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ABSTRACT

Recent advances in ecology and biogeography demonstrate the importance of fire and
large herbivores — and challenge the primacy of climate — to our understanding of the
distribution, stability, and antiquity of forests and grasslands. Among grassland ecologists,
particularly those working in savannas of the seasonally dry tropics, an emerging fire—
herbivore paradigm is generally accepted to explain grass dominance in climates and on soils
that would otherwise permit development of closed-canopy forests. By contrast, adherents of
the climate—soil paradigm, particularly foresters working in the humid tropics or temperate
latitudes, tend to view fire and herbivores as disturbances, often human-caused, which
damage forests and reset succession. Towards integration of these two paradigms, we
developed a series of conceptual models to explain the existence of an extensive temperate
forest—grassland mosaic that occurs within a 4.7 million km? belt spanning from central
Europe through eastern Asia. The Eurasian forest-steppe is reminiscent of many regions
globally where forests and grasslands occur side-by-side with stark boundaries. Our
conceptual models illustrate that if mean climate was the only factor, forests should dominate
in humid continental regions and grasslands should prevail in semi-arid regions, but that
extensive mosaics would not occur. By contrast, conceptual models that also integrate climate
variability, soils, topography, herbivores, and fire depict how these factors collectively expand
suitable conditions for forests and grasslands, such that grasslands may occur in more humid
regions and forests in more arid regions than predicted by mean climate alone. Furthermore,
boundaries between forests and grasslands are reinforced by vegetation—fire, vegetation—
herbivore, and vegetation—microclimate feedbacks, which limit tree establishment in
grasslands and promote tree survival in forests. Such feedbacks suggest that forests and

grasslands of the Eurasian forest-steppe are governed by ecological dynamics that are similar
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to those hypothesised to maintain boundaries between tropical forests and savannas.
Unfortunately, the grasslands of the Eurasian forest-steppe are sometimes misinterpreted as
deforested or otherwise degraded vegetation. In fact, the grasslands of this region provide
valuable ecosystem services, support a high diversity of plants and animals, and offer critical
habitat for endangered large herbivores. We suggest that a better understanding of the
fundamental ecological controls that permit forest—grassland coexistence could help us
prioritise conservation and restoration of the Eurasian forest-steppe for biodiversity, climate
adaptation, and pastoral livelihoods. Currently, these goals are being undermined by tree-
planting campaigns that view the open grasslands as opportunities for afforestation. Improved
understanding of the interactive roles of climate variability, soils, topography, fire, and
herbivores will help scientists and policymakers recognise the antiquity of the grasslands of

the Eurasian forest-steppe.

Key words: biome transition, old-growth grassland, spatiotemporal heterogeneity, tree-grass

coexistence, topography, soil, herbivory, fire.
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I. INTRODUCTION

Grasslands (including savannas) cover approximately 40% of the terrestrial biosphere
(White, Murray & Rohweder, 2000), support high biodiversity (Myers et al., 2000; Murphy,
Andersen & Parr, 2016), provide habitat for native animals and domestic livestock, and
supply a variety of other ecosystem services, including belowground carbon storage
(Alkemade et al., 2013; Dass et al., 2018; Erdos et al., 2018a). Despite their importance,
grasslands are often overlooked in conservation planning, undervalued because they lack
dense tree cover, and misinterpreted as degraded vegetation in need of reforestation (Parr et
al., 2014; Tolgyesi et al., 2022). This confusion over the conservation value of grasslands is
acute in places where the climate can support the development of forests (Veldman, 2016).
Indeed, much of the research on the determinants of grassland distributions is framed to
answer the question of why they exist at all, particularly in places where successional theory
suggests there ought to be forests (Sarmiento, 1984; Bond, 2008).

To answer why grasslands exist in climates that can support forests, there are two
prevailing views among ecologists. The first view, the climate—soil paradigm, has long
considered climate to be the principal control over biome distributions (e.g. Holdridge, 1967),
while recognising that certain soils can limit tree growth, thus permitting grasslands to exist
(e.g. Beard, 1953). In the climate—soil paradigm, grasslands that are not on special soils, and

depend upon fire and large herbivores for their maintenance, are typically considered to be
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degraded ecosystems, deforested by humans, and in a stage of arrested succession (Veldman
et al., 2015). The second view, the emerging fire—herbivore paradigm (e.g. Pausas & Bond,
2019), views climate and soils as insufficient to explain the distribution of biomes, and
emphasises the relationships among vegetation, fire, and herbivores (Murphy & Bowman,
2012). At first glance, the growing popularity of the fire—herbivore paradigm can appear to be
supplanting the idea that climate and soils matter at all (e.g. Veenendaal ef al., 2018). But
rather than viewing these two paradigms as mutually exclusive, we suggest that recent work
to understand the role of fire and herbivores in shaping grassland and forest distributions does
not replace, but adds nuance, specificity, and mechanistic detail, where the climate—soil
paradigm falls short. Indeed, proponents of the fire—herbivore paradigm study these forces in
addition to and in relation to soils (e.g. Hoffmann ez al., 2012; Staver, Botha & Hedin, 2017)
and climate (Higgins Bond & Trollope, 2000; Staver, Archibald & Levin, 2011; Lehmann e?
al., 2011, 2014; Hempson, Archibald & Bond, 2015).

While progress on the ecological importance of fire and herbivores has advanced for
tropical and subtropical savanna ecosystems (Scholes & Archer, 1997; Sankaran, Ratnam &
Hanan, 2004; Bond, 2008; Baudena, D’ Andrea & Provenzale, 2010; Hoffmann et al., 2012;
Ratajczak, D’Odorico & Yu, 2017), temperate grasslands of Eurasia continue to be viewed
largely through the lens of the climate—soil paradigm. To understand better the ecological
controls over grasslands and forests and to improve their respective conservation and
restoration in the face of climate and land-use change, we reviewed the literature on the
Eurasian forest-steppe. We developed a series of conceptual models of forest—grassland
coexistence to depict purported drivers visually in a hierarchical manner, beginning with
macroclimate (henceforth ‘climate’). Because mean climate alone is clearly inadequate for
explaining the existence of the forest-steppe, we draw on our literature review to add climate

variability, topography, soils, herbivory, fire and feedback mechanisms to successive models
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in the hierarchy. Collectively these models illustrate how it is possible for the Eurasian forest-
steppe to occupy such broad geographic and climatic ranges. We hope that our conceptual
models will help ecologists, environmental policymakers, and land managers recognise the
multiple drivers of forest—grassland coexistence across Eurasia, and help explain why

herbivores and fire need to be considered, in addition to climate and soils.

