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The present paper concerns divergence form elliptic and 
degenerate elliptic operators in a domain Ω ⊂ Rn, and 
establishes the equivalence between the uniform rectifiability 
of the boundary E = ∂Ω and weak Carleson condition on 
the good approximation of the Green function G by affine, 
or distance, functions. There are two main original contexts 
for the results, elliptic operators in a non-tangential access 
domain with an n − 1 dimensional boundary and degenerate 
elliptic operators adapted to a domain with an Ahlfors regular 
boundary of larger co-dimension. In both cases necessary and 
sufficient conditions are given, in the form of Carleson packing 
conditions on the collection of balls centered on E where G is 
not well approximated.
(1) This is the first time the underlying property of the 

control of the Green function by affine functions, or by 
the distance to the boundary, in the sense of the Carleson 
prevalent sets, appears in the literature; some results 
established here are new even in the half space;
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(2) the results are optimal, providing a full characterization of 
uniform rectifiability under the (standard) mild topologi-
cal assumptions;

(3) to the best of the authors’ knowledge, even in traditional 
domains with (n − 1)-dimensional boundaries, this is the 
first free boundary result applying to all elliptic operators, 
without any restriction on the coefficients (the direct one 
assumes the standard, and necessary, Carleson measure 
condition);

(4) this is the first free boundary result in higher co-
dimensional setting and as such, the first PDE characteri-
zation of uniform rectifiability for a set of dimension d, 
d < n − 1, in Rn.

The paper offers a general way to deal with related issues 
considerably beyond the scope of the aforementioned theorem, 
including the question of approximability of the gradient of 
the Green function, and the comparison of the Green function 
to a certain version of the distance to the original set rather 
than distance to the hyperplanes.

© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

We consider elliptic operators, or their generalizations, on a domain Ω ⊂ Rn. The 
main goal of the present paper is to show that Ω is reasonably regular (uniformly rectifi-
able) if and only if the Green function can be well approximated by distances to planes, 
or by a certain distance to the boundary ∂Ω. Formally speaking, the result is one of the 
end-points of the big quest of establishing sharp, optimal connections between the geo-
metric and PDE properties of sets – see the work by J. Azzam, J. Garnett, S. Hofmann, 
P. Le, J.-M. Martell, M. Mourgoglou, K. Nyström, X. Tolsa, T. Toro, Z. Zhao, and their 
collaborators [2,17,18,21,19,3].

The present result is somewhat different both philosophically and in terms of the 
involved techniques. The “PDE” side of our result is that for a certain class of elliptic 
operators, the Green function is morally affine in the sense of Carleson prevalent sets (a 
weak condition). The idea that the Green function is almost affine whenever the set is 
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reasonably flat permeates virtually all approaches to free boundary problems, including 
the work of Alt and Caffarelli, Kenig and Toro, Lewis and Vogel, Hofmann, Martell, 
Tolsa, Garnett, Nystrom, J. Azzam, and others. Even in the precise context of ellip-
tic measure, Azzam [1] has a recent characterization of rectifiability in terms (among 
other) of Green functions. The story is different here for two reasons. First, we pass from 
the weak-type condition on the Green function to the strong-type conclusion (uniform 
rectifiability), and in fact, we prove their equivalence. The reader should not be too sur-
prised that this is possible: since [14,15], it is known that the uniform rectifiability of sets 
can often be derived from weak conditions. Secondly, we treat more general operators, 
even in co-dimension 1, because we need weaker conditions on the coefficients. The “free 
boundary” result, stating that the desired approximability of the Green function by dis-
tances to planes implies uniform rectifiability is, to the best of our knowledge, the first 
free boundary result in this context that pertains to all elliptic operators, without any 
additional restrictions on the coefficients of the equation. All of this is due to the fact 
that we employ different techniques, not relying on the integrations by parts traditional 
in this context.

Finally – and secretly this was one of our main incentives – this paper is the first 
PDE characterization of the lower-dimensional uniformly rectifiable sets. The efforts 
in this direction have spanned now about a decade and could roughly be split into 
two principal directions: the work on reflectionless measures by F. Nazarov, B. Jaye, 
and their collaborators, which unfortunately still hinges on the problem of proving the 
reflectionless property for the key operators at hand, and the work by the authors of the 
present paper and J. Feneuil which identifies an appropriate PDE context and proves a 
number of “direct” results, but also faces a mysterious problem in the “free boundary” 
direction. Indeed, we discovered that in domains with lower dimensional boundaries there 
exist elliptic operators for which the elliptic measure is proportional to the Hausdorff 
measure on any AR set, independently of any sort of regularity or uniform rectifiability, 
which shatters the natural conjectures inspired by the co-dimension one case. This is 
what forced us to turn to the Green function and its proximity to the affine functions, 
or to the distance: such a condition seems to control more accurately the torsion of the 
solution around a low-dimensional boundary than the more traditional estimates on the 
harmonic measure. It appears, for all the reasons outlined above, that in a certain sense 
it is stronger and more appropriate in the classical domains with n − 1 dimensional 
boundary as well. Let us now turn to the details.

In all this paper, Ω will be a domain in Rn whose boundary E = ∂Ω is Ahlfors regular 
of some dimension d < n. This means that there is a measure μ, supported on E, and a 
constant C ≥ 1 such that

C−1rd ≤ μ(B(x, r)) ≤ Crd for x ∈ E and 0 < r < +∞. (1.1)

It is well known that in this case μ is equivalent to Hd
|E , the restriction to E of the 

Hausdorff measure of dimension d. In this paper we assume that Ω and E are unbounded; 
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the case of bounded domains would be similar but need a little more notation. Note that 
a priori we do not assume that d is integer and allow, for instance, Ahlfors regular 
snowflakes and Cantor sets. Instead, we will prove that the desired approximation of the 
Green function (when meaningful) implies that the dimension is integer and the set is 
rectifiable.

When d ≥ n −1, we shall systematically add the assumption that Ω is a one-sided NTA

domain, which means that we assume some quantitative openness and connectedness in 
the form of the existence of corkscrew points and Harnack chains in Ω; see the beginning 
of Section 2 for the definitions. This is a traditional topological background hypothesis 
in this context. Fortunately, we do not need to impose this explicitly when d < n − 1, 
because then Ω satisfies the corkscrew and Harnack chain conditions automatically.

Turning to the operators, we will split the discussion into two cases. When n −2 < d <
n, we will concentrate on the classical Laplacian Δ, or more generally elliptic operators 
L = − div A∇, with bounded measurable, not necessarily symmetric, coefficients – see 
(2.4)–(2.5) for the (usual) definition of ellipticity.

When d ≤ n − 2, the classical elliptic operators are not appropriate. Their solutions 
do not “see” the lower dimensional sets, and for instance, a bounded harmonic function 
in Rn \ Rd is indistinguishable from a harmonic function in Rn. Over the recent years, 
the authors of the present paper, together with J. Feneuil, M. Engelstein, and other col-
laborators, developed a rather complete elliptic theory on such domains which identifies 
a certain class of degenerate elliptic operators as a proper substitute to standard elliptic 
operators in this setting [7–10,13,16]. It was shown that the general results, such as the 
maximum principle, trace and extension theorems, existence of the harmonic measure 
and Green function, all hold for the operators

L = − div A dist(·, E)d+1−n∇,

where A is the usual elliptic matrix as above and dist(·, E) is the Euclidean distance to 
the boundary. Note that for d = n − 1 these operators coincide with the classical elliptic 
ones.

It turns out, perhaps surprisingly, that the analogue of the emblematic “Laplacian” 
case is not simply Leuc = − div dist(·, E)d+1−n∇. This is because the Euclidean distance 
is not always smooth enough for our initial techniques to be applied directly. So one was 
led to replacing dist(·, E) with the smoother distance function Dα below, which also 
turned to be interesting for other reasons [6]. Eventually, it may be that Leuc can be 
controlled in terms of Lα below, using DKP conditions on dist(·, E)d+1−n, but we did 
not check.

Our favorite degenerate elliptic operator is finally

L = Lα = − div Dd+1−n
α ∇, (1.2)

where α > 0 is a parameter and Dα is the smoother distance function defined by
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Dα(X) = Dα,μ(X) = Rα,μ(X)−1/α, (1.3)

with

Rα,μ(X) =
∫

E

|X − y|−d−αdμ(y), (1.4)

and where μ is any Ahlfors regular (AR for short) measure on E = ∂Ω, i.e., any measure 
that satisfies (1.1). This is the best substitute for the Laplacian that we could find; in 
particular, we have showed that for such an operator the elliptic measure is an A∞ weight 
for any domain with a uniformly rectifiable boundary [13,16].

As we have mentioned above, our free boundary results will hold in the general setting 
of elliptic operators as above. The “direct” results are, by necessity, restricted to operators 
which are morally similar to the Laplacian or, in the case of lower dimensional boundaries, 
to (1.2). In either setting, the resulting class of operators is of the nature of the best 
possible. In fact, it is slightly more general than anything previously considered in this 
context, but morally speaking we impose the “usual” Carleson measure condition on the 
coefficients, whose failure is known to produce abundant counterexamples [24,25], see 
also Remark 3.2. To state this more precisely, we need some definitions.

We shall focus in this paper on so-called weak properties, whose model is always 
the same. We choose some desirable property (either geometric or related to the Green 
function), often stated in terms of some parameters like ε > 0, then consider the set of 
balls B(x, r) for which it fails, and require that this bad set satisfies a Carleson packing 
condition (we will also say that the complement is a Carleson-prevalent set), as follows.

Definition 1.5. Let B be a subset of E × (0, +∞). We say that B satisfies a Carleson
packing condition when there is a constant C ≥ 0 such that for every x ∈ E and r > 0,

∫

y∈E∩B(x,r)

∫

0<t<r

1B(y, t)dμ(y)dt

t
≤ Crd. (1.6)

We say that G ⊂ E × (0, +∞) is a Carleson-prevalent set when E × (0, +∞) \ G satisfies 
a Carleson packing condition.

