, = (T;1)1, ;<1 /,, and analogously for ©%1, and we observe
that these truncated versions will always have finite || - ||¢c norm under our hypotheses.

Proposition 5.22 will be a direct consequence of the following lemma.

Lemma 5.26 (control of gradient field terms). Let ©, := " AmSEV) form €N, m > n+ 10. Then

18 lllop < MOy + 1, (5.27)

~

19, 1lc S 10°%1 ¢ +1, (5.28)

where the constants depend on m, n, A, and A, provided that max{|| By ||, || B2ll,} is sufficiently small
depending on m, n, A, A.

Proof. We note that (5.28) follows from Lemma 2.23, (5.27) and Proposition 4.37. The proof will
follow the general scheme of [43, Lemma 3.1], with modifications due to the first-order terms. Write
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Ly :=divy A}V, where A| = (A; j)1<i,j<n- By the Hodge decomposition for the operator L, to prove
(5.27) it is enough to show that

2
S A+167l5,) (5.29)

dx dt
// "9 SE (V) - AV Y0P
Rfl:—l t

for all F € Y2(R") with IV Fll;2 S 1 (dependence on A and A). We write

") SEV ANV F = {9 SFV Ay — 1" ()" SFV A PV F + 179" SFV A P,V F
= Rt(V”F) —|—lm(8[mStLVH . A”)PIVHF,

where 1" (9/"S; V|| A)) is the (vector-valued) operator 9, S,V applied to Ay, the latter understood as a
vector function with components in LIOC(R”; C"), and P; is a nice approximate identity constructed as
follows. Let & (x) =t "¢ (|x|/t), where ¢ € C2°(B(0, 3)) is radial with [, ¢ =0and Q; f (x) = ({* f) (x)
satisfies the Calderén reproducing formula

f Q2 dr _ in the strong operator topology on L.

Then Q; is a CLP family (see Definition 2.26) and we set P, := ftoo Q?(ds /s). Then P, is a nice
approximate identity; that is, P, = (¢; * f)(x), where ¢, =t "@(| - |/t) and ¢ € C°(B(0, 1)) is a radial
function with o, ¢ = 1.

The term t"0"S; V| - A P;V| F is the “main term” and we will apply the techniques of the solution
to the Kato problem [6] to handle its contribution. For now, we focus on the remainder term R; (V| F),
which takes a bit of exposition due to the number of terms arising from the lower-order terms in the
differential operator £. To this end, we write

R, =1"3"SFV A —t" (A" SEV A Py
= (" SV A P =" B SEV A P + 1" SEVI AN = P) =i R 4 Ry

Observe that R,ml =0, R,[l] has sufficient off-diagonal decay (Proposition 4.37) and uniform L? bound-
edness (Proposition 4.23), and ||R,[”Vx lo—2 < C/t. Then the square function bound

1 dx dt
f/ IRV P12 L < v, F2
Ri+l t

follows from Lemma 2.25 as desired. To control R, it remains to control R,[Z]. Set Z; := I — P, and define
b= (An+1.1, -+, Ant1.0)- By using integration by parts on slices (Proposition 3.19) and Proposition 2.27,
we obtain
t""S;V\ A Z, VY F =t"93"S, V| AV Z, F
=" NS V) A g1 ZiF — 1" S, (BVZ,F) + 10" (S, V) B Z, F
— 1" S, (B V) ZF) + 1" 3" TS, (Byy Z, F)
=Ji+h++ D+ s
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Note that, using Plancherel’s theorem, we have
_ dxdt
/f TN = POF@P S S IV FI. (5.30)
RY

Since " +13)" &V L2 — L2 uniformly in ¢, we easily obtain the associated square function bound
for J;. To bound J,, we write

Jo=—t"3" S, (b - V(I — P)F)
= —"9" S, b -V F + {19 S, b P — (19" S,b) PV F + (19" S,b) P,V F
=1+ 2+ 23

For J, 1, we see that Jo | = @?I;V”F, whence
> dx dt 2
f / a8 by FIP R < 10012 1V FI3.
RT—I t

Similarly, by Lemma 2.23 and Carleson’s lemma, we have

n 7 dx dt 2
// " (" 8" S,b) P,V F|? p S |||®?|||Op||v\|F||§,
R

so that the contribution from J> 3 has the desired control. Notice that J> > is of the form R,V F, where
R1=0, R, : L> - L? and ||R;V,||;2_, ;2 < C/t and R, has good off-diagonal decay. Thus, the desired
square function bound for term J, > follows immediately from Lemma 2.25.

For term J, let g be such that I;g = F and ||g[|2 & ||V} Fl». Then using 13" (S,V) = ©'“, we have
by Lemma 4.30 that

s\
10 Bil Qe lzn S (5) 1958l 2o,
for some y > 0 independent of g. Then by standard estimates we obtain

// 07, V) B (1 — P F P 44!

