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 25 

ABSTRACT 26 

Recent advances in ecology and biogeography demonstrate the importance of fire and 27 

large herbivores – and challenge the primacy of climate – to our understanding of the 28 

distribution, stability, and antiquity of forests and grasslands. Among grassland ecologists, 29 

particularly those working in savannas of the seasonally dry tropics, an emerging fire–30 

herbivore paradigm is generally accepted to explain grass dominance in climates and on soils 31 

that would otherwise permit development of closed-canopy forests. By contrast, adherents of 32 

the climate–soil paradigm, particularly foresters working in the humid tropics or temperate 33 

latitudes, tend to view fire and herbivores as disturbances, often human-caused, which 34 

damage forests and reset succession. Towards integration of these two paradigms, we 35 

developed a series of conceptual models to explain the existence of an extensive temperate 36 

forest–grassland mosaic that occurs within a 4.7 million km2 belt spanning from central 37 

Europe through eastern Asia. The Eurasian forest-steppe is reminiscent of many regions 38 

globally where forests and grasslands occur side-by-side with stark boundaries. Our 39 

conceptual models illustrate that if mean climate was the only factor, forests should dominate 40 

in humid continental regions and grasslands should prevail in semi-arid regions, but that 41 

extensive mosaics would not occur. By contrast, conceptual models that also integrate climate 42 

variability, soils, topography, herbivores, and fire depict how these factors collectively expand 43 

suitable conditions for forests and grasslands, such that grasslands may occur in more humid 44 

regions and forests in more arid regions than predicted by mean climate alone. Furthermore, 45 

boundaries between forests and grasslands are reinforced by vegetation–fire, vegetation–46 

herbivore, and vegetation–microclimate feedbacks, which limit tree establishment in 47 

grasslands and promote tree survival in forests. Such feedbacks suggest that forests and 48 

grasslands of the Eurasian forest-steppe are governed by ecological dynamics that are similar 49 
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to those hypothesised to maintain boundaries between tropical forests and savannas. 50 

Unfortunately, the grasslands of the Eurasian forest-steppe are sometimes misinterpreted as 51 

deforested or otherwise degraded vegetation. In fact, the grasslands of this region provide 52 

valuable ecosystem services, support a high diversity of plants and animals, and offer critical 53 

habitat for endangered large herbivores. We suggest that a better understanding of the 54 

fundamental ecological controls that permit forest–grassland coexistence could help us 55 

prioritise conservation and restoration of the Eurasian forest-steppe for biodiversity, climate 56 

adaptation, and pastoral livelihoods. Currently, these goals are being undermined by tree-57 

planting campaigns that view the open grasslands as opportunities for afforestation. Improved 58 

understanding of the interactive roles of climate variability, soils, topography, fire, and 59 

herbivores will help scientists and policymakers recognise the antiquity of the grasslands of 60 

the Eurasian forest-steppe. 61 
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 80 

I. INTRODUCTION 81 

Grasslands (including savannas) cover approximately 40% of the terrestrial biosphere 82 

(White, Murray & Rohweder, 2000), support high biodiversity (Myers et al., 2000; Murphy, 83 

Andersen & Parr, 2016), provide habitat for native animals and domestic livestock, and 84 

supply a variety of other ecosystem services, including belowground carbon storage 85 

(Alkemade et al., 2013; Dass et al., 2018; Erdős et al., 2018a). Despite their importance, 86 

grasslands are often overlooked in conservation planning, undervalued because they lack 87 

dense tree cover, and misinterpreted as degraded vegetation in need of reforestation (Parr et 88 

al., 2014; Tölgyesi et al., 2022). This confusion over the conservation value of grasslands is 89 

acute in places where the climate can support the development of forests (Veldman, 2016). 90 

Indeed, much of the research on the determinants of grassland distributions is framed to 91 

answer the question of why they exist at all, particularly in places where successional theory 92 

suggests there ought to be forests (Sarmiento, 1984; Bond, 2008). 93 

To answer why grasslands exist in climates that can support forests, there are two 94 

prevailing views among ecologists. The first view, the climate–soil paradigm, has long 95 

considered climate to be the principal control over biome distributions (e.g. Holdridge, 1967), 96 

while recognising that certain soils can limit tree growth, thus permitting grasslands to exist 97 

(e.g. Beard, 1953). In the climate–soil paradigm, grasslands that are not on special soils, and 98 

depend upon fire and large herbivores for their maintenance, are typically considered to be 99 
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degraded ecosystems, deforested by humans, and in a stage of arrested succession (Veldman 100 

et al., 2015). The second view, the emerging fire–herbivore paradigm (e.g. Pausas & Bond, 101 

2019), views climate and soils as insufficient to explain the distribution of biomes, and 102 

emphasises the relationships among vegetation, fire, and herbivores (Murphy & Bowman, 103 

2012). At first glance, the growing popularity of the fire–herbivore paradigm can appear to be 104 

supplanting the idea that climate and soils matter at all (e.g. Veenendaal et al., 2018). But 105 

rather than viewing these two paradigms as mutually exclusive, we suggest that recent work 106 

to understand the role of fire and herbivores in shaping grassland and forest distributions does 107 

not replace, but adds nuance, specificity, and mechanistic detail, where the climate–soil 108 

paradigm falls short. Indeed, proponents of the fire–herbivore paradigm study these forces in 109 

addition to and in relation to soils (e.g. Hoffmann et al., 2012; Staver, Botha & Hedin, 2017) 110 

and climate (Higgins Bond & Trollope, 2000; Staver, Archibald & Levin, 2011; Lehmann et 111 

al., 2011, 2014; Hempson, Archibald & Bond, 2015). 112 

While progress on the ecological importance of fire and herbivores has advanced for 113 

tropical and subtropical savanna ecosystems (Scholes & Archer, 1997; Sankaran, Ratnam & 114 

Hanan, 2004; Bond, 2008; Baudena, D’Andrea & Provenzale, 2010; Hoffmann et al., 2012; 115 

Ratajczak, D’Odorico & Yu, 2017), temperate grasslands of Eurasia continue to be viewed 116 

largely through the lens of the climate–soil paradigm. To understand better the ecological 117 

controls over grasslands and forests and to improve their respective conservation and 118 

restoration in the face of climate and land-use change, we reviewed the literature on the 119 