II. ECOLOGY, BIOGEOGRAPHY, AND CONSERVATION OF THE EURASIAN
FOREST-STEPPE

Positioned between temperate forests to the north, and mostly treeless continental
steppes to the south, the Eurasian forest-steppe occupies a 9000 km long and, on average, 430
km wide belt from central Europe to far eastern Asia (Fig. 1A) (Erdds et al., 2018a). Forest-
steppes are the natural vegetation in large parts of Hungary, Serbia, Romania, Bulgaria,
Moldova, Ukraine, Russia, Kazakhstan, Mongolia, and China, occurring within a belt of
roughly 4.7 million km? (Erd6s et al., 2018a). We consider forest-steppes to be landscape
mosaics composed of forests (dense communities of trees and shrubs, >2 m tall) intermixed
with open grasslands of herbaceous plants. Proportions of forest and grassland vary, with
forests typically occupying 10—70% of the mosaic landscape. Although extensive areas of
forest-steppe have been destroyed in Europe, large tracts remain intact across Asia (Zlotin,
2002; Smelansky & Tishkov, 2012). The extensive geographic range of the forest-steppe
encompasses a wide range of climatic conditions, including mean annual temperatures from 1
to 14 °C and mean annual precipitation from 210 to 600 mm (Erdés et al., 2018a).

Forest-steppes form mosaic landscapes of two ecosystem states: forest and grassland
(Fig. 1B, C) (Erd6s et al., 2018a). The forest state is dominated by deciduous and/or
evergreen trees, including Betula pendula Roth (species nomenclature according to the

Catalogue of Life, catalogueoflife.org), B. pubescens Ehrh. (Betulaceae), Larix gemilinii
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(Rupr.) Kuzen., L. sibirica Ledeb., Pinus sylvestris L. (Pinaceae), Populus neimongolica
Doweld, P. tremula L. (Salicaceae), and Quercus robur L. (Fagaceae), whereas the grassland
state is typically composed of perennial Cs grasses, primarily species in the genera Festuca
and Stipa (Poaceae). Boundaries between forests and grassland are typically stark and support
a rich community of forbs and deciduous shrubs. In addition to many plant species that are
common in the neighbouring temperate forest or steppe biomes, forest-steppes also have their
own characteristic taxa that primarily occur in mosaics. These include the trees Acer
tataricum L. (Sapindaceae) and Quercus robur (subspecies pedunculiflora; Fagaceae), the
shrubs Prunus fruticosa Pall. (Rosaceae) (Fig. 1D), Ribes diacanthum Pall. (Grossulariaceae)
and Spiraea aquilegifolia Pall. (Rosaceae), the perennial Cs grasses (Poaceae) Brachypodium
pinnatum (L.) P. Beauv., Helictochloa hookeri (Scribn.) Romero Zarco, and Melica altissima
L., the sedges (Cyperaceae) Carex humilis Leyss. and C. michelii Host, and numerous forbs,
including Artemisia latifolia Ledeb. (Asteraceae), Anemone sylvestris L. (Ranunculaceae),
Cervaria rivini Gaertn. (Apiacea), Iris ruthenica Ker Gawl. and Iris variegata L. (Fig. 1E)
(Iridaceae), Pulsatilla patens (L.) Mill. (Ranunculaceae), Ranunculus polyanthemos L.
(Ranunculaceae), and Trifolium montanum L. (Fabaceae). The forest-steppe is home to
several endemics, including Colchicum arenarium Waldst. & Kit. (Colchicaceae) (Fig. 1F)
and Dianthus diutinus Schult. (Caryophyllaceae) for the Carpathian Basin and Leymus
tuvinicus Peschkova (Poaceae) and Pilosella tiumentzevii (Serg. & Uksip) Tupitz.
(Asteraceae) for the South Siberian mountains (Jakucs, 1961; Walter & Breckle, 1989; Simon,
2000; Peshkova, 2001; Korotchenko & Peregrym, 2012; Rachkovskaya & Bragina, 2012;
Smelansky & Tishkov, 2012; Makunina, 2017; Hongyan Liu, personal communication).

In addition to their high biodiversity, forest-steppes are important for the ecosystem
services they provide. Some of these services depend on the simultaneous availability of

resources from the two ecosystem states (i.e. forest and grassland). For example, forest-
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steppes have been used as pastures for millennia, and still provide livelihoods for rural people
throughout Eurasia (e.g. Rachkovskaya & Bragina, 2012; Smelansky & Tishkov, 2012).
While grasslands are the main source of forage, forests provide wild fruits and acorns (Varga
et al., 2020) and offer shelter for animals during extreme hot and cold weather (Gantuya et
al.,2019). Moreover, forest edges (i.e. the contact zones between the two states) themselves
are regarded as highly valuable pastures in Mongolia (Gantuya et al., 2019). Forests are also
utilised for fuelwood collection and occasional selective logging (Hauck et al., 2012;
Lkhagvadorj et al., 2013).