= [[ oS viBind - gl X4 <
R+ ~ R
t
s [ Ifmam(StV)BlllQZglzds s
Rﬁ:‘—l 0 N t

o0 OO
s\'/? dt ds ds
§ff (2) 1oe < ,sy/ 10813 % < gl3 ~ 19, I3
0 Js 0

N

t 2
ds\|” dx dt
9" (S, V)B1 I, (/ o Ts>’ xt
0

where in the fourth inequality we used Cauchy’s inequality in the (ds/s) integral noting that

/o (t)?’ dss .

and we used the square function estimate for the CLP family Q; (see Definition 2.26). This takes care of
the contribution from J3.
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Next, we handle J4. We write J4 as the sum of its pieces, as follows:
Jo=—t"0"S; By V(I = P)F = —t"0;"S; Bo V| F +1"3"S; By V| P, F = J41 + J42.
For J4,1, we observe that
Ja1=—1"0"S By V| F = —t"93"S; div) V| LBy V| F = —@(V”Ing”F)

and notice that ||V I, By Fll2 < || B2llx V| F 2. Therefore,

dxdt ~ 2
// NS By VI FIP = S 1O llop I B2l IV F IS,
R

and hence Jy4 | can be hidden in (5.29) when || Bz ||, is small. For J4 2, we write
J4,2 = {t’"8f18,32||Pt — (l‘ma[mS;an)Pt}VHF + (t’"B,’”S,BzH)PtVHF = ﬁ,V”F + (tmath,an)P,V” F.

We may handle R, V| F using Lemma 2.25, as R, satisfies the required hypotheses (see Propositions 4.23
and 4.37). We see, in a similar fashion to Jy 1, that ™ 6;" S; By = ’C:)tV”Isz”, and ||V I B2 llBmo S || B2 ||%.
Noting that ©,1 =0, it follows from Lemma 2.23 and Carleson’s lemma that

dxdt ~ 2
J[ s R A S B 1B F 1
.

which can be hidden in (5.29) when || B, ||,, is sufficiently small.

Finally, for Js, rewrite it as Js = " T19" 'S, B, | (1/0)[I — P;]F). Since " 19" 18, By | : L2 — L?
uniformly in #, we may handle this term exactly as J; by using (5.30).

Having handled the remainder R, we have reduced matters to showing that the square function bound

dx

dt
= SIVIFII3

/fwﬂ "3]S V) - A (x) PV F (x))?

holds for all F € Y!'?(R") with ||V F|2 < 1. By Carleson’s lemma, it is enough to show that

1 1@ dx dt
sup —- 11 (378, - A ()| 2L <
o 10lJo Jwn t

In order to obtain (5.31), we appeal to the technology of the solution of the Kato problem [6], and
follow the argument of [43]. By [6], for each dyadic cube Q there exists a mapping Fp : R" — C" such
that

() /R V) Fol? < ClOI.

10|
‘o

s adxdt e
(iii) sup/ 2 (x, ) TSCsup/ 1 (x, ) E, V| Fo
0 Jo Jo o Jo Jo

C. (5.31)

(i) / Ly Fol <
RV!

2 dx dt
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for each g [F\R”Jr1 — C", where E, denotes the dyadic averaging operator; that is, if Q(x, ¢) is the minimal
dyadic cube containing x € R" with side length at least ¢, then E,g(x) = fQ( .1 & Here, we note that
V| Fg is the Jacobian of FQ and {EtV” Fg is a vector. Given such a family {Fp}p, we see that by
applying property (iii) with {(x, t) =T; Ay, where T; := 10, (5, V))), it is enough to show that

dxdt 2
S A+1071,) Q1.

Q) 5
/o 0 [(T;A)(x)E V| Fo(x)]

Following [4; 17], we write that
(LADE NV Fo ={(TLIADE, = T A}V Fo + T A} V) Fo
=T ANE: — POV Fo +{(T: A) Pt = T, A}V Fo + Ti Ay V) Fo
=: RV Fo+ RV |Fo + T,AV| Fo.
Observe that R(Z) —R; from above, and we have already shown that [[|R;[lo, < <A+ |||®9||| Op),6 so that

the desired bound holds from property (i) of Fyp. For the last term, we have T; A V| Fo =1"9;"S,L | Fp,
and we know that t"~19S, : L> — L? uniformly in . Thus, by property (ii) of Fp, we have

zdxdt

() O] £0Q)
_/ [t 19mS, Ly F (x)|*t dx dt < f tdr <10,
0 Rn

£(Q)
P A
/O (T, Ay Fo)()] o

which shows the desired bound for this term.
To bound the contribution from R,(l), we note that 7, : L?> — L? uniformly in ¢ and

dx dt
/ / (E = Pgn) 2 240 < o2
Rr:rl t

for g € L>(R"). Therefore,

Q) Q)

d dt d dt
/ IRV Fo* f T, Ay(E; — PV Fol> £
0 0 R

dx dt

“uo
5/ |(E: = POV Fol> == SIVIFI3 S ClOI,
0 R

where we used the ellipticity of A in the second inequality, and property (i) of Fyp in the last inequality.
This controls the contribution from Rt(l) and finishes the proof of the lemma. g

Proof of Proposition 5.22. To see that [|©f"[|l,, < 1+ 191l and that 101)c <14 [160°)¢, we
simply notice that @,(a) = (@Y, "3™(S5,V))) so that the desired bounds follow directly from the previous
lemma.