The term prevalent is new in this context (we think it will help to give a name to the 
good sets too), and has no intended relation with existing uses of prevalence in other 
domains of mathematics. Here we chose an Ahlfors regular measure μ on E, but if we 
use a different one, for instance Hd

|E, we obtain the same notion (but a different Carleson 
constant C).

Given an elliptic operator L = − div A∇ we say that L is sufficiently close locally to 
a constant coefficient elliptic operator, if the following weak Carleson measure condition 
holds. For each choice of constants τ > 0 (small) and K ≥ 1 (large), denote by Gcc(τ, K)
the set of pairs (x, r) ∈ E × (0, +∞) such that there is a constant matrix A0 = A0(x, r)
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such that ∫

X∈WK (x,r)

|A(X) − A0|dX ≤ τrn, (1.7)

where WK(x, r) is a large Whitney region associated to B(x, r), defined by

WK(x, r) =
{

X ∈ Ω ∩ B(x, Kr) ; dist(X, E) ≥ K−1r
}

. (1.8)

Our condition is that

for every choice of τ > 0 and K ≥ 1, Gcc(τ, K) is a Carleson prevalent set (1.9)

(as in Definition 1.5), or in other terms the corresponding bad set Bcc(τ, K) = E ×
(0, +∞) \ Gcc(τ, K) satisfies a Carleson packing condition.

Incidentally, we can assume that A0 is elliptic with the same ellipticity constant as 
the A(X), because if (1.7) holds for any A0, it also holds (with a worse constant) with 
A0 = A(X0), for some X0 ∈ WK chosen by Chebyshev.

The reader might perceive the condition of being “sufficiently close locally to a con-
stant coefficient elliptic operator” as too restrictive. This is a little misleading because 
the constant coefficient operators in questions can change from scale to scale, and in fact 
our condition is (slightly) weaker than any other one previously used in this context. 
In particular, it would be easy to check that this condition is weaker than the standard 
Dahlberg-Kenig-Pipher condition where one requires that A be locally Lipschitz in Ω, 
with

∇A(X) dist(X, E) ∈ L∞(Ω), (1.10)

and that |∇A(X)|2δ(X) satisfy a Carleson measure condition, i.e., that there be a con-
stant CM ≥ 0 such that

∫

Ω∩B(x,r)

|∇A(X)|2 dist(X, E)dX ≤ CM rn−1 (1.11)

for x ∈ E and 0 < r < +∞. As we shall see, we can manage with the weaker condition 
(1.9) because we don’t integrate by parts as usual, and also we don’t aim for very precise 
estimates.

Our preferred geometric condition on E, uniform rectifiability, can also be defined 
using Definition 1.5, via the property called Bilateral Weak Geometric Lemma (BWGL). 
The BWGL is known to imply apparently stronger rectifiability properties, such as the 
existence of Big Pieces of Lipschitz Images of Rd inside of E; we refer to [15] for lots 
of information about uniform rectifiability, which is not the issue here. To define the 
BWGL, we will use the following local version of the Hausdorff distance between two 
sets E, F ⊂ Rn: we set
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dx,r(E, F ) = 1
r

sup
{

dist(y, F ) ; y ∈ E ∩ B(x, r)
}

+ 1
r

sup
{

dist(y, E) ; y ∈ F ∩ B(x, r)
}

(1.12)

for x ∈ Rn and r > 0; when F ∩B(x, r) = ∅, we take sup
{

dist(y, E) ; y ∈ F ∩B(x, r)
}

=
0, and similarly decide that sup

{
dist(y, F ) ; y ∈ E ∩B(x, r)

}
= 0 when E ∩B(x, r) = ∅, 

but we will probably not need to use this convention.

Definition 1.13. Let E be an Ahlfors regular set of dimension d in Rn, where d ∈ (0, n)
is an integer. We say that E is uniformly rectifiable when for every ε > 0, the set Gur(ε)
of pairs (x, r) ∈ E × (0, +∞) such that dx,r(E, P ) ≤ εr for some d-plane P = P (x, r), is 
Carleson-prevalent.

As always with this type of conditions, we allow the Carleson constant for Bur(ε)
to depend on ε in any brutal way, but in the case of Definition 1.13 it turns out that 
we only need a single ε, chosen small enough, depending on n, d, and the AR (Ahlfors 
regularity) constant for E.

Finally, turning to the properties of the Green function, we shall find it more con-
venient to state our results in terms of G∞, the Green function with a pole at infinity. 
We will review the construction in Section 2 (see also [6,10]). Since our approximation 
property appears to be new, to motivate the forthcoming definition, let us first describe 
a situation which we judge perfect, and our conditions will try to measure how far we 
are from this situation.

In the case of Δ (or a constant coefficient operator), the perfect situation is when 
d = n − 1 and E is a d-plane. In this case the harmonic measure ω∞ (with a pole at ∞) 
is a multiple of the Lebesgue measure on E, and the Green function G∞ is a multiple 
of the distance to E. In the case of our favorite operator Lα = − div Dd+1−n

α ∇ from 
(1.2), the perfect situation is when d is an integer, E is a d-plane, and μ is a multiple 
of the Hausdorff measure Hd

|E on E. In this case again the harmonic measure ω∞
L is a 

multiple of Hd
|E and the Green function G∞ is a multiple of the distance to E, which is 

also proportional to each Dβ, β > 0.

Definition 1.14. We say that G∞ is prevalently close to the distance to a d-plane when 
for each choice of ε > 0 and M ≥ 1, the set GGd(ε, M) of pairs (x, r) ∈ E × (0, +∞) such 
that there exists a d-plane P (x, r) and a positive constant c > 0, with

| dist(X, P ) − cG∞(X)| ≤ εr for X ∈ Ω ∩ B(x, Mr), (1.15)

is Carleson-prevalent.
Similarly, given β > 0, we say that G∞ is prevalently close to Dβ when for each choice 

of ε > 0 and M ≥ 1, the set GGDβ
(ε, M) of pairs (x, r) ∈ E × (0, +∞) such that there 

exists a positive constant c > 0, with
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|Dβ − cG∞(X)| ≤ εr for X ∈ Ω ∩ B(x, Mr), (1.16)

is Carleson-prevalent.

Here it is convenient to have a constant c > 0 that we don’t need to compute, especially 
since our function G∞ is only defined modulo a multiplicative constant. The definitions 
are easier to understand when we allow M to be large, but in terms of Carleson-prevalent 
sets, taking M = 1 and compensating with ε would in fact give an equivalent result. The 
main positive result of this paper is as follows.

Theorem 1.17. Assume that Ω ⊂ Rn is a domain with an unbounded d-Ahlfors regular 
boundary E = ∂Ω, d integer. When d = n − 1, assume, in addition, that Ω is 1-sided 
NTA. Let L = − div A∇ be an elliptic operator with bounded measurable coefficients 
when d = n − 1, and more generally, given by

L = − div ADd+1−n
α,μ ∇, 0 < d < n,

where Dα,μ is the smooth distance (1.3) associated to some α > 0 and some AR measure 
μ on E, and A is any elliptic matrix.

If G∞ is prevalently close to the distance to a d-plane, in the sense of Definition 1.14, 
then E is uniformly rectifiable.

Let us assume, in addition, that A is locally close to a constant coefficient operator 
when d = n − 1, that is, (1.7)–(1.9) holds, or, when d < n − 1, that A is locally close to 
the identity matrix, that is, (1.7)–(1.9) holds with A0 = I.

Then, conversely, G∞ is prevalently close to the distance to a d-plane whenever E is 
uniformly rectifiable.

The theorem is a combination of Theorems 3.1, 3.43, and 6.1. As we discussed above, 
in both directions the conditions on the coefficients are of the nature of the best possible. 
The reader could perhaps be surprised that in domains with lower dimensional bound-
aries we require that A is locally close to identity, rather than just a constant coefficient 
operator. This has to do with the underlying “perfect” situation. Indeed, when d = n −1, 
the distance to a flat boundary is an affine function, which furnishes a solution for any 
constant coefficient operator. When d < n − 1, there is a more delicate cancellation at 
place. Even in Rn \ Rd the norm of t (the component of X in Rn−d), is a solution for 
− div |t|d−n+1∇, but not necessarily for operators with a more general, even if constant, 
matrix of coefficients. Similarly, even if E is a hyperplane, the distance to the boundary 
is only a solution for the emblematic operator (1.2). One could maybe reach some more 
general results further generalizing the concept of a distance, but we chose not to pursue 
this direction in the present paper.

Notice that when we prove that G is prevalently close to dist(X, P ), for instance, 
this does not imply that it is Lipschitz, because the constant c in (1.15) may depend on 
B(x, r). For instance, if E is a Lipschitz domain with a corner at 0, we know that G may 
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behave like dist(X, E)α, α 
= 1, near 0. The balls centered at the origin probably lie in 
the complement of the good set GGd(ε, M), but there are many good balls B(y, t) near 
0, where E is flat and (1.15) or (1.16) holds, and for these balls the constants c = c(y, t)
will typically tend to 0 or +∞ as (y, t) tends to (0, 0).