While there is growing consensus that forest and grassland ecosystem states can co-
occur across a wide range of tropical and subtropical climates and soil conditions (Lehmann
etal.,2011; Staver et al., 2011), due to the interplay of herbivory, fire, and vegetation
feedbacks (Sankaran ef al., 2005; Hoffmann et al., 2012; Murphy & Bowman, 2012), such a
consensus regarding the interactive roles of climate and disturbance is lacking for the forest-
steppe. We believe this lack of consensus is due to the historical emphasis on climate and
soils in European vegetation ecology. Indeed, the distributions of the temperate forest biome
and the temperate steppe biome are strongly predicted by climate across Eurasia (e.g. Schultz,
2005; Wang, Prentice & Ni, 2013; Evans & Brown, 2017). But now, after two decades of case
studies in Eastern Central Europe (e.g. Batori et al., 2018; Erdds et al., 2014a, 2018b, 2019a,
2021; Tolgyesi et al., 2020), Kazakhstan (e.g. Batori et al., 2018; Tolgyesi et al., 2018),
Mongolia (e.g. Dulamsuren et al., 2008a; Dulamsuren, Hauck & Miihlenberg, 20085;
Dulamsuren, Hauck & Leuschner, 2013; Hauck, Dulamsuren & Heimes, 2008; Khishigjargal
et al., 2013; Ishikawa et al., 2018; Takatsuki, Sato & Morinaga, 2018), Russia (Anenkhonov
et al., 2015; Makunina, 2016, 2017), and China (e.g. Liu et al., 2000, 2012, 2015), we have a

substantial body of literature that enables a comprehensive overview of how climate,
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topography, soils, herbivores, and fire control forest—grassland coexistence in the Eurasian
forest-steppe.

Such a synthetic approach to the ecology of the Eurasian forest-steppe is needed to
inform environmental policy and land-management decisions, particularly in light of global
calls to restore ecosystems for biodiversity and to plant trees to mitigate climate change. Tree
planting is currently the primary emphasis of nature-based climate initiatives (Cook-Patton et
al., 2020; Baker, 2021), with ecosystems comprised of a mixture of forests and grasslands
among the target areas (Veldman et al., 2019; Holl & Brancalion, 2020). There is a growing
concern that afforestation programmes will compromise grassland biodiversity and ecosystem
services in the short term, and by failing to consider climate—vegetation—fire—herbivore
relationships, will fail to maintain carbon in planted trees over the long term (Parr et al., 2014;
Bond et al., 2019). For example, the widespread pine plantations in forest-steppes are
unreliable stores of carbon due to high flammability (Cseresnyés, Szécsy & Csontos, 2011).
The high water demand of forest-steppe trees compared to grasses can also lead to tree
dieback in drought periods of the ongoing climate change (Kharuk et al., 2017; Matyas et al.,
2018), and the high water consumption of trees can desiccate soils beneath them, potentially
suppressing their own growth (Tolgyesi et al., 2020). Misguided afforestation is thus a
looming threat to tropical savannas and grasslands globally (Veldman ef al., 2015; Tolgyesi et
al., 2022) and may be a similarly important, albeit less recognised concern for the Eurasian

forest-steppe.

ITII. MODELS OF FOREST-GRASSLAND COEXISTENCE
(1) Climate
Most authors attribute the existence of the forest-steppe to intermediate climate, given

that it occurs between the temperate forest and the continental steppe, two biomes over which
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climate exerts considerable control (e.g. Chibilyov, 2002; Pfadenhauer & K16tzli, 2014;
Wesche et al., 2016; Erdos et al., 2018a; Wagner et al., 2020). Indeed, around the globe there
are many examples of how climate constrains tree growth: arctic and alpine timberlines
develop due to low temperature and arid timberlines are the result of low moisture availability
(Stevens & Fox, 1991; Breshears, 2006; Bond, 2019). Consistent with these patterns, at the
southern edge of the temperate forests of Eurasia, increasing climatic harshness deriving from
decreasing precipitation and increasing annual temperature range (increasingly hot summers
but still cold winters) plays a major role in constraining forest growth (Walter & Breckle,
1989; Schultz, 2005). This climatic harshness — defined as the combination of hot summers,
cold winters, and aridity — is thus hypothesised to control forest distribution by limiting tree
germination and survival. In Eurasian forest-steppes, climatic control has been confirmed for
some species. For example, Dulamsuren et al. (2008b) found that the seedlings of Larix
sibirica, one of the most important tree species in Mongolian forest-steppes, die in the steppe
patches due to physiological damage caused by drought and high temperature, even if
competition from grassland vegetation is eliminated. Similarly, Pinus sylvestris is limited
primarily by low soil moisture (Dulamsuren ef al., 2013). Quercus robur acorns in the sandy
forest-steppes of the Carpathian Basin are often unable to germinate in grassland patches, and
those that do germinate eventually suffer drought-induced mortality (Erdds et al., 2021). In
addition to low moisture availability, extreme cold winters, which are typical of the interior of
Eurasia due to the large distance from oceans and the dry, seldom overcast sky, can also
decrease tree recruitment and growth (d’Odorico ef al., 2013). Likewise, heat waves of the
continental summers are also detrimental to trees, especially for isolated individuals that lack
the protection of cooler microclimates of large forest patches (Shi ef al., 2021).

Similar to forests, grasslands have their physiological optima under less harsh

conditions, i.e. good water supply and lower temperature extremes. As evidence of this, where
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temperate or boreal forests are cleared to create hay meadows or pastures, highly productive
grasses flourish (e.g. Rychnovska, 1993; Hejcman et al., 2013; Erdos ef al., 2019b). With
increasing climatic harshness towards the south, the height, density and productivity of
grasses decrease; this trend continues throughout the steppe biome until grasslands are no
longer viable, and deserts occur (Walter & Breckle, 1989; Schultz, 2005; Smelansky &
Tishkov, 2012; Pfadenhauer & Kl6tzli, 2014; Li et al., 2020; Tishkov et al., 2020). In sum,
both forest and grassland vitality decrease along the climatic harshness gradient, but forest
vitality declines more sharply (Fig. 2A). At the intersection of the forest and grassland vitality
curves, forest gives way to grassland. This Mean Climate Model suggests a sharp transition
between forest and steppe, but not mosaics of forest and grasslands across broad geographic
and climatic ranges (Fig. 2A).