We are left with showing the bounds in Proposition 5.22 for 7, = ®]. We note immediately that (5.24)
will follow from (5.23) and Lemma 2.23. Therefore, it is enough to show (5.23). In fact, by Lemma 5.26,
it suffices to show that [|@/]]|. < |||®,|||0p + |||®0||| . For g € L*(R", C"), we have

op ~
®/g = t’"amS,(BZHg) +1"9"(5V) - Ag = tma’"S,(ang) +1"9" (S V) - Ayg — t’"amHStbg,

6We have shown that Il R¢ |||op < (1+|H®?|||0p)+e|||@, |||0p, where ¢ is at our disposal by the smallness of max{|| B1|l», [|B2lln},
and this is enough for our purposes.
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where b = @”HJ)ISJS"' The ellipticity of A gives immediately that ||| 0;" (S, V|) A |||Op < |||(:3|||Op, and
| a;"“s,b||| op < 1O1llgp- It remains to handle the first term. Observe that

BZHg = diV” V”Isz”g = diV” R[] an&

where R is the vector-valued Riesz transform. It follows that By g =div| G with ||é||2 < IBa2llnllgll2,
and hence
12" 07" Si Balll oy < MO lllopll Bl

which yields the desired bound. O

SE. Proof of the square function bound. We finally turn to the proof of Theorem 5.1 (and hence, by
our reduction, the proof of Theorem 1.3). Our method follows the lines of [35], circumventing some

difficulties by introducing © and b(Q“).
Proof of Theorem 5.1. Let C be a constant, depending on m, n, A and A, for which the inequalities (5.23)
and (5.24) hold. We choose 1 in Proposition 5.9 as n := 1/(2C| 4+ 4). By the generalized Christ—Journé

T'1 theorem for square functions, (see [35, Theorem 4.3]) to prove the theorem it is enough’ to show that
17 1]lc < C. (5.32)

As in [35], we want to reduce the above estimate to one of the form
dx dt
[[ wematepor 4 < cig)
Ro

where A}¢ is an averaging operator adapted to o (and hence Q) we will introduce later and R is the
Carleson region Q x (0, £(Q)). The argument up until this reduction, namely (5.40), is almost exactly as
in [35]. Define ¢ (x, 1) := ©,1(x), ¢°(x, 1) := ©1(x), and ¢'(x, t) := ®]1(x), where these objects make
([RE’J’FH) by Lemma 2.24 and Proposition 4.37. Consider the cut-off surfaces

Fii={(x,0) e R0, 0] < /e (e, 01},
Fyi={(x,1) e R2 1200, ) > /01 (x, DI}

We easily have [|£°c < [1¢%1F, llc + [1¢°1F, ||lc. By the definition of F, Proposition 5.22, and the fact
that n < 1/(2Cy), we realize that

sense as elements of leoc

12°LF lle < nllgtlle < Cin(+112%e) < A +112°e).

Consequently, [|°]lc <14 2]¢%1 R, llc, and recall that we may work with truncated versions of each of
¢, ¢%, ¢’ so that all quantities are finite. Accordingly, we have reduced the proof of (5.32) to showing that

12915, e < C. (5.33)

TThe careful reader will notice that we have verified the hypotheses of [35, Theorem 4.3] above aside from the quasiorthogo-
nality estimate (4.4) of that work. This estimate is slightly misstated there; /& should be replaced by O/ and we verify this below
when dealing with the term labeled J;.
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By (5.12) and (5.13) we have

1 1
) d ‘ ‘ /bd ‘+
uQ<Q>/(gQ“Q5§uQ(Q> o 0 He

1
: boduo|+ Lnl¢’
S‘{ MQ(Q)/Q © MQ‘ 2le ]

for every dyadic cube Q C R". Therefore, for every such O C R", the estimates

1,0
3187 <

0 ¢

1
. bd
M(Q)/Q 0 “Q‘

b d LIl

121 <1801 +1¢’ | < (1+n_1/2)|§°I <2120

31¢ I_'E

hold in F,. Combining the previous three estimates, we have, for (x, t) € F; and every dyadic cube Q,

SV =y 3l Dl < (= /31, t)|<‘§ deﬂQ‘- (5.34)

10(Q)

At this juncture, we make the observation that, in order to obtain (5.33), it suffices to show that for
some « > 0 chosen small enough, we have

