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The present paper concerns divergence form elliptic and
degenerate elliptic operators in a domain Q@ C R" and
establishes the equivalence between the uniform rectifiability
of the boundary E = 092 and weak Carleson condition on
the good approximation of the Green function G by affine,
or distance, functions. There are two main original contexts
for the results, elliptic operators in a non-tangential access
domain with an n — 1 dimensional boundary and degenerate
elliptic operators adapted to a domain with an Ahlfors regular
boundary of larger co-dimension. In both cases necessary and
sufficient conditions are given, in the form of Carleson packing
conditions on the collection of balls centered on E where G is
not well approximated.

(1) This is the first time the underlying property of the
control of the Green function by affine functions, or by
the distance to the boundary, in the sense of the Carleson
prevalent sets, appears in the literature; some results
established here are new even in the half space;
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(2) the results are optimal, providing a full characterization of
uniform rectifiability under the (standard) mild topologi-
cal assumptions;

(3) to the best of the authors’ knowledge, even in traditional
domains with (n — 1)-dimensional boundaries, this is the
first free boundary result applying to all elliptic operators,
without any restriction on the coefficients (the direct one
assumes the standard, and necessary, Carleson measure
condition);

(4) this is the first free boundary result in higher co-
dimensional setting and as such, the first PDE characteri-
zation of uniform rectifiability for a set of dimension d,
d<mn-—1,in R"

The paper offers a general way to deal with related issues

considerably beyond the scope of the aforementioned theorem,

including the question of approximability of the gradient of
the Green function, and the comparison of the Green function
to a certain version of the distance to the original set rather
than distance to the hyperplanes.

© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

We consider elliptic operators, or their generalizations, on a domain 2 C R™. The
main goal of the present paper is to show that ) is reasonably regular (uniformly rectifi-
able) if and only if the Green function can be well approximated by distances to planes,
or by a certain distance to the boundary 9. Formally speaking, the result is one of the
end-points of the big quest of establishing sharp, optimal connections between the geo-
metric and PDE properties of sets — see the work by J. Azzam, J. Garnett, S. Hofmann,
P. Le, J.-M. Martell, M. Mourgoglou, K. Nystréom, X. Tolsa, T. Toro, Z. Zhao, and their
collaborators [2,17,18,21,19,3].

The present result is somewhat different both philosophically and in terms of the
involved techniques. The “PDE” side of our result is that for a certain class of elliptic
operators, the Green function is morally affine in the sense of Carleson prevalent sets (a
weak condition). The idea that the Green function is almost affine whenever the set is
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reasonably flat permeates virtually all approaches to free boundary problems, including
the work of Alt and Caffarelli, Kenig and Toro, Lewis and Vogel, Hofmann, Martell,
Tolsa, Garnett, Nystrom, J. Azzam, and others. Even in the precise context of ellip-
tic measure, Azzam [1] has a recent characterization of rectifiability in terms (among
other) of Green functions. The story is different here for two reasons. First, we pass from
the weak-type condition on the Green function to the strong-type conclusion (uniform
rectifiability), and in fact, we prove their equivalence. The reader should not be too sur-
prised that this is possible: since [14,15], it is known that the uniform rectifiability of sets
can often be derived from weak conditions. Secondly, we treat more general operators,
even in co-dimension 1, because we need weaker conditions on the coefficients. The “free
boundary” result, stating that the desired approximability of the Green function by dis-
tances to planes implies uniform rectifiability is, to the best of our knowledge, the first
free boundary result in this context that pertains to all elliptic operators, without any
additional restrictions on the coefficients of the equation. All of this is due to the fact
that we employ different techniques, not relying on the integrations by parts traditional
in this context.

Finally — and secretly this was one of our main incentives — this paper is the first
PDE characterization of the lower-dimensional uniformly rectifiable sets. The efforts
in this direction have spanned now about a decade and could roughly be split into
two principal directions: the work on reflectionless measures by F. Nazarov, B. Jaye,
and their collaborators, which unfortunately still hinges on the problem of proving the
reflectionless property for the key operators at hand, and the work by the authors of the
present paper and J. Feneuil which identifies an appropriate PDE context and proves a
number of “direct” results, but also faces a mysterious problem in the “free boundary”
direction. Indeed, we discovered that in domains with lower dimensional boundaries there
exist elliptic operators for which the elliptic measure is proportional to the Hausdorff
measure on any AR set, independently of any sort of regularity or uniform rectifiability,
which shatters the natural conjectures inspired by the co-dimension one case. This is
what forced us to turn to the Green function and its proximity to the affine functions,
or to the distance: such a condition seems to control more accurately the torsion of the
solution around a low-dimensional boundary than the more traditional estimates on the
harmonic measure. It appears, for all the reasons outlined above, that in a certain sense
it is stronger and more appropriate in the classical domains with n — 1 dimensional
boundary as well. Let us now turn to the details.

In all this paper, 2 will be a domain in R"™ whose boundary E = 9f2 is Ahlfors regular
of some dimension d < n. This means that there is a measure p, supported on F, and a
constant C' > 1 such that

Clrd < w(B(z,7)) < Cr? forz € Fand 0 < r < +o0. (1.1)

It is well known that in this case p is equivalent to ’;’-{,‘dE, the restriction to E of the
Hausdorff measure of dimension d. In this paper we assume that 2 and E are unbounded;
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the case of bounded domains would be similar but need a little more notation. Note that
a priori we do not assume that d is integer and allow, for instance, Ahlfors regular
snowflakes and Cantor sets. Instead, we will prove that the desired approximation of the
Green function (when meaningful) implies that the dimension is integer and the set is
rectifiable.

When d > n—1, we shall systematically add the assumption that €2 is a one-sided NT' A
domain, which means that we assume some quantitative openness and connectedness in
the form of the existence of corkscrew points and Harnack chains in 2; see the beginning
of Section 2 for the definitions. This is a traditional topological background hypothesis
in this context. Fortunately, we do not need to impose this explicitly when d < n — 1,
because then (2 satisfies the corkscrew and Harnack chain conditions automatically.

Turning to the operators, we will split the discussion into two cases. When n—2 < d <
n, we will concentrate on the classical Laplacian A, or more generally elliptic operators
L = —div AV, with bounded measurable, not necessarily symmetric, coefficients — see
(2.4)—(2.5) for the (usual) definition of ellipticity.

When d < n — 2, the classical elliptic operators are not appropriate. Their solutions
do not “see” the lower dimensional sets, and for instance, a bounded harmonic function
in R™ \ R? is indistinguishable from a harmonic function in R™. Over the recent years,
the authors of the present paper, together with J. Feneuil, M. Engelstein, and other col-
laborators, developed a rather complete elliptic theory on such domains which identifies
a certain class of degenerate elliptic operators as a proper substitute to standard elliptic
operators in this setting [7—10,13,16]. It was shown that the general results, such as the
maximum principle, trace and extension theorems, existence of the harmonic measure
and Green function, all hold for the operators

L = —div Adist(-, E)¥1"V,

where A is the usual elliptic matrix as above and dist(-, E) is the Euclidean distance to
the boundary. Note that for d = n — 1 these operators coincide with the classical elliptic
ones.

It turns out, perhaps surprisingly, that the analogue of the emblematic “Laplacian”
case is not simply Ley. = — div dist(, E)d+1_”V. This is because the Euclidean distance
is not always smooth enough for our initial techniques to be applied directly. So one was
led to replacing dist(-, £) with the smoother distance function D, below, which also
turned to be interesting for other reasons [6]. Eventually, it may be that L.,. can be
controlled in terms of L, below, using DKP conditions on dist(-, £)4*1~", but we did
not check.

Our favorite degenerate elliptic operator is finally

L=L,=—divDitl="y, (1.2)

where a > 0 is a parameter and D, is the smoother distance function defined by
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Doz(X) = Doz,u(X) = Ra,u(X)_l/a» (13)
with
Rop(X) = / X — 4|~ dp(y), (1.4)
E

and where p is any Ahlfors regular (AR for short) measure on E = 012, i.e., any measure
that satisfies (1.1). This is the best substitute for the Laplacian that we could find; in
particular, we have showed that for such an operator the elliptic measure is an A* weight
for any domain with a uniformly rectifiable boundary [13,16].

As we have mentioned above, our free boundary results will hold in the general setting
of elliptic operators as above. The “direct” results are, by necessity, restricted to operators
which are morally similar to the Laplacian or, in the case of lower dimensional boundaries,

o (1.2). In either setting, the resulting class of operators is of the nature of the best
possible. In fact, it is slightly more general than anything previously considered in this
context, but morally speaking we impose the “usual” Carleson measure condition on the
coefficients, whose failure is known to produce abundant counterexamples [24,25], see
also Remark 3.2. To state this more precisely, we need some definitions.

We shall focus in this paper on so-called weak properties, whose model is always
the same. We choose some desirable property (either geometric or related to the Green
function), often stated in terms of some parameters like € > 0, then consider the set of
balls B(x,r) for which it fails, and require that this bad set satisfies a Carleson packing
condition (we will also say that the complement is a Carleson-prevalent set), as follows.

Definition 1.5. Let B be a subset of E' x (0,400). We say that B satisfies a Carleson
packing condition when there is a constant C > 0 such that for every z € E and r > 0,

ﬂB(y,t)M < Cre (1.6)

yEENB(z,r) 0<t<r

We say that G C E x (0,+00) is a Carleson-prevalent set when E x (0,4+00) \ G satisfies
a Carleson packing condition.

The term prevalent is new in this context (we think it will help to give a name to the
good sets too), and has no intended relation with existing uses of prevalence in other
domains of mathematics. Here we chose an Ahlfors regular measure p on F, but if we
use a different one, for instance HfE, we obtain the same notion (but a different Carleson
constant C).

Given an elliptic operator L = —div AV we say that L is sufficiently close locally to
a constant coefficient elliptic operator, if the following weak Carleson measure condition
holds. For each choice of constants 7 > 0 (small) and K > 1 (large), denote by G..(7, K)
the set of pairs (z,7) € E x (0,+00) such that there is a constant matrix Ay = Ag(x,r)
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such that

|A(X) — AgldX < 7, (1.7)

XeWk (z,r)
where W (x,r) is a large Whitney region associated to B(x,r), defined by
Wk (z,r) = {X € QN B(z, Kr); dist(X,E) > K~ 'r}. (1.8)
Our condition is that

for every choice of 7 > 0 and K > 1, G..(7, K) is a Carleson prevalent set (1.9)

(as in Definition 1.5), or in other terms the corresponding bad set B..(r,K) = E x
(0, 400) \ Gec(T, K) satisfies a Carleson packing condition.

Incidentally, we can assume that Ag is elliptic with the same ellipticity constant as
the A(X), because if (1.7) holds for any Ao, it also holds (with a worse constant) with
Ay = A(Xy), for some Xy € Wi chosen by Chebyshev.

The reader might perceive the condition of being “sufficiently close locally to a con-
stant coeflicient elliptic operator” as too restrictive. This is a little misleading because
the constant coefficient operators in questions can change from scale to scale, and in fact
our condition is (slightly) weaker than any other one previously used in this context.
In particular, it would be easy to check that this condition is weaker than the standard
Dahlberg-Kenig-Pipher condition where one requires that A be locally Lipschitz in €,
with

VA(X)dist(X, E) € L®(Q), (1.10)

and that |[VA(X)|?§(X) satisfy a Carleson measure condition, i.e., that there be a con-
stant C'py > 0 such that

/ |VA(X)|? dist(X, E)dX < Cppr™? (1.11)

QNB(z,r)

for x € F and 0 < r < +00. As we shall see, we can manage with the weaker condition
(1.9) because we don’t integrate by parts as usual, and also we don’t aim for very precise
estimates.

Our preferred geometric condition on FE, uniform rectifiability, can also be defined
using Definition 1.5, via the property called Bilateral Weak Geometric Lemma (BWGL).
The BWGL is known to imply apparently stronger rectifiability properties, such as the
existence of Big Pieces of Lipschitz Images of R? inside of E; we refer to [15] for lots
of information about uniform rectifiability, which is not the issue here. To define the
BWGL, we will use the following local version of the Hausdorff distance between two
sets E/, F' C R™: we set
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dyr(E,F) = %Sup {dist(y, F); y € ENB(z,r)}
+ %sup{dist(y,E); y € FNB(z,r)} (1.12)
for x € R™ and r > 0; when FNB(x,r) = 0, we take sup { dist(y, E); y € FﬂB(z,r)}

0, and similarly decide that sup { dist(y, F); y € ENB(x,7)} = 0 when ENB(z,7)
but we will probably not need to use this convention.

0,

Definition 1.13. Let E be an Ahlfors regular set of dimension d in R™, where d € (0,n)
is an integer. We say that E is uniformly rectifiable when for every ¢ > 0, the set G,,-(¢)
of pairs (z,7) € E x (0,+00) such that d, ,(E, P) < er for some d-plane P = P(x,r), is
Carleson-prevalent.

As always with this type of conditions, we allow the Carleson constant for B, (&)
to depend on € in any brutal way, but in the case of Definition 1.13 it turns out that
we only need a single €, chosen small enough, depending on n, d, and the AR (Ahlfors
regularity) constant for E.

Finally, turning to the properties of the Green function, we shall find it more con-
venient to state our results in terms of G°°, the Green function with a pole at infinity.
We will review the construction in Section 2 (see also [6,10]). Since our approximation
property appears to be new, to motivate the forthcoming definition, let us first describe
a situation which we judge perfect, and our conditions will try to measure how far we
are from this situation.

In the case of A (or a constant coefficient operator), the perfect situation is when
d=mn—1and FE is a d-plane. In this case the harmonic measure w® (with a pole at co)
is a multiple of the Lebesgue measure on F, and the Green function G*° is a multiple
of the distance to E. In the case of our favorite operator L, = —div DIt1="V from
(1.2), the perfect situation is when d is an integer, F is a d-plane, and u is a multiple
of the Hausdorff measure 'HfE on E. In this case again the harmonic measure wf® is a
multiple of ’HflE and the Green function G*° is a multiple of the distance to E, which is
also proportional to each Dg, 8 > 0.

Definition 1.14. We say that G° is prevalently close to the distance to a d-plane when
for each choice of ¢ > 0 and M > 1, the set Gga(e, M) of pairs (z,r) € E x (0, +00) such
that there exists a d-plane P(x,r) and a positive constant ¢ > 0, with

|dist(X, P) — cG™(X)| < er for X € QN B(z, Mr), (1.15)

is Carleson-prevalent.

Similarly, given 8 > 0, we say that G* is prevalently close to Dg when for each choice
of € >0 and M > 1, the set Ggp, (e, M) of pairs (z,r) € E x (0,+00) such that there
exists a positive constant ¢ > 0, with
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|Dg — ¢G> (X)| <erfor X € QN B(x, Mr), (1.16)
is Carleson-prevalent.

Here it is convenient to have a constant ¢ > 0 that we don’t need to compute, especially
since our function G*° is only defined modulo a multiplicative constant. The definitions
are easier to understand when we allow M to be large, but in terms of Carleson-prevalent
sets, taking M = 1 and compensating with € would in fact give an equivalent result. The
main positive result of this paper is as follows.

Theorem 1.17. Assume that Q0 C R™ is a domain with an unbounded d-Ahlfors reqular
boundary E = 0X), d integer. When d = n — 1, assume, in addition, that € is 1-sided
NTA. Let L = —div AV be an elliptic operator with bounded measurable coefficients
when d =n — 1, and more generally, given by

L=—divADI!""V, 0<d<n,

where Dy, is the smooth distance (1.3) associated to some oo > 0 and some AR measure
won E, and A is any elliptic matriz.