The idea of mean climate parameters is, of course, a gross simplification of the many
components of climate. The climate of forest-steppes is characterised by large interannual
variation in precipitation and temperature (e.g. Walter & Breckle, 1989; Chibilyov, 2002),
which results in variable levels of climatic harshness for trees. For example, the forest-steppes
of the Carpathian Basin (mean annual precipitation = 500—600 mm) regularly experience
years with less than 350 mm and years with more than 800 mm precipitation (Tdlgyesi et al.,
2016), while the long-term limit of tolerance of forests in the region is assumed to be around
500-550 mm. Wet periods may open windows for tree recruitment, whereas drier periods may
prevent canopy closure and favour grassland species (Dulamsuren, Hauck & Miihlenberg,
2005b). This means that both forest and grassland vitality can have a certain range of
variability along the mean climate gradient, expanding the climatically determined
intersection point into a zone where neither forest nor grassland is more vital than the other on
a permanent basis (Fig. 2B). As vegetation response to climate variability is often delayed

(Yin et al., 2013; Hao et al., 2014), neither the forest nor the grassland can be expected to
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gain dominance over sufficiently long periods and over large areas, leading to forest—
grassland coexistence in a mosaic pattern (House et al., 2003). This climatically determined
conceptual model of forest-steppe is often referred to as the zonal forest-steppe in the
literature (e.g. Molnar et al., 2012; Pfadenhauer & Klo6tzli, 2014; Batori et al., 2018). This
Zonal Model can explain forest—grassland coexistence only in a relatively narrow range.
Thus, other factors in addition to climate have to be taken into consideration if we are to
understand forest—grassland coexistence across the entire distribution of forest-steppe mosaics

in Eurasia.

(2) Topography

Variations in topography can considerably modify the effect of climate by either
decreasing or increasing local temperature and moisture availability in ways that affect the
vitality of forests and grasslands (Walter & Breckle, 1989; Chibilyov, 2002; Schultz, 2005;
Pfadenhauer & Klotzli, 2014). Topography plays a role in forest—grassland distributions
within and beyond the climatically determined forest-steppe zone (Fig. 2B, C). Within the
climatically determined (zonal) forest-steppes, topography influences where forest or
grassland ecosystem states form and persist. Beyond this climatically determined zone,
special topographical circumstances may also result in forest—grassland coexistence (Fig. 2C).
This latter situation is frequently called extrazonal (e.g. Zolotoreva, 2020), although we know
of no substantial difference between the physiognomy of zonal and extrazonal forest-steppes,
and their species compositions are similar (e.g. Borhidi, 2004).

The importance of topography is especially evident in the Inner Asian forest-steppe
region (Mongolia, north and northeast China, and south Russia), where steep north-facing
mountain slopes are usually covered by forests, steep south-facing slopes are occupied by

steppes, and less extreme exposures can support either ecosystem state (e.g. Liu et al., 2000;
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Dulamsuren et al., 2005b; Anenkhonov et al., 2015; Hais, Chytry & Horsak, 2016; Makunina,
2017). Liu et al. (2012) showed that topography controls forest and steppe distribution mainly
through soil moisture. North-facing slopes receive a reduced amount of direct solar radiation,
resulting in lower evaporation and, consequently, better soil moisture supply. This local
decrease in aridity increases the vitality of forests relative to the steppe (Fig. 2C). By contrast,
higher direct solar radiation on south-facing slopes increases temperature and reduces soil
moisture. The associated local increase in aridity and heat stress decreases forest vitality
relative to steppe vitality.

Ravines, erosion gullies, and depressions have cool and moist microclimates and
increased soil water supply. Consequently, they support forests embedded among steppes in
West Siberia (Lashchinsky, Korolyuk & Wesche, 2020) and eastern Europe (Walter &
Breckle, 1989; Goncharenko & Kovalenko, 2019). Even very small topographical features
may permit the formation of forest—grassland mosaics. For example, in the forest-steppes of
western Siberia and northern Kazakhstan, shallow saucer-like depressions harbour circular
forest patches in a steppe matrix, due to increased moisture input (Lavrenko & Karamysheva,
1993; Rachkovskaya & Bragina, 2012; Lashchinsky et al., 2020). Similarly, small and
shallow depressions support forest patches in the Carpathian Basin (Borhidi, Kevey &

Lendvai, 2012) (Fig. 2C).

(3) Soil

Soil properties also profoundly influence water and nutrient availability for plants and
thus are able significantly to influence forest and grassland distribution (Schultz, 2005;
Pfadenhauer & Klotzli, 2014; Zech, Schad & Hintermaier-Erhard, 2014). Similar to
topography, soils can modify both forest and grassland vitality within the climatically

determined forest-steppe zone, and also broaden the forest-steppe zone in both directions
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along the harshness gradient (Fig. 3). In mosaics of the forest-steppe, soils beneath forests
usually differ from those below grasslands, but it is often difficult to determine if these
differences are primarily due to substrate or caused secondarily by the vegetation itself
(Walter & Breckle, 1989). There are some cases in which primary soil characteristics
apparently play a decisive role in forest versus grassland occurrence. For instance, gravelly
soils within the Mongolian forest-steppe usually support the forest ecosystem state (Wallis de
Vries, Manibazar & Diigerlham, 1996; Dulamsuren et al., 2009), apparently because coarse-
texture soils permit rapid infiltration of precipitation to deeper soil layers where it is
accessible by deep rooted woody plants, but not grassland species (Fig. 2C). Coarse soil
texture can also contribute to the emergence of forest-steppe beyond its climatically
determined interval (Fig. 2C). In the Naurzum Nature Reserve of Kazakhstan, a vast sandy
forest-steppe occurs surrounded on all sides by pure steppic grassland matrix associated with
loamy and clayey soils (Rachkovskaya & Bragina, 2012; Batori et al., 2018). In a reversal of
this pattern, in high-precipitation regions with a preponderance of temperate forest, shallow
rocky soils often support patches of steppe-specialist plant species (Erdds et al., 2014b; Boch

etal.,2019).