Eurasian forest-steppe. We developed a series of conceptual models of forest–grassland 120 

coexistence to depict purported drivers visually in a hierarchical manner, beginning with 121 

macroclimate (henceforth ‘climate’). Because mean climate alone is clearly inadequate for 122 

explaining the existence of the forest-steppe, we draw on our literature review to add climate 123 

variability, topography, soils, herbivory, fire and feedback mechanisms to successive models 124 
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in the hierarchy. Collectively these models illustrate how it is possible for the Eurasian forest-125 

steppe to occupy such broad geographic and climatic ranges. We hope that our conceptual 126 

models will help ecologists, environmental policymakers, and land managers recognise the 127 

multiple drivers of forest–grassland coexistence across Eurasia, and help explain why 128 

herbivores and fire need to be considered, in addition to climate and soils. 129 

 130 

II. ECOLOGY, BIOGEOGRAPHY, AND CONSERVATION OF THE EURASIAN 131 

FOREST-STEPPE 132 

Positioned between temperate forests to the north, and mostly treeless continental 133 

steppes to the south, the Eurasian forest-steppe occupies a 9000 km long and, on average, 430 134 

km wide belt from central Europe to far eastern Asia (Fig. 1A) (Erdős et al., 2018a). Forest-135 

steppes are the natural vegetation in large parts of Hungary, Serbia, Romania, Bulgaria, 136 

Moldova, Ukraine, Russia, Kazakhstan, Mongolia, and China, occurring within a belt of 137 

roughly 4.7 million km2 (Erdős et al., 2018a). We consider forest-steppes to be landscape 138 

mosaics composed of forests (dense communities of trees and shrubs, >2 m tall) intermixed 139 

with open grasslands of herbaceous plants. Proportions of forest and grassland vary, with 140 

forests typically occupying 10–70% of the mosaic landscape. Although extensive areas of 141 

forest-steppe have been destroyed in Europe, large tracts remain intact across Asia (Zlotin, 142 

2002; Smelansky & Tishkov, 2012). The extensive geographic range of the forest-steppe 143 

encompasses a wide range of climatic conditions, including mean annual temperatures from 1 144 

to 14 °C and mean annual precipitation from 210 to 600 mm (Erdős et al., 2018a).  145 

Forest-steppes form mosaic landscapes of two ecosystem states: forest and grassland 146 

(Fig. 1B, C) (Erdős et al., 2018a). The forest state is dominated by deciduous and/or 147 

evergreen trees, including Betula pendula Roth (species nomenclature according to the 148 

Catalogue of Life, catalogueoflife.org), B. pubescens Ehrh. (Betulaceae), Larix gemilinii 149 
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(Rupr.) Kuzen., L. sibirica Ledeb., Pinus sylvestris L. (Pinaceae), Populus neimongolica 150 

Doweld, P. tremula L. (Salicaceae), and Quercus robur L. (Fagaceae), whereas the grassland 151 

state is typically composed of perennial C3 grasses, primarily species in the genera Festuca 152 

and Stipa (Poaceae). Boundaries between forests and grassland are typically stark and support 153 

a rich community of forbs and deciduous shrubs. In addition to many plant species that are 154 

common in the neighbouring temperate forest or steppe biomes, forest-steppes also have their 155 

own characteristic taxa that primarily occur in mosaics. These include the trees Acer 156 

tataricum L. (Sapindaceae) and Quercus robur (subspecies pedunculiflora; Fagaceae), the 157 

shrubs Prunus fruticosa Pall. (Rosaceae) (Fig. 1D), Ribes diacanthum Pall. (Grossulariaceae) 158 

and Spiraea aquilegifolia Pall. (Rosaceae), the perennial C3 grasses (Poaceae) Brachypodium 159 

pinnatum (L.) P. Beauv., Helictochloa hookeri (Scribn.) Romero Zarco, and Melica altissima 160 

L., the sedges (Cyperaceae) Carex humilis Leyss. and C. michelii Host, and numerous forbs, 161 

including Artemisia latifolia Ledeb. (Asteraceae), Anemone sylvestris L. (Ranunculaceae), 162 

Cervaria rivini Gaertn. (Apiacea), Iris ruthenica Ker Gawl. and Iris variegata L. (Fig. 1E) 163 

(Iridaceae), Pulsatilla patens (L.) Mill. (Ranunculaceae), Ranunculus polyanthemos L. 164 

(Ranunculaceae), and Trifolium montanum L. (Fabaceae). The forest-steppe is home to 165 

several endemics, including Colchicum arenarium Waldst. & Kit. (Colchicaceae) (Fig. 1F) 166 

and Dianthus diutinus Schult. (Caryophyllaceae) for the Carpathian Basin and Leymus 167 

tuvinicus Peschkova (Poaceae) and Pilosella tjumentzevii (Serg. & Üksip) Tupitz. 168 

(Asteraceae) for the South Siberian mountains (Jakucs, 1961; Walter & Breckle, 1989; Simon, 169 

2000; Peshkova, 2001; Korotchenko & Peregrym, 2012; Rachkovskaya & Bragina, 2012; 170 

Smelansky & Tishkov, 2012; Makunina, 2017; Hongyan Liu, personal communication). 171 

In addition to their high biodiversity, forest-steppes are important for the ecosystem 172 

services they provide. Some of these services depend on the simultaneous availability of 173 

resources from the two ecosystem states (i.e. forest and grassland). For example, forest-174 
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steppes have been used as pastures for millennia, and still provide livelihoods for rural people 175 

throughout Eurasia (e.g. Rachkovskaya & Bragina, 2012; Smelansky & Tishkov, 2012). 176 

While grasslands are the main source of forage, forests provide wild fruits and acorns (Varga 177 

et al., 2020) and offer shelter for animals during extreme hot and cold weather (Gantuya et 178 

al., 2019). Moreover, forest edges (i.e. the contact zones between the two states) themselves 179 

are regarded as highly valuable pastures in Mongolia (Gantuya et al., 2019). Forests are also 180 

utilised for fuelwood collection and occasional selective logging (Hauck et al., 2012; 181 

Lkhagvadorj et al., 2013). 182 

While there is growing consensus that forest and grassland ecosystem states can co-183 

occur across a wide range of tropical and subtropical climates and soil conditions (Lehmann 184 

et al., 2011; Staver et al., 2011), due to the interplay of herbivory, fire, and vegetation 185 

feedbacks (Sankaran et al., 2005; Hoffmann et al., 2012; Murphy & Bowman, 2012), such a 186 

consensus regarding the interactive roles of climate and disturbance is lacking for the forest-187 

steppe. We believe this lack of consensus is due to the historical emphasis on climate and 188 

soils in European vegetation ecology. Indeed, the distributions of the temperate forest biome 189 

and the temperate steppe biome are strongly predicted by climate across Eurasia (e.g. Schultz, 190 