Going further, let us discuss the “weak” nature of the results. The way we formulate 
our theorems, via a weak Carleson packing condition, or one could also say, without 
a precise control of the constants, feels surprising, stronger than expected in the “free 
boundary” direction. This has to do with a self-improvement of scale invariant estimates 
which takes place in uniformly rectifiable sets. Indeed, in the context of uniform rectifi-
ability for AR sets, the Bilateral Weak Geometric Lemma of Definition 1.13 is known to 
be equivalent to stronger and more precise definitions, for instance, the aforementioned 
existence of big pieces of Lipschitz images uniformly at all scales [15]. Similarly, here 
when we say that G∞ is prevalently close to dist(X, P ), we prove that GGD(ε, M) is 
prevalent for each choice of M , ε, but we do not give the rate of convergence of the 
Carleson packing constant for E × (0, +∞) \GGD(ε, M) in terms of ε, cf. [12]. It is worth 
mentioning that a version of such stronger Carleson measure bounds on the Green func-
tion for the Laplacian and more general operators coefficients satisfying the L1 analogue 
of the Carleson measure condition (1.11) appeared “between the lines” of [20], that is, 
could be deduced from their arguments. However, (1.11) and even more so its weak 
analogue treated in this paper was not handled, even though it is an obvious optimal 
condition. This is not a technicality: the integration-by-parts arguments from [20] could 
not be extended to more general operators and in that sense even our “direct” results in 
traditional sets with n − 1 dimensional boundaries are the first ones to treat Carleson 
measure Green function estimates for the optimal class of the operators. Similarly, a 
recent paper of J. Azzam [1], Theorem VI, did exactly this: characterize uniformly recti-
fiable boundaries by the regularity of the Green function for the Laplace operator. Our 
operators are more general (he only treats the Laplacian), his condition on the derivative 
of the Green function is stronger (more in line with [12,20] than with the present paper), 
but his domains don’t need to be Ahlfors regular, and the techniques are different and 
independent. We find the two approaches nicely complementing each other, and it is 
curious that they appeared independently roughly at the same time.

For now we have only discussed approximation of the Green function by the distance 
to a plane, that is, (1.15), and only in integer dimensions. The second main question 
in the present paper concerns the approximation by a distance to the initial boundary 
E, as in (1.16). Despite an apparent similarity to (1.15), it is actually more intricate at 
least in one direction, for even the fact that G∞ is on the spot equal to a multiple of 
the distance to E, Dβ, might or might not ensure that the boundary is nice. Even the 
fact that the dimension is integer has to be proved and, in some circumstances, can fail. 
For brevity, we will formulate all results in the context of operators which are locally 
close to the constant coefficient ones, even though some results are still true in the full 
generality of all elliptic operators – see Section 7. We start with the classical case.
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Theorem 1.18. Assume that Ω ⊂ Rn is a domain with an unbounded d-Ahlfors regular 
boundary E = ∂Ω, n − 2 < d < n. When d ≥ n − 1, assume, in addition, that Ω is 1-
sided NTA. Let L = − div A∇ be an elliptic operator with bounded measurable coefficients 
which are locally close to constant coefficient matrices in the sense of (1.7)–(1.9).

If E is uniformly rectifiable, then for every choice of β > 0 and any AR measure μ
on E, G is prevalently close to Dβ,μ.

Conversely, if the Green function G∞ is prevalently close to Dα,μ for some α > 0 and 
some AR measure μ of dimension d on E then d is integer and E is uniformly rectifiable.

This is a combination of Theorems 3.1, 7.1, and Proposition 7.11, the latter being 
valid for all elliptic operators.

The situation for domains with lower dimensional boundaries is trickier, due to the 
aforementioned rather mysterious fact that for a certain very special choice of coefficients 
the situation could be “perfect” in terms of PDEs without any regularity or flatness. This 
is one of the main discoveries in [6], and since that paper, we refer to it as a “magic α” 
case. Indeed, if E is any unbounded d-Ahlfors regular set and α = n − d − 2, Rα is 
just the convolution of μ with a multiple of the Laplace’s fundamental solution in Rn, 
so it is harmonic, and a direct computation shows that LαDα,μ = 0 in Ω for Lα given 
by (1.2). Hence, by uniqueness, Dα,μ is a multiple of G∞, and C−1μ ≤ ω∞ ≤ Cμ. In 
fact, if d is an integer, and E is rectifiable (not necessarily uniformly rectifiable) with 
μ = Hd

|E , then the harmonic measure ω∞ with pole at infinity is proportional to μ. In all 
the other cases, we only have that C−1μ ≤ ω∞ ≤ Cμ, essentially because we cannot say 
that ∂ω∞

∂μ is the normal derivative of G∞ when E is unrectifiable, but we can argue that 
getting the measure μ point blank makes less sense in this case, because the density of μ
does not exist. Thus, for such a “magic α” the elliptic measure is absolutely continuous 
with respect to the Hausdorff measure, with a density given by an A∞ weight, on any 
Ahlfors regular set. Notice that we need d < n − 2 for this to happen as α > 0, but 
we do not need d to be an integer, and certainly we do not need E to be uniformly 
rectifiable. This is a strangely degenerate case which does not resonate with anything we 
know about the standard domains with n − 1 dimensional boundaries, but it also turns 
out to be immensely useful as one basically gets to use the distance Dα as the Green 
function, getting the best of both worlds: a solution to a PDE and an explicit, easy-to 
handle formula. This is a rare luxury as typically we do not know explicitly the Green 
function – see, e.g., [16] for some applications. However, in the context of this paper this 
case is certainly not amenable to any free boundary results akin to Theorem 1.18. We 
hope, however, that this is an isolated miraculous cancellation and generally the fact 
that G∞ = CDα,μ implies that the set is flat and μ is a multiple of a flat measure. Not 
to extend the introduction any further, let us refer the reader to Section 8 for a detailed 
statement of this condition, which we will denote Υflat.

Theorem 1.19. Assume that Ω ⊂ Rn is a domain with an unbounded d-Ahlfors regular 
boundary E = ∂Ω. When d ≥ n − 1, assume, in addition, that Ω is 1-sided NTA. Let
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L = − div ADd+1−n
α,μ ∇, 0 < d < n,

where Dα,μ is the smooth distance (1.3) associated to some α > 0 and some AR measure 
μ on E, and A is any elliptic matrix with bounded measurable coefficients which are 
locally close to the identity in the sense that (1.7)–(1.9) holds with A0 = I.

If E is uniformly rectifiable, then for every choice of β > 0 and any AR measure ν
on E (possibly different from μ), G is prevalently close to Dβ,ν.

Conversely, if the condition Υflat(d, α, Δ) of Definition 8.1 holds and the Green func-
tion G∞ is prevalently close to Dα,μ then d is integer and E is uniformly rectifiable.

This is a combination of Theorems 3.43 and Theorem 8.8. One can find more related 
results and an extended discussion of the condition Υflat in Section 8. For now, let us 
wrap up the introduction and send an interested reader to the body of the paper.

The authors wish to thank the referee for a careful reading and many useful sugges-
tions.

2. The Green function at infinity and the basic result about limits

We first remind the reader of how the Green function G∞ is constructed. We have 
two main cases in mind, which we rapidly describe now. Let us start with the geometric 
assumptions.

Throughout the paper, Ω is a domain in Rn such that E = ∂Ω is an unbounded 
Ahlfors regular set of dimension d ∈ (0, n), so that (1.1) is satisfied. There are natural 
counterparts of our results for bounded domains, but for simplicity of notation we will 
concentrate on the unbounded case.

When d ≥ n − 1, we also demand that Ω is a uniform (aka a one-sided NTA) domain, 
i.e., that

Ω has interior corkscrew points and Harnack chains. (2.1)

Let us say what this means. First, we require the existence of corkscrew points: for x ∈ E

and r > 0, we demand the existence of a point A = Ax,r such that

A ∈ Ω ∩ B(x, r) and dist(A, E) ≥ C−1r (2.2)

(we shall call A a corkscrew point for B(x, r)).
Secondly, we require that for each M ≥ 1, we can find an integer N = N(M)

such that when X, Y ∈ Ω are two points with the property that |X − Y | ≤
M min( dist(X, E), dist(Y, E)), we can find a (Harnack) chain of balls B1, . . . , BN such 
that B1 contains X, BN contains Y , each Bi, 2 ≤ i ≤ N , meets Bi−1, and the 2Bi are 
all contained in Ω. Let us not play useless games here; we also require that all the Bi of 
the chain have a radius at least C−1 min( dist(X, E), dist(Y, E)).
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Another way to formulate the Harnack chain condition would be to require 
the existence of a path in Ω that goes from X to Y , stays at distance at least 
C−1 min( dist(X, E), dist(Y, E)) from E, and has a length at most C|X − Y |.

We shall refer to C in (1.1) as an AR constant of E, and to C and M is the corkscrew 
and Harnack chain conditions above as 1-sided NTA constants.

A uniform domain with an Ahlfors regular boundary is sometimes referred to as a 
1-sided chord-arc domain, but we will rarely use this terminology.

The interior corkscrew and Harnack chain conditions are merely quantitative openness 
and path connectedness of the domain Ω. They guarantee a reasonable behavior of the 
Green function at the level of fundamental estimates and so we prefer to assume that the 
domains are uniform when d ≥ n −1 throughout the paper. When d < n −1, it turns out 
that interior corkscrew and Harnack chain conditions are automatically satisfied for any 
domain with an Ahlfors regular boundary E = ∂Ω of dimension d, essentially because E
is so thin. This is checked in [8].

Let us turn to the elliptic operators considered in the present paper. We split into two 
cases, essentially corresponding to the dimension of the boundary of the set, although 
they are not completely exclusive.

In Case 1, which we will also call the classical case, we are given a domain Ω with 
E = ∂Ω, an unbounded Ahlfors regular set E of dimension d, with n − 2 < d < n. 
When d ≥ n − 1, we assume, in addition, that the domain is uniform, i.e., the interior 
corkscrew and Harnack chain conditions are satisfied. We consider an elliptic divergence 
form operator

L = − div A∇, (2.3)

where the matrix A of coefficients is measurable and satisfies the usual ellipticity prop-
erties

|〈A(X)ξ, ζ〉| ≤ Ce|ξ||η| for X ∈ Ω, ξ ∈ Rn, and ζ ∈ Rn, (2.4)
〈A(X)ξ, ξ〉 ≥ C−1

e |ξ|2 for X ∈ Ω and ξ ∈ Rn, (2.5)

and some constant Ce ≥ 1.
In Case 2, which is not exclusive of Case 1, Ω is still a domain in Rn such that 

E = ∂Ω is an unbounded Ahlfors regular of dimension d, but now we allow any dimension 
d ∈ (0, n). When d ≥ n − 1, we require that Ω is uniform, i.e., that (2.1) is satisfied, as 
before. And now we consider our favorite operator

L = Lα = − div Dd+1−n
α,μ ∇ (2.6)

of (1.1), where α > 0 and Dα,μ is given by (1.3) and (1.4), for some AR measure μ on 
E, or its generalization

L = − div A Dd+1−n
α,μ ∇, (2.7)
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where A satisfies (2.4)–(2.5). Clearly, at such a level of generality we could as well say 
L = − div A distd+1−n(·, E)∇, but writing L as above will occasionally be somewhat 
more convenient. Clearly, so far Case 1 and Case 2 coincide when d = n − 1 and in fact, 
we could further generalize Case 2 to cover Case 1 completely, but we prefer to keep them 
separate for reasons that will become evident a little later: the additional assumptions 
down the road will start to deviate.