(4) Herbivory

Herbivory by large mammals is regarded as one of the main factors controlling the
relative abundances of woody and herbaceous plants in savannas and forest—grassland
mosaics. In tropical savannas grazers tend to increase, while browsers tend to decrease,
woody cover (Roques, O’Connor & Watkinson, 2001; Augustine & McNaughton, 2004;
Sankaran et al., 2005; Bond, 2008; Archer ef al., 2017). Such effects may be dependent on
herbivore pressure: Sankaran, Ratnam & Hanan (2008) found that grazers of African savannas

increase woody abundance only at high grazing pressure, while low and medium grazing

14



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

pressure have an opposite effect. Similarly, for semi-arid African savannas, Asner et al.
(2004) and Archer (2010) concluded that heavy grazing increases woody plant abundance. In
contrast to African ecosystems, the distinction between grazers and browsers is less clear in
temperate regions (Owen-Smith, 2008). In the Eurasian forest-steppe, there is no evidence of
grazer-induced woody encroachement. Here, in addition to browsers such as various species
of deer (Cervidae) and goats (Capra spp.), animals that are typically considered grazers such
as horses (Equus spp.), cattle (Bos taurus Linnaeus), European bison (Bison bonasus
Linnaeus), and sheep (Ovis spp.) also feed on woody plants. Such browsing by ‘grazers’
combined with their trampling, wallowing, and uprooting of trees limits forest expansion into
grasslands (Walter & Breckle, 1989; Wallis de Vries ef al. 1996; Sankey, 2012). Grazers may
also alter soil moisture availability indirectly by preventing the accumulation of dead plant
material, which increases evaporation from the topsoil, rendering grasslands less suitable for
tree seedlings (Walter & Breckle, 1989).

In addition to wild native herbivores, domestic ungulates are important to the ecology of
the forest-steppe. Sheep, cattle, goats and horses are all regarded as limiting factors for tree
establishment and survival in livestock-producing areas of Eurasia (e.g. Wallis de Vries et al.,
1996; Smelansky & Tishkov, 2012; Hais et al., 2016; Torok et al., 2018). In Mongolia,
Khishigjargal et al., (2013) found that livestock grazing can effectively limit forest
encroachment at grassland edges by reducing sapling number through trampling. In temperate
pastures of Mongolia, goats consume tree saplings even when fresh herbs are available
(Lkhagvadorj et al., 2013). In both Hungary and Mongolia, livestock prevent shrub
establishment in grazed grasslands, whereas in areas with herbivore exclusion, shrubs can
establish and survive (Varga et al., 2015; Takatsuki et al., 2018).

The capacity of large native herbivores to push forest—grassland balance towards

grasslands is generally accepted in the temperate zone of Eurasia (e.g. Lavrenko &
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Karamysheva, 1993; Vera, 2000; Wagner et al., 2020) and other temperate regions
(Bredenkamp, Spada & Kazmierczak, 2002). Great populations of now-threatened or extinct
Holocene herbivores such as tarpan (wild horse, Equus ferus Boddaert), takh (Przewalski’s
horse, E. przewalskii Poliakov), onager (Asian wild ass, E. hemionus Pallas), wild ox (Bos
taurus primigenius), Eurasian elk (A/ces alces Linnaeus), and saiga antelope (Saiga tatarica
Linnaeus) once inhabited the Eurasian forest-steppe and certainly influenced forest—grassland
dynamics (Walter & Breckle, 1989; Chibilyov, 2002; Pfeiffer, Dulamsuren & Wesche, 2020;
Torok et al., 2020; Wagner et al., 2020). Although the historical population sizes of these
large native herbivores are unknown, some authors assume that low densities of domestic
livestock may serve a similar ecological function to maintain grasslands (Wallis de Vries et
al., 1996; Wesche & Treiber, 2012; Pfeiffer et al., 2020).

In addition to large ungulates, other important groups of animals in the forest-steppe are
rodents and insects. Hamster (Cricetus cricetus Linnaeus), marmots (Marmota spp.), and
voles (e.g. Microtus spp. and Myodes spp.) (Walter & Breckle, 1989; Lavrenko &
Karamysheva, 1993; Chibilyov, 2002) consume seeds and seedlings of trees, and thus may
limit tree establishment in the grassland ecosystem state and at the forest edge (Dulamsuren et
al., 2008h; Hauck et al., 2008). Insects such as orthopterans and gypsy moth (Lymantria
dispar Linnaeus) contribute to tree mortality by defoliating seedlings in the grassland
ecosystem state (Dulamsuren et al., 2008b) and damaging both seedlings and mature trees at
the forest edges (Hauck et al., 2008).

In sum, where herbivory disproportionately damages woody plants relative to grasses
and forbs, forest vitality is reduced and grasslands may occupy areas where the climate is
humid enough and soil moist enough theoretically to support forests. In light of the extensive
evidence that the forest-steppe developed under the influence of a rich assemblage of

Holocene large herbivores, and is now maintained by both native animals and domestic

16



399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

livestock, we suggest that our understanding of the coexistence of forests and grasslands

should incorporate herbivory (Fig. 3), not just climate, soils, and topography (Fig. 2C).

(5) Fire

Most grasses and forbs are able to resprout after a fire event relatively quickly from
underground organs and regenerate from the seedbank, whereas woody species, except some
fire-tolerant or resprouting ones, need decades if not centuries to reestablish (Bond, 2008).
Although few Eurasian studies examine the effects of fire on vegetation in general, and on the
forest—grassland balance in particular (Valko et al., 2014), fire is regarded as being capable of
limiting woody vegetation, even in moist sites that would otherwise permit development of
forests (e.g. Walter & Breckle, 1989; Korotchenko & Peregrym, 2012). According to Kertész
et al. (2017) and Onodi ef al. (2021), severe wildfires are able to eliminate the forest
ecosystem state from the forest-steppes, shifting the forest—grassland balance in favour of
grasslands. Forest patches containing Juniperus communis L. are particularly vulnerable to
fires, as juniper is highly flammable and cannot resprout (Kertész et al., 2017; Onodi et al.,
2021). Erdds (2014) found that wildfires in forest-steppes can open up the canopy layer, and
the regeneration of the forest may take several decades. Pinus sylvestris of large diameter are
able to withstand surface fires of low to medium intensity (Wirth, 2005), but not high-
intensity crown fires; Pinus sylvestris stands killed by fire can be very slow to recover,
requiring decades to regrow (Ivanova et al., 2010; Barrett et al., 2020).