2005; Wang, Prentice & Ni, 2013; Evans & Brown, 2017). But now, after two decades of case 191 

studies in Eastern Central Europe (e.g. Bátori et al., 2018; Erdős et al., 2014a, 2018b, 2019a, 192 

2021; Tölgyesi et al., 2020), Kazakhstan (e.g. Bátori et al., 2018; Tölgyesi et al., 2018), 193 

Mongolia (e.g. Dulamsuren et al., 2008a; Dulamsuren, Hauck & Mühlenberg, 2008b; 194 

Dulamsuren, Hauck & Leuschner, 2013; Hauck, Dulamsuren & Heimes, 2008; Khishigjargal 195 

et al., 2013; Ishikawa et al., 2018; Takatsuki, Sato & Morinaga, 2018), Russia (Anenkhonov 196 

et al., 2015; Makunina, 2016, 2017), and China (e.g. Liu et al., 2000, 2012, 2015), we have a 197 

substantial body of literature that enables a comprehensive overview of how climate, 198 
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topography, soils, herbivores, and fire control forest–grassland coexistence in the Eurasian 199 

forest-steppe. 200 

Such a synthetic approach to the ecology of the Eurasian forest-steppe is needed to 201 

inform environmental policy and land-management decisions, particularly in light of global 202 

calls to restore ecosystems for biodiversity and to plant trees to mitigate climate change. Tree 203 

planting is currently the primary emphasis of nature-based climate initiatives (Cook-Patton et 204 

al., 2020; Baker, 2021), with ecosystems comprised of a mixture of forests and grasslands 205 

among the target areas (Veldman et al., 2019; Holl & Brancalion, 2020). There is a growing 206 

concern that afforestation programmes will compromise grassland biodiversity and ecosystem 207 

services in the short term, and by failing to consider climate–vegetation–fire–herbivore 208 

relationships, will fail to maintain carbon in planted trees over the long term (Parr et al., 2014; 209 

Bond et al., 2019). For example, the widespread pine plantations in forest-steppes are 210 

unreliable stores of carbon due to high flammability (Cseresnyés, Szécsy & Csontos, 2011). 211 

The high water demand of forest-steppe trees compared to grasses can also lead to tree 212 

dieback in drought periods of the ongoing climate change (Kharuk et al., 2017; Mátyás et al., 213 

2018), and the high water consumption of trees can desiccate soils beneath them, potentially 214 

suppressing their own growth (Tölgyesi et al., 2020). Misguided afforestation is thus a 215 

looming threat to tropical savannas and grasslands globally (Veldman et al., 2015; Tölgyesi et 216 

al., 2022) and may be a similarly important, albeit less recognised concern for the Eurasian 217 

forest-steppe. 218 

 219 

III. MODELS OF FOREST–GRASSLAND COEXISTENCE 220 

(1) Climate 221 

Most authors attribute the existence of the forest-steppe to intermediate climate, given 222 

that it occurs between the temperate forest and the continental steppe, two biomes over which 223 



10 
 

climate exerts considerable control (e.g. Chibilyov, 2002; Pfadenhauer & Klötzli, 2014; 224 

Wesche et al., 2016; Erdős et al., 2018a; Wagner et al., 2020). Indeed, around the globe there 225 

are many examples of how climate constrains tree growth: arctic and alpine timberlines 226 

develop due to low temperature and arid timberlines are the result of low moisture availability 227 

(Stevens & Fox, 1991; Breshears, 2006; Bond, 2019). Consistent with these patterns, at the 228 

southern edge of the temperate forests of Eurasia, increasing climatic harshness deriving from 229 

decreasing precipitation and increasing annual temperature range (increasingly hot summers 230 

but still cold winters) plays a major role in constraining forest growth (Walter & Breckle, 231 

1989; Schultz, 2005). This climatic harshness – defined as the combination of hot summers, 232 

cold winters, and aridity – is thus hypothesised to control forest distribution by limiting tree 233 

germination and survival. In Eurasian forest-steppes, climatic control has been confirmed for 234 

some species. For example, Dulamsuren et al. (2008b) found that the seedlings of Larix 235 

sibirica, one of the most important tree species in Mongolian forest-steppes, die in the steppe 236 

patches due to physiological damage caused by drought and high temperature, even if 237 

competition from grassland vegetation is eliminated. Similarly, Pinus sylvestris is limited 238 

primarily by low soil moisture (Dulamsuren et al., 2013). Quercus robur acorns in the sandy 239 

forest-steppes of the Carpathian Basin are often unable to germinate in grassland patches, and 240 

those that do germinate eventually suffer drought-induced mortality (Erdős et al., 2021). In 241 

addition to low moisture availability, extreme cold winters, which are typical of the interior of 242 

Eurasia due to the large distance from oceans and the dry, seldom overcast sky, can also 243 

decrease tree recruitment and growth (d’Odorico et al., 2013). Likewise, heat waves of the 244 

continental summers are also detrimental to trees, especially for isolated individuals that lack 245 

the protection of cooler microclimates of large forest patches (Shi et al., 2021). 246 

Similar to forests, grasslands have their physiological optima under less harsh 247 

conditions, i.e. good water supply and lower temperature extremes. As evidence of this, where 248 
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temperate or boreal forests are cleared to create hay meadows or pastures, highly productive 249 

grasses flourish (e.g. Rychnovská, 1993; Hejcman et al., 2013; Erdős et al., 2019b). With 250 

increasing climatic harshness towards the south, the height, density and productivity of 251 

grasses decrease; this trend continues throughout the steppe biome until grasslands are no 252 

longer viable, and deserts occur (Walter & Breckle, 1989; Schultz, 2005; Smelansky & 253 

Tishkov, 2012; Pfadenhauer & Klötzli, 2014; Li et al., 2020; Tishkov et al., 2020). In sum, 254 

both forest and grassland vitality decrease along the climatic harshness gradient, but forest 255 

vitality declines more sharply (Fig. 2A). At the intersection of the forest and grassland vitality 256 

curves, forest gives way to grassland. This Mean Climate Model suggests a sharp transition 257 

between forest and steppe, but not mosaics of forest and grasslands across broad geographic 258 

and climatic ranges (Fig. 2A). 259 

The idea of mean climate parameters is, of course, a gross simplification of the many 260 

components of climate. The climate of forest-steppes is characterised by large interannual 261 

variation in precipitation and temperature (e.g. Walter & Breckle, 1989; Chibilyov, 2002), 262 

which results in variable levels of climatic harshness for trees. For example, the forest-steppes 263 

of the Carpathian Basin (mean annual precipitation = 500–600 mm) regularly experience 264 

years with less than 350 mm and years with more than 800 mm precipitation (Tölgyesi et al., 265 