Let us review the definition of the Green function with a pole at ∞, and then state 
the main result about limits that will be behind all our proofs by compactness.

First recall that in both cases, we can associate to Ω and L a collection of probability 
measures ωX = ωX

L , referred to as the harmonic (or elliptic) measure with pole at X ∈ Ω, 
and that have standard properties (such as doubling) that will be recalled when we need 
them. There are quite a few papers listing these fundamental estimates in Case 1, at 
least when d = n − 1 (and perhaps more generally). Essentially, one can say that the 
program outlined in [22] for 2-sided NTA domains still applies. In Case 2, this is done 
in [8] when d < n − 1. Finally, both cases for all relevant dimensions are covered in 
[10]. In Section 3 of [10] it is explained how the present assumptions are covered by the 
hypotheses of [10]. The setting of [10] is much more general than what we need here, 
but it is convenient to have all the relevant references in one place and so we will mainly 
use [10] for fundamental elliptic theory: Caccioppoli, De Giorgi-Nash-Moser, definition 
of elliptic measure, Green functions, etc. In particular, the reader may find in the same 
source a construction of the Green function GX for L, at the pole X ∈ Ω. Again these 
functions enjoy the usual properties of Green functions in NTA domains, and we will 
recall these properties (and those of solutions of Lu = 0) when we need them.

Next we say a few words about the Green function G∞ with pole at ∞, which we 
construct as a limit of functions GX . We will also use the opportunity to recall some 
notation and estimates that will be used later.

First of all, we define a weight w on Ω by

w(X) = 1 in Case 1 and w(X) = dist(X, E)d+1−n in Case 2. (2.8)

Then we let W = W (Ω) denote the Hilbert space of functions u ∈ L1
loc(Ω) whose 

derivative (in the sense of distributions) lies in L2(Ω, w(X)dX); thus

||u||2W =
∫

Ω

|∇u(X)|2w(X)dX (2.9)

is finite. We also need local versions Wr(B) of W , which are defined in Section 8 of [8]
or Section 10 of [10], as follows. Given an open set H ′ ⊂ Rn and H := H ′ ∩ Ω, we let

Wr(H) := {u ∈ L1
loc(H ∩ Ω, m) : ϕu ∈ W for all ϕ ∈ C∞

0 (H ′)}.

It is natural to call this space Wr(H), as opposed to Wr(H ′), because it does not depend 
on the part of H ′ that lives away from Ω. It does or does not carry information about 
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the behavior of u near the boundary depending on whether H is properly contained in 
the domain Ω. Clearly, ∇u ∈ L2(B, w(X)dX) when u ∈ Wr(B). The Green function GX

with pole at X ∈ Ω lies in Wr(B) for any ball B ⊂ Rn such that X /∈ 2B (see Lemma 
10.2 in [8] or Lemma 14.60 in [10]).

We say that the function u is a weak solution to Lu = − div A∇u = 0 in Ω when it 
lies in all the local spaces Wr(B) and for every ϕ ∈ C∞

0 (Ω)
∫

Ω

A∇u · ∇ϕ = 0. (2.10)

Here, A can be as in (2.4)–(2.5) in Case 1 or (2.6)–(2.7) in Case 2.
We are now ready to describe how we construct the Green function G∞ with pole at 

∞. Fix any ball B0 = B(x0, r0) centered on E, choose a corkscrew point A0 for B0 (see 
(2.2)), take any sequence {Xk} in Ω \ B0 such that limk→+∞ |Xk| = +∞, and consider 
the functions

gk(Y ) = GXk (Y )
GXk (A0) . (2.11)

Notice that gk is nonnegative, L-harmonic on Ω ∩B(x0, |Xk −x0|/2), and gk ∈ Wr(B) for 
every ball B with constants that are uniform in k, as soon as k is so large that Xk /∈ 2B. 
It also has a vanishing trace at the boundary, by definition of any GX .

By Harnack’s principle and the normalization gk(A0) = 1, we see that for each com-
pact set K ⊂ Ω, there is a constant CK ≥ 1 such that

C−1
K ≤ gk(Y ) ≤ CK for Y ∈ K, (2.12)

as soon as k is large enough (depending on K), so that Xk no longer lies in the union of 
a (finite) collection of Harnack chains that connect A0 to any point of K.

Similar estimates hold near E, i.e., on Ω ∩ B, where B is any ball centered on x0 ∈ E. 
Indeed, the functions gk are Hölder continuous at the boundary. With this in mind, let 
us extend gk by zero to the rest of Rn. We use Lemma 11.50 in [8] or Lemma 15.14 in 
[10], which says that gk(Y ) ≤ Cgk(AB) for Y ∈ B (and k large enough), where AB is a 
corkscrew point for B. But gk(AB) is controlled by (2.12), so we get that for each large 
ball B centered at x0, there is a constant CB such that for k large,

gk(Y ) ≤ CB for Y ∈ B. (2.13)

Then we can use the Caccioppoli estimate at the boundary (Lemma 8.47 in [8] or Lemma 
11.15 in [10]), and get that for B as above (and k large)

∫
|∇gk|2w(X)dX ≤ C(B)

∫
|gk|2w(X)dX ≤ C(B). (2.14)
B∩Ω CB∩Ω
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Here, as usual the fact that gk vanishes on E and gk ∈ Wr(B) for any given B (and for k
large) was used to check the assumptions. Finally, we can also use the Hölder continuity 
at the boundary (Lemma 8.106 in [8] or Theorem 1.6 in [10]) to show that

gk is Hölder continuous on B, with exponent β and constant C(B). (2.15)

Of course the important point for the moment is that none of the constants β, CB, and 
C(B) depends on k, even though they are only valid for k large, depending on B.

Return to the gk. Because of (2.15) it is easy to extract a subsequence so that {gk}
converges uniformly on compact subsets of Rn to a limit G∞. In fact, using again the 
Caccioppoli estimate at the boundary and passing to a subsequence, we also get that 
for each ball B, ∇gk converges weakly in L2(Ω ∩ B, w) to ∇G∞, and then that G∞

is a (weak) solution of L (we will showcase the details in similar, but more delicate, 
arguments soon). Since gk is Hölder continuous and vanishing on the boundary, G∞ also 
vanishes at the boundary. And finally G∞ ∈ Wr(B) for every B (using the definition of 
Wr, weak convergence, and the estimates above).

Now, G∞ is also unique, modulo a multiplicative constant. That is, if G is positive on 
Ω, lies in all the spaces Wr(B), it is L-harmonic on Ω, and has a vanishing trace on E
(the latter is well defined when G ∈ Wr(B)), then G = cG∞ for some c > 0. This follows 
from the comparison principle (Theorem 11.146 in [8] or Theorem 1.16 in [10]), plus 
some algebraic manipulations on the oscillation of G/G∞ (similar to what one does for 
the Hölder continuity at the boundary) that the reader may find in [6], Corollary 6.4 and 
Lemma 6.5. This procedure coherently and uniquely defines G∞ (modulo a multiplicative 
constant), which we will refer to as the Green function with the pole at infinity.

We are ready for our main result about limits. We assume that we have a sequence 
of open sets Ωk, bounded by Ahlfors regular sets Ek, and operators Lk, that all satisfy 
the assumptions of this paper (for either Case 1 or Case 2), with uniform estimates.

We assume (for convenience) that all the Ek contain the origin, and that {Ek} con-
verges to a closed set E∞ and {Ωk} converges to an open set Ω∞, in the sense that with 
the notation of (1.12),

lim
k→+∞

dx,r(E∞, Ek) = 0 and lim
k→+∞

dx,r(Ω∞, Ωk) = 0 (2.16)

for every choice of x ∈ Rn and r > 0 (we may also restrict to x ∈ E∞; this would be 
equivalent).

We shall check soon that E∞ is the boundary of Ω∞, E∞ is Ahlfors regular of di-
mension d, and Ω∞ satisfies our one-sided NTA condition (2.1), but let us continue our 
description.

We also need the operators Lk = − div Ak∇ to converge to a limit L∞ = − div A∞∇
(and similarly for the operators of Case 2), and we require that

lim ||Ak − A∞||L1(B) = 0 for every ball B such that 2B ⊂ Ω∞. (2.17)

k→+∞



16 G. David, S. Mayboroda / Advances in Mathematics 410 (2022) 108717
Our proof would be a little simpler under the stronger local L∞ convergence of coeffi-
cients, namely when

lim
k→+∞

||Ak − A∞||L∞(B) = 0 for every ball B such that 2B ⊂ Ω∞, (2.18)

which would probably be more reasonable if we wanted better quantitative results, but 
the fact that we are only interested in weak results allows us to use the weaker condition 
(2.17).

Finally we choose a corkscrew point A0 (relative to Ω∞) for some ball B0 centered on 
E∞, which will be used to normalize the Green functions.

The next Theorem shows that with the assumptions above, the functions G∞
k asso-

ciated to the Ωk and the Lk and normalized by G∞
k (A0) = 1 converge to the Green 

functions G∞
∞ associated to Ω∞ and L∞ and normalized by G∞

∞(A0) = 1.