If G is prevalently close to the distance to a d-plane, in the sense of Definition 1.1/,
then E is uniformly rectifiable.

Let us assume, in addition, that A is locally close to a constant coefficient operator
when d =n — 1, that is, (1.7)~(1.9) holds, or, when d < n — 1, that A is locally close to
the identity matriz, that s, (1.7)—(1.9) holds with Ay = I.

Then, conversely, G is prevalently close to the distance to a d-plane whenever E is
uniformly rectifiable.

The theorem is a combination of Theorems 3.1, 3.43, and 6.1. As we discussed above,
in both directions the conditions on the coefficients are of the nature of the best possible.
The reader could perhaps be surprised that in domains with lower dimensional bound-
aries we require that A is locally close to identity, rather than just a constant coefficient
operator. This has to do with the underlying “perfect” situation. Indeed, when d = n—1,
the distance to a flat boundary is an affine function, which furnishes a solution for any
constant coefficient operator. When d < n — 1, there is a more delicate cancellation at
place. Even in R™ \ R? the norm of ¢ (the component of X in R"~%), is a solution for
—div [t|27"*1V, but not necessarily for operators with a more general, even if constant,
matrix of coefficients. Similarly, even if F is a hyperplane, the distance to the boundary
is only a solution for the emblematic operator (1.2). One could maybe reach some more
general results further generalizing the concept of a distance, but we chose not to pursue
this direction in the present paper.

Notice that when we prove that G is prevalently close to dist(X, P), for instance,
this does not imply that it is Lipschitz, because the constant ¢ in (1.15) may depend on
B(x,r). For instance, if E is a Lipschitz domain with a corner at 0, we know that G may
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behave like dist(X, E)*, a # 1, near 0. The balls centered at the origin probably lie in
the complement of the good set Gga(e, M), but there are many good balls B(y,t) near
0, where F is flat and (1.15) or (1.16) holds, and for these balls the constants ¢ = ¢(y, t)
will typically tend to 0 or +oc0 as (y,t) tends to (0,0).

Going further, let us discuss the “weak” nature of the results. The way we formulate
our theorems, via a weak Carleson packing condition, or one could also say, without
a precise control of the constants, feels surprising, stronger than expected in the “free
boundary” direction. This has to do with a self-improvement of scale invariant estimates
which takes place in uniformly rectifiable sets. Indeed, in the context of uniform rectifi-
ability for AR sets, the Bilateral Weak Geometric Lemma of Definition 1.13 is known to
be equivalent to stronger and more precise definitions, for instance, the aforementioned
existence of big pieces of Lipschitz images uniformly at all scales [15]. Similarly, here
when we say that G*° is prevalently close to dist(X, P), we prove that Gop(e, M) is
prevalent for each choice of M, e, but we do not give the rate of convergence of the
Carleson packing constant for E x (0,400)\ Gap(e, M) in terms of e, cf. [12]. It is worth
mentioning that a version of such stronger Carleson measure bounds on the Green func-
tion for the Laplacian and more general operators coefficients satisfying the L' analogue
of the Carleson measure condition (1.11) appeared “between the lines” of [20], that is,
could be deduced from their arguments. However, (1.11) and even more so its weak
analogue treated in this paper was not handled, even though it is an obvious optimal
condition. This is not a technicality: the integration-by-parts arguments from [20] could
not be extended to more general operators and in that sense even our “direct” results in
traditional sets with n — 1 dimensional boundaries are the first ones to treat Carleson
measure Green function estimates for the optimal class of the operators. Similarly, a
recent paper of J. Azzam [1], Theorem VI, did exactly this: characterize uniformly recti-
fiable boundaries by the regularity of the Green function for the Laplace operator. Our
operators are more general (he only treats the Laplacian), his condition on the derivative
of the Green function is stronger (more in line with [12,20] than with the present paper),
but his domains don’t need to be Ahlfors regular, and the techniques are different and
independent. We find the two approaches nicely complementing each other, and it is
curious that they appeared independently roughly at the same time.

For now we have only discussed approximation of the Green function by the distance
to a plane, that is, (1.15), and only in integer dimensions. The second main question
in the present paper concerns the approximation by a distance to the initial boundary
E, as in (1.16). Despite an apparent similarity to (1.15), it is actually more intricate at
least in one direction, for even the fact that G*° is on the spot equal to a multiple of
the distance to E, Dg, might or might not ensure that the boundary is nice. Even the
fact that the dimension is integer has to be proved and, in some circumstances, can fail.
For brevity, we will formulate all results in the context of operators which are locally
close to the constant coeflicient ones, even though some results are still true in the full
generality of all elliptic operators — see Section 7. We start with the classical case.
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Theorem 1.18. Assume that Q0 C R™ is a domain with an unbounded d-Ahlfors reqular
boundary £ = 09, n —2 <d <n. When d > n — 1, assume, in addition, that Q is 1-
sided NTA. Let L = — div AV be an elliptic operator with bounded measurable coefficients
which are locally close to constant coefficient matrices in the sense of (1.7)—(1.9).

If E is uniformly rectifiable, then for every choice of 5 > 0 and any AR measure p
on E, G is prevalently close to Dg .

Conwversely, if the Green function G* is prevalently close to D ,, for some oo > 0 and
some AR measure p of dimension d on E then d is integer and E is uniformly rectifiable.

This is a combination of Theorems 3.1, 7.1, and Proposition 7.11, the latter being
valid for all elliptic operators.

The situation for domains with lower dimensional boundaries is trickier, due to the
aforementioned rather mysterious fact that for a certain very special choice of coefficients
the situation could be “perfect” in terms of PDEs without any regularity or flatness. This
is one of the main discoveries in [6], and since that paper, we refer to it as a “magic a”
case. Indeed, if F is any unbounded d-Ahlfors regular set and @« = n —d — 2, R, is
just the convolution of p with a multiple of the Laplace’s fundamental solution in R",
so it is harmonic, and a direct computation shows that LoD, , = 0 in Q for L, given
by (1.2). Hence, by uniqueness, D, , is a multiple of G, and C~'y < w™ < Cp. In
fact, if d is an integer, and FE is rectifiable (not necessarily uniformly rectifiable) with
= HIdE, then the harmonic measure w with pole at infinity is proportional to u. In all
the other cases, we only have that C ™1y < w™ < Cl, essentially because we cannot say
that % is the normal derivative of G°° when FE is unrectifiable, but we can argue that
getting the measure p point blank makes less sense in this case, because the density of p
does not exist. Thus, for such a “magic a” the elliptic measure is absolutely continuous
with respect to the Hausdorff measure, with a density given by an A* weight, on any
Ahlfors regular set. Notice that we need d < n — 2 for this to happen as a > 0, but
we do not need d to be an integer, and certainly we do not need E to be uniformly
rectifiable. This is a strangely degenerate case which does not resonate with anything we
know about the standard domains with n — 1 dimensional boundaries, but it also turns
out to be immensely useful as one basically gets to use the distance D, as the Green
function, getting the best of both worlds: a solution to a PDE and an explicit, easy-to
handle formula. This is a rare luxury as typically we do not know explicitly the Green
function — see, e.g., [16] for some applications. However, in the context of this paper this
case is certainly not amenable to any free boundary results akin to Theorem 1.18. We
hope, however, that this is an isolated miraculous cancellation and generally the fact
that G = CD,,,, implies that the set is flat and p is a multiple of a flat measure. Not
to extend the introduction any further, let us refer the reader to Section 8 for a detailed
statement of this condition, which we will denote Ygqas.

Theorem 1.19. Assume that Q@ C R™ is a domain with an unbounded d-Ahlfors reqular
boundary E = 0Q. When d > n — 1, assume, in addition, that Q is 1-sided NTA. Let
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L=—divADZ 7"V, 0<d<n,

where D, is the smooth distance (1.3) associated to some a > 0 and some AR measure
woon E, and A is any elliptic matriz with bounded measurable coefficients which are
locally close to the identity in the sense that (1.7)—(1.9) holds with Ay = I.

If E is uniformly rectifiable, then for every choice of 8 > 0 and any AR measure v
on E (possibly different from 1), G is prevalently close to Dg .

Conversely, if the condition Yaas(d, o, A) of Definition 8.1 holds and the Green func-
tion G*° is prevalently close to Dy, then d is integer and E is uniformly rectifiable.

This is a combination of Theorems 3.43 and Theorem 8.8. One can find more related
results and an extended discussion of the condition Yg,; in Section 8. For now, let us
wrap up the introduction and send an interested reader to the body of the paper.

The authors wish to thank the referee for a careful reading and many useful sugges-
tions.

2. The Green function at infinity and the basic result about limits

We first remind the reader of how the Green function G*° is constructed. We have
two main cases in mind, which we rapidly describe now. Let us start with the geometric
assumptions.

Throughout the paper, Q is a domain in R™ such that £ = 0 is an unbounded
Ahlfors regular set of dimension d € (0,n), so that (1.1) is satisfied. There are natural
counterparts of our results for bounded domains, but for simplicity of notation we will
concentrate on the unbounded case.

When d > n —1, we also demand that Q is a uniform (aka a one-sided NTA) domain,
i.e., that

 has interior corkscrew points and Harnack chains. (2.1)

Let us say what this means. First, we require the existence of corkscrew points: for xz € E
and r > 0, we demand the existence of a point A = A, , such that

AecQnB(z,r) and dist(A4,E) > C 'r (2.2)

(we shall call A a corkscrew point for B(zx,r)).

Secondly, we require that for each M > 1, we can find an integer N = N(M)
such that when X,Y €  are two points with the property that |X — Y| <
M min(dist(X, E), dist(Y, E)), we can find a (Harnack) chain of balls By,..., By such
that By contains X, By contains Y, each B;, 2 < ¢ < N, meets B;_1, and the 2B; are
all contained in 2. Let us not play useless games here; we also require that all the B; of
the chain have a radius at least C~! min(dist(X, E), dist(Y, E)).
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Another way to formulate the Harnack chain condition would be to require
the existence of a path in Q that goes from X to Y, stays at distance at least
C~'min(dist(X, F), dist(Y, E)) from E, and has a length at most C|X — Y.

We shall refer to C'in (1.1) as an AR constant of E, and to C and M is the corkscrew
and Harnack chain conditions above as 1-sided NTA constants.

A uniform domain with an Ahlfors regular boundary is sometimes referred to as a
1-sided chord-arc domain, but we will rarely use this terminology.

The interior corkscrew and Harnack chain conditions are merely quantitative openness
and path connectedness of the domain ). They guarantee a reasonable behavior of the
Green function at the level of fundamental estimates and so we prefer to assume that the
domains are uniform when d > n—1 throughout the paper. When d < n—1, it turns out
that interior corkscrew and Harnack chain conditions are automatically satisfied for any
domain with an Ahlfors regular boundary FE = 9f) of dimension d, essentially because E
is so thin. This is checked in [8].

Let us turn to the elliptic operators considered in the present paper. We split into two
cases, essentially corresponding to the dimension of the boundary of the set, although
they are not completely exclusive.

In Case 1, which we will also call the classical case, we are given a domain §2 with
E = 09, an unbounded Ahlfors regular set E of dimension d, with n — 2 < d < n.
When d > n — 1, we assume, in addition, that the domain is uniform, i.e., the interior
corkscrew and Harnack chain conditions are satisfied. We consider an elliptic divergence
form operator

L=—divAV, (2.3)

where the matrix A of coefficients is measurable and satisfies the usual ellipticity prop-
erties

[(A(X)E, Q)| < Cel¢lln] for X € Q, £ € R, and ¢ € R", (2.4)
(A(X)E,€) > O for X € Q and € € R™, (2.5)

and some constant C, > 1.

In Case 2, which is not exclusive of Case 1, 2 is still a domain in R™ such that
E = 09 is an unbounded Ahlfors regular of dimension d, but now we allow any dimension
d € (0,n). When d > n — 1, we require that 2 is uniform, i.e., that (2.1) is satisfied, as
before. And now we consider our favorite operator

L=Ly,=—divDl "V (2.6)

of (1.1), where & > 0 and D, ,, is given by (1.3) and (1.4), for some AR measure p on
E, or its generalization

L=—divADIH "V, (2.7)
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where A satisfies (2.4)—(2.5). Clearly, at such a level of generality we could as well say
L = —div A dist*™' =" (., E)V, but writing L as above will occasionally be somewhat
more convenient. Clearly, so far Case 1 and Case 2 coincide when d = n — 1 and in fact,
we could further generalize Case 2 to cover Case 1 completely, but we prefer to keep them
separate for reasons that will become evident a little later: the additional assumptions
down the road will start to deviate.

Let us review the definition of the Green function with a pole at co, and then state
the main result about limits that will be behind all our proofs by compactness.

First recall that in both cases, we can associate to {2 and L a collection of probability
measures wX = wi, referred to as the harmonic (or elliptic) measure with pole at X € ,
and that have standard properties (such as doubling) that will be recalled when we need
them. There are quite a few papers listing these fundamental estimates in Case 1, at
least when d = n — 1 (and perhaps more generally). Essentially, one can say that the
program outlined in [22] for 2-sided NTA domains still applies. In Case 2, this is done
in [8] when d < n — 1. Finally, both cases for all relevant dimensions are covered in
[10]. In Section 3 of [10] it is explained how the present assumptions are covered by the
hypotheses of [10]. The setting of [10] is much more general than what we need here,
but it is convenient to have all the relevant references in one place and so we will mainly
use [10] for fundamental elliptic theory: Caccioppoli, De Giorgi-Nash-Moser, definition
of elliptic measure, Green functions, etc. In particular, the reader may find in the same
source a construction of the Green function GX for L, at the pole X € Q. Again these
functions enjoy the usual properties of Green functions in NTA domains, and we will
recall these properties (and those of solutions of Lu = 0) when we need them.

Next we say a few words about the Green function G°° with pole at oo, which we
construct as a limit of functions GX. We will also use the opportunity to recall some
notation and estimates that will be used later.

First of all, we define a weight w on ) by

w(X) =1 in Case 1 and w(X) = dist(X, F)4™~" in Case 2. (2.8)

Then we let W = W(Q) denote the Hilbert space of functions u € Lj,.(2) whose
derivative (in the sense of distributions) lies in L?(Q, w(X)dX); thus

lulfy = [ 19000 Pu(x)ax 29)
Q
is finite. We also need local versions W,.(B) of W, which are defined in Section 8 of [§]
or Section 10 of [10], as follows. Given an open set H' C R™ and H := H' N, we let
W, (H) :={u € Li,.(HNQ,m): guc W for all p € C5°(H")}.

It is natural to call this space W,.(H), as opposed to W,.(H'), because it does not depend
on the part of H' that lives away from €. It does or does not carry information about
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the behavior of u near the boundary depending on whether H is properly contained in
the domain (2. Clearly, Vu € L?(B,w(X)dX) when u € W,.(B). The Green function G*
with pole at X € Q lies in W,.(B) for any ball B C R™ such that X ¢ 2B (see Lemma
10.2 in [8] or Lemma 14.60 in [10]).

We say that the function u is a weak solution to Lu = —div AVu = 0 in  when it
lies in all the local spaces W,.(B) and for every ¢ € C§° ()

/AVu -V =0. (2.10)
Q

Here, A can be as in (2.4)—(2.5) in Case 1 or (2.6)—(2.7) in Case 2.