2016), while the long-term limit of tolerance of forests in the region is assumed to be around 266 

500–550 mm. Wet periods may open windows for tree recruitment, whereas drier periods may 267 

prevent canopy closure and favour grassland species (Dulamsuren, Hauck & Mühlenberg, 268 

2005b). This means that both forest and grassland vitality can have a certain range of 269 

variability along the mean climate gradient, expanding the climatically determined 270 

intersection point into a zone where neither forest nor grassland is more vital than the other on 271 

a permanent basis (Fig. 2B). As vegetation response to climate variability is often delayed 272 

(Yin et al., 2013; Hao et al., 2014), neither the forest nor the grassland can be expected to 273 
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gain dominance over sufficiently long periods and over large areas, leading to forest–274 

grassland coexistence in a mosaic pattern (House et al., 2003). This climatically determined 275 

conceptual model of forest-steppe is often referred to as the zonal forest-steppe in the 276 

literature (e.g. Molnár et al., 2012; Pfadenhauer & Klötzli, 2014; Bátori et al., 2018). This 277 

Zonal Model can explain forest–grassland coexistence only in a relatively narrow range. 278 

Thus, other factors in addition to climate have to be taken into consideration if we are to 279 

understand forest–grassland coexistence across the entire distribution of forest-steppe mosaics 280 

in Eurasia. 281 

 282 

(2) Topography 283 

Variations in topography can considerably modify the effect of climate by either 284 

decreasing or increasing local temperature and moisture availability in ways that affect the 285 

vitality of forests and grasslands (Walter & Breckle, 1989; Chibilyov, 2002; Schultz, 2005; 286 

Pfadenhauer & Klötzli, 2014). Topography plays a role in forest–grassland distributions 287 

within and beyond the climatically determined forest-steppe zone (Fig. 2B, C). Within the 288 

climatically determined (zonal) forest-steppes, topography influences where forest or 289 

grassland ecosystem states form and persist. Beyond this climatically determined zone, 290 

special topographical circumstances may also result in forest–grassland coexistence (Fig. 2C). 291 

This latter situation is frequently called extrazonal (e.g. Zolotoreva, 2020), although we know 292 

of no substantial difference between the physiognomy of zonal and extrazonal forest-steppes, 293 

and their species compositions are similar (e.g. Borhidi, 2004). 294 

The importance of topography is especially evident in the Inner Asian forest-steppe 295 

region (Mongolia, north and northeast China, and south Russia), where steep north-facing 296 

mountain slopes are usually covered by forests, steep south-facing slopes are occupied by 297 

steppes, and less extreme exposures can support either ecosystem state (e.g. Liu et al., 2000; 298 
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Dulamsuren et al., 2005b; Anenkhonov et al., 2015; Hais, Chytrý & Horsák, 2016; Makunina, 299 

2017). Liu et al. (2012) showed that topography controls forest and steppe distribution mainly 300 

through soil moisture. North-facing slopes receive a reduced amount of direct solar radiation, 301 

resulting in lower evaporation and, consequently, better soil moisture supply. This local 302 

decrease in aridity increases the vitality of forests relative to the steppe (Fig. 2C). By contrast, 303 

higher direct solar radiation on south-facing slopes increases temperature and reduces soil 304 

moisture. The associated local increase in aridity and heat stress decreases forest vitality 305 

relative to steppe vitality. 306 

Ravines, erosion gullies, and depressions have cool and moist microclimates and 307 

increased soil water supply. Consequently, they support forests embedded among steppes in 308 

West Siberia (Lashchinsky, Korolyuk & Wesche, 2020) and eastern Europe (Walter & 309 

Breckle, 1989; Goncharenko & Kovalenko, 2019). Even very small topographical features 310 

may permit the formation of forest–grassland mosaics. For example, in the forest-steppes of 311 

western Siberia and northern Kazakhstan, shallow saucer-like depressions harbour circular 312 

forest patches in a steppe matrix, due to increased moisture input (Lavrenko & Karamysheva, 313 

1993; Rachkovskaya & Bragina, 2012; Lashchinsky et al., 2020). Similarly, small and 314 

shallow depressions support forest patches in the Carpathian Basin (Borhidi, Kevey & 315 

Lendvai, 2012) (Fig. 2C). 316 

 317 

(3) Soil 318 

Soil properties also profoundly influence water and nutrient availability for plants and 319 

thus are able significantly to influence forest and grassland distribution (Schultz, 2005; 320 

Pfadenhauer & Klötzli, 2014; Zech, Schad & Hintermaier-Erhard, 2014). Similar to 321 

topography, soils can modify both forest and grassland vitality within the climatically 322 

determined forest-steppe zone, and also broaden the forest-steppe zone in both directions 323 
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along the harshness gradient (Fig. 3). In mosaics of the forest-steppe, soils beneath forests 324 

usually differ from those below grasslands, but it is often difficult to determine if these 325 

differences are primarily due to substrate or caused secondarily by the vegetation itself 326 

(Walter & Breckle, 1989). There are some cases in which primary soil characteristics 327 

apparently play a decisive role in forest versus grassland occurrence. For instance, gravelly 328 

soils within the Mongolian forest-steppe usually support the forest ecosystem state (Wallis de 329 

Vries, Manibazar & Dügerlham, 1996; Dulamsuren et al., 2009), apparently because coarse-330 

texture soils permit rapid infiltration of precipitation to deeper soil layers where it is 331 

accessible by deep rooted woody plants, but not grassland species (Fig. 2C). Coarse soil 332 

texture can also contribute to the emergence of forest-steppe beyond its climatically 333 

determined interval (Fig. 2C). In the Naurzum Nature Reserve of Kazakhstan, a vast sandy 334 

forest-steppe occurs surrounded on all sides by pure steppic grassland matrix associated with 335 

loamy and clayey soils (Rachkovskaya & Bragina, 2012; Bátori et al., 2018). In a reversal of 336 

this pattern, in high-precipitation regions with a preponderance of temperate forest, shallow 337 

rocky soils often support patches of steppe-specialist plant species (Erdős et al., 2014b; Boch 338 

et al., 2019). 339 

 340 

(4) Herbivory 341 

Herbivory by large mammals is regarded as one of the main factors controlling the 342 

relative abundances of woody and herbaceous plants in savannas and forest–grassland 343 

mosaics. In tropical savannas grazers tend to increase, while browsers tend to decrease, 344 

woody cover (Roques, O’Connor & Watkinson, 2001; Augustine & McNaughton, 2004; 345 