162 R Irg (D)lle < C. (5.35)
with C independent of v, where I'Y is an arbitrary cone of aperture «; that is,
Iy ={zeC:|@z/lz) =) <o)

for v € C? a unit vector. It is clear that if we establish (5.35), then (5.33) follows by summing over a
collection of cones covering C2. In light of this, we fix such a cone I'* with & to be chosen. By (5.34)
and the fact that n < % we have, for each (x, t) € F, with {(x,t) € I'{ and every dyadic cube Q C R",

[ ¢(x, 1) /b J ‘
8 = |1ce.nl wo@ Jo 2

< () o e+ ot [, o
2Cx. )] no(0) Jp, 2 1o(Q) Jo @M

. bodul,
"MQ(Q)/QQ“‘

where in the last step, we used Schwarz’s inequality, the fact that

1 _dp _
COde_¢QSI OnQ9

and (5.10). Since « is at our disposal, we may choose a < /1/(16Cy), so that

ﬂ=:9<
16 -

< Coa +

V-

bodul. 5.36
uQ(Q)/Q 0 “‘ (-3
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Next, we observe that in order to obtain (5.36) we needed (x, t) € F, with ¢(x, ¢) € I'). This means that
(5.36) holds whenever
dx dt

//R 120, 1) P (x, 1) (¢ (s 1) CE4E 2,
[

Consequently, when proving (5.35) we can always assume that (5.36) holds.

Now, fix any dyadic cube Q such that (5.36) holds and, following [35], use a stopping-time procedure
to extract a family F = {Q} of nonoverlapping dyadic subcubes of Q which are maximal with respect
to the property that at least one of the following conditions holds:

0
ldug > — (type I),

0
V- bodu ‘ <—  (type II).
‘ 1o(Q)) /Q efrel =2

If some Q; happens to satisfy both the type I and type /I conditions we (arbitrarily) assign it to be of
type 11. We will write Q; € F; or Q; € Fy; to mean that a cube is of type I or of type II respectively.
This stopping-time argument produces an “ample sawtooth” with desirable bounds in the following sense.

Claim 5.37 (ample sawtooth). There exists B > 0, uniform in Q, such that
Y el =a-plal (5.38)
Qj eF

provided that o > 0 is small enough (depending on allowable constants). Moreover,
120, D)L (6 (6, 1) < Cole (x, DA b (D) for (x,1) € Ep, (5.39)

where E*Q = Rp\ (UQJ_E; RQj). Here A?Q is the “dyadic averaging operator adapted to the mea-

sure (Lo ”, that is,

1
AP f)= ——— duo,
A2 mo(Q(x,1)) Q(x,t)f o

where Q(x, t) denotes the smallest dyadic cube, of side length at least t, that contains x.

We postpone the proof of the claim for a bit. The ampleness condition (5.38) allows us to use the
John—Nirenberg lemma for Carleson measures to replace R in the definition of | - [[¢c by E *é This is
done via an induction argument; see for instance, [36, Lemma 1.37]. Thus, we have by (5.39) that

dx dt

1625 Lre (©) e < sup|Q|// 1£°e DL Cx D) (¢ (x. 1))

<s ff £ AL Do) 2L
Piol /e,

where we used that |£°| < || in the first line and replaced E ’(‘2 by the larger set Ry after using (5.39) in
the second line. As we had reduced the proof of the theorem to showing the estimate (5.35), it is enough
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to show that

sup—// | (x, t)AMQbQ( )|2 dth <C. (5.40)
101 JJr,

To this end, we fix a dyadic cube Q and write
CA%bo =[(©, 1A} —O,1bg + ©,bg =: Ribg +Obg =1+ 1I.
First we handle term 7/, which is (almost) good by design. We write
I =6,bg =8,bp —©"by =: Il + I,.

By (5.11), the contribution from the term /I in (5.40) is controlled by Cy. Moreover, by Proposition 5.22
we have

dx dt
[[ 10057 L < b g 1+ 16010 = 1GOOI LB+ 1611,
Qo

so that the contribution of /5 can be hidden in (5.32), provided that || By ||, is sufficiently small (depending
on n, «). Here, we used that b(Q”)(y) = |Q|B1Fg(y,0), so that

16812 6y =f 101 1B1Fo(-. 0P < [BiI21QF | [VFo(-. 0 < CollB1lI2| Q.
R~ Rn

It remains to obtain a desirable bound for I. Let {Qs};-0 be a CLP family (see Definition 2.26).
By a standard orthogonality argument and (5.10), it is enough to show that, for some Sy > 0 and all

t € (0, £(Q)), the estimate
Bo
[ 1Rl Smin( )" [ o (5.41)
0 R
holds for all h € H x L2(R").