We are now ready to describe how we construct the Green function G*° with pole at
oo. Fix any ball By = B(xzg,70) centered on E, choose a corkscrew point A for By (see
(2.2)), take any sequence {Xy} in Q\ By such that limy_, 4 | X%| = 400, and consider
the functions

GXr(Y
V) = Gy (2.11)
Notice that gy, is nonnegative, L-harmonic on QN B(xg, | X —x0|/2), and g, € W,.(B) for
every ball B with constants that are uniform in k, as soon as k is so large that X ¢ 2B.
It also has a vanishing trace at the boundary, by definition of any GX.

By Harnack’s principle and the normalization gx(Ag) = 1, we see that for each com-

pact set K C €, there is a constant C'x > 1 such that

Ol <gu(Y) < Cg for Y € K, (2.12)

as soon as k is large enough (depending on K), so that X no longer lies in the union of
a (finite) collection of Harnack chains that connect Ag to any point of K.

Similar estimates hold near F, i.e., on 2N B, where B is any ball centered on xg € E.
Indeed, the functions gi are Holder continuous at the boundary. With this in mind, let
us extend g by zero to the rest of R”. We use Lemma 11.50 in [8] or Lemma 15.14 in
[10], which says that g (Y) < Cgi(AP) for Y € B (and k large enough), where A% is a
corkscrew point for B. But gi(AP) is controlled by (2.12), so we get that for each large
ball B centered at z(, there is a constant Cp such that for k large,

g:(Y) <Cp for Y € B. (2.13)

Then we can use the Caccioppoli estimate at the boundary (Lemma 8.47 in [8] or Lemma
11.15 in [10]), and get that for B as above (and k large)

[ vaPueoix <cm) [ laPuoax <o), (2.14)

BN CBNQ
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Here, as usual the fact that g, vanishes on E and g € W,.(B) for any given B (and for k
large) was used to check the assumptions. Finally, we can also use the Holder continuity
at the boundary (Lemma 8.106 in [8] or Theorem 1.6 in [10]) to show that

g is Holder continuous on B, with exponent § and constant C'(B). (2.15)

Of course the important point for the moment is that none of the constants 3, Cpg, and
C(B) depends on k, even though they are only valid for k large, depending on B.

Return to the g. Because of (2.15) it is easy to extract a subsequence so that {gx}
converges uniformly on compact subsets of R™ to a limit G*°. In fact, using again the
Caccioppoli estimate at the boundary and passing to a subsequence, we also get that
for each ball B, Vg, converges weakly in L?(Q N B,w) to VG, and then that G
is a (weak) solution of L (we will showcase the details in similar, but more delicate,
arguments soon). Since g, is Holder continuous and vanishing on the boundary, G also
vanishes at the boundary. And finally G* € W,.(B) for every B (using the definition of
W, weak convergence, and the estimates above).

Now, G*° is also unique, modulo a multiplicative constant. That is, if G is positive on
Q, lies in all the spaces W,.(B), it is L-harmonic on 2, and has a vanishing trace on F
(the latter is well defined when G € W,.(B)), then G = ¢G> for some ¢ > 0. This follows
from the comparison principle (Theorem 11.146 in [8] or Theorem 1.16 in [10]), plus
some algebraic manipulations on the oscillation of G/G* (similar to what one does for
the Holder continuity at the boundary) that the reader may find in [6], Corollary 6.4 and
Lemma 6.5. This procedure coherently and uniquely defines G (modulo a multiplicative
constant ), which we will refer to as the Green function with the pole at infinity.

We are ready for our main result about limits. We assume that we have a sequence
of open sets Q, bounded by Ahlfors regular sets Ey, and operators Ly, that all satisfy
the assumptions of this paper (for either Case 1 or Case 2), with uniform estimates.

We assume (for convenience) that all the Ej, contain the origin, and that {E}} con-
verges to a closed set Fo, and {2} converges to an open set {2, in the sense that with
the notation of (1.12),

lim dy,(FEx,Er) =0 and lim dy,(Qoo, Q) =0 (2.16)
k—+o0 k—+o00

for every choice of z € R™ and r > 0 (we may also restrict to z € E; this would be

equivalent).

We shall check soon that F,, is the boundary of ., Fo is Ahlfors regular of di-
mension d, and €, satisfies our one-sided NTA condition (2.1), but let us continue our
description.

We also need the operators Ly = — div AV to converge to a limit Lo, = —div A,V
(and similarly for the operators of Case 2), and we require that

klirf [|[Ar — Ascl|1(p) = 0 for every ball B such that 2B C Q. (2.17)
—+o0
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Our proof would be a little simpler under the stronger local L> convergence of coeffi-
cients, namely when

lim |[Ax — Asol|r~(s) =0 for every ball B such that 2B C Q, (2.18)
k—+4o00

which would probably be more reasonable if we wanted better quantitative results, but
the fact that we are only interested in weak results allows us to use the weaker condition
(2.17).

Finally we choose a corkscrew point Ag (relative to Q) for some ball By centered on
E., which will be used to normalize the Green functions.

The next Theorem shows that with the assumptions above, the functions G7° asso-
ciated to the € and the L, and normalized by G3°(Ap) = 1 converge to the Green
functions G associated to 2o, and Lo, and normalized by G2 (A4g) = 1.

Theorem 2.19. Let the Qi be domains in R™ with unbounded d-dimensional Ahlfors regu-
lar boundaries Ey, = 0Q, d € (0,n), corresponding to AR measures uy, and, in addition,
satisfying the interior Harnack chain and corkscrew conditions (2.1) when d > n — 1,
with all AR and 1-sided NTA constants uniform in k. Assume that the origin belongs to
all the Ey, that the domains E) converge to a closed set E,, and that the Qi converge
to an open set Qoo in the sense of (1.2). Then E is the boundary of Qoo, Ex is Ahlfors
regular of dimension d, and Q is uniform, i.e., satisfies (2.1). If py, is an AR measure
on By (with uniform bounds) and p is any weak-* limit of the py, then p is an AR
measure on F,.
Assume furthermore that either

Ly =—divAyV, L, =—-divA,V, n-2<d<n, (2.20)
or
Ly =—divAp DLV, Ly = —divADEN "V, 0<d<n (2.21)

(with pi — p as above), in both cases subject to (2.17).

Then the functions G° associated to the Qy and the Li, and normalized by G3°(Ao) =
1 converge, uniformly on every compact subset of R™, and in Wllo’f(Qoo), to the Green
functions G associated to Qoo and Lo, and normalized by G2 (Ap) = 1.

Here and everywhere, we say that the sequence of Radon measures py on R™ weak-*
converges to some Radon measure u, and write pup — p, if

/fduk—>/fd,u for any f € C.(R").

Notice that there always exist weak-* limits u, as in the statement.
As usual, (2.20) and (2.21) will be referred to as Case 1 and Case 2.
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Remark 2.22. Formally speaking, the Green functions are only defined in their corre-
sponding domains, but using their Holder continuity inside and at the boundary, we
silently extend them by zero to the entire R™, and hence we can justifiably talk about
the uniform convergence on compacta in R™.

Remark 2.23. The same statement also holds if we replace the Green functions G¢° with
Green functions G, = ckGi/k computed at poles Y}, and normalized so that Gi(Ag) = 1,
if we also assume that limy_, 1o | Y| = +00. We will track this case too along the proof.

Proof of Theorem 2.19. Let us first check that (Qs, Fo) satisfies our desired geometric
properties. We shall only highlight some elements of the proof, as the reader can consult
[19] for the details in the case of d = n — 1 which transfer virtually verbatim to our more
general situation.

The fact that Qs = Eo will be easy. Maybe we should notice first that (2.16) also
implies that d, (R™ \ Qx, R™ \ Q) also tends to 0 for all pairs (z,7): for instance, if
z € R™\ Q, it cannot be far from R™ \ Q, because otherwise it lies in the middle of
Qoo, hence also of Q). Next, if z € 9Q, then for each € > 0 the ball B(z,e) meets
both Qo and R™ \ 4. Then for k large, B(z,¢) also meets 2 and R™ \ Qy, hence also
Ey. Now {E} converges to Eo, and E is closed; it follows that z € E. Finally, let
z € E be given; for each £ > 0 we can find points z, € Fy N B(z,¢) for k large, hence
also points 2, € QN B(z,¢) and yi, € B(z,¢)\ Q, and by the extension of (2.16), points
7, € Qoo N B(2,2¢) and ), € B(z,2¢) \ Q. S0 2 € 000 and 9N = Ene.

From here, we can show that E., supports a measure which is a weak limit of
and which is Ahlfors regular too. Moreover, (2.1) also holds for Q.. For instance, if
X, Y € Q, are given, then for k large we can find X, Yy € Q, as close as we want to
X and Y, and a Harnack chain for X and Yj in Qj will also work, with very minor
modifications, for X and Y in Q. Again, the reader can consult [19] for more details.
For us, the main point of this verification was that we can apply the results of [22,8,10]
to Lo and 2. In particular, we can talk about G and use the above uniqueness result
for GZ.

We are ready for the PDE part of the argument. Set G, = G}° for all k to save
notation. We can run the same limiting argument as the one which allowed us to define
G on a given domain. Indeed, (2.13) still holds in any ball B C R™ (not necessarily
contained in ) with a constant uniform in % as long as Gy, is extended by zero to the
complement of Q. (If we take a limit of Gy, = ckGZ" as in Remark 2.23 instead, we also
have to make sure that & is large enough for Y} to stay away from B, but the constants
are still uniform in k). Furthermore, the analogue of (2.14) holds:

/ VG 2w, (X)dX < C(B) / |G |?wi(X)dX < C(B), (2.24)

BNQyg CBNQy



18 G. David, S. Mayboroda / Advances in Mathematics 410 (2022) 108717

with uniform constants, which again yields (2.15). Here, wy, is as in (2.8). Thus, much as
before, we can extract a subsequence which converges uniformly on compacta in R™ to

some G, continuous and equal to zero on the complement of (2, and such that VGy

2

converges weakly to VG in L]

(Qs0) (notice that the weights are irrelevant when we
stay away from the boundary). Eventually, we will prove the strong convergence of Gj,
in Wllof (Qs0), but for now let us continue.

The function G, is in W,.(B) for any ball B C R™. Indeed, it is sufficient to consider
B centered on Eo,. For a single Gy, (2.24) holds with uniform in k constants. Then we
can look at the contribution to (2.24) of any fixed compact subset H of Q. N B, let k

tend to +o00 in (2.24), and get that

/|VGOO|2wOO(X)dX < O(B), (2.25)

for instance by Fatou, or the weak convergence in Wllof (o). Then we use the fact that
C(B) does not depend on H, take a supremum, and get that

/ |VGoo P oo (X)dX < C(B). (2.26)

QoNB

This (together with the local Holder continuity of G and the local integrability of the
weight we,) is actually stronger than the fact that G € W,.(B) for every ball, which
requires that ¢G lies in the Hilbert space W of (2.9) for every ¢ € C§° (see the beginning
of Section 8 in [8]).

We also need to show that G is a weak solution of L,,G = 0. In Case 1, we write
Jo AscVGo - Vi as

/AOO(VGOO —VGy) Ve + /(AOO — AYVGE - Vo + /AkVGk Ve o (2.27)

for every ¢ € C§°(Qs) and any k such that € contains the support of . The first

2

integral converges to zero by the weak convergence of VGy, in L7 (Q+), the second one

loc

is bounded by sup |V fsupwJ |Aso — Ak|| VG|, and hence, it converges to zero by (2.17)

and (2.24), and the last one is zero because Gy is a solution to Ly. Hence, G, is a
solution to L., as desired.

A similar argument also handles Case 2. Indeed, we can write (2.27) with Aongj;}—"

in place of A and AkDg‘le_" in place of Ay. The weights are harmless since we are

away from the boundary, we only have to show that AooDit}k_" converge to AkDg:'Ll_"

to handle the analogue of the second term on the right-hand side of (2.27). However,
Dgﬁ;" converge to Dgl:?}’” uniformly on any compact set in 1. Indeed, on any set
away from the boundary it is sufficient to show that R, ,, converge to R, , (see (1.4))

which follows from the weak-* convergence of u; to p and the Ahlfors regularity of the
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measures p and p (the latter allowing us to restrict attention to a compactly supported

[=47%)

approximation of | X —y . Hence, writing

A DIV — 4, DIT " = (Ase — Ap) DAL 4+ A (D" — DETI™), (2.28)

&k Ak Gk

we see that (2.17) holds with Aongj}_" in place of A and AkDij;}k_" in place of Ay.

So G is a solution for L, that vanishes on Eo,, and it lies in the correct spaces W,.(B).
Since Q, and A, satisfy the same assumptions as the ; and Ay, we can apply the
result of uniqueness for the Green function, and we find out that G is a Green function
for L. The normalization G(Ay) is correct too, since Gi(Ap) = 1 by construction.

We are almost finished now. We started from a sequence {Gy} = {G¢°}, then extracted
a subsequence so that, in particular, G3° converges to some limit G, and then proved
that G is the desired Green function. The same thing would happen if we started from
any other subsequence, and we would always get the same limit. Since we can always
extract convergent subsequences, this means that the limit existed already for our initial
sequence, and is the desired Green function.

It remains only to show that G}, converges (strongly) in Wllof(Qoo)
Lemma 2.29. Keep the notations and assumptions of Theorem 2.19. Then for each com-
pact subset K of Qo

lim /|VGk — VG|? =0. (2.30)
k—+o00
K

We do not need to worry about putting our weight w(X) in the integral or not, because
it is bounded from above and below on any compact subset of €. Similarly, as long as
we stay in a compact subset K of Q,, our degenerate elliptic operators coincide on K
with multiples of a standard elliptic operator, with bounds on the ellipticity that depend
only on K and coefficients that in any case satisfy (2.17) — see the discussion near (2.28).
That is, Case 1 and Case 2 are identical as far as the estimates strictly inside the domain
are concerned, and we will treat them as such.

Proof of Lemma 2.29. Of course it is enough to prove (2.30) when K is the closure of a
ball B = B(z,r) such that 4B C Q. The functions G} and G are bounded in W12(3B)
uniformly in k (for k sufficiently large) by a constant which we will denote by C(B) (see,
in particular, (2.24) and (2.26).

Let us show that {G}} is a Cauchy sequence in W12 (B). For this we fix k and [ large,
and we want to estimate V(G — G;). We will introduce an intermediate function Uy,
which coincides with G; on the sphere S, = 0B, = dB(x, p) for some p € (r,2r) but
satisfies the same equation LUy = 0 as Gj, in B,,.

First we claim that for almost every radius p € (r,2r), the restriction gx of Gy to
S, = 0B(x, p) lies in the space W'2(S,,do) of functions of L?(S,,dos), which have a
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distribution gradient Vrgi in L2(Sp7da), and in addition, that the gradient Vg of
gk is given, almost everywhere on S,, by the restriction of VG to S,. Here o denotes
the surface measure on o, and before we start we know that the restriction of VGy is
defined o-almost-everywhere on almost every S, by Fubini. There is no real doubt as to
what we mean by restriction, because Gy is Holder continuous on 2B, but in general we
could use Fubini to say that gj is defined almost-everywhere on almost every sphere S,
by Fubini.

The claim is not hard. We can use spherical coordinates to reduce matters to the case
of a function in W2(R) for some parallelepiped R, and use the classical fact that then
the restriction to almost every hyperplane P parallel to the axes lies in WY2(P N R),
with partial derivatives given by the restriction to P of the partial derivatives of the
function. So we skip the details, but refer to the proof of Corollary 14.28 in [5] for a
similar computation. We choose p € (r,2r) so that in addition to the property above
and its analogue for the restriction g; of G; to S,, we have that

/ (Vrgel? + [Vra?)do < / (IVGLP? + VG ?)do

S S
! ’ (2.31)

<crt / IVGi|? + VG, |* < C(B).
2B

See the beginning of the proof of the Lemma where we discuss the uniform bound C(B)
and recall that while we do not care how C(B) depends on B, it does not depend on k
or .