Because humans are responsible for many fires today, the current frequency of fires in
the forest-steppe is often regarded as ‘unnatural’. While it is true that fire has long been used
by humans to prevent woody encroachment into grasslands and to maintain pastures for
livestock (Smelansky & Tishkov, 2012; Valko et al., 2014; Novenko et al., 2016; Unkelbach

et al., 2018), burning by humans may be viewed as perpetuating fire as an ancient ecological
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process in the region. Indeed, paleoecological evidence suggests that natural (lightning-
ignited) wildfires regularly occurred in many regions of the forest-steppe, including the
Carpathian Basin (Magyari et al., 2010); the Mongolian Altai (Unkelbach et al., 2018), and
European Russia (Novenko et al., 2018). This may not be recognised, because fires today are
usually suppressed near human settlements. But in remote forest-steppe regions fire continues
to play an important ecological role to maintain grasslands in places that could otherwise
develop into forests (e.g. Kertész et al., 2017; Erdos et al., 2018a; Kolar et al., 2020; Wagner
et al., 2020). In contrast to tropical savannas of Cs grasses, which can burn annually, wildfires
are much less frequent in forest-steppes: recent research indicates that fire-free intervals in
Eurasian forest-steppes have ranged from several years to a couple of decades or even
centuries during the Holocene, with considerable temporal variations due to climatic
modifications and human activity (Ivanova et al., 2010; Hessl et al., 2012, 2016; Feurdean et
al., 2013; Novenko et al., 2018; Rudenko et al., 2019; Kolar et al., 2020). Generally, fires in
forest-steppes are more frequent than in boreal forests but less frequent than in open
grasslands of the steppe biome (Barrett et al., 2020).

In sum, fire is able to limit forest vitality, and thus modify forest—grassland proportions
anywhere in the forest-steppe, reducing tree cover below the potential allowed by climate,
soil, and topography. For our understanding of the wide climatic and geographic distribution
of the forest-steppe, the effects of fire are most important at the humid end of the climatic
harshness gradient (Fig. 3). Here, fire is not just a modifier but, alongside herbivory, is

essential to prevent canopy closure, and enable long-term forest—grassland coexistence.

(6) Vegetation feedbacks and alternative ecosystem states
Emerging theory on grassland—forest coexistence and the distribution of savanna and

forest biomes details how vegetation feedbacks that reinforce either grass or tree dominance
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contribute to the stability of alternative ecosystem states under the same climate (Staver et al.,
2011; Hirota et al., 2011; Murphy et al., 2016; Staal et al., 2018a,b). In the tropics, these
ideas have focused on the distinct and generally opposite influences of grasses and trees on
ecosystem flammability (fire), forage quantity and quality (herbivory), resource availability
(e.g. light, water, nutrients), microclimate (temperature and humidity), and tree establishment
and survival (Hoffmann et al., 2012; Murphy & Bowman, 2012; Pausas & Dantas, 2017).
Based on our review of literature from the forest-steppe, we suggest that vegetation feedbacks
are also important for understanding the distributions and stability of grassland—forest mosaics
in Eurasia. These feedbacks are critical to the interpretation of our hierarchical models, in
which grassland and forest plant communities are not merely passive entities whose
distributions are determined by combined effects of climate variability, soils, topography,
herbivores, and fire. Instead, we view trees and herbaceous plants of the forest-steppe as
active ecosystem engineers, who themeselves influence forest and grassland vitality across a
wide geographic range in Eurasia.

Trees of the forest-steppe have strong feedbacks on local conditions beneath their
canopy. Tree canopies intercept solar radiation, leading to low light availability, cooler
diurnal temperature and higher relative air humidity at the forest floor, and the canopy reduces
heat loss at night compared to the steppes (Breshears et al., 1997; D’Odorico et al., 2013;
Tolgyesi et al., 2018, 2020; Siile ef al., 2020). Microclimatic extremes are also tempered
within forest patches by the edges acting as wind breaks and thus attenuating evaporation
compared to adjacent grasslands (Davies-Colley, Payne & van Elswijk, 2000). The altered
conditions impose a strong filter, limiting the growth of light-demanding plant species, while
facilitating shade-tolerant and drought-sensitive species, for which the steppe does not offer

suitable habitat (Erdés et al., 2014a; Lashchinskiy et al., 2017; Tolgyesi et al., 2018).
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As for soil moisture availability, the effects of trees are rather mixed in the forest-
steppe, and it is difficult to separate a priori moisture differences caused by topography and
soil structure from true forest—-moisture feedbacks. The proportion of precipitation intercepted
by tree canopies and the leaf litter can be high (up to 70% of each rainfall event; Yang et al.,
2019), especially in coniferous forests, where interception captures not just rain, but also
causes considerable amounts of snow to sublime before reaching the ground. At the arid
southern edge of the forest-steppe in Kazakhstan, mid-summer topsoil can be drier under
forest tree canopies than in adjacent open steppes (Tolgyesi et al., 2018). In climatically less
harsh sites, such as the sand regions of the Carpathian Basin, forest topsoil tends to be moister
than that of the steppe patches (Erdés et al., 2018b, 2021) but deeper soils are desiccated, with
the rate of desiccation dependent on whether trees are deciduous or evergreen (Tolgyesi ef al.,
2020). It is an open question though, whether the moisture surplus in the topsoil is solely a
consequence of the reduced evaporation due to the cool shaded microclimate or if trees bring
deep water up to the topsoil via hydraulic lift, as occurs in many semi-arid regions (Yu &
D’Odorico, 2015).