Theorem 2.19. Let the Ωk be domains in Rn with unbounded d-dimensional Ahlfors regu-
lar boundaries Ek = ∂Ωk, d ∈ (0, n), corresponding to AR measures μk, and, in addition, 
satisfying the interior Harnack chain and corkscrew conditions (2.1) when d ≥ n − 1, 
with all AR and 1-sided NTA constants uniform in k. Assume that the origin belongs to 
all the Ek, that the domains Ek converge to a closed set E∞, and that the Ωk converge 
to an open set Ω∞ in the sense of (1.2). Then E∞ is the boundary of Ω∞, E∞ is Ahlfors 
regular of dimension d, and Ω∞ is uniform, i.e., satisfies (2.1). If μk is an AR measure 
on Ek (with uniform bounds) and μ is any weak-* limit of the μk, then μ is an AR 
measure on E∞.

Assume furthermore that either

Lk = − div Ak∇, L∞ = − div A∞∇, n − 2 < d < n, (2.20)

or

Lk = − div AkDd+1−n
α,μk

∇, L∞ = − div A∞Dd+1−n
α,μ ∇, 0 < d < n (2.21)

(with μk ⇀ μ as above), in both cases subject to (2.17).
Then the functions G∞

k associated to the Ωk and the Lk and normalized by G∞
k (A0) =

1 converge, uniformly on every compact subset of Rn, and in W 1,2
loc (Ω∞), to the Green 

functions G∞
∞ associated to Ω∞ and L∞ and normalized by G∞

∞(A0) = 1.

Here and everywhere, we say that the sequence of Radon measures μk on Rn weak-* 
converges to some Radon measure μ, and write μk ⇀ μ, if

∫
f dμk →

∫
f dμ for any f ∈ Cc(Rn).

Notice that there always exist weak-* limits μ, as in the statement.
As usual, (2.20) and (2.21) will be referred to as Case 1 and Case 2.
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Remark 2.22. Formally speaking, the Green functions are only defined in their corre-
sponding domains, but using their Hölder continuity inside and at the boundary, we 
silently extend them by zero to the entire Rn, and hence we can justifiably talk about 
the uniform convergence on compacta in Rn.

Remark 2.23. The same statement also holds if we replace the Green functions G∞
k with 

Green functions Gk = ckGYk

k computed at poles Yk and normalized so that Gk(A0) = 1, 
if we also assume that limk→+∞ |Yk| = +∞. We will track this case too along the proof.

Proof of Theorem 2.19. Let us first check that (Ω∞, E∞) satisfies our desired geometric 
properties. We shall only highlight some elements of the proof, as the reader can consult 
[19] for the details in the case of d = n − 1 which transfer virtually verbatim to our more 
general situation.

The fact that ∂Ω∞ = E∞ will be easy. Maybe we should notice first that (2.16) also 
implies that dx,r(Rn \ Ωk, Rn \ Ω∞) also tends to 0 for all pairs (x, r): for instance, if 
z ∈ Rn \ Ωk, it cannot be far from Rn \ Ω∞ because otherwise it lies in the middle of 
Ω∞, hence also of Ωk). Next, if z ∈ ∂Ω∞, then for each ε > 0 the ball B(z, ε) meets 
both Ω∞ and Rn \ Ω∞. Then for k large, B(z, ε) also meets Ωk and Rn \ Ωk, hence also 
Ek. Now {Ek} converges to E∞, and E∞ is closed; it follows that z ∈ E∞. Finally, let 
z ∈ E∞ be given; for each ε > 0 we can find points zk ∈ Ek ∩ B(z, ε) for k large, hence 
also points xk ∈ Ωk ∩B(z, ε) and yk ∈ B(z, ε) \Ωk, and by the extension of (2.16), points 
x′

k ∈ Ω∞ ∩ B(z, 2ε) and y′
k ∈ B(z, 2ε) \ Ω∞. So z ∈ ∂Ω∞ and ∂Ω∞ = E∞.

From here, we can show that E∞ supports a measure which is a weak limit of μk

and which is Ahlfors regular too. Moreover, (2.1) also holds for Ω∞. For instance, if 
X, Y ∈ Ω∞ are given, then for k large we can find Xk, Yk ∈ Ωk, as close as we want to 
X and Y , and a Harnack chain for Xk and Yk in Ωk will also work, with very minor 
modifications, for X and Y in Ω∞. Again, the reader can consult [19] for more details. 
For us, the main point of this verification was that we can apply the results of [22,8,10]
to L∞ and Ω∞. In particular, we can talk about G∞

∞ and use the above uniqueness result 
for G∞

∞.
We are ready for the PDE part of the argument. Set Gk = G∞

k for all k to save 
notation. We can run the same limiting argument as the one which allowed us to define 
G∞ on a given domain. Indeed, (2.13) still holds in any ball B ⊂ Rn (not necessarily 
contained in Ω∞) with a constant uniform in k as long as Gk is extended by zero to the 
complement of Ωk. (If we take a limit of Gk = ckGYk

k as in Remark 2.23 instead, we also 
have to make sure that k is large enough for Yk to stay away from B, but the constants 
are still uniform in k). Furthermore, the analogue of (2.14) holds:

∫
|∇Gk|2wk(X)dX ≤ C(B)

∫
|Gk|2wk(X)dX ≤ C(B), (2.24)
B∩Ωk CB∩Ωk
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with uniform constants, which again yields (2.15). Here, wk is as in (2.8). Thus, much as 
before, we can extract a subsequence which converges uniformly on compacta in Rn to 
some G∞, continuous and equal to zero on the complement of Ω∞, and such that ∇Gk

converges weakly to ∇G∞ in L2
loc(Ω∞) (notice that the weights are irrelevant when we 

stay away from the boundary). Eventually, we will prove the strong convergence of Gk

in W 1,2
loc (Ω∞), but for now let us continue.

The function G∞ is in Wr(B) for any ball B ⊂ Rn. Indeed, it is sufficient to consider 
B centered on E∞. For a single Gk, (2.24) holds with uniform in k constants. Then we 
can look at the contribution to (2.24) of any fixed compact subset H of Ω∞ ∩ B, let k
tend to +∞ in (2.24), and get that

∫

H

|∇G∞|2w∞(X)dX ≤ C(B), (2.25)

for instance by Fatou, or the weak convergence in W 1,2
loc (Ω∞). Then we use the fact that 

C(B) does not depend on H, take a supremum, and get that

∫

Ω∞∩B

|∇G∞|2w∞(X)dX ≤ C(B). (2.26)

This (together with the local Hölder continuity of G and the local integrability of the 
weight w∞) is actually stronger than the fact that G ∈ Wr(B) for every ball, which 
requires that ϕG lies in the Hilbert space W of (2.9) for every ϕ ∈ C∞

0 (see the beginning 
of Section 8 in [8]).

We also need to show that G is a weak solution of L∞G = 0. In Case 1, we write ∫
Ω A∞∇G∞ · ∇ϕ as

∫
A∞(∇G∞ − ∇Gk) · ∇ϕ +

∫
(A∞ − Ak)∇Gk · ∇ϕ +

∫
Ak∇Gk · ∇ϕ (2.27)

for every ϕ ∈ C∞
0 (Ω∞) and any k such that Ωk contains the support of ϕ. The first 

integral converges to zero by the weak convergence of ∇Gk in L2
loc(Ω∞), the second one 

is bounded by sup |∇ϕ| 
∫

supp ϕ
|A∞ −Ak||∇Gk|, and hence, it converges to zero by (2.17)

and (2.24), and the last one is zero because Gk is a solution to Lk. Hence, G∞ is a 
solution to L∞, as desired.

A similar argument also handles Case 2. Indeed, we can write (2.27) with A∞Dd+1−n
α,μ

in place of A∞ and AkDd+1−n
α,μk

in place of Ak. The weights are harmless since we are 
away from the boundary, we only have to show that A∞Dd+1−n

α,μk
converge to AkDd+1−n

α,μ

to handle the analogue of the second term on the right-hand side of (2.27). However, 
Dd+1−n

α,μk
converge to Dd+1−n

α,μ uniformly on any compact set in Ω∞. Indeed, on any set 
away from the boundary it is sufficient to show that Rα,μk

converge to Rα,μ (see (1.4)) 
which follows from the weak-* convergence of μk to μ and the Ahlfors regularity of the 
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measures μk and μ (the latter allowing us to restrict attention to a compactly supported 
approximation of |X − y|−d−α). Hence, writing

A∞Dd+1−n
α,μ − AkDd+1−n

α,μk
= (A∞ − Ak)Dd+1−n

α,μk
+ A∞(Dd+1−n

α,μ − Dd+1−n
α,μk

), (2.28)

we see that (2.17) holds with A∞Dd+1−n
α,μ in place of A∞ and AkDd+1−n

α,μk
in place of Ak.

So G is a solution for L∞ that vanishes on E∞, and it lies in the correct spaces Wr(B). 
Since Ω∞ and A∞ satisfy the same assumptions as the Ωk and Ak, we can apply the 
result of uniqueness for the Green function, and we find out that G is a Green function 
for L∞. The normalization G(A0) is correct too, since Gk(A0) = 1 by construction.

We are almost finished now. We started from a sequence {Gk} = {G∞
k }, then extracted 

a subsequence so that, in particular, G∞
k converges to some limit G, and then proved 

that G is the desired Green function. The same thing would happen if we started from 
any other subsequence, and we would always get the same limit. Since we can always 
extract convergent subsequences, this means that the limit existed already for our initial 
sequence, and is the desired Green function.

It remains only to show that Gk converges (strongly) in W 1,2
loc (Ω∞).

Lemma 2.29. Keep the notations and assumptions of Theorem 2.19. Then for each com-
pact subset K of Ω∞,

lim
k→+∞

∫

K

|∇Gk − ∇G∞|2 = 0. (2.30)

We do not need to worry about putting our weight w(X) in the integral or not, because 
it is bounded from above and below on any compact subset of Ω. Similarly, as long as 
we stay in a compact subset K of Ω∞, our degenerate elliptic operators coincide on K
with multiples of a standard elliptic operator, with bounds on the ellipticity that depend 
only on K and coefficients that in any case satisfy (2.17) – see the discussion near (2.28). 
That is, Case 1 and Case 2 are identical as far as the estimates strictly inside the domain 
are concerned, and we will treat them as such.