Coing further, denote by W, = W'2(B,) the space of functions F € L?(B,), with
VF € L?*(B,), equipped with the homogeneous norm ||F||, = (pr |VF|2)1/2 for F €
W,. We also use the (homogeneous) space H, = H'/?(S,) of functions f € L?(S,,do)
which have half a derivative in L?(S,), once again, equipped with the corresponding
homogeneous norm. We need the following classical facts about H,,. First, every F' € W,
has a trace T'r(F) in H,, with [|T'r(F)||z, < C||F||,. In the other direction, every f € H,
has an extension F' € W,, with ||F||, < C||f||g, and Tr(F) = f. Using these results
and the Lax-Milgram’s theorem, we know that for each elliptic operator L = — div AV,
each f € H, has a unique L-harmonic extension F' to B,, i.e., a function F' € W, such
that LF = 0 (weakly as in (2.10)) and Tr(F) = f. In addition, ||F||, < C||f||a, (where
now C depends also on 7 and the ellipticity constants for A).

Interpolating between L?(S,) and the space of functions with tangential derivatives
in L%(S,), we deduce that

113, < Cllfllzzs) IV fllzaes,)- (2.32)

This is a rather simple result of interpolation between Sobolev spaces, but since we are
on a ball, we can provide an even more direct argument. Because we are working with a
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ball, we can also give a description of H, and its norm in terms of spherical harmonics. If
=X ; f; is the decomposition of f into spherical harmonics, where f; is the part that
comes from harmonics of degree j, (and we do not need to further decompose f; into
polynomials), we know that ||f|32(s, = 52, /513, while [V fl[2s(s,, = OS2, 7215511,
and the H,-norm of f is given by ||fHH > JlIf;113. Again, we do not need to know
how the constants depend on p, as long as they are uniform in p € (r,2r). Thus by
Cauchy-Schwarz, (2.32) holds.

Let us apply this to the operator Lj and the restriction g; of G to S,; we obtain a
function Uy € W), such that

LkUkl =0on lgp7 T’I"(Ukl) = 4gi, (233)
and
Ukilly < Cllgillm, < ClIVGil|L2s,) < C(B) (2.34)

because (2.32) holds, G; is continuous and bounded on 2B, hence ||gi|[z2(s,) < C, and
then by definition of p and (2.31). We said that g; is the restriction of G; to S,, and this
makes sense because Gy, is continuous, but it is also the trace of G, in the sense of the
operator above (recall that G; € W), and the same is true for gi.

Then Uy, — Gy is Li-harmonic, lies in the space W1’2(B), and the trace of Uy is
I =g — g Hence,

Uk = Gillp < ClIfllm, < ClIFIlEts) V7 (9 — 9l s,
1/
< CHGl Gk”Loo 2B) HVT(gl _gk)HL2 5,) > CHGl GkHLoo(zB) (2'35)

as in (2.34), (2.32). We used the fact that G; — G is continuous on 2B, so || f||r2(s,) <
C||Gi — Gil|L=(28), and then (2.31). This will be sufficient to ensure that ||Ux — G|,
tends to zero since ||G; — G|~ (2p) tends to 0: G} tends to G uniformly on compact
subsets of Qo

We now take care of ||G; — Uy|,, with an argument that comes from the calculus of
variations, but which we had to modify because maybe the L, are not symmetric and
the solutions of LyU; = 0 do not minimize an energy. We first observe that the trace
of Gy — Uy on S, vanishes, by definition of U and because the trace of G, is g;. Now we
claim that

/<A1VG1, V(Gl - Ukl)> =0. (2.36)
B,

If G; — Uy, were a test function with compact support in B,, this would just be the
definition that G; is a weak solution of L;, as in (2.10). The fact that (2.36) also holds
now follows from the fact that the test functions with compact support in B, are dense
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in the subspace W, o C W, of functions with a vanishing trace. The same reasoning also
yields that

/ (ARV U, V(G — Uw)) = 0, (2.37)

B,

because LUy = 0 weakly in B,. Now

/|V(Gl _ Ul < C/(AkV(Gl U V(G- Un))

B, B,

_ C/(AkVGl, V(G = U)) = C/((Ak — AVGLV(GI—Uw)) (2.38)

because Ay, is elliptic, and then by (2.37) and (2.36). We apply Cauchy-Schwarz, simplify,
and get that

1/2
HGl—UlepSC{/|Ak—Al|2|VGl|2} / . (2.39)
B/’

If we had (2.18), we could conclude that the expression above tends to zero simply
pulling out the L*(B) norm of Ay — A; and using that G; is uniformly bounded in
W2(B).

Under the weaker assumption (2.17), we use the reverse LP inequality for the gradients

of solutions. Indeed, there exists p > 2, that depends on n and the ellipticity constants
for the L;, such that

/|v0l|p /|VGl|2 < O(B). (2.40)

In particular, the power p and a constant C(B) do not depend on [ (see, e.g., [23],
Lemma 1.1.12). This, together with (2.17), shows that (2.39) tends to zero:

Gy — Ul < c/|Ak _APIVG?

SC{/Ak—Az|2q}1/q{/|VGl|p}l/2pSC{/A,C_Al|2q}1/q7 (2.41)
B i, 4

where ¢ is the dual exponent of p/2. The last expression above tends to 0 because Ay — A;
tends to 0 in L}, and is bounded. The rest of the proof stays as before, so Lemma 2.29
follows. This finishes the proof of Theorem 2.19. O



G. David, S. Mayboroda / Advances in Mathematics 410 (2022) 108717 23

3. Prevalent approximation of G when F is uniformly rectifiable

The assumptions for the next theorem concern the classical situation, i.e., Case 1
above. We are given an unbounded domain 2 C R”", assume that F = 9Q is Ahlfors
regular of dimension n — 1 (see the definition (1.1)) and uniformly rectifiable (Defini-
tion 1.13), and that €2 has interior corkscrew points and Harnack chains, as in (2.1). We
assume, furthermore, that the operator is close to a constant coefficient one, in the sense
of (1.9).

Theorem 3.1. Let Q2 C R"™ be an unbounded domain with an n—1 dimensional uniformly
rectifiable boundary E = 0X), and satisfying the interior corkscrew and Harnack chain
conditions (2.1). Assume that L is an elliptic divergence form operator that satisfies (1.9),
and denote by G = G the Green function for L, with pole at co. Then G is prevalently
close to the distance to a plane (as in Definition 1.14) and for every choice of B > 0 and
any AR measure p on E, G is prevalently close to Dg,,.

In this statement G is only determined modulo a multiplicative constant, but the
conditions (1.15) and (1.16) do not see this constant.

Remark 3.2. Something like (1.9) is needed for this statement. Otherwise consider the
falsely 2-dimensional example where Q = {(z,y) € R?; y > 0} C R? and A(z,y) = a(y)]
for (z,y) € Q, where I denotes the identity matrix and for instance a(y) = 1 when
y € [22%,22k+1) and a(y) = 2 when y € [22k*1 22k+2) L € Z. The Green function for
L is easy to compute: take G(x,y) = Cg(y), where g(0) = 0 and ¢'(y) = a(y)~!; this is
clearly a solution of LG = 0, and the uniqueness of G does the rest. We can see that
G is not prevalently close to a distance function because g spends its time oscillating
between two affine functions. Yet notice that for this example the harmonic measure w®
is (proportional to) the Lebesgue measure on E.

Moreover, there are more complicated examples [4,24,25] which show that without
the Dahlberg-Kenig-Pipher condition above, the absolute continuity of the harmonic
measure with respect to the Hausdorff measure could fail even in the half-space.

For all these reasons our conditions on the coefficients are morally optimal.

Proof of Theorem 3.1. Part I: comparison to dist(X, P). Let us define some good sets.
Let M > 1 and ¢ > 0 be given, and consider the set G(e, M) of all pairs (x,r) €
E % (0, +00) such that all the following properties are satisfied. First, there is a hyperplane
P = P(z,r) through z, such that

dw72MT(E7 P) S € (33)
(where d , is as in (1.12)), and also, for one of the two half spaces H bounded by P,

dy rrr (2, H) < 2. (3.4)
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We claim that each G(e, M) is a Carleson-prevalent set, with a constant that may depend
(wildly) on e, M, and the various constants implicit in our geometric assumptions.

First consider the pairs (z,7) such that we cannot find a plane P as in (3.3). If
(x,r) is such a pair, it is easy to see that (x,2Mr) ¢ G,(2Me), where G, is the good
set of Definition 1.13. This set of bad pairs satisfies a Carleson packing condition, by
Definition 1.13 and because {(z,7); (z, Ar) € B} satisfies a Carleson packing condition
when B does.

Now we claim that if P satisfies (3.3), and if € is small enough and M is large enough
(which we may assume) then (3.4) automatically holds for one of the two half spaces
bounded by P. That is, the case when Q N B(xz, Mr) is nearly empty, or on the con-
trary very close to the full B(z,r), is excluded by our NTA assumptions. In fact, since
we assume that € is a 1-sided NTA domain with a uniformly rectifiable boundary, it
possesses exterior corkscrew points as well. Then, on one hand, we can find a corkscrew
point Z for B(z,r), this point lies far from F, hence far from P too, then we select the
half space H bounded by P that contains Z, and already (3.3) says that every point
Y € H N B(z,Mr) such that dist(Y,P) > eMr lies in 2, because the line segment
from Y to Z does not meet E. Similarly, all the points Y € B(z, Mr) \ H such that
dist(Y, P) > eMr lie in the same component of R™ \ E as Z’, the image of Z by the
reflection across P. We just need to see that this component is not €2, or in other words
that Z' ¢ Q. But if Z' € Q, there is a Harnack chain from Z to Z’, and by definition
of a Harnack chain it stays inside of B(xz, Mr) if M is large enough. One of the balls
B; of the chain meets PN B(x, M), and this is impossible if ¢ is small enough because
2B; C Q and diam B; > C~'min(dist(Z, E), dist(Z', E)) > C~'r. So (3.4) comes for
free.

Lemma 3.5. For any e > 0 and M > 0, we can finde; >0, M1 > 1, k>0, and K > 1,
depending on n, €, M, the AR constant for E, and the one sided NTA constants from
(2.1), such that if (x,r) € G(e1, M1)NGee(T, K), then (x,r) lies in the good set Ggale, M)
of Definition 1.1/.

Proof of Lemma 3.5. Let the various constants and e, M, be given, and suppose the
lemma fails for these constants. Then there exists an example (i, Ej, Li) where all
the assumptions are satisfied, and for some pair (zx, ) € Ex X (0,+00), we have that
(1,7%) € Gler, Mi) N Gee(T, Ki), say, with ey = 7, = 27 and Kj = M), = 2%, and yet
(k) & Gaale, M).

As the reader guessed, we want to take a limit and derive a contradiction. By trans-
lation, dilation, and rotation invariance of the problem, we may assume that x; = 0,
r, = 1, and we can take a fixed hyperplane P through the origin and a fixed half space
H bounded by P that work in (3.3) and (3.4) for all k. By (3.3) and (3.4), E} tends to P
and Qy tends to H, as in (2.16). Pick a corkscrew point X, for instance the point of H
that lies at distance 1 from both 0 and P. Then let G denote the Green function for 2,
with the pole at co, and normalized by Gi(Xp) = 1. We want to apply Theorem 2.19,
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so we check the last hypothesis (2.17). The assumption that (xg,7%) € Gee(Tr, Ki) gives
us a constant matrix Ay o and, modulo extracting a subsequence, we may assume that
Aj 0 tends to a limit Ag . Now (2.17) holds, with Ao, = Ag o, because if B is a ball such
that 2B C Qu, then for k large B C Wk, (0,1) = Wk, (zk, rr), and

/\Ak — As| < Bl Ao — Aol + / A — Aol < |Bll Ao — Aol + 7.
B B

which tends to 0.

So Theorem 2.19 says that {G} } converges, uniformly on compact subsets of R™, to the
Green function G for Lo, = —div Ag oV on H = o, with a pole at co and normalized
at Xo. Now G(X) = dist(X, P) is a solution to LooG = 0, lies in all the correct W, (B),
vanishes along P, and has the same normalization, so Goo(X) = dist(X, P) on Qo = H.
Thus the Gy, converge uniformly, on the compact subsets of R", to the distance function.
Therefore, for k large,

|dist(X, P) — Gx(X)| < e for X € QN B(0, M), (3.6)

which contradicts the fact that (1.15) fails for Gj and the unit ball. This completes the
proof of Lemma 3.5. O

The first part of Theorem 3.1, with the distance function to a plane, follows at once, by
a combination of definitions and because the union G(e1, M1)NG..(7, K) of two prevalent
sets is prevalent.

Proof of Theorem 3.1. Part II: comparison to Dg ,(X). We now intend to show that G
is prevalently close to any given Dg ,. To this end, we will use the result above, and
compare Dy, to dist(X, P). That is, we will show that prevalently, the restriction of
Dg,, to 2 is close to some dist(X, P), and then we will deal with organization issues,
for instance making sure that we use the same plane in the two descriptions.

The estimates that follow are similar to the proofs that were done in [6], but they are
a little simpler here because we can content ourselves with weak estimates. We intend
to use a result of X. Tolsa [27] on the good approximation of p by flat measures, and
for this we need some notation. These results will be used later in full generality, and
for the time being we assume that F is an Ahlfors regular set E dimension d, with any
d € (0,n), and p is any AR measure of dimension d whose support is E.

Denote by F; the set of flat measures of dimension d in R™, i.e., measures ¢ = cHIdP,
where ¢ > 0 and P is an affine d-plane. For € R™ and r > 0, denote by A(x,r) the set
of Lipschitz functions ¢ : R™ — R such that ¢(z) = 0 on R™ \ B(z,r) and the Lipschitz
norm of ¢ is less than or equal to 1. Then define a sort of Wasserstein distance between

two measures p and o by
Dy p(p,0) =r~*" sup /sodu*/soda

peA(z,r)

, (3.7)
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and finally set

= inf D . 3.8
afa,) = inf Dy.(0) (38)

The normalization is such that when p is an AR measure, a(z,r) < C systematically,

but when F is uniformly rectifiable and p is any AR measure on F, a(z, ) is often much

dp(x)dr
T

smaller than this. In fact, it is proved in [27] that o?(z,r) is a Carleson measure

on E x (0,400). Here we shall only use the corresponding weak estimate, which follows
by Chebyshev’s inequality, that says that for each choice of n > 0 and N > 1,
Ga(n,N) = {(z,r) € E x (0,+00); a(z, Nr) < n} is a Carleson-prevalent set. (3.9)

Lemma 3.10. Let E and pu be Ahlfors regular of dimension d € (0,n) in R™. Let (z,7) €
Go(n,N) C E x (0,400), and let 0 = chP be a flat measure such that

Dy nr(p,0) < 2n. (3.11)

If N is large enough (depending on n, d, and the AR constant for p) and 7 is small
enough (depending on the aforementioned parameters and also on N ), then

dist(z, P) <mr for ze€ ENB(x,Nr/3), (3.12)
and
dist(z, E) <mr for z€ PN B(x,Nr/3), (3.13)

where we set 1, = C1 Ny @+ with a constant Cy that depends on the AR constant for
i, d and n. Furthermore, for the distance function Dg,,

1D (X) — (cag) /P dist(X, P)| < CyNp/ @428 10y dist(X, P)' P N—Fr=F (3.14)

for z € B(z, Nr/5), where Cy depends on n, d, the AR constant for u, and 3, and ag is
a geometric constant that depends on 3.