Sankaran et al., 2005; Bond, 2008; Archer et al., 2017). Such effects may be dependent on 346 

herbivore pressure: Sankaran, Ratnam & Hanan (2008) found that grazers of African savannas 347 

increase woody abundance only at high grazing pressure, while low and medium grazing 348 
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pressure have an opposite effect. Similarly, for semi-arid African savannas, Asner et al. 349 

(2004) and Archer (2010) concluded that heavy grazing increases woody plant abundance. In 350 

contrast to African ecosystems, the distinction between grazers and browsers is less clear in 351 

temperate regions (Owen-Smith, 2008). In the Eurasian forest-steppe, there is no evidence of 352 

grazer-induced woody encroachement. Here, in addition to browsers such as various species 353 

of deer (Cervidae) and goats (Capra spp.), animals that are typically considered grazers such 354 

as horses (Equus spp.), cattle (Bos taurus Linnaeus), European bison (Bison bonasus 355 

Linnaeus), and sheep (Ovis spp.) also feed on woody plants. Such browsing by ‘grazers’ 356 

combined with their trampling, wallowing, and uprooting of trees limits forest expansion into 357 

grasslands (Walter & Breckle, 1989; Wallis de Vries et al. 1996; Sankey, 2012). Grazers may 358 

also alter soil moisture availability indirectly by preventing the accumulation of dead plant 359 

material, which increases evaporation from the topsoil, rendering grasslands less suitable for 360 

tree seedlings (Walter & Breckle, 1989). 361 

In addition to wild native herbivores, domestic ungulates are important to the ecology of 362 

the forest-steppe. Sheep, cattle, goats and horses are all regarded as limiting factors for tree 363 

establishment and survival in livestock-producing areas of Eurasia (e.g. Wallis de Vries et al., 364 

1996; Smelansky & Tishkov, 2012; Hais et al., 2016; Török et al., 2018). In Mongolia, 365 

Khishigjargal et al., (2013) found that livestock grazing can effectively limit forest 366 

encroachment at grassland edges by reducing sapling number through trampling. In temperate 367 

pastures of Mongolia, goats consume tree saplings even when fresh herbs are available 368 

(Lkhagvadorj et al., 2013). In both Hungary and Mongolia, livestock prevent shrub 369 

establishment in grazed grasslands, whereas in areas with herbivore exclusion, shrubs can 370 

establish and survive (Varga et al., 2015; Takatsuki et al., 2018). 371 

The capacity of large native herbivores to push forest–grassland balance towards 372 

grasslands is generally accepted in the temperate zone of Eurasia (e.g. Lavrenko & 373 
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Karamysheva, 1993; Vera, 2000; Wagner et al., 2020) and other temperate regions 374 

(Bredenkamp, Spada & Kazmierczak, 2002). Great populations of now-threatened or extinct 375 

Holocene herbivores such as tarpan (wild horse, Equus ferus Boddaert), takh (Przewalski’s 376 

horse, E. przewalskii Poliakov), onager (Asian wild ass, E. hemionus Pallas), wild ox (Bos 377 

taurus primigenius), Eurasian elk (Alces alces Linnaeus), and saiga antelope (Saiga tatarica 378 

Linnaeus) once inhabited the Eurasian forest-steppe and certainly influenced forest–grassland 379 

dynamics (Walter & Breckle, 1989; Chibilyov, 2002; Pfeiffer, Dulamsuren & Wesche, 2020; 380 

Török et al., 2020; Wagner et al., 2020). Although the historical population sizes of these 381 

large native herbivores are unknown, some authors assume that low densities of domestic 382 

livestock may serve a similar ecological function to maintain grasslands (Wallis de Vries et 383 

al., 1996; Wesche & Treiber, 2012; Pfeiffer et al., 2020). 384 

In addition to large ungulates, other important groups of animals in the forest-steppe are 385 

rodents and insects. Hamster (Cricetus cricetus Linnaeus), marmots (Marmota spp.), and 386 

voles (e.g. Microtus spp. and Myodes spp.) (Walter & Breckle, 1989; Lavrenko & 387 

Karamysheva, 1993; Chibilyov, 2002) consume seeds and seedlings of trees, and thus may 388 

limit tree establishment in the grassland ecosystem state and at the forest edge (Dulamsuren et 389 

al., 2008b; Hauck et al., 2008). Insects such as orthopterans and gypsy moth (Lymantria 390 

dispar Linnaeus) contribute to tree mortality by defoliating seedlings in the grassland 391 

ecosystem state (Dulamsuren et al., 2008b) and damaging both seedlings and mature trees at 392 

the forest edges (Hauck et al., 2008). 393 

In sum, where herbivory disproportionately damages woody plants relative to grasses 394 

and forbs, forest vitality is reduced and grasslands may occupy areas where the climate is 395 

humid enough and soil moist enough theoretically to support forests. In light of the extensive 396 

evidence that the forest-steppe developed under the influence of a rich assemblage of 397 

Holocene large herbivores, and is now maintained by both native animals and domestic 398 
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livestock, we suggest that our understanding of the coexistence of forests and grasslands 399 

should incorporate herbivory (Fig. 3), not just climate, soils, and topography (Fig. 2C). 400 

 401 

(5) Fire 402 

Most grasses and forbs are able to resprout after a fire event relatively quickly from 403 

underground organs and regenerate from the seedbank, whereas woody species, except some 404 

fire-tolerant or resprouting ones, need decades if not centuries to reestablish (Bond, 2008). 405 

Although few Eurasian studies examine the effects of fire on vegetation in general, and on the 406 

forest–grassland balance in particular (Valkó et al., 2014), fire is regarded as being capable of 407 

limiting woody vegetation, even in moist sites that would otherwise permit development of 408 

forests (e.g. Walter & Breckle, 1989; Korotchenko & Peregrym, 2012). According to Kertész 409 

et al. (2017) and Ónodi et al. (2021), severe wildfires are able to eliminate the forest 410 

ecosystem state from the forest-steppes, shifting the forest–grassland balance in favour of 411 

grasslands. Forest patches containing Juniperus communis L. are particularly vulnerable to 412 

fires, as juniper is highly flammable and cannot resprout (Kertész et al., 2017; Ónodi et al., 413 

2021). Erdős (2014) found that wildfires in forest-steppes can open up the canopy layer, and 414 

the regeneration of the forest may take several decades. Pinus sylvestris of large diameter are 415 

able to withstand surface fires of low to medium intensity (Wirth, 2005), but not high-416 

intensity crown fires; Pinus sylvestris stands killed by fire can be very slow to recover, 417 

requiring decades to regrow (Ivanova et al., 2010; Barrett et al., 2020). 418 

Because humans are responsible for many fires today, the current frequency of fires in 419 

the forest-steppe is often regarded as ‘unnatural’. While it is true that fire has long been used 420 

by humans to prevent woody encroachment into grasslands and to maintain pastures for 421 

livestock (Smelansky & Tishkov, 2012; Valkó et al., 2014; Novenko et al., 2016; Unkelbach 422 

et al., 2018), burning by humans may be viewed as perpetuating fire as an ancient ecological 423 
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process in the region. Indeed, paleoecological evidence suggests that natural (lightning-424 

ignited) wildfires regularly occurred in many regions of the forest-steppe, including the 425 