The overall effect of trees on grassland species seems to be negative, with a sparser
herbaceous layer in forests compared to grasslands (Erdés et al., 2014a; Tolgyesi et al.,
2018). The herbaceous layer species compositions in grasslands and forests show little
overlap, thus it is unclear whether the trees directly exclude steppe species, or do so indirectly
by allowing the growth of species that are competitively superior in shaded conditions.
Conditions beneath forests, which are unsuitable for grassland species, can facilitate tree
recruitment by attenuating heat and water stress during the summer, and reducing cold stress
in winter and early spring (Dulamsuren et al., 2008a,b; Erdds et al., 2021). In addition, the
sparser herb layer in the forests is less flammable, limiting the spread and intensity of

wildfires compared to the grasslands. Saplings are thus more likely to survive fires inside the
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forest, but this has not been tested. Such fire protection may not apply to forests composed of
highly flammable conifers (Pinus spp. or Juniperus spp.), which can burn intensely and
regenerate slowly if their crown catches fire (Kolar et al., 2020; Onodi ef al., 2021). Shaded
conditions in the forest patches are likely to limit tree saplings too, but less than by the
grassland species, since most forest-steppe trees are widespread components of closed-canopy
temperate and boreal forests where there has been strong evolutionary selection for shade
tolerance (Valladares & Niinemets, 2008).

Parallel to the favourable recruitment conditions of trees inside forests, conditions in the
grassland state promote the recruitment and persistence of steppe species for a number of
reasons. Fire, which can suppress saplings in the steppe, causes little harm to the belowground
organs or the seedbank of grasses and forbs, for which the conditions after the fire provide
excellent opportunities for regeneration via resprouts, clonal spread, or seed germination
(Onodi et al., 2021). Contributing to a positive fire feedback, after burning, aboveground
plant productivity is enhanced relative to pre-fire levels (Valko et al., 2016). Herbaceous
plants in steppes benefit from a sharper drop in nocturnal temperature relative to temperatures
in forests, which often leads to dew formation (Lellei-Kovécs et al., 2008; Tolgyesi et al.,
2018), which is an important moisture source for herbaceous plants in water-limited
ecosystems (Agam & Berliner, 2006). Tree saplings in the steppes are less able to benefit
from dew because they have few superficial roots. Furthermore, there is evidence that the
belowground competitive effects of grasses can directly constrain tree growth in the Eurasian
forest-steppe (Walter & Breckle, 1989; Peltzer & Kochy, 2001). However important direct
grass—tree competition may be, competition alone is not necessarily strong enough to exclude
trees completely from invading grass-dominated communities (Wilson & Peltzer, 2021). In

Eurasian forest-steppes, competitive effects of grasses on trees are probably best viewed a
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minor vegetation feedback, relative to the strong influence of the steppe microclimate, fires,
and herbivores in limiting tree establishment.

The effective recruitment of trees and grasses in association with the forest and the
steppe ecosystem states, respectively, stabilises their position and distinctness, contributing to
the mosaic vegetation structure. The resulting stability of the forest edges is also reflected by
distinct, species-rich edge communities in forest-steppes (Erdos et al., 2014a; Batori et al.,
2018). This overall pattern means for our hierarchical conceptual model that in sites where
climate as well as topography, soil, herbivory and fire allow the co-existence of forest and
steppe, vegetation feedbacks further stabilise spatial patterns by hindering state transitions
(i.e. hysteresis; Ratajczak et al., 2018). This stable patch pattern has been confirmed for
Hungarian forest-steppes by historical map interpretation (Erdos et al., 2015). The stabilising
feedbacks may lend considerable resilience of both forest and grassland ecosystem states to

environmental changes, as highlighted by Xu ef al. (2017) for Siberian forest-steppes.

IV. IMPLICATIONS AND FUTURE CHALLENGES

Our conceptual models illustrate that the vegetation pattern in the Eurasian forest-steppe
is a net result of multiple drivers with varying relative importance. Focussing on only one or a
subset of the drivers can lead to a misinterpretation of patterns and processes and eventually
to misguided conservation and restoration strategies. Ignoring the importance of natural
disturbances is a common source of such problems. The northern and western fringes of the
forest-steppe have long been assumed to be anthropogenic, given that the potential vegetation,
determined by climate, soil and topography, was thought to be closed-canopy forest
(Feurdean et al., 2018). This notion was reinforced by the fact that land abandonment leads to
shrub encroachment and forest establishment in these areas (e.g. Dedk et al., 2016). But how

far should we look back to determine historical forest and grassland distributions? Given that
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prehistoric herds of wild ungulates that contributed to the forest-steppe physiognomy were
extirpated millennia ago (Vera, 2000; Pfeiffer et al., 2020; Tordk et al., 2020), we suggest that
the resulting lack of natural disturbance may have yielded forest expansion in otherwise
uncultivated areas. If one takes a long-term view, deforestation in some areas may be viewed
as a reversal of past forest expansion that was itself due to human-caused disruption of
herbivore and fire disturbance regimes. Indeed, palacoecological records show that steppe-
specialist plants and animals were continuously present throughout the Holocene in many of
the forest-steppes of debated origin, such as in the Carpathian Basin, i.e. the westernmost part
of the present-day forest-steppe (Magyari ef al., 2010; Feurdean et al., 2018). The meadow-
steppe patches in the northern edge of south Siberian forest-steppes were also mostly
considered end-products of forest clearing (e.g. Ermakov & Maltseva, 1999), even though
they are often rich in steppe-specialist plants, while ruderal species are scarce (Kadmpf et al.,
2016), which is inconsistent with a purely anthropogenic orign. Similarly, while Hilbig (2000)
argued that the Mongolian forest-steppe has formed as a result of anthropogenic activity, field
evidence suggests that this ecosystem is of natural origin (Dulamsuren, Hauck & Miihlenberg,
2005a). With this in mind, we suggest that it is necessary to update our concept of primary
(i.e. natural) forest-steppe ecosystems, and also consider natural disturbances as determinants
of forest—grassland coexistence (Bond & Parr, 2010; Weigl & Knowles, 2014; Veldman et al.,
2015). We hope that future research in the forest-steppe will improve our understanding of the
relative contributions of these different factors to forest—grassland coexistence (i.e. climate,
topography, soil, herbivores, and fire).

Greater recognition that the forest-steppe is ancient will have consequences for
ecosystem management. Some landscapes formerly considered secondary may actually
represent the historical ecosystem state and should receive full attention for conservation or

restoration. Of particular importance, traditional grassland management in the forest-steppe
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should be viewed as critical to the maintenance of high-biodiversity natural grasslands. In this
sense, abandoning traditional grassland management and promoting afforestation is not
restoration (Temperton ef al., 2019).