Proof. The definition of D, n,(u,0) says that
‘ / o(dp — da)’ < (Nr)D, (1, 0) < 2pN L+ (3.15)

for every ¢ € A(z, Nr). We intend to use this for various functions ¢ to get relevant
information on p and o. Let us first check that

P meets B(z, Nr/4) and C~' < ¢ < C. (3.16)
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Here and throughout the proof, C' is a constant which depends on d,n, and the AR con-
stants of p only, and whose value may change from line to line. Take a first bump function
11 such that 0 < ¢ < 1 everywhere, ¥1(2) = 0 on the complement of B(x, Nr/4),
and 1(z) = 1 on B(z, Nr/8). We can manage to do this with |[V¢| < (Nr/8)~1, so
(Nr/8)i1A(x, Nr) and (3.15) says that

‘/1/}1 (dp — do)‘ < 16nN“r. (3.17)

Since ¢ (z) = 1 on B(x, Nr/8) and p(B(x, Nv/8) > C~1Nrd we see that (if n is small
enough) o(B(z,Nr/4)) > (20)" N9 (because v;(z) = 0 on R" \ B(z, Nr/4)), and
hence P meets B(z, Nr/4) and ¢ > C~1.

Similarly, if now 1 is a similar function, but with 0 <1 < 1 everywhere, 1(z) = 0 on
R™\ B(z,N7), ¢(z) =1 on B(x, Nr/2), and |V¢| < (Nr/2)~1, we get that

‘ / Y (dp — da)‘ < 4nNrd, (3.18)
B(z,Nr)

But u(B(x, Nr)) < CNerd so fB(I’NT) do < 20N% <. Moreover, since fB(m’NT) Ydo >
o(B(z,Nr/2)) = ¢H¥(P N B(z,Nr/2)) and P meets the ball B(x, Nr/4), we get that
¢ < C too; (3.16) follows.

Next we want to control the distance to P. We keep the same function v, but try the
product ¢(z) = ¥(z) dist(z, P). We still have that ¢ = 0 on R™ \ B(z, Nr), as required
in the definition of A(z, Nr), but now

IVo(2)| < (2) + |V(z)| dist(z, P) < 1+ (Nr/2) tdist(z,P) < 5 (3.19)

because P meets B(z, Nr/4). So ¢/5 € A(z, Nr), and (3.15) yields
] / W (2) dist(z, P) (d(z) — da(z))‘ < 10pNdH1pd+L, (3.20)

Now [ (z)dist(z, P)do = 0 because ¢ is supported on P, and since ¢(z) = 1 on
B(xz,Nr/2), we get that

dist(z, P)du(z) < 10npN4+1pdtt, (3.21)

B(z,Nr/2)

We still need to transform this into an L* bound. So we assume that (3.12) fails,
so that dist(z, P) > mr for some z € EN B(x,Nr/3). Then dist(z, P) > mr/2 on
B; = B(z,mr/2), and since n; < Nr/6 if 7 is small enough, B; C B(z,Nr/2) and
(3.21) yields
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10N > (g /2)u(By) > C~H(pr) T = C71(C Nt/ (dFDyd+1pddl (3 99)

by Ahlfors regularity and the definition of 7;. We now choose C so large that (3.22) is
impossible, and this contradiction completes the proof of (3.12).

For (3.13) we proceed exactly the same way, but with ¢ (z) dist(z, E'), which of course
vanishes on the support of u. Maybe we need to make C; larger because we now use the
Ahlfors regularity of o, but this is all right.

Now we estimate Dg ,(X) — (cag)~'/# dist(X, P). Recall that Dg, = Dg(X) =
Rs(X)~V/8, with

Ry(X) = / X — |~ Pdp(y), (3.23)

so we take care of Ry first. Let R(X) = [, |X —y|=?Pdo(y) denote the analogue of
Rs(X), but for the measure o. A direct computation shows that

R(X) = cag dist(X, P) ™", (3.24)

just because ¢ = c?-[“’lp. Let 1 be a smooth cut-off function such that 0 < ¢ < 1
everywhere, ¢ = 0 outside of B(xz, Nr/4), %) = 1 on B(x, Nr/8), |V| < 16(Nr)~! and
|V29| < C(N7r)~? (to be used later). We first study the main part of Rg(X) — R(X),

namely

AX) = / X — 4P () [dpu(y) — do(y)] (3.25)

[here and for the rest of the proof of the lemma, A no longer denotes a coefficient
matrix|. Also let 72 > n; be small, to be chosen later, and then introduce a smooth cut-
off function & such that 0 < ¢ < 1 on R™, {(X) = 1 when dist(X, P) < nor, £(X) =0
when dist(X, P) > 2nor, |VE| < 2(ner) ™1, and |[V2E| < C(n2r) 2. Notice that £(y) = 1
when y € B(z, Nr/4) lies in the support of o or u, by (3.12), so

ACO = [ 1 =y o) dntw) - do(w) (3.26)
We are going to restrict our attention to the case when

X € H={X € B(z,Nr/5); dist(X, P) > 3nar}, (3.27)
because in this region the distance from X to the support of £ is at least n9r. Set

ox(y) = |X —y|~ " P(y)é(y) for X € H. Notice that ¢x is supported on B(x, N7)
because of ¥, and
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Vox ()| < CIX —y| P+ Cnar) X —y|~ P +16(Nr) X —y| -7

< Clner) X =y < Clnpr) =771
(3.28)
because |X — y| > ngr. Normally we should cut the integral into annuli and get a better
result, but let us not bother. We apply (3.15) to a multiple of o x and get that

JA(X)| = | /@x [dp = dol| < 2n(NT)"[Veox | (3.29)

< Cn(Nr)  (nr) =P = CgN*F Ly

This will be good enough (because we can choose 7 last). For the rest of the integral, set
B(X) = Rg(X) — R(X) — A(X), and notice that

BOOI=| [ 1X = o721 = 00)) lduty)  doy)

3.30
< / X — g (1 = p()duly) + dol)] < Cr)E )

R7\B(z,Nr/8)

by the Ahlfors regularity of both measures, and a simple argument where one cuts the
domain into annuli of size 2! N7. We add this to (3.29) and get that

|Rs(X) = R(X)| < ClgN* 777 4 N0 P, (3.31)
Set D(X) = R(X)™Y# = (cag)~/# dist(X, P) by (3.24), and notice that
Dg (X)) — D(X) = Rg(X)™'/# — R(X)/". (3.32)

Set t = Rg(X) and u = R(X) for a minute, and observe that since the derivative of
ts t7P s —%t_#, we get that [t~/ —u~1/8| < C|t—u|(t_# —|—u_17_36) (including
in the case when |u — t| is not small compared to u and t). Here C~!dist(X, P)™? <
R(X) < Cdist(X,P)~” by direct calculation, and the same thing holds for Rs(X),
because p is Ahlfors regular and dist(X, P) ~ dist(X,F) for X € H, so t and u are
both comparable to dist(X, P)™%, and (3.31) yields

|Dg . (X) — D(X)| < Cdist(X, P) PNty 4=~ 4 N=Fp=F, (3.33)

Let us choose 1y = CyNn'/(@+2+6)  This way our constraint that 7o > 1y is clearly
satisfied (we just decreased the power a little bit), and (3.33) simplifies to

1Dg . (X) — D(X)| < Cdist(X, P)!*+A[p'~ a5 N8 4 N—B)p=F

(3.34)
< Cdist(X, P)' TP N—Fr=h,



30 G. David, S. Mayboroda / Advances in Mathematics 410 (2022) 108717

This is good enough for (3.14), but we only get it for X € H. When = € B(r, Nr/5)\ H,
we know that dist(X, P) < 3ner by definition of H, and then dist(X,E) < 4nor by
(3.13) and because 17 > n1, hence Dg ,,(X) < Cdist(X, E) < Cnar (because Dg(X) is
always comparable to dist(X, E)). So

|Dg,u(X) = D(X)| < Cnor = CNpH/ (4240 (3.35)

for X € B(r,Nr/5)\ H. Now (3.14) follows from this and (3.34), and this completes our
proof of Lemma 3.10. O

Remark 3.36. The proof of (3.31) also shows that
VRs(X) — VR(X)| < C[pN¥ 1y 472 4 N=F-1)p=F-1 3.37
B 2

This is because when we compute VR or VRg, we replace the kernel | X — y| =48 with
a kernel of size |X — y|~?78~1; we can then follow the computations above with this
different power. That is, the estimates are the same as they would be with Dgy ;. Then
the proof of (3.34) yields

IVDs(X) — VD(X)| < Cdist(X, P)2HAN—F-1p=6=2, (3.38)
for X € B(x, Nr/5) such that dist(X, P) > Cnhr, with n} = Cy Nn/(@+3+58),

We may now return to the proof of prevalence for the good approximation of G by
Dg ,, that we need to complete our proof of Theorem 3.1. Let ¢ > 0, M > 1 and
(z,r) € E x (0,+00) be given. We want to show that prevalently, (z,r) lies in the good
set Gap, (€, M) of Definition 1.14. We may assume that (x,7) € Gga(e, M) because we
already proved that this happens prevalently, or rather that (1.15) holds with £/3. We
may also assume that (z,7) € G,(n, N), with values of n and N that will be chosen
soon, because (3.9) says that this happens prevalently. Then Lemma 3.10 says that
(3.12)-(3.14) hold, but maybe this happens with a different plane P;. So we will need to
see whether P is close enough to P.

First observe that in the proof of prevalence for Ggq(e/3, M), we can actually find P
such that in addition to (1.15), we also have that

der(E, P) < (10M) ™ 'e; (3.39)

see the proof of (3.3) and (3.4), using the definition of uniform rectifiability. Now (3.12)
and (3.13) also imply that

dorir (B, P1) < (N/3)M™'dy Ny y3(E, Pr) < M~ 'y
< CNM /@D < (10M)~2e  (3.40)



G. David, S. Mayboroda / Advances in Mathematics 410 (2022) 108717 31

because we can pick N > 3M, and choose 1 small enough, depending on M, N, and ¢.
So Py and P are close to each other, and

| dist(X, Pp)| — dist(X, P)| <er/3 (3.41)

for X € B(xz, M). Finally, (3.14) says that for X € B(x, Mr) C B(x, Nr/3),

|(cag) P Dg . (X) — dist(X, Py)| < CNpt/(d+245),
+ Cdist(X, P)TPN"Fr=8 < ONp/ @20 L O(Mr) HPNTFrP (3.42)

(recall that ¢ > C~! by (3.16)). We choose so N large, depending on M and 3, that
CM'"PN—F < ¢/6, and then 7 so small, depending on M and N, that CNn'/(¢+2+6) <
/6. Then |(cag)~*/#Dg ,(X) — dist(X, P1)| < er/3, and (1.16) follows from (3.41) and
(1.15). That is, (z,7) € Gap, (e, M). This completes the proof of Theorem 3.1. O

The next statement is the version of Theorem 3.1 in Case 2.

Theorem 3.43. Let 2 be a domain in R™, whose boundary E = 0N is an Ahlfors reqular
and uniformly rectifiable set of (integer) dimension d € (0,n). If d = n — 1, assume, in
addition, that E satisfies the interior corkscrew point and Harnack chain conditions, as
in (2.1). Let a > 0 be given, pick any AR measure pu on E (as in (1.1)), and define D,,
and L = —div ADEH1="V by (1.4), (1.3), and (2.7), with A satisfying (2.4), (2.5), and
(1.9) with Ag = I. Denote by G = G the Green function for L, with pole at oo. Then
G is prevalently close to the distance to a plane (as in Definition 1.14) and for every
B >0 and every AR measure v on E, G is prevalently close to Dg,,.

As was observed in the comments below Theorem 1.17, the special operators L of
(1.2) are built with specific distance functions D,, that respect the rotation invariance of
R™; this is the reason why we restrict to Ag = I here, while we authorized other constant
coefficient operators in Theorem 3.1.

See Section 2 for the definition and some information on G*°. Notice that the measure
v used to compute the distance Dg, does not need to be the same as the measure p
used to define D, and L because the two measures are used in different places and never
interact.

Proof. The proof will be nearly the same as for Theorem 3.1. We made sure, when we
treated Part II (about Dg = Dg,,) not to use the specific dimension of E, and even less
the precise form of the operator. In particular Lemma 3.10 is still valid in the present
situation, and this means that when (z,7) € G4(n, N) (for the measure v), and n and N
are chosen correctly, we can find a d-plane P such that

de vty (B, P) < (10M) " 2eq, (3.44)
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as in (3.39), and where 1 and M; are given in advance. We also require that (z,7) €
Ga(n, N) for the measure p and we claim that (if n and N are chosen correctly again),
then automatically

(z,7) € Ggale, M), (3.45)

i.e., we have a good approximation of G by dist(X, P) as required in (1.15), in fact with
the same P as in (3.44).

We prove this as we did for Lemma 3.5, by contradiction and compactness. If we cannot
get (3.45), there exist examples (Q, Ex, Vg, L) where all the general assumptions are
satisfied, yet for some pair (zg,ry) € Fr X (0,+00), we have that (3.44) holds with
M =2%and e =27 (zp,71) € Go(27(@H2E 2K ‘but (x1,7%) ¢ Gaale, M).

We may assume that x;, = 0, rp = 1, and that all the planes Py coming from (3.44)
are parallel to a same plane P through the origin (we did not require Py to contain xy).
Then by (3.44), {E}} converges to P. If d = n — 1, we can proceed as in the proof of
Theorem 3.1 to extract a subsequence (or turn the domains) so that Qj converges to
a fixed half space H bounded by P. If d < n — 2, a direct inspection shows that
converges to R™ \ P.

We required that (zg,71) € Go(27 2k 2F) (for 1) because this way, we get the
existence of a flat measure oy such that by (3.7)

‘/gpduk - /cpdok‘ < 2WHVED o (g, op) < 27F (3.46)

for every 1-Lipschitz function ¢ supported on B(0, 2¥). By construction (and in particular
the proof of (3.44)), we could make sure that oy is supported by Py, but even if we were
not that cautious, it follows from the proof of (3.12) and (3.13) that the support P}, of oy,
tends to P too. In other words, the limiting measure of v guaranteed by Theorem 2.19
is, in fact, flat.

Similarly to the argument of Theorem 2.19 in the paragraph right after (2.27), it
follows easily from (3.46) (and the uniform convergence of the integrals in (1.3) at o)
that the functions R, ., of (1.3) (but associated to vy) converge, uniformly on every
compact subset of R™\ P, to the function R, , associated to the limit of the o} (maybe
after extraction of a subsequence so that the coefficients ¢; converge).

Now look at the operators. We also required that (z,r) € G,(n, N) for the measure p,
and so we may assume, by extracting a subsequence again, that g converges to a limit
loo Which is a flat measure on the same plane P as before. Then by Theorem 2.19 the
(properly normalized) Green functions with the pole at infinity of Ly = — div DZLII:”V
and Lo, = —div Dgﬂ;"V converge uniformly on compact subsets of R™, to the Green
function with the pole at infinity for Lo, = — div Akng‘;};”V on the domain Q... Here
Lo 18 a flat measure of a plane P, Qy is H if d = n — 1 and R™ \ P otherwise, and
so the Green function with the pole at infinity for the limiting operator is cdist(X, P).
This contradicts our assumption that
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|Cka(Xk) - diSt(X, P)| 2 15 (347)

for some Xj € Q N B(0, M) and for any ci. It is here that we use A9 = I in the
approximation of A, in order to ensure that the solution of the limiting equation in the
exterior of R? is the distance to the boundary.