Carpathian Basin (Magyari et al., 2010); the Mongolian Altai (Unkelbach et al., 2018), and 426 

European Russia (Novenko et al., 2018). This may not be recognised, because fires today are 427 

usually suppressed near human settlements. But in remote forest-steppe regions fire continues 428 

to play an important ecological role to maintain grasslands in places that could otherwise 429 

develop into forests (e.g. Kertész et al., 2017; Erdős et al., 2018a; Kolár et al., 2020; Wagner 430 

et al., 2020). In contrast to tropical savannas of C4 grasses, which can burn annually, wildfires 431 

are much less frequent in forest-steppes: recent research indicates that fire-free intervals in 432 

Eurasian forest-steppes have ranged from several years to a couple of decades or even 433 

centuries during the Holocene, with considerable temporal variations due to climatic 434 

modifications and human activity (Ivanova et al., 2010; Hessl et al., 2012, 2016; Feurdean et 435 

al., 2013; Novenko et al., 2018; Rudenko et al., 2019; Kolár et al., 2020). Generally, fires in 436 

forest-steppes are more frequent than in boreal forests but less frequent than in open 437 

grasslands of the steppe biome (Barrett et al., 2020). 438 

In sum, fire is able to limit forest vitality, and thus modify forest–grassland proportions 439 

anywhere in the forest-steppe, reducing tree cover below the potential allowed by climate, 440 

soil, and topography. For our understanding of the wide climatic and geographic distribution 441 

of the forest-steppe, the effects of fire are most important at the humid end of the climatic 442 

harshness gradient (Fig. 3). Here, fire is not just a modifier but, alongside herbivory, is 443 

essential to prevent canopy closure, and enable long-term forest–grassland coexistence. 444 

 445 

(6) Vegetation feedbacks and alternative ecosystem states 446 

Emerging theory on grassland–forest coexistence and the distribution of savanna and 447 

forest biomes details how vegetation feedbacks that reinforce either grass or tree dominance 448 
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contribute to the stability of alternative ecosystem states under the same climate (Staver et al., 449 

2011; Hirota et al., 2011; Murphy et al., 2016; Staal et al., 2018a,b). In the tropics, these 450 

ideas have focused on the distinct and generally opposite influences of grasses and trees on 451 

ecosystem flammability (fire), forage quantity and quality (herbivory), resource availability 452 

(e.g. light, water, nutrients), microclimate (temperature and humidity), and tree establishment 453 

and survival (Hoffmann et al., 2012; Murphy & Bowman, 2012; Pausas & Dantas, 2017). 454 

Based on our review of literature from the forest-steppe, we suggest that vegetation feedbacks 455 

are also important for understanding the distributions and stability of grassland–forest mosaics 456 

in Eurasia. These feedbacks are critical to the interpretation of our hierarchical models, in 457 

which grassland and forest plant communities are not merely passive entities whose 458 

distributions are determined by combined effects of climate variability, soils, topography, 459 

herbivores, and fire. Instead, we view trees and herbaceous plants of the forest-steppe as 460 

active ecosystem engineers, who themeselves influence forest and grassland vitality across a 461 

wide geographic range in Eurasia. 462 

Trees of the forest-steppe have strong feedbacks on local conditions beneath their 463 

canopy. Tree canopies intercept solar radiation, leading to low light availability, cooler 464 

diurnal temperature and higher relative air humidity at the forest floor, and the canopy reduces 465 

heat loss at night compared to the steppes (Breshears et al., 1997; D’Odorico et al., 2013; 466 

Tölgyesi et al., 2018, 2020; Süle et al., 2020). Microclimatic extremes are also tempered 467 

within forest patches by the edges acting as wind breaks and thus attenuating evaporation 468 

compared to adjacent grasslands (Davies-Colley, Payne & van Elswijk, 2000). The altered 469 

conditions impose a strong filter, limiting the growth of light-demanding plant species, while 470 

facilitating shade-tolerant and drought-sensitive species, for which the steppe does not offer 471 

suitable habitat (Erdős et al., 2014a; Lashchinskiy et al., 2017; Tölgyesi et al., 2018). 472 
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As for soil moisture availability, the effects of trees are rather mixed in the forest-473 

steppe, and it is difficult to separate a priori moisture differences caused by topography and 474 

soil structure from true forest–moisture feedbacks. The proportion of precipitation intercepted 475 

by tree canopies and the leaf litter can be high (up to 70% of each rainfall event; Yang et al., 476 

2019), especially in coniferous forests, where interception captures not just rain, but also 477 

causes considerable amounts of snow to sublime before reaching the ground. At the arid 478 

southern edge of the forest-steppe in Kazakhstan, mid-summer topsoil can be drier under 479 

forest tree canopies than in adjacent open steppes (Tölgyesi et al., 2018). In climatically less 480 

harsh sites, such as the sand regions of the Carpathian Basin, forest topsoil tends to be moister 481 

than that of the steppe patches (Erdős et al., 2018b, 2021) but deeper soils are desiccated, with 482 

the rate of desiccation dependent on whether trees are deciduous or evergreen (Tölgyesi et al., 483 

2020). It is an open question though, whether the moisture surplus in the topsoil is solely a 484 

consequence of the reduced evaporation due to the cool shaded microclimate or if trees bring 485 

deep water up to the topsoil via hydraulic lift, as occurs in many semi-arid regions (Yu & 486 

D’Odorico, 2015). 487 

The overall effect of trees on grassland species seems to be negative, with a sparser 488 

herbaceous layer in forests compared to grasslands (Erdős et al., 2014a; Tölgyesi et al., 489 

2018). The herbaceous layer species compositions in grasslands and forests show little 490 

overlap, thus it is unclear whether the trees directly exclude steppe species, or do so indirectly 491 

by allowing the growth of species that are competitively superior in shaded conditions. 492 