We remind the reader that H := {h' : i’ = VF, F € Y"2(R")} and that by € H x L*(R"). Before
proving (5.41), we make a small technical point. Having fixed O, we let [ty be a measure on R" defined
by fig = ,uQ|Q + (I/CO) dx|rm o, and set E; = AMQ Notice that for (x t)e O x(0,£(0Q)), A“Q acts
exactly as At . Thus, in order to prove (5.41), we may replace R, by Rt, where R, =[O, E, — O].
Notice that we may apply Lemma 2.24 to ®,, since ®, has good off-diagonal decay (see Proposition 4.37)
and satisfies uniform L? bounds on slices (see Proposition 4.23). Thus, (®,1) is well-defined as an
element of leoc and, since E; is a self-adjoint averaging operator, we have

sup [(®; D Ei|l 22 < C. (5.42)

t>0

We break (5.41) into cases.

Case 1: t <s. In this case, we see by (5.42) and properties of ®, that ﬁ,l =0, ||§, l72-72 < C and ﬁ,
has good off-diagonal decay. Hence, it follows from Lemma 2.25 that

5 N2 2 1 t
1R Qshll 2y S EIVOShllL2mey S ;IlsVQs Qhllr@y S ;”Qsh”Lz(R")v

which shows (5.41) with Sy = 2 in this case.
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Case 2: 1> s. Inthis case, we break R, into its two separate operators. One can verify that || E, Q|72 12 S
(s/t)Y for some y > 0. Since E; is a projection operator, we have E, = Et2 and hence by (5.42), we see that

14
1O E QI = (O, DENE QI S Q22 S (2 1Quhla,

which shows that the contribution of (®;1)E, Q? to (5.41) when t > s is as desired with Sy =2y.
We are left with handling ®,Q2h. Since h = (b, h°) € H x L*(R"), we write h = (V| F, h°), with
F € Y'2(R") (note V| = V here). Then we may write

0,Qsh = ©°Q*h° + O, Q?V| F = ©°Q*1° +[©,Q2V| F + O\ B| Q> F1— O\ B|Q*F = J; + J» + J.
To handle J;, we write Qg = s div sVje* 4, so that
Ji =0Y02h0 = "(3,)" ' S 9, 0,h° = ;:m“ (0" SE divy sV 2 Q k.

Note that by (4.25) we have that /*+1(3,)"+1S£ div, and sV e*2 are bounded operators on L2(R").
Therefore, we have that ||®?th0||2 < (s/1)]1Qsh°]|2, and the contribution of J; to (5.41) when ¢ > s
is as desired with By = 2.

For the term J,, first we use Proposition 2.27 to justify that there exists g € L>(R") such that O, F = I, g,
where I} = (—A)~!/2 is the Riesz potential of order 1, and satisfying || g|l> ~ |V Qs Fll2 = [|Qs V| Fll2 =
|Qsh || (every F € Y1-2(R") arises as the Riesz potential of a function g in L?(R™)). Then, we may use
integration by parts on slices (Proposition 3.19) to compute that

Ty =1"(3)"SF (By VY Q F) + 1" (9)" (SFV)AV| Q; F + 1" (8,)" (S/ V) B1 Q; F
= " @)" TN (SFVIA . 1 1QsL1g +1" (@) SF By Oslig = Joi + .
Since [|ls 7' Qs 11 || 12— 12 < C and "F1(3,)"+1(SFV) : L? — L2, we obtain that the contribution of J5 |
to (5.41) when ¢ > s is as desired with By = 2. Similarly, " (9,)" 'S By, : L? — L2, so that the

contribution of J, 7 to (5.41) when ¢ > s is as desired with Sy = 2.
We are left with controlling the contribution of

J3=0YBIQ*F =1"3"(S*V)B Q,F = 0O, ,,B11,g,

where F =1I,g, F € Y'? and g € L? with ||g|» ~ IV Fll2. By Lemma 4.30, for all s <t we have

s\
10 BIQ Fll e S () 158 li2emn.

Then we may control this term in (5.41) with g in place of 7 = V| F, which is sufficient as ||g|l2 S |V F ||z
The proof of the theorem is finished modulo the following:

Proof of Claim 5.37. We first verify (5.39). Observe, by the maximality of the family Q;, that for any
dyadic subcube Q' of Q which is not contained in any Q ;, we have the inequalities opposite to the type /
and type II inequalities, with Q” in place of Q;. Thus,

0 0
E5|V-A,”QbQ(x)| and |A§‘QbQ(x)|5E
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forall (x,1) € EZ It follows that if z € I'Y and (x, t) € E7,, we have the bound
10 < v A% < |(z/lz]) - AF %o ()] + |(z/1z] —v) - A} Cbo ()| < 1(z/1z]) - Af Cbo ()| + 16,

where we used the definition of I'y in the last line. The above estimate yields (5.39) with Cy = (4/0)2
by setting z = ¢ (x, ).