So the Green function G is prevalently close to the distance to a plane, and now the
same argument as for Theorem 3.1 shows that it is also prevalently close to any Dg .
Theorem 3.43 follows. O

4. Approximation of VG°° when FE is uniformly rectifiable

We want to extend the positive results of Section 3 to a more precise notion of ap-
proximation of G with distance functions, where we also control the first derivative of
G. This time, we will not control VG all the way to the boundary, so our notion of
approximation will use the Whitney regions associated to balls B(z,r) centered on F,
and defined as in (1.8) by

W (z,r) = {X € QN B(x, Mr); dist(X,E) > M~ 'r}. (4.1)

Also, we only control (a little bit more than) the L?

i norm of VG, so we will use that

norm. Except for this, the following definition is similar to Definition 1.14 above.

Definition 4.2. Let G*° denote the Green function for the operator L in the domain €2
bounded by an Ahlfors regular set E of dimension d < n. We say that VG is prevalently
close to the gradient of the distance to a plane when for each choice of ¢ > 0 and M > 1,
the set Gyaa(e, M) of pairs (z,7) € E x (0, +00) such that there exists a d-plane P(x,r)
and a positive constant ¢ > 0, with

/ |V dist(X, P) — cVG™(X)|* < er™, (4.3)

W]u (CE,T)

is a Carleson-prevalent set.

If in addition we are given an AR measure v on E and an exponent 8 > 0, and Dg
is defined in (1.3)-(1.4), we say that VG is prevalently close to VDg, when for any
e > 0and M > 1, the set Gyap, (e, M) of pairs (z,7) € E x (0,+00) such that there
exists a positive constant ¢ > 0, with

/ |VDg,,(X) — cVG™(X)[PdX < er™, (4.4)

Wi (z,7)

is Carleson-prevalent.
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In Definition 1.14, we were able to require the approximation to go all the way to the
boundary, because, in particular, we had the uniform convergence of Green functions to
their limit on compacta of R™ rather than just compacta in €, but this is no longer the
case with the gradients, and we shall content ourselves with estimates on the values of
VG on Whitney cubes. We expect better estimates to be valid, but we shall not pursue
this issue here because the point of this paper is rather to prove weak estimates with
compactness arguments. It will be interesting to investigate more the precise way our
approximations quantify, including near the boundary.

Theorem 4.5. Let 2, E, and L satisfy the assumptions of Theorem 3.1 or Theorem 3.4.3,
and let G denote the Green function for L in Q, with pole at co. Then VG is prevalently
close to the gradient of the distance to a plane and to VDg,, for any B > 0 and any
AR measure v on E.

Proof. We will keep the same structure for the proofs, but will need to replace some
estimates. We start as in the proof of Theorem 3.1, but need to replace Ggq(e, M) with
Gvgale, M) in Lemma 3.5. This means that instead of (3.6), we now want to prove

/ |V dist(X, P) — VGL(X)|* < er™. (4.6)

W (z,7)

In the proof of Theorem 3.1, the desired estimate comes from the uniform convergence
in Theorem 2.19; in the present case, Lemma 2.29 provides exactly the L? convergence
estimate that we need (because G (X) = dist(X, P) here).

Then we stay in Case 1, as in Theorem 3.1, but approximate VG with VDg ;. We
start the same way, but need to replace our main estimates for the difference between
Dg ,(X) by Cdist(X, P) by estimates on the difference of gradients. That is, we need
to replace (3.14), which itself comes from estimates for differences of integrals, which
culminate with (3.34), at least in the region H of (3.27). Here we don’t care about what
happens on B(r, Nr/5) \ H which was treated at the end of the argument, because
this region does not meet the given Whitney region Wi (x,r) if N is large enough and
72 is small enough. That is, if we only care about Wy (x,r), (3.34) is enough for the
corresponding analogue of (3.14).

Now Remark 3.36 says that instead of (3.34) we can prove (3.38), which is just similar
but controls the difference of gradients. That is, repeating (3.38), we claim that we have
the better estimate

|VDgs . (X) — VD(X)| < Cdist(X, P)*TPN—F=1p=F=2 (4.7)

where D(X) = (cag)~/# dist(X, P) as needed (see the line below (3.31)), and which is
valid in the region

H(N,ny) = {X € B(x,Nr/5); dist(X, P) > Cnjyr} (4.8)
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where 7, = CyNn/(@+3+8) and 7, = CNn'/(@+1) This estimate will be a good replace-
ment for (3.14), but let us check that we do not go wrong with the management of
Whitney regions.

Recall that we want to prove that VG is prevalently close to VDg ,,. We give ourselves
€ >0, M > 1, and we need to show that for (z,7) € E x (0,400), (z,7) € Gvap, (e, M)
prevalently, which means that we want to prove (4.4). We may assume that (z,r) €
Gvaale/2, M), because this is a prevalent condition. So we have (4.3), and we only need
to check that

/ |V dist(X, P) — cVDg(X)|* < er™/2. (4.9)

W (z,r)

We may also assume that (x,r) € G,(n, N), with values of n and N that we can choose,
and then we get (4.7), but maybe for some other d-plane P’ that comes from the a-
number. Let us first assume that P’ = P, and check that (4.7) then implies (4.9). In
particular we need to make sure that in (4.7), C dist(X, P)2*#N=8~1p=F~1 < ¢/2 when
X € B(xz,Mr); we can do this by taking N large enough, depending on M and . We
also need H(N,n)) above to contain Wy (z,r), which is easy to arrange by taking N
large and then 7 small. So (4.7) would imply (4.9) if we had the same plane.

Maybe P, that we get for our proof that (z,r) € Gvaa(e/2, M) prevalently, and P’,
that we choose in terms of a-numbers (because (z,7) € G,(n, N)), are not the same.
But we can choose them as close to each other as we want, in particular because the
a-numbers also control the flatness, by (3.12) and (3.13). See an analogous argument in
the proof of Theorem 3.1. Then we can control the difference between V dist(X, P) and
VD(X), where D is the distance associated to dist(X, P’), and this is enough for (4.9).
This ends the proof for Case 1.

Now we need to follow the proof of Theorem 3.43 to take care of Case 2. In this case,
we can follow the proof above and, when it comes to applying Theorem 2.19, we observe
as in Case 1 that Lemma 2.29 gives the L? convergence of the VG to G away from
E., = P. The approximation by VDg , is treated exactly as in Case 1 (we made sure not
to use anything specific, just the good approximation of VDg ,(X) by V dist(X, P)). O

Remark 4.10. Assume that A = I in Case 2 (this is the center of our interests anyway).
Then the coeflicients of our operator L, , are smooth away from E, so we could replace
the L? norm in (4.3) and (4.4) by a L® norm, and even write prevalent approximation
properties with higher gradients. We decided not to check any details here, and anyway
the best way to prove such estimates is probably to start from the fact that G or its first
gradient is close to D(X) = dist(X, P), or VD, and then follow the same route as for
Lemma 2.29. That is, we would say that in balls B(Y, R) C Q, G is prevalently close to
(some) D, that L, ,,G = 0 while AD = 0, that these two operators are prevalently close
to each other (including for the derivatives of coefficients), and use some integrations
by parts to conclude that the derivatives of G are also close to the derivatives of D in,
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say, B(Y, R/2). The difference between the derivatives of Dg, and those of D can be
handled by Remark 3.36.

5. Local variants with GX

Maybe the reader does not like too much the function G*°, and prefers to use Green
functions G with poles at finite distance. In this section we prove local estimates with
GY , which will follow from the previous proofs because the difference between GY and
G is quite small, in particular in small balls B(z,r) C B(zg,70), r < ro9. We need a
local notion of prevalence.

Definition 5.1. Let £ C R™ be Ahlfors regular of dimension d, and let By = B(zg,ro)
be a ball centered on E. We say that G C (E N By) x (0,79) is locally prevalent in By
when its complement relative to By, (EN By) x (0,70) \ G, satisfies the Carleson Packing

condition (1.6). Then the (best) constant C' in (1.6) is also called the prevalence constant
for G in By.

It may happen that G comes from a globally defined subset of E x (0,400), but this
will not always be the case, typically because G depends on the choice of a pole that we
take far enough from E N By, but anyway when this is the case we simply forget about
that part of G that does not lie in (E N By) x (0,rg).

More importantly, we usually ask for uniform estimates, by which we mean that the
Carleson constant C in (1.6) does not depend on By (and the associated set G).

Now what sets G (associated to By) shall we consider? Let Cp > 1 be given; we shall
only consider poles Y such that

dist(Y, EN By) > Ci'rg (5.2)

and then, for the local prevalent approximation of G¥ by a distance function, we select
a pole Y such that (5.2) holds, and use the good set ggg’y(s,M) of pairs (z,r) €
(E N By) x (0,79) such that there exists a d-plane P(x,r) and a positive constant ¢ > 0,
with

| dist(X, P) — ¢GY (X)| < er for X € QN B(x, Mr). (5.3)

For the approximation of G¥ by a distance function Dg,, we use instead the good

set gg;gf (e, M) defined the same way, but with (5.3) replaced by

|Dg,, — cGY (X)| < er for X € QN B(z, Mr). (5.4)

Finally we define the prevalent approximation property in the way that will suit our
results.
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Definition 5.5. Let £ C R™ and L be as above. We say that the G¥ are locally prevalently
close to the distance to a plane (respectively, locally prevalently close to the function
Dg ) when for each ball By = B(xg, o) and each Y € Q such that (5.2) holds, the set
ggfl’y(a,M) (respectively, gggf (e, M)) is locally prevalent in By, with constants that
do not depend on By or on Y satisfying (5.2).

Notice that this definition depends on Cy; this will not disturb us, because we will be
able to prove the desired result for any Cj, and with Carleson constants that do not even
depend too badly on Cy. In fact, with a little bit of manipulations of the definitions, it
is easy to check that different constants Cy give the same notion of local prevalence (but
different constants). The proof below gives a good idea of that.

Theorem 5.6. Retain the assumptions of Theorem 5.1 or 3./3. Denote by GY, Y € Q, the
Green function associated to L in Q with pole at Y. Then the GY are locally prevalently
close to the distance to a plane, and to any function Dg, where § >0 and v is an AR
measure on E.

As before, in the second statement, we are even allowed to define Dg ,, with a different
AR measure v than the one in the definition of L.

The reader should not be too surprised that we also allow poles Y that are far from
E N By but close to (faraway parts of) E; the comparison principle says that the cor-
responding Green functions do not behave in a different way than if we forced Y} to
be corkscrew points in large balls centered at xg. Of course we may need to normalize
differently, i.e., choose very different constants ¢ in (5.3) or (5.4), but this is all right.

We do not expect to have a good approximation of GY in the balls B(x,r) such that
z € EN2By and r > C~ 1y, even when F is a plane and L = A, but those balls will
satisfy a Carleson packing condition. Indeed, once ¢ and M are given (as in (5.3) or
(5.4)), our first action is to remove the set

Bo={(z,7);z € ENByand 779 <7 <70} (5.7)

for some very small 7 € (0, 1) that we allow to depend on e, M, and Cy. We can do this
because By satisfies a Carleson packing condition (with a constant that depends on 7
and the AR constants).

Now we pick (z,7) € (E N By) x (0,77¢), and follow the same argument as in the
proofs above. Essentially, we use the fact that r is so small that Y will appear as very
far, and seen from B(z,r), G¥ will look a lot as G*°. Let us for instance consider Case
1, for the approximation by distances to planes. There is a moment, in the proof of
Lemma 3.5, where we want to show by compactness that if (z,r) satisfies some preva-
lently good properties, then (z,r) € Qgg’y(e, M). We approach it by contradiction and
find a sequence of counterexamples (Qy, Ey, Lk, Tk, yx ), and now we also need to add a
larger ball By, = B(zo,70,k) and a pole Yy such that dist(Yy, Ex N Bog) > 00_17"07;6.
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We also let 7, tend to 0, and recall that ry < 747 . Finally, G} is no longer a Green
function at oo, but rather Gy, = Gg’;, with the pole Yj.

As before we normalize things so that x; = 0 and ry, = 1. Then |Y;| > C " lrgy >
Cy 17'k_ ! tends to 400, and by Theorem 2.19 and Remark 2.23, the functions ckGZ/"' (cor-
rectly normalized by constants cj) converge to the Green function G for Qo and L.
From there on, we can keep the same proof. Case 2 is similar, and for the approxima-
tion with our special distances Dg ., we only need to observe that since Dg, and the
distance to a plane are prevalently close to each other, the result stays true locally, just
by definitions. We leave the details to the reader. 0O

Theorem 5.8. Retain the assumptions of Theorem 3.1 or 3./3. Denote by GY,Y € Q, the
Green function associated to L in Q with pole at Y. Then the VGY are locally prevalently
close to the gradient of the distance to a plane, and to any VDg, where 8 >0 and v is
an AR measure on E.

The proof would follow the proof of Theorem 4.5, using the fact that Lemma 2.29
remains valid in the conditions of Remark 2.23. We could also deduce the approximation
of the gradients from the approximation of the functions, as in the proof of Lemma 2.29
itself.

6. The basic converse, with the distance to a d-plane

We want to say that when €2 C R™ is bounded by an unbounded AR set E = 02 of
integer dimension d, and the Green function G*° associated to one of our operators is
prevalently close to the distance to a d-plane, then E is uniformly rectifiable.

Let us state the assumptions of our theorem in advance. We are given a domain
Q C R™, whose boundary E = 99 is an (unbounded) AR set of integer dimension
d <n—1. When d = n— 1, we also assume that () contains corkscrew balls and Harnack
chains, as in (2.1). Recall that when d < n — 1, we don’t need to ask for (2.1), because
it is always true.

Then we are also given an operator L = —div AV, and we distinguish two cases.
In Case 1, we assume that d = n — 1 and that A satisfies the ellipticity conditions
(2.4) and (2.5). In particular we do not need to know that L is close to a constant
coefficient operator in any way: as in the next case, we just want to make sure that there
is a reasonable definition of the Green function G*°, as in Section 2, with some basic
properties.

In Case 2, we allow any integer 0 < d < n—1, and any operator (2.7), or, equivalently,
L = —div Adist(X, E)4 "1V, such that A satisfies the ellipticity conditions (2.4) and
(2.5). This includes the good operators L, of (1.2)-(1.3), but also any degenerate elliptic
operator in the class that was studied in [8]. Again we need something like this because
we want to quote general results concerning Harnack’s inequality and the Green function,
but no delicate geometry will be used concerning L.
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Since d is integer in this Theorem, Case 2 automatically includes Case 1.

Theorem 6.1. Let Q C R™ be a domain bounded by an unbounded d-AR set E = 0f2,
0 < d < n integer, and assume that when d = n — 1 the domain Q contains corkscrew
balls and Harnack chains, as in (2.1). Let L = — div Adist(X, E)4"+1V, with A elliptic
as per (2.4), (2.5). Assume that the Green function G* associated to Q, L, with a pole
at 0o, is prevalently close to the distance to a d-plane. Then E is uniformly rectifiable.

Proof. Our assumption is that for every choice of ¢ > 0 and M > 1, the good set
Gaa(e, M) of Definition 1.14 is prevalent. We want to show that for each 7 > 0, the
other good set G,,(7) of Definition 1.13 is prevalent, and the simplest way is to show
that if M and e are chosen correctly, Gga(e, M) C Gu(7). In the present case, taking
M = 10 will be enough.