Proof of Lemma 2.29. Of course it is enough to prove (2.30) when K is the closure of a 
ball B = B(x, r) such that 4B ⊂ Ω∞. The functions Gk and G are bounded in W 1,2(3B)
uniformly in k (for k sufficiently large) by a constant which we will denote by C(B) (see, 
in particular, (2.24) and (2.26).

Let us show that {Gk} is a Cauchy sequence in W 1,2(B). For this we fix k and l large, 
and we want to estimate ∇(Gk − Gl). We will introduce an intermediate function Ukl, 
which coincides with Gl on the sphere Sρ = ∂Bρ = ∂B(x, ρ) for some ρ ∈ (r, 2r) but 
satisfies the same equation LkUkl = 0 as Gk in Bρ.

First we claim that for almost every radius ρ ∈ (r, 2r), the restriction gk of Gk to 
Sρ = ∂B(x, ρ) lies in the space W 1,2(Sρ, dσ) of functions of L2(Sρ, dσ), which have a 
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distribution gradient ∇T gk in L2(Sρ, dσ), and in addition, that the gradient ∇T gk of 
gk is given, almost everywhere on Sρ, by the restriction of ∇Gk to Sρ. Here σ denotes 
the surface measure on σ, and before we start we know that the restriction of ∇Gk is 
defined σ-almost-everywhere on almost every Sρ by Fubini. There is no real doubt as to 
what we mean by restriction, because Gk is Hölder continuous on 2B, but in general we 
could use Fubini to say that gk is defined almost-everywhere on almost every sphere Sρ, 
by Fubini.

The claim is not hard. We can use spherical coordinates to reduce matters to the case 
of a function in W 1,2(R) for some parallelepiped R, and use the classical fact that then 
the restriction to almost every hyperplane P parallel to the axes lies in W 1,2(P ∩ R), 
with partial derivatives given by the restriction to P of the partial derivatives of the 
function. So we skip the details, but refer to the proof of Corollary 14.28 in [5] for a 
similar computation. We choose ρ ∈ (r, 2r) so that in addition to the property above 
and its analogue for the restriction gl of Gl to Sρ, we have that

∫

Sρ

(|∇T gk|2 + |∇T gl|2)dσ ≤
∫

Sρ

(|∇Gk|2 + |∇Gl|2)dσ

≤ Cr−1
∫

2B

|∇Gk|2 + |∇Gl|2 ≤ C(B).
(2.31)

See the beginning of the proof of the Lemma where we discuss the uniform bound C(B)
and recall that while we do not care how C(B) depends on B, it does not depend on k
or l.

Going further, denote by Wρ = Ẇ 1,2(Bρ) the space of functions F ∈ L2(Bρ), with 

∇F ∈ L2(Bρ), equipped with the homogeneous norm ||F ||ρ =
( ∫

Bρ
|∇F |2

)1/2 for F ∈
Wρ. We also use the (homogeneous) space Hρ = Ḣ1/2(Sρ) of functions f ∈ L2(Sρ, dσ)
which have half a derivative in L2(Sρ), once again, equipped with the corresponding 
homogeneous norm. We need the following classical facts about Hρ. First, every F ∈ Wρ

has a trace Tr(F ) in Hρ, with ||Tr(F )||Hρ
≤ C||F ||ρ. In the other direction, every f ∈ Hρ

has an extension F ∈ Wρ, with ||F ||ρ ≤ C||f ||Hρ
and Tr(F ) = f . Using these results 

and the Lax-Milgram’s theorem, we know that for each elliptic operator L = − div A∇, 
each f ∈ Hρ has a unique L-harmonic extension F to Bρ, i.e., a function F ∈ Wρ such 
that LF = 0 (weakly as in (2.10)) and Tr(F ) = f . In addition, ||F ||ρ ≤ C||f ||Hρ

(where 
now C depends also on r and the ellipticity constants for A).

Interpolating between L2(Sρ) and the space of functions with tangential derivatives 
in L2(Sρ), we deduce that

||f ||2Hρ
≤ C||f ||L2(Sρ)||∇T f ||L2(Sρ). (2.32)

This is a rather simple result of interpolation between Sobolev spaces, but since we are 
on a ball, we can provide an even more direct argument. Because we are working with a 



G. David, S. Mayboroda / Advances in Mathematics 410 (2022) 108717 21
ball, we can also give a description of Hρ and its norm in terms of spherical harmonics. If 
f =

∑
j fj is the decomposition of f into spherical harmonics, where fj is the part that 

comes from harmonics of degree j, (and we do not need to further decompose fj into 
polynomials), we know that ||f ||2L2(Sρ) =

∑
j ||fj ||22, while ||∇T f ||2L2(Sρ) = C

∑
j j2||fj ||22, 

and the Hρ-norm of f is given by ||f‖2
Hρ

=
∑

j j||fj ||22. Again, we do not need to know 
how the constants depend on ρ, as long as they are uniform in ρ ∈ (r, 2r). Thus by 
Cauchy-Schwarz, (2.32) holds.

Let us apply this to the operator Lk and the restriction gl of Gl to Sρ; we obtain a 
function Ukl ∈ Wρ such that

LkUkl = 0 on Bρ, Tr(Ukl) = gl, (2.33)

and

||Ukl||ρ ≤ C||gl||Hρ
≤ C||∇Gl||L2(Sρ) ≤ C(B) (2.34)

because (2.32) holds, Gl is continuous and bounded on 2B, hence ||gl||L2(Sρ) ≤ C, and 
then by definition of ρ and (2.31). We said that gl is the restriction of Gl to Sρ, and this 
makes sense because Gk is continuous, but it is also the trace of G, in the sense of the 
operator above (recall that Gl ∈ Wρ), and the same is true for gk.

Then Ukl − Gk is Lk-harmonic, lies in the space W 1,2(B), and the trace of Ukl is 
f = gl − gk. Hence,

||Ukl − Gk||ρ ≤ C||f ||Hρ
≤ C||f ||1/2

L2(Sρ) ||∇T (gl − gk)||1/2
L2(Sρ)

≤ C||Gl − Gk||1/2
L∞(2B) ||∇T (gl − gk)||1/2

L2(Sρ) ≤ C||Gl − Gk||1/2
L∞(2B) (2.35)

as in (2.34), (2.32). We used the fact that Gl − Gk is continuous on 2B, so ||f ||L2(Sρ) ≤
C||Gl − Gk||L∞(2B), and then (2.31). This will be sufficient to ensure that ||Ukl − Gk||ρ
tends to zero since ||Gl − Gk||L∞(2B) tends to 0: Gk tends to G∞ uniformly on compact 
subsets of Ω∞.

We now take care of ||Gl − Ukl||ρ, with an argument that comes from the calculus of 
variations, but which we had to modify because maybe the Lk are not symmetric and 
the solutions of LkUkl = 0 do not minimize an energy. We first observe that the trace 
of Gl − Ukl on Sρ vanishes, by definition of U and because the trace of Gl is gl. Now we 
claim that

∫

Bρ

〈Al∇Gl, ∇(Gl − Ukl)〉 = 0. (2.36)

If Gl − Ukl were a test function with compact support in Bρ, this would just be the 
definition that Gl is a weak solution of Ll, as in (2.10). The fact that (2.36) also holds 
now follows from the fact that the test functions with compact support in Bρ are dense 
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in the subspace Wρ,0 ⊂ Wρ of functions with a vanishing trace. The same reasoning also 
yields that

∫

Bρ

〈Ak∇Ukl, ∇(Gl − Ukl)〉 = 0, (2.37)

because LkUkl = 0 weakly in Bρ. Now

∫

Bρ

|∇(Gl − Ukl)|2 ≤ C

∫

Bρ

〈Ak∇(Gl − Ukl), ∇(Gl − Ukl)〉

= C

∫

Bρ

〈Ak∇Gl, ∇(Gl − Ukl)〉 = C

∫

Bρ

〈(Ak − Al)∇Gl, ∇(Gl − Ukl)〉 (2.38)

because Ak is elliptic, and then by (2.37) and (2.36). We apply Cauchy-Schwarz, simplify, 
and get that

||Gl − Ukl||ρ ≤ C
{ ∫

Bρ

|Ak − Al|2|∇Gl|2
}1/2

. (2.39)

If we had (2.18), we could conclude that the expression above tends to zero simply 
pulling out the L∞(B) norm of Ak − Al and using that Gl is uniformly bounded in 
W 1,2(B).

Under the weaker assumption (2.17), we use the reverse Lp inequality for the gradients 
of solutions. Indeed, there exists p > 2, that depends on n and the ellipticity constants 
for the Ll, such that

{ ∫

Bρ

|∇Gl|p
}2/p

≤
∫

2B

|∇Gl|2 ≤ C(B). (2.40)

In particular, the power p and a constant C(B) do not depend on l (see, e.g., [23], 
Lemma 1.1.12). This, together with (2.17), shows that (2.39) tends to zero:

||Gl − Ukl||2ρ ≤ C

∫

Bρ

|Ak − Al|2|∇Gl|2

≤ C
{ ∫

Bρ

|Ak − Al|2q
}1/q{ ∫

Bρ

|∇Gl|p
}1/2p

≤ C
{ ∫

Bρ

|Ak − Al|2q
}1/q

, (2.41)

where q is the dual exponent of p/2. The last expression above tends to 0 because Ak −Al

tends to 0 in L1
loc and is bounded. The rest of the proof stays as before, so Lemma 2.29

follows. This finishes the proof of Theorem 2.19. �
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3. Prevalent approximation of G∞ when E is uniformly rectifiable

The assumptions for the next theorem concern the classical situation, i.e., Case 1 
above. We are given an unbounded domain Ω ⊂ Rn, assume that E = ∂Ω is Ahlfors 
regular of dimension n − 1 (see the definition (1.1)) and uniformly rectifiable (Defini-
tion 1.13), and that Ω has interior corkscrew points and Harnack chains, as in (2.1). We 
assume, furthermore, that the operator is close to a constant coefficient one, in the sense 
of (1.9).