Restoration and management measures in the forest-steppe should become more holistic
in their approach. Fortunately, a growing body of information on the ecology of community
reassembly and best management practices is leading to growth in grassland restoration (e.g.
Kéampf et al., 2016; Torok et al., 2018; Tolgyesi et al., 2019). By contrast, restoration of
natural forests in the forest-steppe is rare, due to a focus on commercial tree plantations and
intensive rotational forestry throughout the entire region (Cao, 2008; Erdés et al., 2018a).
Future forest-steppe restoration should pay attention to both grassland and forest ecosystem
states, with consideration of historical proportions and configuration, while recognising that
restoration will require planning for the maintenance of essential, but often overlooked natural
levels of disturbance by herbivores and fire.

Forest-steppe restoration is a long-term enterprise; therefore it needs to account for
future changes in the driving forces. Located between the temperate forest and grassland
biomes, forest-steppes may be particularly susceptible to the effects of climate change.
Climatic harshness in the Eurasian forest-steppe is projected to increase in the near future,
decreasing forest vitality (Matyas et al., 2018) and thereby favouring the advance of the
steppes against the forests and an overall shift of the forest-steppe against temperate forests
(Lu et al., 2009; Tchebakova, Parfenova & Soja, 2009). Thus, forest restoration should be
restricted to the most favourable locations (i.e. northern slopes, moist depressions, etc.), and
adaptive forestry may stop reforesting (or afforesting) sites where overall forest vitality is
expected to fall below that of the grassland ecosystem state in the future. Once the vitality
relationships turn in favour of grasslands, forests will no longer be sustainable. Vegetation

feedbacks may delay the switch to grassland, but the eventual transition will be unpredictable
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and abrupt (Scheffer ef al., 2001), and is likely to be realised in the form of forest dieback and
wildfires. The restoration in the forest-steppe should resist the current global emphasis on
forest-based carbon sequestration (Temperton et al., 2019; Tdolgyesi et al., 2022), and
recognise the belowground carbon and biodiversity benefits of conserving and restoring

grasslands alongside forests across Eurasia.

V. CONCLUSIONS

(1) The emerging fire—herbivore paradigm, as well as the recent increase in the number of
case studies makes it timely to revisit the determinants of forest—grassland coexistence at the
interface of closed-canopy forests and open steppes. Through conceptual modelling and a
literature review, we provide a comprehensive overview of the interacting drivers of forest—
grassland coexistence in the Eurasian forest-steppe.

(2) Although mean climate is the most widely acknowledged determinant, we show that the
Mean Climate Model should result in a sharp transition between the temperate or boreal forest
and steppe biomes, but not a mosaic of forests and grasslands (Fig. 2A).

(3) Accounting for temporal variation in climate, the Zonal Model can only explain the
coexistence of forest and grassland within a relatively narrow geographic range (Fig. 2B).

(4) Topography and edaphic conditions can modify forest and grassland patterns within the
climatically determined forest-steppe zone, and are essential to explain the presence of forest-
steppe across broad gradients in climatic harshness (Climatic—Topographic—Edaphic Model,
Fig. 2C).

(5) Herbivory and fire are able to limit forest vitality and to decrease forest cover throughout
the forest-steppe. However, their role is most important towards the humid end of the climatic

harshness gradient, where herbivory and fire prevent canopy closure and thus favour the
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forest-steppe against closed-canopy forests (Climatic—Topographic—Edaphic—Herbivore—Fire
Model, Fig. 3).

(6) Once the scene is set by these determinants of forest—grassland coexistence, vegetation
feedbacks stabilise grassland and forest ecosystem states, lending considerable stability to the
forest-steppe landscape configuration.

(7) Our hierarchical conceptual model highlights that many forest-steppes that have
traditionally been considered secondary, represent, in fact, the historical landscape structure.
Targets to restore native biodiversity or sequester atmospheric carbon should be revisited
accordingly, and restorationists should think twice regarding the global call for tree planting

in the Eurasian forest-steppe.
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Figure captions

Fig. 1. The distribution of forest-steppes in Eurasia (A), mosaic of forest and grassland
ecosystem states in northern Kazakhstan (B, C), Prunus fruticosa, a typical shrub of forest-
steppe ecosystems (D), Iris variegata, a forest-steppe herb (E), Colchicum arenarium, a

grassland species endemic to the forest-steppes of the Carpathian Basin (F).

Fig. 2. Conceptual models of the distribution of forest and grassland along a continuous
climatic harshness gradient (H) in Eurasia. Climatic harshness reflects (generally north to
south) gradients in temperature extremes (hot summers and cold winters) and aridity
(precipitation and potential evapotranspiration). (A) The Mean Climate Model predicts a
sharp forest-grassland boundary (marked by a vertical line) at the latitudinal intersection of
forest and grassland vitality curves (F and G, respectively). (B) The Zonal Model accounts for
temporal variation in climatic harshness: forest and grassland vitality (F and G, respectively)
are represented by bands instead of thin lines, indicating that the vitality of both can vary
across a certain range, depending on the actual climatic variations. Forest—grassland
coexistence is possible in a narrow zone where grassland and forest bands overlap (enclosed
by vertical lines). (C) In the Climatic—Topographic—Edaphic Model, slope, aspect, and soils
expand the climatic ranges of forests and grasslands. Circular arrows indicate local reversals
of forest and grassland vitality relationships with climate (F and G, respectively), while
straight arrows show changes without reversal as a result of modified aridity due to special

topographic or soil conditions.

Fig. 3. Climatic—Topographic—Edaphic—Herbivore—Fire Model of forest—grassland
coexistence, as determined by (1) climate (mean and variability), (2) topographic and edaphic

factors (slope, aspect, soil texture, moisture availability), and (3) herbivory and fire. Circular

47



1155  arrows show how forest and grassland vitality (F and G, respectively) change as a result of
1156  local conditions evoked by special topographical or soil conditions (in zone 2) or as a result of

1157  fire and herbivores (in zone 3).
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