So we pick (z,7) € Ggale, 10) and by definition there is a d-plane P and a constant
¢ > 0 such that, as in (1.15),

| dist(X, P) — cG*(X)| < er for X € QN B(x,10r). (6.2)

Recall that G*° is Holder continuous on €2 N B(x,10r), so we can safely say that
limy_,, G*(X) = G*(y) = 0 when y € E N B(x,10r) without thinking about the
notion of trace, and by (6.2)

dist(y, P) < er for y € EN B(z, 10r). (6.3)

If we have this property alone, we get what is known as the weak geometric lemma,
which is somewhat weaker than the uniform rectifiability of E, so we have to continue
the argument and show that conversely,

dist(X, E) < 7r/2 for X € PN B(xz,r). (6.4)

Obviously, if we prove (6.4) and take e < 7/2, we get that d,,(E,P) < 7, and hence
(x,7) € Gur(7) as needed.

Set u = ¢G*°. We will derive (6.4) via estimates on the size of u. Since (6.3) says that
dist(y, P) < er for y € EN B(x,10r), we now get that

u(X) < dist(X, P) +er < 11r for X € QN B(x, 10r), (6.5)

and we shall now find a point A; such that u(A;) is not too small. First take a corkscrew
point Ag for B(z,r). That is, Ag € B(x,r) N Q and dist(Ag, E) > C~1r, and then (6.3)
allows us to find a new point A; such that |A; —Ag| < (20)~1r (and so A; € QNB(x,2r))
and in addition dist(A;, P) > (2C)~!r. Thus we can also use A; as a corkscrew point,

and now
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u(Ay) > (20)"r —er > (3C)7'r (6.6)
by (6.2) (and if € is chosen small enough). Now we claim that
w(X) > Clr~ ' dist(X, E)]Y u(Ay) > drlrtdist(X, E)]" for X € QN B(z,7), (6.7)

where C' > 1, v > 0, and then ¢’ > 0 depend only on the geometric constants for  and
the ellipticity (or degenerate ellipticity) constant for L. This will be basically due to the
fact that the length of the Harnack chain from A; to X is C log(dist(X, E)~'r).

Indeed let X € QN B(x,r), and pick y € ENB(x, 2r) such that | X —y| = dist(X, E).
Then pick for k£ > 0 a corkscrew point X for B(y, 2¥ dist(X, E)). We can take Xy = X,
and we stop as soon as 2* dist(X, E) > r. Thus our final X}, lies in B(y,2r) C B(z,4r),
and its distance to F is more than C~1r. By Harnack’s inequality, u(A;) < Cu(Xy). We
can also apply Harnack’s inequality to consecutive points of the sequence, and get that
u(Xj41) < Cu(X;) for 0 < j < k. Altogether, u(A;) < CFlu(Xg) = CHlu(X); (6.7)
follows because k + 1 ~ log, ( dist(X, E)~tr).

Now set

H = {X € B(z,2r); dist(X, P) < 2er} (6.8)
and let X € H N be given. By (6.2),
w(X) =G (X) < dist(X,P) +er < 3er forall X € H.
Then by (6.7),
drir~tdist(X, B)]? < u(X) < 3er,
hence 7! dist(X, E) < Ce'/7; we choose ¢ so small that Ce'/7 < 7/3, and get that
dist(X, E) < 7r/3 for X € HN QN B(x,2r). (6.9)

When d < n — 1, F is so small that R™ \ E is connected, so R” = QU E. Then for any
X € PN B(z,2r), either X € Q and dist(X,E) < 7r/3 by (6.9), or else X € E and
dist(X, E) = 0. So (6.4) holds in this case.

We are left with the case when d = n — 1. Recall that dist(A4;, P) > (2C)~'r, so A4
lies in B(xz,2r) \ H. Denote by V the component of B(z,2r) \ H that contains A;; then
V' C Q because it meets © and not E (by (6.3) and (6.8)).

Now let X € PN B(z,r) be given. There exists Y € V such that |Y — X| < 3¢, and
by (6.9) dist(Y, E) < 7r/3; if € is small enough, this implies that dist(X,E) < 7r/2;
this proves (6.4) and Theorem 6.1 follows. O

Remark 6.10. Notice that in the course of the proof of Theorem 6.1 we hardly use the
fact that G*° is a Green function (we only use the fact that it vanishes on E and the
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nondegeneracy property (6.7)). This, however, is not shocking — see, e.g., [6], where
the free boundary results also rely very moderately on the particular properties of the
distance function. The situation may be even more peculiar for d = n—1 because it could
happen (but the authors did not manage to prove this) that if F is Ahlfors regular of
dimension n — 1 and satisfies the Weak Geometric Lemma (see for instance [15]), and, in
addition, 2 contains corkscrew balls and Harnack chains, then E' is uniformly rectifiable.
If this were true, then we could stop the argument as soon as we proved (6.3), and the
only properties of G that we would use are the prevalent good approximation and the
fact that G =0 on E.

Remark 6.11. Theorem 6.1 also holds when we assume that the Green functions GY
are locally prevalently close to distances to a d-plane (see Definition 5.5). The proof is
the same; that is, we only used the fact that the function v = ¢G*° is L-harmonic in
QN B(z,10r), and reducing to the case when the pole Y lies outside of B(z, 10r) is just
a matter of skipping the large balls B(z,r), r > ro/C, i.e., restricting our attention to
pairs (z,7) € (E'N B(zo,ro)) X (0,79/C), in Definition 5.1 of local prevalence.

Remark 6.12. Theorem 6.1 also holds when we replace dist(X,F) with any power
dist(X, E)%, with the same proof. This is a quite natural condition as the Green function
is expected to be only Holder continuous at the boundary, that is, to behave as a power
of the distance.

Remark 6.13. In this section and the next ones, we give statements with distance func-
tions, and not their gradients. The results of these sections should also hold with the
prevalent approximation with the gradients, but we decided not to check them. Note
however that in principle conditions on the good approximation of VG are stronger than
those on @ itself, because G can essentially be computed from its gradient.

7. The converse with the distance D,

We are now interested in finding out whether if the Green function G* associated to
one of our operators is prevalently close to some D,, (and later in this section, to some
power of D), then d is an integer and F is uniformly rectifiable. The situation is more
challenging than with the distance to d-planes, first because we allow dimensions that
are not integers (this made little sense when discussing the distance to a plane), and also,
due to the fact that D, vanishes on F, and not on a d-plane as in Section 6, we cannot
simply use the fact that D, is small near F; that is, the answer is no longer hidden in
the question.

Contrary to the previous section, we are now restricted to our special classes of elliptic
operators, satisfying (1.9) or built from the distance functions. We start with the most
classical case of co-dimension 1.
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Theorem 7.1. Let Q C R™ be such that E = 0S) is Ahlfors regular of dimension n — 1
and assume, in addition, that the domain § has interior corkscrew balls and Harnack
chains, that is, (2.1) holds. Let L = —div AV satisfy (2.4), (2.5), and (1.9). Suppose
that the Green function G for L on §) is prevalently close to D, for some o> 0 and
some AR measure p of dimension n — 1 on E. Then E is uniformly rectifiable.

Proof. This time we shall not use Definition 1.13 to prove the uniform rectifiability, but
rather show that, in addition to being 1-sided NTA, € has exterior corkscrew points.
This is also known as Condition B. We say that the (unbounded) AR set E of dimension
n — 1 satisfies Condition B when there is a constant ¢ > 0 such that for x € E and r > 0,

3X3, X, € B(z,r), that lie in different connected components

(7.2)
of R™\ E, and such that dist(X;, E) > er for i =1,2.

This condition was introduced by S. Semmes in [26], and is known to imply the uniform
rectifiability of E (see [26] in the smooth case and, probably for the simplest proof, [11]).

This property can be also written in terms of prevalent sets. Let Gop(c) denote the
set of (z,7) € E x (0,400) such that (7.2) holds. The definition requires that Gop(c) =
E x (0,400), but we claim that if the set Gop(c) is prevalent for some ¢ > 0, then
E satisfies Condition B (with a worse constant). Indeed, if Gop(c) is prevalent, we
claim that there is a constant a > 0 such that for each (z,7) € E x (0,400), we can
find y € EN B(z,r/2) and t € (ar,r/2) such that (y,t) € Gop(c). Otherwise the set
EnB(z,r/2) x (ar,r/2) is contained in the bad set B = FE x (0,4+00) \ Gep(c), and then

/ / (1, 1) du(?)dt / / du(ty)dt

yeEENB(z,r) 0<t<r yEENB(z,r/2) ar<t<r/2
dt
W(E N Bz, r/2) / L >0/ 2a), (73)
ar<t<r/2

which contradicts (1.6) if a is chosen small enough, depending on the Carleson constant
for B. But once we obtain that pair (y,t), the two points X; and X, that we get from
(7.2) for B(y,t) also work for B(z,r), although with the worse constant ac.

Return to the theorem, and let 2, E, L satisfy the assumptions. We only need to find
¢ > 0 such that Gop(c) is prevalent. Since we know that for each choice of € and M, the
sets Gap, (6, M) and G..(e, M) are prevalent, it is enough to show that for some choice
of ¢ >0, M, and ¢

Gep, (e, M)NGee(e, M) C Gop(c). (7.4)

We proceed by contradiction. Assume that (7.4) fails for ¢, = e, = M, L— 9% and
pick an open set 2 bounded by an AR set Ej, an operator Ly, and a pair (xg, ) €
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E x (0,+00) that all satisfy the assumptions, and for which (x,7x) € Gap,, (€k, Mi) N
Gee(er, Mi) \ Goplck).

By translation and dilation invariance, we may assume that zp = 0 and r, = 1. We
may also extract a subsequence so that € converges to a limit .., Fy converges to
FE, and per Theorem 2.19, Q. is bounded by E., and 2. satisfies the assumption
(2.1). Moreover, we can extract a further subsequence so that the AR measure py, given
on E}, converges weakly to a measure u, and this limit is automatically AR. Because
(0,1) € Gee(27F,2%), the matrix Ay of Ly, converges, in L}, (), to a constant matrix
Ap.

By Theorem 2.19, the Green function G = G° for Ly, in €y, correctly normalized,
converges to the Green function G = G for Ly on ., uniformly on compact sets
of Q. Here Lg is the constant coefficients operator Lo = — div AgV. Hence, using the
facts that (0,1) € Gap, (27%,2%) and py, stays uniformly AR and converges to y, we can
conclude that G = CD, .

We shall start many of our “free boundary” compactness arguments in this fashion,
but now we need to use the specific assumption of co-dimension 1. Why does the fact
that G = CD,,, imply something nice about the domain? The simplest path would
be to brutally use a known fact that on 1-sided NTA domains if the harmonic measure
(associated to a constant coefficient elliptic operator on ) is absolutely continuous with
respect to p (any AR measure on F) and given by an A, weight, then F is uniformly
rectifiable. This is essentially due to [21]. A careful reader might notice that formally
speaking, they treat the Laplacian only, but this extends to all constant coefficients
symmetric elliptic operators, and then a symmetrization argument could be used to get
rid of the assumption of symmetry. See, e.g., [19] where an analogous result is obtained
in much bigger generality (so it could serve as a reference by itself), but in particular,
the symmetrization is discussed in the beginning of Proof of Theorem 1.6.

Our limiting domain ., with the constant coefficients operator Ly, admits the Green

function G = CD and in particular

o s

C~1dist(X, E) < G(X) < Cdist(X, E) for X € Qu. (7.5)

We claim that this implies that the harmonic measure w®, with a pole at oo, is also
comparable to H"Ei, in the sense that

CT'H[ ! <w™ <CH ' on B
Once this claim is established, we can apply the aforementioned result and obtain that
E is uniformly rectifiable. (7.6)

The claim is due to the following estimate for the Green function, valid on any 1-sided
NTA domain with an unbounded d-dimensional Ahlfors regular boundary when d > n—1,
and on any domain with an unbounded d-dimensional Ahlfors regular boundary when
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d < n — 1. We consider the Green function with pole at a faraway point Y for any
elliptic operator L on F, with (2.4) and (2.5), or the operator given by (2.6). Under
these assumptions, there is a constant C' > 1, that depends on the dimensions and the
constants in our assumptions on  and L, such that if B = B(x,r) is a ball centered on
E =09, and ZB € BN Q denotes a corkscrew point for B,

Clrn2GY (ZB) < WY (EN B) < Cr"2GY (ZP) (7.7)

as soon as the pole Y lies out of 2B. We refer to Lemma 15.28 in [10], but in co-dimension
1 this is of course a classical result. To be careful with the normalization of the Green
functions, let us consider balls B that are contained in By for some fixed ball By and
pick any Y € 2\ 2By. The comparison principle says that C~1GY < G* < CGY, with a
uniform constant, if for instance we normalize G by G*°(Z°) = GY (Z°) for a corkscrew
point Z° for By. Then by (7.5)

Clr<eGY(ZB) < COr, (7.8)
where the normalizing constant ¢ depends on By, but not C. By (7.7), this yields
Clrml < cwY(ENB) <Cr*! for B C By, (7.9)

which implies by an easy covering argument that wY is essentially proportional to H"~!
on EN£By. So we may apply [21] and get (7.6).

Recall that we want to use (7.6) to derive a contradiction, in fact with our assumption
that (07 1) = (xk,rk) ¢ gCB(Ck).

Let € > 0 small, to be chosen soon. We know that the set G,,(g) associated to E
is prevalent, so by the same argument as in (7.3) we can find y € E,, N B(0,1/2) and
t € (a,1/2) such that dy +(Ex, P) < € for some hyperplane P.

Denote by H; and H_ the two connected components of H = {X € B(y,a);
dist(X, P) > 2a5r}, and also let Z° be a corkscrew point for Q4 in B(0,a); we know
that it exists because 0 € E, and Q. satisfies (2.1). Then dist(Z°, P) > C~'a because
dyt(Eo, P) <€, and so Z° € Hy, say.

For k large, H; and H_ do not meet E, because dy (F~, P) < € and Ey is the limit
of Ej; then we know that H, C Qj (because Z° € € for k large), and we have two
options. The pleasant one is when H_ is contained in some other component of R™\ ),
because this contradicts immediately our contradiction assumption that (0,1) ¢ Gop(ck)
(relative to Q): the two points Z° and its symmetric relative to P would fit in (7.2).
The other option is that H_ meets €, hence H_ C 2 (because it does not meet E},).
This is impossible too, this time because if € is small enough, we contradict the existence
of Harnack chains in €Q; see the argument below (3.4).

We finally proved (7.4), and Theorem 7.1 follows. O
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Remark 7.10. It seems that we should not be forced to use [21,19]: this is a rather
indirect route, and we have a detailed information about the Green function at hand, in
particular, we know that it is a multiple of a suitably defined distance to the boundary,
not just the fact that it satisfies the bounds from above and below (7.5). Yet, these
matters are highly non-trivial, both for the Green function and for the harmonic measure.
For instance, it is known that there are cones F, other than hyperplanes, such that w® is
proportional to /H‘"E 1. We do not know (but did not try to make a computation) whether
the Green function will be a multiple of D,, for these examples. It could happen that in
the situation of G = CD,, o, p really must be a flat measure (instead of being merely
uniformly rectifiable, as in (7.6). We will return to this issue in the next section.

We now switch to the question of prevalent approximation by D, , of the Green
functions for elliptic operators in dimensions d € (n — 2,n) \ {n — 1}. We want to say
that this does not happen. That is, the fact that the Green function is prevalently close
to Dy, implies that the dimension is integer, for the operators in Theorem 7.1, and,
more generally, for all elliptic operators.