Now we establish (5.38). Set E := Q \ (UQ,-E]-' Qj) and B; := UQ,—ef, Q. By definition of F; and
the fact that 1/Co <du/dx <1 on Q, we have By C {.# (bg) > 6/(4Coa)}, where .# is the uncentered
Hardy-Littlewood maximal function on R” (taken over cubes). The weak-type (2, 2) inequality for the
Hardy-Littlewood maximal function and (5.10) yield the estimate

B =ccd(2) [ o < cci(%Y 1ol
0/ Jn 0
From this estimate, (5.10), (5.36), the definition of type /I cubes, and Holder’s inequality we obtain

0uo(@ = |v- [ boduo|<|v- [ boduo|+ [ tboldn+ I |v- [ bodug
0 E Bi QjeFu Qi
0
< E|"?lboll 2@ +1B11" 2 1boll 2y +5 D 1o(Q))

QjeFy
0
< CIE['"?1Q1'2 + Coa| Q| + S 110(Q).
Choosing o > 0 small enough and using the fact that (%)nl Q| <ug(Q) < 10|, the above estimate implies
that | Q| < Cg|E|, which yields the claim with 8 =1/Cy. O

Thus we conclude the proof of Theorem 5.1. U

6. Control of slices via square function estimates

We are able to use the square function estimate obtained in the previous section to immediately improve
our L? — L? boundedness results of ¢-derivatives of the single layer potential. More precisely, in the
following lemma, we extend estimate (4.25) (previously valid for m > 2), to the case m = 1, given
sufficient smallness of max{||B1||,., || B2}

Lemma 6.1 (stronger L> — L? estimate). The estimate

16V, SE fllagn S 1f 2
holds, provided that max{|| By ||, || B2lln} < €0 and &y > 0 is small enough so that (5.6) holds for m =n+10.
We may use Lemma 6.1 to obtain the “travel down” procedure for VSV.
Lemma 6.2 (L> — L? estimates for S, V). The following statements are true:

(i) Foreach f € L*(R", C"*t") and each t # 0 we have

1505 SEVY Flla S I fllas k=1, 6.3)
150V (SEVY flla SN fllas k=2, 6.4)
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provided that max{|| By ||, || B2ll»} < €o is small. Therefore, for each m > k > 2,

ll*0f ="V (SEVY LIl S ™87 (SEVY LI+ 11 2, (6.5)
provided that max{|| By || L»@wny, || B2l 7wy} is small.
(i1) The estimate (6.5) holds for k = 1 if the operator V acting on (S,CV) is replaced by 0;.

Proof of Theorem 1.4. Let h € C°(R")"! and fix © > 0. Notice that by Lemma 2.3, the pairing
(h, Tr; Vu)s o is meaningful. Let R > 7, ¥ € CX°(R) satisfy ¥ =1 on [z, R], ¥ = 0 on [2R, 00),
[¥] <1 and || <2/R. We have the following estimates:

2R
1] := f / v / / \h| Y| | V| < \/_||h||L2(Rn)||Vu||L2(Rn+1 —~0 as R— o0, (6.6)
2R—7 2R
[1I]:= / / h-ty/'(t+1) Tr, 4. 0, Vudt 52][ / t\h||0;Vu|dt
n R n
< 2||h”L2(R”) sup ||tTr, 8,Vu||Lz(Rn) S ||h||Lz(Rn)||Vu||L2(Rn+1) —0 asR— oo, (67)
te(R,2R) R2
and

/ Bt Trye Vou

t
< ||h||L2([R”)H__t”(t + 1) Trry e Vorull L2y

t
< ;”h”LZ(R”)||V”||L2(R’f1) — 0 ast\(0, (6.8)

where in (6.8) we used (3.25), and in (6.7) we used (3.24) and the absolute continuity of the integral. We
now perform two integration by parts in the following calculation, recalling that ¥/ (2R) = 0 so that the
arising boundary terms vanish:

/h-Tr,Vu:f h-w(t)Teru—/ h-yQ2R)Tryr Vu
! ' 2R " 2R
——/ h- 1//8tVu—/ h- Yv'Vu

2R—t 2R—t
f / h-tTr, 9f¢82v9’udr+/ / h-tTe, T ,VIT udt — I
n n R

2R—t
:/f htTr, 75>V T udt+ 11 — 1,

where in the third equality we used (6.8) already. Note that the terms I, II drop to 0 as R — oo by the
estimates (6.6) and (6.7). For technical reasons, let us integrate by parts one more time. The boundary
term that is introduced is again controlled as in (6.8) and (6.7) because we may apply the results of
Proposition 3.23 to 32.7 u. Hence we have

2R—1 2R—1
// Bt T, yfwafvyfud;:_%// h-t*Te, 75983V T udt + I, (6.9)

where |III| — 0 as R — oo. Intuitively, we would like to introduce Green’s formula at this point, but
we want the “input” in the layer potentials to still depend on ¢ for when we later dualize to control our
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integral by square function estimates. Let us now do a change of variables ¢ — 2t, and carefully track the
use of the chain rule:

1 2R—1
E/ / h-t>Tr, 779>V T udt
nJ0O

R—1/2
=4// h-t? 77 Q20)83, Vo0 T u(-, 2t) dt
nJO

1 R=t/2 - 1 R—1/2
25/ |:/ hl'tzyTW(Zt)anytu(',Zt)dt—l-zhj_/ tzyt‘/f(Zt)afyru(x,ZI)dt]
n 0 0

We now consider s € R and write 2t =t + s|;—;. If F is a differentiable function in ¢, the chain rule tells
us that 9, F (t +s) = 9, F (t +s). By this change of variables, and the above identity, we compute that

1 2R-t R—1/2
5//0 h-t2Tr, yfwafVQrudt=4/O ;29z+rw(;)[/nhrfrt Vx,tDs+17S§ru(x,t):| dt

s=t

R—1/2
:4/ z29f+f¢(t)[/ h-Tr,VDnHW(D,%HySu)] dt.
0 R

s=t

We now apply Green’s formula, Theorem 4.16(ii). The function v:= DZZ 17 u belongs to Wl’z([R{’fl) C
Yl’z([R’fl) and solves Lv =01in [F\R’fl in the weak sense. Therefore the identity

v =—D"T(Trgv) + S (85T v)

holds in YI’Z(RTI) for any s > 0. But by the results of Proposition 3.23, for each ¢ > 0 we have the
identity

Tty VDu4170 =Tty VD, 11 77 (=D (Trg v) + S8 v))

in L2(R") for any s > 0 and ¢ > 0. As such, per our calculations we have the identity

1 2R—1 R—1/2
E/ / h-t>Tr, yfwa}vyfudt=—4f t29’+’1p(t)[/
nJ0O 0

R—1/2
+4 / t29t+tl//(t)|: / h-Tr,VDnHﬂ’SE(af’*v)} dt
0 Rn

s=t

h-Tr,VDnHnyH(Trov)] dt

n s=t

=1V+V.

Now we make use of the adjoint relations (4.5), (4.21) and (3.26) to dualize IV and V. Indeed, we see

/ h-Tt; VD, T D5F (Trg v) = (Dyi18 21 (SE V), Tro v)2.
= (Dpy1€nq1-Tr—;[A*V + EZ](SL* V)’_l, Try Di+1”)2,2,

/ h-Tr, VD, 1778505 0) = (Tr_;_¢ Dpy (S V)R, 05 0)20
= (Tr_1— D1 (S5 V)h, —en i1 - Tr,[AV + BI1D2 12 2.
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Therefore, using the Cauchy—Schwarz inequality, we estimate that

R—1/2 _ % -
IV <4 / 2 | |Tr_i—¢ Dus1[A*V + Bol(SE V)h|| Tr, D2, ul di
0 R7

S Ne2a, V(SE Vh||_ll2d2ulll < 12 llldull, (6.10)

R—1/2 . _
Vi<4 / | 1Tr—r—c Dyt (S V)| Tt [AV + B11Dy qul dt
0 R"
S Med (SE RN _N287V Illu < I l2 0127Vl (6.11)

where we used the square function estimate (5.6) and the “travel-down” procedure (6.5). Now send
R — o0, which sends ||, |II|, |1lI| — 0. By the bounds (6.10), (6.11), and Lemma 5.2, the desired
bound for the gradient follows.

To obtain the bound for the L?"/"=2)(R") norm, we use Lemma 2.3 to ensure that at each horizontal slice,
the L2"/"=2) (R") norm of a ¥ :2(R"*") solution is finite. Then we may apply the Sobolev embedding,
whence the desired result follows. O

The method of proof of Theorem 1.4 is robust, in the sense that we may loosen the condition that
ueyY 1’Z(Rffrl), provided that u is such that the square function in the right-hand side of (1.5) is finite,
and that the gradient of u decays to O in the sense of distributions for large . More precisely, we have:

Theorem 6.12 (a more general Tr < S result). Suppose that u € Wlt’cz([R{'jfl ), Lu=0in [R{Z’fl in the weak
sense, and Vu( -, t) converges to 0 in the sense of distributions as t — 0o (we refer to this last condition
as the decaying condition). Furthermore, assume that |||tV D, ul|| < co. Then, for every T > 0, the

following statements are true:
(i) If L1 #0in R, then
o
I Tre wll o2 ey + 1| Tre Vil g2y < / / 11Dy ul>dx dt S |[l1Dy ulll. (6.13)
T JR?

@) If L1=0in RT“], then there exists a constant ¢ € C such that v := u — ¢ (which is again a solution)
satisfies estimate (6.13).

The proof of this theorem is omitted as it is very similar to the proof of Theorem 1.4 as soon as we
have the following technical result.

Proposition 6.14 (solutions with gradient decay). Suppose that u € Wll)’cz(R’fl) is a solution of Lu =0 in
[R’fl and that L1 #0 on some box I = Q x(t1, 1) C [R’fl. Further, assume that sup,_ ¢ [|Vu(t) || 12y < 00,

and that im;_, oo |Vu(t)|| p2(gry = 0 (see (2.2)). Then u(t) € YL2(R™) for everyt > 0.