Theorem 3.1. Let Ω ⊂ Rn be an unbounded domain with an n − 1 dimensional uniformly 
rectifiable boundary E = ∂Ω, and satisfying the interior corkscrew and Harnack chain 
conditions (2.1). Assume that L is an elliptic divergence form operator that satisfies (1.9), 
and denote by G = G∞ the Green function for L, with pole at ∞. Then G is prevalently 
close to the distance to a plane (as in Definition 1.14) and for every choice of β > 0 and 
any AR measure μ on E, G is prevalently close to Dβ,μ.

In this statement G is only determined modulo a multiplicative constant, but the 
conditions (1.15) and (1.16) do not see this constant.

Remark 3.2. Something like (1.9) is needed for this statement. Otherwise consider the 
falsely 2-dimensional example where Ω = {(x, y) ∈ R2 ; y > 0} ⊂ R2 and A(x, y) = a(y)I
for (x, y) ∈ Ω, where I denotes the identity matrix and for instance a(y) = 1 when 
y ∈ [22k, 22k+1) and a(y) = 2 when y ∈ [22k+1, 22k+2), k ∈ Z. The Green function for 
L is easy to compute: take G(x, y) = Cg(y), where g(0) = 0 and g′(y) = a(y)−1; this is 
clearly a solution of LG = 0, and the uniqueness of G∞ does the rest. We can see that 
G is not prevalently close to a distance function because g spends its time oscillating 
between two affine functions. Yet notice that for this example the harmonic measure ω∞

is (proportional to) the Lebesgue measure on E.
Moreover, there are more complicated examples [4,24,25] which show that without 

the Dahlberg-Kenig-Pipher condition above, the absolute continuity of the harmonic 
measure with respect to the Hausdorff measure could fail even in the half-space.

For all these reasons our conditions on the coefficients are morally optimal.

Proof of Theorem 3.1. Part I: comparison to dist(X, P ). Let us define some good sets. 
Let M ≥ 1 and ε > 0 be given, and consider the set G(ε, M) of all pairs (x, r) ∈
E×(0, +∞) such that all the following properties are satisfied. First, there is a hyperplane 
P = P (x, r) through x, such that

dx,2Mr(E, P ) ≤ ε (3.3)

(where dx,r is as in (1.12)), and also, for one of the two half spaces H bounded by P ,

dx,Mr(Ω, H) ≤ 2ε. (3.4)
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We claim that each G(ε, M) is a Carleson-prevalent set, with a constant that may depend 
(wildly) on ε, M , and the various constants implicit in our geometric assumptions.

First consider the pairs (x, r) such that we cannot find a plane P as in (3.3). If 
(x, r) is such a pair, it is easy to see that (x, 2Mr) /∈ Gur(2Mε), where Gur is the good 
set of Definition 1.13. This set of bad pairs satisfies a Carleson packing condition, by 
Definition 1.13 and because 

{
(x, r) ; (x, Ar) ∈ B

}
satisfies a Carleson packing condition 

when B does.
Now we claim that if P satisfies (3.3), and if ε is small enough and M is large enough 

(which we may assume) then (3.4) automatically holds for one of the two half spaces 
bounded by P . That is, the case when Ω ∩ B(x, Mr) is nearly empty, or on the con-
trary very close to the full B(x, r), is excluded by our NTA assumptions. In fact, since 
we assume that Ω is a 1-sided NTA domain with a uniformly rectifiable boundary, it 
possesses exterior corkscrew points as well. Then, on one hand, we can find a corkscrew 
point Z for B(x, r), this point lies far from E, hence far from P too, then we select the 
half space H bounded by P that contains Z, and already (3.3) says that every point 
Y ∈ H ∩ B(x, Mr) such that dist(Y, P ) > εMr lies in Ω, because the line segment 
from Y to Z does not meet E. Similarly, all the points Y ∈ B(x, Mr) \ H such that 
dist(Y, P ) > εMr lie in the same component of Rn \ E as Z ′, the image of Z by the 
reflection across P . We just need to see that this component is not Ω, or in other words 
that Z ′ /∈ Ω. But if Z ′ ∈ Ω, there is a Harnack chain from Z to Z ′, and by definition 
of a Harnack chain it stays inside of B(x, Mr) if M is large enough. One of the balls 
Bj of the chain meets P ∩ B(x, Mr), and this is impossible if ε is small enough because 
2Bj ⊂ Ω and diam Bj ≥ C−1 min( dist(Z, E), dist(Z ′, E)) ≥ C−1r. So (3.4) comes for 
free.

Lemma 3.5. For any ε > 0 and M > 0, we can find ε1 > 0, M1 ≥ 1, κ > 0, and K ≥ 1, 
depending on n, ε, M , the AR constant for E, and the one sided NTA constants from 
(2.1), such that if (x, r) ∈ G(ε1, M1) ∩Gcc(τ, K), then (x, r) lies in the good set GGd(ε, M)
of Definition 1.14.

Proof of Lemma 3.5. Let the various constants and ε, M , be given, and suppose the 
lemma fails for these constants. Then there exists an example (Ωk, Ek, Lk) where all 
the assumptions are satisfied, and for some pair (xk, rk) ∈ Ek × (0, +∞), we have that 
(xk, rk) ∈ G(εk, Mk) ∩ Gcc(τk, Kk), say, with εk = τk = 2−k and Kk = Mk = 2k, and yet 
(xk, rk) /∈ GGd(ε, M).

As the reader guessed, we want to take a limit and derive a contradiction. By trans-
lation, dilation, and rotation invariance of the problem, we may assume that xk = 0, 
rk = 1, and we can take a fixed hyperplane P through the origin and a fixed half space 
H bounded by P that work in (3.3) and (3.4) for all k. By (3.3) and (3.4), Ek tends to P
and Ωk tends to H, as in (2.16). Pick a corkscrew point X0, for instance the point of H
that lies at distance 1 from both 0 and P . Then let Gk denote the Green function for Ωk, 
with the pole at ∞, and normalized by Gk(X0) = 1. We want to apply Theorem 2.19, 
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so we check the last hypothesis (2.17). The assumption that (xk, rk) ∈ Gcc(τk, Kk) gives 
us a constant matrix Ak,0 and, modulo extracting a subsequence, we may assume that 
Ak,0 tends to a limit A0,0. Now (2.17) holds, with A∞ = A0,0, because if B is a ball such 
that 2B ⊂ Ω∞, then for k large B ⊂ WKk

(0, 1) = WKk
(xk, rk), and

∫

B

|Ak − A∞| ≤ |B||Ak,0 − A0,0| +
∫

B

|Ak − Ak,0| ≤ |B||A0,k − A0,0| + τk,

which tends to 0.
So Theorem 2.19 says that {Gk} converges, uniformly on compact subsets of Rn, to the 

Green function G∞ for L∞ = − div A0,0∇ on H = Ω∞, with a pole at ∞ and normalized 
at X0. Now G(X) = dist(X, P ) is a solution to L∞G = 0, lies in all the correct Wr(B), 
vanishes along P , and has the same normalization, so G∞(X) = dist(X, P ) on Ω∞ = H. 
Thus the Gk converge uniformly, on the compact subsets of Rn, to the distance function. 
Therefore, for k large,

| dist(X, P ) − Gk(X)| ≤ ε for X ∈ Ω ∩ B(0, M), (3.6)

which contradicts the fact that (1.15) fails for Gk and the unit ball. This completes the 
proof of Lemma 3.5. �

The first part of Theorem 3.1, with the distance function to a plane, follows at once, by 
a combination of definitions and because the union G(ε1, M1) ∩Gcc(τ, K) of two prevalent 
sets is prevalent.

Proof of Theorem 3.1. Part II: comparison to Dβ,μ(X). We now intend to show that G
is prevalently close to any given Dβ,μ. To this end, we will use the result above, and 
compare Dβ,μ to dist(X, P ). That is, we will show that prevalently, the restriction of 
Dβ,μ to Ω is close to some dist(X, P ), and then we will deal with organization issues, 
for instance making sure that we use the same plane in the two descriptions.

The estimates that follow are similar to the proofs that were done in [6], but they are 
a little simpler here because we can content ourselves with weak estimates. We intend 
to use a result of X. Tolsa [27] on the good approximation of μ by flat measures, and 
for this we need some notation. These results will be used later in full generality, and 
for the time being we assume that E is an Ahlfors regular set E dimension d, with any 
d ∈ (0, n), and μ is any AR measure of dimension d whose support is E.

Denote by Fd the set of flat measures of dimension d in Rn, i.e., measures σ = cHd
|P , 

where c > 0 and P is an affine d-plane. For x ∈ Rn and r > 0, denote by Λ(x, r) the set 
of Lipschitz functions ϕ : Rn → R such that ϕ(x) = 0 on Rn \ B(x, r) and the Lipschitz 
norm of ϕ is less than or equal to 1. Then define a sort of Wasserstein distance between 
two measures μ and σ by

Dx,r(μ, σ) = r−d−1 sup
∣∣∣
∫

ϕdμ −
∫

ϕdσ
∣∣∣, (3.7)
ϕ∈Λ(x,r)
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and finally set

α(x, r) = inf
σ∈Fd

Dx,r(μ, σ). (3.8)

The normalization is such that when μ is an AR measure, α(x, r) ≤ C systematically, 
but when E is uniformly rectifiable and μ is any AR measure on E, α(x, r) is often much 
smaller than this. In fact, it is proved in [27] that α2(x, r)dμ(x)dr

r is a Carleson measure 
on E × (0, +∞). Here we shall only use the corresponding weak estimate, which follows 
by Chebyshev’s inequality, that says that for each choice of η > 0 and N ≥ 1,

Gα(η, N) =
{

(x, r) ∈ E × (0, +∞) ; α(x, Nr) ≤ η
}

is a Carleson-prevalent set. (3.9)

Lemma 3.10. Let E and μ be Ahlfors regular of dimension d ∈ (0, n) in Rn. Let (x, r) ∈
Gα(η, N) ⊂ E × (0, +∞), and let σ = cHd

|P be a flat measure such that

Dx,Nr(μ, σ) ≤ 2η. (3.11)

If N is large enough (depending on n, d, and the AR constant for μ) and η is small 
enough (depending on the aforementioned parameters and also on N), then

dist(z, P ) ≤ η1r for z ∈ E ∩ B(x, Nr/3), (3.12)

and

dist(z, E) ≤ η1r for z ∈ P ∩ B(x, Nr/3), (3.13)

where we set η1 = C1Nη1/(d+1), with a constant C1 that depends on the AR constant for 
μ, d and n. Furthermore, for the distance function Dβ,μ,

|Dβ,μ(X)−(caβ)−1/β dist(X, P )| ≤ C2Nη1/(d+2+β)r+C2 dist(X, P )1+βN−βr−β (3.14)

for z ∈ B(x, Nr/5), where C2 depends on n, d, the AR constant for μ, and β, and aβ is 
a geometric constant that depends on β.