Conditions beneath forests, which are unsuitable for grassland species, can facilitate tree 493 

recruitment by attenuating heat and water stress during the summer, and reducing cold stress 494 

in winter and early spring (Dulamsuren et al., 2008a,b; Erdős et al., 2021). In addition, the 495 

sparser herb layer in the forests is less flammable, limiting the spread and intensity of 496 

wildfires compared to the grasslands. Saplings are thus more likely to survive fires inside the 497 
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forest, but this has not been tested. Such fire protection may not apply to forests composed of 498 

highly flammable conifers (Pinus spp. or Juniperus spp.), which can burn intensely and 499 

regenerate slowly if their crown catches fire (Kolár et al., 2020; Ónodi et al., 2021). Shaded 500 

conditions in the forest patches are likely to limit tree saplings too, but less than by the 501 

grassland species, since most forest-steppe trees are widespread components of closed-canopy 502 

temperate and boreal forests where there has been strong evolutionary selection for shade 503 

tolerance (Valladares & Niinemets, 2008). 504 

Parallel to the favourable recruitment conditions of trees inside forests, conditions in the 505 

grassland state promote the recruitment and persistence of steppe species for a number of 506 

reasons. Fire, which can suppress saplings in the steppe, causes little harm to the belowground 507 

organs or the seedbank of grasses and forbs, for which the conditions after the fire provide 508 

excellent opportunities for regeneration via resprouts, clonal spread, or seed germination 509 

(Ónodi et al., 2021). Contributing to a positive fire feedback, after burning, aboveground 510 

plant productivity is enhanced relative to pre-fire levels (Valkó et al., 2016). Herbaceous 511 

plants in steppes benefit from a sharper drop in nocturnal temperature relative to temperatures 512 

in forests, which often leads to dew formation (Lellei-Kovács et al., 2008; Tölgyesi et al., 513 

2018), which is an important moisture source for herbaceous plants in water-limited 514 

ecosystems (Agam & Berliner, 2006). Tree saplings in the steppes are less able to benefit 515 

from dew because they have few superficial roots. Furthermore, there is evidence that the 516 

belowground competitive effects of grasses can directly constrain tree growth in the Eurasian 517 

forest-steppe (Walter & Breckle, 1989; Peltzer & Köchy, 2001). However important direct 518 

grass–tree competition may be, competition alone is not necessarily strong enough to exclude 519 

trees completely from invading grass-dominated communities (Wilson & Peltzer, 2021). In 520 

Eurasian forest-steppes, competitive effects of grasses on trees are probably best viewed a 521 
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minor vegetation feedback, relative to the strong influence of the steppe microclimate, fires, 522 

and herbivores in limiting tree establishment. 523 

The effective recruitment of trees and grasses in association with the forest and the 524 

steppe ecosystem states, respectively, stabilises their position and distinctness, contributing to 525 

the mosaic vegetation structure. The resulting stability of the forest edges is also reflected by 526 

distinct, species-rich edge communities in forest-steppes (Erdős et al., 2014a; Bátori et al., 527 

2018). This overall pattern means for our hierarchical conceptual model that in sites where 528 

climate as well as topography, soil, herbivory and fire allow the co-existence of forest and 529 

steppe, vegetation feedbacks further stabilise spatial patterns by hindering state transitions 530 

(i.e. hysteresis; Ratajczak et al., 2018). This stable patch pattern has been confirmed for 531 

Hungarian forest-steppes by historical map interpretation (Erdős et al., 2015). The stabilising 532 

feedbacks may lend considerable resilience of both forest and grassland ecosystem states to 533 

environmental changes, as highlighted by Xu et al. (2017) for Siberian forest-steppes. 534 

 535 

IV. IMPLICATIONS AND FUTURE CHALLENGES 536 

Our conceptual models illustrate that the vegetation pattern in the Eurasian forest-steppe 537 

is a net result of multiple drivers with varying relative importance. Focussing on only one or a 538 

subset of the drivers can lead to a misinterpretation of patterns and processes and eventually 539 

to misguided conservation and restoration strategies. Ignoring the importance of natural 540 

disturbances is a common source of such problems. The northern and western fringes of the 541 

forest-steppe have long been assumed to be anthropogenic, given that the potential vegetation, 542 

determined by climate, soil and topography, was thought to be closed-canopy forest 543 

(Feurdean et al., 2018). This notion was reinforced by the fact that land abandonment leads to 544 

shrub encroachment and forest establishment in these areas (e.g. Deák et al., 2016). But how 545 

far should we look back to determine historical forest and grassland distributions? Given that 546 
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prehistoric herds of wild ungulates that contributed to the forest-steppe physiognomy were 547 

extirpated millennia ago (Vera, 2000; Pfeiffer et al., 2020; Török et al., 2020), we suggest that 548 

the resulting lack of natural disturbance may have yielded forest expansion in otherwise 549 

uncultivated areas. If one takes a long-term view, deforestation in some areas may be viewed 550 

as a reversal of past forest expansion that was itself due to human-caused disruption of 551 

herbivore and fire disturbance regimes. Indeed, palaeoecological records show that steppe-552 

specialist plants and animals were continuously present throughout the Holocene in many of 553 

the forest-steppes of debated origin, such as in the Carpathian Basin, i.e. the westernmost part 554 

of the present-day forest-steppe (Magyari et al., 2010; Feurdean et al., 2018). The meadow-555 

steppe patches in the northern edge of south Siberian forest-steppes were also mostly 556 

considered end-products of forest clearing (e.g. Ermakov & Maltseva, 1999), even though 557 

they are often rich in steppe-specialist plants, while ruderal species are scarce (Kämpf et al., 558 

2016), which is inconsistent with a purely anthropogenic orign. Similarly, while Hilbig (2000) 559 

argued that the Mongolian forest-steppe has formed as a result of anthropogenic activity, field 560 

evidence suggests that this ecosystem is of natural origin (Dulamsuren, Hauck & Mühlenberg, 561 

2005a). With this in mind, we suggest that it is necessary to update our concept of primary 562 

(i.e. natural) forest-steppe ecosystems, and also consider natural disturbances as determinants 563 

of forest–grassland coexistence (Bond & Parr, 2010; Weigl & Knowles, 2014; Veldman et al., 564 

2015). We hope that future research in the forest-steppe will improve our understanding of the 565 

relative contributions of these different factors to forest–grassland coexistence (i.e. climate, 566 

topography, soil, herbivores, and fire). 567 

Greater recognition that the forest-steppe is ancient will have consequences for 568 

ecosystem management. Some landscapes formerly considered secondary may actually 569 

represent the historical ecosystem state and should receive full attention for conservation or 570 

restoration. Of particular importance, traditional grassland management in the forest-steppe 571 
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should be viewed as critical to the maintenance of high-biodiversity natural grasslands. In this 572 

sense, abandoning traditional grassland management and promoting afforestation is not 573 

restoration (Temperton et al., 2019). 574 

Restoration and management measures in the forest-steppe should become more holistic 575 

in their approach. Fortunately, a growing body of information on the ecology of community 576 

reassembly and best management practices is leading to growth in grassland restoration (e.g. 577 