Proof. Step 1: There exists a constant ¢ € C such that, forall > 0, u(-,t) —c € Y1L2(Rm).

To see this, first note that by the Sobolev embedding, there exists a function f : (0, +00) — C such
that, for each r > 0, u(-,1) — f(t) € Y»2(R"). We must show that f is identically a constant. Since (see
the proof of Theorem 1.78 in [55]) for each # > 0 we have that f(¢) = limg_, oo fB(O’R) u(-,t), it can be
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shown by the Sobolev embedding and considering the difference quotient
u(-,t+h)—u(-,t)
h
that f is differentiable and that f/(z) = 0 for all r > 0. It follows that f is a constant, as desired.

Step 2: For the box I C IRTrl as in the hypotheses, it holds that
//|MR|2*—>O as R — oo,
I
where u®(-, ) =u(-,- +R).

This is the crucial step. We set p = 2* and uf =I"! [f I uR for ease of notation. By the Poincaré—
Sobolev inequality, we see that

lu® —uf oy SUVUR N2y — 0 as R — oo, (6.15)

where we used the definition of u® and the decaying condition of the gradient. In particular, we have
ul — uf — 0in Y"2(I), so that £L(uR — uf) — 0in 1, which implies that, for every ¢ € C°(1), the limit

—ufffIBl-%=//I[<AV<M—u§)+Bl(uR—uf))-vTo+Bz-V<uR—u§>¢1—>o

holds. Since £1 # 0 in I, for some ¢y € C2°(I) we have

f/IBl'V_wo#O,

whence u f — 0 as R — oo. The claim now follows by using this result in (6.15). Notice that this
argument holds just as well for any box J containing /, in particular it holds for %I .

Step 3: For Q C R", t € (1, 1) as in the hypotheses, we have
/ | Tr; u®|”? - 0 as R — oo.
o

This is a consequence of Step 2 and the definition of the trace: for any ¢ € C°(Q) and n € C°(t1, 1)
with n(s) = 1 near ¢, we set & := ¢n € C°(I) and estimate

|(Tru®, )| = 'f/ (D@ +ul Dy @)
R}

R R

S I Dpru”llyrepy 1Pl Loy + 1™ Ny | Dup1 @l o
R R

S D1y + a2 @l L gy

The claim now follows by the Caccioppoli inequality; to wit,

1Dyt N Loy + IV D™ 2y Sy sup [IVu(s) |2y = 0 as R — oo,
s>t0+R

using the fact that p < 2n/(n —?2).
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We now conclude the proof: By Step 1, we can place Try (. —¢) € Y'2(R") for all s > 0. By Sobolev’s
inequality and the hypotheses, || Try u —c|ly12(gny — 0 as s — 00. On the other hand, by Step 3, we have
Tryu — 0in L?(Q), so that ¢ = 0 and the desired result follows. O

A quick application of Theorem 6.12 to the improvement of (6.4) will be useful for the Dirichlet
problem:

Corollary 6.16 (improvement to slice estimate). The estimate (6.4) holds true for k = 1. In particular,
(6.5) holds true for k = 1 as well.

We can also, very similarly, prove:

Theorem 6.17 (L>-sup on slices). Suppose that u € Wli)’cz([RR’fl), Lu=0in [R{’fl, and that u converges

to 0 in the sense of distributions. Furthermore, assume that |||t Vul|| < co. Then, for every T > 0,

00
I Tre ull 2y S f f 1Vul? dx dt < |11V lu,
T JR?

where the implicit constant is independent of t and u.

In the second paper, we will establish uniqueness under some weak background hypotheses. For this
reason, we give two definitions and make an observation.

Definition 6.18 (zood \/R solutions). We say that u € W,>*(R"F!) is a good N'/R solution if Lu =0 in
R’fl in the weak sense, u € SJZr (see Definition 2.13 for the slice spaces Si and Di), and o,u, €Y 1*2([}291“)

for all T > 0, where u,(-,-):=u(-,- +71).

Definition 6.19 (good D solutions). We say that u € W,-2(R™") is a good D solution if Lu = 0 in R"*!

ocC
in the weak sense, u € Di and u, € Yl’z(lRﬁ’rH) forall t > 0, where u,(-,-) :=u(-, - +1).

As an immediate consequence of Theorems 6.12 and 6.17 we have:

Corollary 6.20. Let u € W22 (R satisfy Lu = 0 in R

loc

@A) If ItV o,ull| < oo and limy—, oo Vu(t) = 0 in the sense of distributions (see (2.2)), then either u is a
good N'/R solution (in the case that L1 # 0 in [R{'jjl), oru —c is a good N'/R solution for some
constant ¢ (in the case that L =0 in RTI).

@11) If [t Vul|| < oo and lim;—, oo u(t) = 0 in the sense of distributions, then u is a good D solution.
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