Proposition 7.11. Let Q C R™ be such that E = 090 is Ahlfors reqular of dimension
de (n—2,n)\{n—1}. Ifd > n— 1, suppose in addition that Q0 contains corkscrew
balls and Harnack chains, as in (2.1). Then let L = —div AV be an elliptic operator (as
in (2.4) and (2.5)), and denote by G the Green function for L on Q. Then G* is not
prevalently close to Dy, for any choice of o> 0 and an AR measure jv of dimension d
on B.

This was demoted to the rank of proposition, because it will appear soon that the
approximation fails just because D, does not have the right homogeneity.

Proof. Suppose the Proposition fails, so that we can find an example (2, E, L) for which
G is prevalently close to some D, ,. This means in particular that we can find pairs
(z,7r) € Gap,, (€, M), with arbitrary values of ¢ and M.

Pick such a pair; by translation and dilation invariance we may assume that (z,r) =
(0,1), so we deduce from (1.16) that there is a constant ¢ > 0 such that

|Do,u(X) — cG™(X)| <e for X € QN B(0,M). (7.12)
In particular, recalling that D, ,(X) ~ dist(X, F) and if € is small enough, we get that
C~1dist(X, E) < eG*(X) < Cdist(X, E) (7.13)

for X € QN B(0, M) such that dist(X, E)) > 1. Now pick a pole Y € Q\ B(0,10M) and
a corkscrew point Xg for B(0, M), then set

= GY(X0)/G=(Xy) (7.14)
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and apply the comparison principle to the two function G* and G¥ | say, in QN B(0,2M).
We get that

GY (X)
-1y < < C\ for X € QN B(0, M 1
C )\_GOO(X)_C)\ or X € QN B(0, M) (7.15)
and, because of (7.13),

CVdist(X, E) < §GY(X> < Cdist(X, E) (7.16)

when in addition dist(X, E)) > 1. Now consider a ball B = B(z,r) C B(0,M), and
choose a corkscrew point Z2 for B. We restrict to the case when r > Cy, where Cj is
chosen so that (7.16) always holds for ZZ and yields

A A
GY (ZB) ~ Zdist(X,E) ~ = 1.
c ¢
Then apply (7.7) to B; this yields

A A
C ot < WY (ENB(x,r) <C =t (7.17)
c c
We claim that this is incompatible with the Ahlfors regularity of E. We first take By =
B(0,M/2) and find that w¥ (E N By) ~ 2M"~1.

First assume that d > n — 1; we can find more than C~'M? disjoint balls B of radius
Cy that are contained in By, and hence (7.17) yields

Ayt 2w (ENBy) > > w (ENBy) >C™"

Cc
B

é M?,
c
a contradiction if M is large enough and d > n — 1. Observe that % disappears as it
should (we could have replaced G* by a multiple so that % = 1 anyway).

If instead d < n — 1 we can cover By by less than CM? balls B of radius C that are
contained in B(0, M), and (7.17) yields

Ayt S W (ENBy) <> w (ENB) < CéMd,
C

c
B
a contradiction again for M large enough.
This completes our proof of Proposition 7.11. O

Remark 7.18. The fact that proving Proposition 7.11 was a question of homogeneity
should convince us to try something different in our Case 1 (elliptic operators): approx-
imate G*° with the power D, ,(X)4"2~", because this is the only one for which (7.7)
leaves us a fighting chance. (Notice that when d = n — 1 we keep the power 1, as in
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Theorem 7.1, and this issue does not arise). It turns out such a power is indeed natural
in a much more general context, but unfortunately — perhaps for this reason — the cor-
responding results are much more intricate as well. We turn to this question in the next
section.

8. The condition Yg,¢, higher co-dimension, and more exotic free boundary results.

Many known free boundary results rely on some “zero-level” flatness statement, that
is, a degenerate version of the hypothesis entails that the set is a hyperplane. In our
context, such a degenerate hypothesis is an equality between the Green function and
the distance of our choice. This was not a problem in Section 6: if the Green function
is assumed to be the distance to a plane, then of course the boundary is a plane simply
because the Green function ought to vanish on it. However, when working with D,
an analogous statement is not as clear: both the Green function and D, vanish on the
boundary E, whatever E is. We were lucky not to have to prove any “zero-level” flatness
in Section 7, by virtue of the results in [21], and, as far as the harmonic measure goes, a
straightforward zero-level flatness statement would not even be true — see Remark 7.10,
but as we pointed out in the same remark, it seems reasonable to expect that such
a statement would nonetheless hold for the Green function. Unfortunately, we do not
manage to prove it at this point for the desired class of operators at hand, and will
simply state it as a hypothesis.

Definition 8.1. Let the dimension 0 < d < n, with d # n—2, a > 0, and a constant coeffi-
cient elliptic operator Ly = —div AgV be given. We say that the property Yaa¢(d, o, Lo)
is true when for each domain  C R™ such that F = 02 is AR of dimension d and (2.1)
is satisfied when d > n — 1, the following holds. If 1 is an AR measure of dimension d

on E and
d+2—n _
LoDy 7™ =0 on Q, (8.2)
then d is an integer, F is a d-plane, and p is a flat measure.

Remark 8.3. Our forthcoming results will primarily rely on the case when Ly = —A. In
fact, when L is associated to a constant coefficient operator Ly # —A, one could object
that our definition of D, , is not as appropriate as when Ly = —A. That is, maybe
we should use different distances like the D, but adapted to the operators Ly that we
intend to get at the limit. This could be more appropriate with respect to the rotation
invariance, but it looks a little too far-fetched for this paper (and we do not want to
have too many definitions).

Let us now discuss some particular cases and equivalent reformulations of the condition
Yaat(d, @, Lo). Even when d = n — 1 and Ly = —A, we do not know whether Tgat(n —
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1,a, Lg) is valid. When d € (n — 2,n) \ {n — 1}, the power in (8.2) is exactly the one
that naturally arises in the proof of Proposition 7.11, see Remark 7.18. We could try
to define an analogue of Ygat(n — 2, a, Lo) (notice that the case d = n — 2, as is, does
not make much sense), but at this time we will not try to do so. When d < n — 2, the
exponent d + 2 — n in Definition 8.1 is negative, and Diﬁ?‘” becomes a function with a
singularity near FE.

To show that Definition 8.1 is reasonable we have to verify, at the very least, that
(8.2) is satisfied if d is an integer, F is a d-plane, and p is a flat measure. And indeed,
if d is an integer and p = cHldp is a flat measure, the scale invariance yields R, ,(X) =
Cdist(X, E)~'/*, then D, ,(X) = Cdist(X,E), and DIF2~" = Cdist(X, E)*"2~",
When d = n — 1 and (2 is a half-space, Dgﬁf’” = C't (t denoting the coordinate perpen-
dicular to the boundary), which is a solution to any constant coefficient elliptic equation,
as desired. When d < n—2, we denote by t the projection of X € R™ on P+ ~ R"~? and
we see that DEF2~" = C[t|*27" is a function of ¢ only. We can recognize a multiple of
the Green function in R™~¢. So Dif*” is indeed harmonic in that case. Alternatively,
one could make a direct computation to check that A, 4[t[9t2~" = 0 for t € R"~4\ 0.
These computations ensure that the condition Yg,; is, at least, coherent. Does it have a
reasonable chance to be true?

Let us look at an equivalent reformulation of the condition Ygas.

Lemma 8.4. Assume that Q@ C R™ is a domain with an unbounded d-Ahlfors reqular
boundary E, 0 < d <n, and u is a d-AR measure on E. Then for any o > 0

ADgLQ*” =0 o0nQ ifand only if L, ,Da, =0 on €, (8.5)

where L, is given by (1.2) with Do = Dq, .

In particular, for 0 < d < n, with d # n — 2, and o > 0, the property Taai(d, o, A)
is equivalent to the following. For each domain Q C R™ such that E = 02 is AR of
dimension d and (2.1) holds if d > n — 1, if u is an AR measure of dimension d on FE
and

L, Dy, =0 onQ, (8.6)
then d is an integer, E is a d-plane, and p is a flat measure.
Proof. The fact that (8.5) holds is the result of a direct computation. Notice that all

these functions are smooth on €2, so we can talk about strong solutions. The verification
is easy, because

d+2—n\ __ d+1—n
V(Da,u ) - (d+2_n)Da7u VDoz,;u
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0] ADi‘f‘" = 0 if and only if div DZ"‘;}_"VDQ’M = 0; then we just need to compare
with (1.2). Hence, Taa¢(d, o, A) says that D, ,, is only a solution of L, , in the trivial
case of a flat measure, which yields (1) in the statement of the lemma. O

There is one emblematic case when Lemma 8.4’s version of Tga(d, o, A) fails miser-
ably; this is when o = n—d—2, the “magic a” case that we discussed in the introduction.
In this case, both conditions in (8.5) hold on any d-Ahlfors regular set, which does not
even need to have an integer dimension, much less possess any regularity or uniform
rectifiability. In the context of this paper this case is certainly not amenable to any free
boundary results besides Theorem 6.1, not only because of the failure of Tqa¢, but be-

cause the Green function of L = — div D;’(Jb_d_l)

V is a multiple of D, , and hence, the

harmonic measure is equivalent to the Hausdorff measure of the boundary for any d-AR

set E [6]. It remains to be seen whether Tg.:(n — 2, , A) holds in all other instances.
At this point, let us pass to our main results assuming Condition Yg,¢. As usual, we

start with Case 1.

Theorem 8.7. Let d € (n—2,n)\{n—1} and a > 0 be given, and suppose that the property
Taat(d, @, Lo) is true for every constant coefficient elliptic operator Ly = —div AgV.
Assume that E is Ahlfors reqular of dimension d, L satisfies (2.4), (2.5), and (1.9), and
Q satisfies (2.1) if d > n—1. Then the Green function G for L on ) is not prevalently
close to ng;?—" for any AR measure u of dimension d on E.

The question is already interesting when L is the Laplacian, and then of course Prop-
erty Tgat(d, o, A) is enough (see also Remark 8.3).

As we mentioned above, when d = n — 1, we do not know whether Tgat(n — 1, o, Lg)
is true or not, but we proved Theorem 7.1 by different means.

Proof. We shall again prove this by contradiction and compactness. If G* is prevalently
close to DZF2~" this means that we can find pairs (z,7) in the analogue G*(g, M) of
Gap, (e, M) but with the power d + 2 — n, with arbitrary values of ¢ and M. We can
even choose (z,7) € Ge.(g, M) too, because one of our assumptions, (1.9), says that this
condition is prevalent. We want to show that this is impossible, and in fact we will prove
a little more: for each choice of constants in the assumptions of the theorem, we can find
e and M such that if Q, F, L satisfy the assumptions, G*(e, M) N G..(g, M) is empty.

We prove this by contradiction, so we suppose that for each k& > 0, we can find a
counterexample (Q, Ex, Li) where this fails for g5, = 2% and M;, = 2*, and we want to
derive a counterexample.

We are given a pair (zg, %) € G* (e, Mik)NGec(ek, M), and by translation and dilation
invariance we may assume that x; = 0 and r; = 1. Then we proceed as in Theorem 7.1,
for instance, and extract a subsequence for which (Q, Fx, L) converges to a triple
(Qoos Eso, Lo). As before, this triple satisfies the assumptions of the theorem (because the
(Q, Ex, L) satisfy it uniformly), Lo is a constant coefficient elliptic operator (because
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(0,1) € Geeler, My)), and we even know that after renormalization the G7° converge,
uniformly on compact subsets of 2., to a Green function G for Ly on (2. Finally, since
(0,1) € G*(ek, M), we see that G = DEI2~" for some d-AR measure i, that we obtain
as a weak limit of the uj that were used to define G*(ey, My) on Q.

But our assumption Tgat(d, v, Lo) says that this cannot happen (recall that d # n—1,
so flat measures are not allowed). Theorem 8.7 follows. O

Now we pass to Case 2. As before, we consider the question of whether the Green
function for L, , is prevalently close to distance functions, and the most natural ones
in this instance are clearly the distances D, , associated to the same a > 0 and p (see
(8.6)).

The natural conjecture is now that Yaa:(d,«, A) holds, unless d + o« = n — 2 or
d = n—2 (where it is not defined). At this time we have some additional information on
this question, but no full proof, and for the moment we just state the consequence of a
positive result.

Theorem 8.8. Let d € (0,n) \ {n — 2} and @ > 0, & # n — 2 — d, be given,
and suppose that the property Yqat(d, a, A) holds. Let furthermore Q be a domain in
R™, E = 0Q be d-Ahlfors regular, and assume that (2.1) holds if d > n — 1. Let
L=1~L,,=—div ADg‘Ll_”V be the degemerate elliptic operator associated to an AR
measure (1 on E as in (1.3) and (1.4), with the matriz of coefficients A satisfying (2.4),
(2.5), and (1.9) with Ay = I. If the Green function G for L, ,, with pole at oo, is
prevalently close to the distance function D, (with the same o and ) then d is an
integer and E is uniformly rectifiable.

Again d + a = n — 2 is excluded here, because in this case D, , is the Green function
no matter what.

We already know that the result holds when d = n — 1, because in this case L, , = A
and we have Theorem 7.1, which fortunately does not need Yga¢(d, a, A).

Proof. We prove the theorem by compactness as usual, and we start as in Theorem 7.1.
Let Q, E, L satisfy the assumptions. We want to prove that d is an integer and that E is
uniformly rectifiable, i.e. that for all 7 > 0, the set G,,.(7) (associated to the integer d)
is prevalent. By assumption, Gap, , (€, M) is prevalent, and we added s in the notation
because this time we really need D, , to be defined in terms of ;1. As before, it will be
enough to prove that if € and M ! are chosen small enough, depending on n, d, 7, the
AR constant for g, and the constant in (2.1) when d > n — 1,

Gap., (e, M) =0 unless d is an integer (8.9)
and, when d is an integer,

Gap.,, (e, M) C Gur(T). (8.10)
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We proceed by contradiction, assume that (8.9) or (8.10) fails for e, = 47% and M}, = 2,
and pick a counterexample for each k. This means, we find an open set €2, bounded by
an AR set Ej, an AR measure p; on Fj (with uniform AR bounds), and finally a
pair (zg,rg) € Er X (0,400) such that the assumptions above hold (and in particular
(zk,7k) € Gap,, (47, 2%)), but not the conclusions.

By translation and dilation invariance, we may assume that zp = 0 and r, = 1. We
may also extract a subsequence so that € converges to a limit Q.,, E} converges to
E, and pi converges weakly to a limit po, on F,. As in the proof of Theorem 2.19,
Qs is bounded by F., Qo satisfies the assumption (2.1) when needed, and poo is
automatically an AR measure on FE.

The coefficients of the operator Ly converge in L}, (Qo) to the coefficients ng’;};"
of the operator L., associated to D, . on Qs (see the argument near (2.28): we are
now proceeding as in the proof of Theorem 3.43, but with different assumptions). In
particular, we have (2.17) with A, = I, and we are allowed to apply Theorem 2.19.
Hence the Green function G¢° for Lj, converges, uniformly on compact subsets of {2, to
a multiple of the Green function G for L.

But our assumption that (0,1) € Gap, , (47%,2%) implies that

Doy (X) — cx G2 (X)| < 27 for X € Q. N B(0,2%) (8.11)

(compare with (1.16)), and since D, ,, converges to D, , we see that G = CD,
on Qu. In particular LooDq,,. = 0, and now (8.5) and our assumption Yga¢(d, o, A)
imply that d is an integer, p is a flat measure, and of course F, is a d-plane.

So (8.9) did not fail, and the fact that Ej, tends to E implies that do 1(E, E)) tends
to 0, so (8.10) is also true for k large. This contradiction completes our proof of (8.9)
and (8.10), and Theorem 8.8 follows. O
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