Kämpf et al., 2016; Török et al., 2018; Tölgyesi et al., 2019). By contrast, restoration of 578 

natural forests in the forest-steppe is rare, due to a focus on commercial tree plantations and 579 

intensive rotational forestry throughout the entire region (Cao, 2008; Erdős et al., 2018a). 580 

Future forest-steppe restoration should pay attention to both grassland and forest ecosystem 581 

states, with consideration of historical proportions and configuration, while recognising that 582 

restoration will require planning for the maintenance of essential, but often overlooked natural 583 

levels of disturbance by herbivores and fire. 584 

Forest-steppe restoration is a long-term enterprise; therefore it needs to account for 585 

future changes in the driving forces. Located between the temperate forest and grassland 586 

biomes, forest-steppes may be particularly susceptible to the effects of climate change. 587 

Climatic harshness in the Eurasian forest-steppe is projected to increase in the near future, 588 

decreasing forest vitality (Mátyás et al., 2018) and thereby favouring the advance of the 589 

steppes against the forests and an overall shift of the forest-steppe against temperate forests 590 

(Lu et al., 2009; Tchebakova, Parfenova & Soja, 2009). Thus, forest restoration should be 591 

restricted to the most favourable locations (i.e. northern slopes, moist depressions, etc.), and 592 

adaptive forestry may stop reforesting (or afforesting) sites where overall forest vitality is 593 

expected to fall below that of the grassland ecosystem state in the future. Once the vitality 594 

relationships turn in favour of grasslands, forests will no longer be sustainable. Vegetation 595 

feedbacks may delay the switch to grassland, but the eventual transition will be unpredictable 596 
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and abrupt (Scheffer et al., 2001), and is likely to be realised in the form of forest dieback and 597 

wildfires. The restoration in the forest-steppe should resist the current global emphasis on 598 

forest-based carbon sequestration (Temperton et al., 2019; Tölgyesi et al., 2022), and 599 

recognise the belowground carbon and biodiversity benefits of conserving and restoring 600 

grasslands alongside forests across Eurasia. 601 

 602 

V. CONCLUSIONS 603 

(1) The emerging fire–herbivore paradigm, as well as the recent increase in the number of 604 

case studies makes it timely to revisit the determinants of forest–grassland coexistence at the 605 

interface of closed-canopy forests and open steppes. Through conceptual modelling and a 606 

literature review, we provide a comprehensive overview of the interacting drivers of forest–607 

grassland coexistence in the Eurasian forest-steppe. 608 

(2) Although mean climate is the most widely acknowledged determinant, we show that the 609 

Mean Climate Model should result in a sharp transition between the temperate or boreal forest 610 

and steppe biomes, but not a mosaic of forests and grasslands (Fig. 2A). 611 

(3) Accounting for temporal variation in climate, the Zonal Model can only explain the 612 

coexistence of forest and grassland within a relatively narrow geographic range (Fig. 2B). 613 

(4) Topography and edaphic conditions can modify forest and grassland patterns within the 614 

climatically determined forest-steppe zone, and are essential to explain the presence of forest-615 

steppe across broad gradients in climatic harshness (Climatic–Topographic–Edaphic Model, 616 

Fig. 2C). 617 

(5) Herbivory and fire are able to limit forest vitality and to decrease forest cover throughout 618 

the forest-steppe. However, their role is most important towards the humid end of the climatic 619 

harshness gradient, where herbivory and fire prevent canopy closure and thus favour the 620 
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forest-steppe against closed-canopy forests (Climatic–Topographic–Edaphic–Herbivore–Fire 621 

Model, Fig. 3). 622 

(6) Once the scene is set by these determinants of forest–grassland coexistence, vegetation 623 

feedbacks stabilise grassland and forest ecosystem states, lending considerable stability to the 624 

forest-steppe landscape configuration. 625 

(7) Our hierarchical conceptual model highlights that many forest-steppes that have 626 

traditionally been considered secondary, represent, in fact, the historical landscape structure. 627 

Targets to restore native biodiversity or sequester atmospheric carbon should be revisited 628 

accordingly, and restorationists should think twice regarding the global call for tree planting 629 

in the Eurasian forest-steppe. 630 
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Figure captions 1130 

Fig. 1. The distribution of forest-steppes in Eurasia (A), mosaic of forest and grassland 1131 

ecosystem states in northern Kazakhstan (B, C), Prunus fruticosa, a typical shrub of forest-1132 

steppe ecosystems (D), Iris variegata, a forest-steppe herb (E), Colchicum arenarium, a 1133 

grassland species endemic to the forest-steppes of the Carpathian Basin (F). 1134 

 1135 

Fig. 2. Conceptual models of the distribution of forest and grassland along a continuous 1136 

climatic harshness gradient (H) in Eurasia. Climatic harshness reflects (generally north to 1137 

south) gradients in temperature extremes (hot summers and cold winters) and aridity 1138 

(precipitation and potential evapotranspiration). (A) The Mean Climate Model predicts a 1139 

sharp forest-grassland boundary (marked by a vertical line) at the latitudinal intersection of 1140 

forest and grassland vitality curves (F and G, respectively). (B) The Zonal Model accounts for 1141 

temporal variation in climatic harshness: forest and grassland vitality (F and G, respectively) 1142 

are represented by bands instead of thin lines, indicating that the vitality of both can vary 1143 

across a certain range, depending on the actual climatic variations. Forest–grassland 1144 

coexistence is possible in a narrow zone where grassland and forest bands overlap (enclosed 1145 

by vertical lines). (C) In the Climatic–Topographic–Edaphic Model, slope, aspect, and soils 1146 

expand the climatic ranges of forests and grasslands. Circular arrows indicate local reversals 1147 

of forest and grassland vitality relationships with climate (F and G, respectively), while 1148 

straight arrows show changes without reversal as a result of modified aridity due to special 1149 

topographic or soil conditions. 1150 

 1151 

Fig. 3. Climatic–Topographic–Edaphic–Herbivore–Fire Model of forest–grassland 1152 

coexistence, as determined by (1) climate (mean and variability), (2) topographic and edaphic 1153 

factors (slope, aspect, soil texture, moisture availability), and (3) herbivory and fire. Circular 1154 
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arrows show how forest and grassland vitality (F and G, respectively) change as a result of 1155 

local conditions evoked by special topographical or soil conditions (in zone 2) or as a result of 1156 

fire and herbivores (in zone 3). 1157 
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