Proof. The definition of Dx,Nr(μ, σ) says that

∣∣∣
∫

ϕ
(
dμ − dσ

)∣∣∣ ≤ (Nr)d+1Dx,r(μ, σ) ≤ 2ηNd+1rd+1 (3.15)

for every ϕ ∈ Λ(x, Nr). We intend to use this for various functions ϕ to get relevant 
information on μ and σ. Let us first check that

P meets B(x, Nr/4) and C−1 ≤ c ≤ C. (3.16)
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Here and throughout the proof, C is a constant which depends on d, n, and the AR con-
stants of μ only, and whose value may change from line to line. Take a first bump function 
ψ1 such that 0 ≤ ψ1 ≤ 1 everywhere, ψ1(z) = 0 on the complement of B(x, Nr/4), 
and ψ1(z) = 1 on B(x, Nr/8). We can manage to do this with |∇ψ| ≤ (Nr/8)−1, so 
(Nr/8)ψ1Λ(x, Nr) and (3.15) says that

∣∣∣
∫

ψ1
(
dμ − dσ

)∣∣∣ ≤ 16ηNdrd. (3.17)

Since ψ1(z) = 1 on B(x, Nr/8) and μ(B(x, Nr/8) ≥ C−1Ndrd, we see that (if η is small 
enough) σ(B(x, Nr/4)) ≥ (2C)−1Ndrd (because ψ1(z) = 0 on Rn \ B(x, Nr/4)), and 
hence P meets B(x, Nr/4) and c ≥ C−1.

Similarly, if now ψ is a similar function, but with 0 ≤ ψ ≤ 1 everywhere, ψ(z) = 0 on 
Rn \ B(x, Nr), ψ(z) = 1 on B(x, Nr/2), and |∇ψ| ≤ (Nr/2)−1, we get that

∣∣∣
∫

B(x,Nr)

ψ
(
dμ − dσ

)∣∣∣ ≤ 4ηNdrd. (3.18)

But μ(B(x, Nr)) ≤ CNdrd, so 
∫

B(x,Nr) ψdσ ≤ 2CNdrd. Moreover, since 
∫

B(x,Nr) ψdσ ≥
σ(B(x, Nr/2)) = cHd(P ∩ B(x, Nr/2)) and P meets the ball B(x, Nr/4), we get that 
c ≤ C too; (3.16) follows.

Next we want to control the distance to P . We keep the same function ψ, but try the 
product ϕ(z) = ψ(z) dist(z, P ). We still have that ϕ = 0 on Rn \ B(x, Nr), as required 
in the definition of Λ(x, Nr), but now

|∇ϕ(z)| ≤ ψ(z) + |∇ψ(z)| dist(z, P ) ≤ 1 + (Nr/2)−1 dist(z, P ) ≤ 5 (3.19)

because P meets B(x, Nr/4). So ϕ/5 ∈ Λ(x, Nr), and (3.15) yields

∣∣∣
∫

ψ(z) dist(z, P )
(
dμ(z) − dσ(z)

)∣∣∣ ≤ 10ηNd+1rd+1. (3.20)

Now 
∫

ψ(z) dist(z, P )dσ = 0 because σ is supported on P , and since ψ(z) = 1 on 
B(x, Nr/2), we get that

∫

B(x,Nr/2)

dist(z, P )dμ(z) ≤ 10ηNd+1rd+1. (3.21)

We still need to transform this into an L∞ bound. So we assume that (3.12) fails, 
so that dist(z, P ) ≥ η1r for some z ∈ E ∩ B(x, Nr/3). Then dist(z, P ) ≥ η1r/2 on 
B1 = B(z, η1r/2), and since η1 < Nr/6 if η is small enough, B1 ⊂ B(x, Nr/2) and 
(3.21) yields
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10ηNd+1rd+1 ≥ (η1r/2)μ(B1) ≥ C−1(η1r)d+1 = C−1(C1Nη1/(d+1))d+1rd+1 (3.22)

by Ahlfors regularity and the definition of η1. We now choose C1 so large that (3.22) is 
impossible, and this contradiction completes the proof of (3.12).

For (3.13) we proceed exactly the same way, but with ψ(z) dist(z, E), which of course 
vanishes on the support of μ. Maybe we need to make C1 larger because we now use the 
Ahlfors regularity of σ, but this is all right.

Now we estimate Dβ,μ(X) − (caβ)−1/β dist(X, P ). Recall that Dβ,μ = Dβ(X) =
Rβ(X)−1/β , with

Rβ(X) =
∫

E

|X − y|−d−βdμ(y), (3.23)

so we take care of Rβ first. Let R(X) =
∫

E
|X − y|−d−βdσ(y) denote the analogue of 

Rβ(X), but for the measure σ. A direct computation shows that

R(X) = caβ dist(X, P )−β , (3.24)

just because σ = cHd
|P . Let ψ be a smooth cut-off function such that 0 ≤ ψ ≤ 1

everywhere, ψ = 0 outside of B(x, Nr/4), ψ = 1 on B(x, Nr/8), |∇ψ| ≤ 16(Nr)−1 and 
|∇2ψ| ≤ C(Nr)−2 (to be used later). We first study the main part of Rβ(X) − R(X), 
namely

A(X) =
∫

|X − y|−d−βψ(y)[dμ(y) − dσ(y)] (3.25)

[here and for the rest of the proof of the lemma, A no longer denotes a coefficient 
matrix]. Also let η2 > η1 be small, to be chosen later, and then introduce a smooth cut-
off function ξ such that 0 ≤ ξ ≤ 1 on Rn, ξ(X) = 1 when dist(X, P ) ≤ η2r, ξ(X) = 0
when dist(X, P ) ≥ 2η2r, |∇ξ| ≤ 2(η2r)−1, and |∇2ξ| ≤ C(η2r)−2. Notice that ξ(y) = 1
when y ∈ B(x, Nr/4) lies in the support of σ or μ, by (3.12), so

A(X) =
∫

|X − y|−d−βψ(y)ξ(y)[dμ(y) − dσ(y)]. (3.26)

We are going to restrict our attention to the case when

X ∈ H =
{

X ∈ B(x, Nr/5) ; dist(X, P ) ≥ 3η2r
}

, (3.27)

because in this region the distance from X to the support of ξ is at least η2r. Set 
ϕX(y) = |X − y|−d−βψ(y)ξ(y) for X ∈ H. Notice that ϕX is supported on B(x, Nr)
because of ψ, and
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|∇ϕX(y)| ≤ C|X − y|−d−β−1 + C(η2r)−1|X − y|−d−β + 16(Nr)−1|X − y|−d−β

≤ C(η2r)−1|X − y|−d−β ≤ C(η2r)−d−β−1

(3.28)
because |X − y| ≥ η2r. Normally we should cut the integral into annuli and get a better 
result, but let us not bother. We apply (3.15) to a multiple of ϕX and get that

|A(X)| =
∣∣ ∫

ϕX [dμ − dσ]
∣∣ ≤ 2η(Nr)d+1||∇ϕX ||∞

≤ Cη(Nr)d+1(η2r)−d−β−1 = CηNd+1η−d−β−1
2 r−β .

(3.29)

This will be good enough (because we can choose η last). For the rest of the integral, set 
B(X) = Rβ(X) − R(X) − A(X), and notice that

|B(X)| =
∣∣∣
∫

|X − y|−d−β(1 − ψ(y))[dμ(y) − dσ(y)]
∣∣∣

≤
∫

Rn\B(x,Nr/8)

|X − y|−d−β(1 − ψ(y))[dμ(y) + dσ(y)] ≤ C(Nr)−β
(3.30)

by the Ahlfors regularity of both measures, and a simple argument where one cuts the 
domain into annuli of size 2lNr. We add this to (3.29) and get that

|Rβ(X) − R(X)| ≤ C[ηNd+1η−d−β−1
2 + N−β ]r−β . (3.31)

Set D(X) = R(X)−1/β = (caβ)−1/β dist(X, P ) by (3.24), and notice that

Dβ,μ(X) − D(X) = Rβ(X)−1/β − R(X)−1/β . (3.32)

Set t = Rβ(X) and u = R(X) for a minute, and observe that since the derivative of 
t �→ t−1/β is − 1

β t− 1+β
β , we get that |t−1/β −u−1/β | ≤ C|t −u|(t− 1+β

β +u− 1+β
β ) (including 

in the case when |u − t| is not small compared to u and t). Here C−1 dist(X, P )−β ≤
R(X) ≤ C dist(X, P )−β by direct calculation, and the same thing holds for Rβ(X), 
because μ is Ahlfors regular and dist(X, P ) ∼ dist(X, E) for X ∈ H, so t and u are 
both comparable to dist(X, P )−β , and (3.31) yields

|Dβ,μ(X) − D(X)| ≤ C dist(X, P )1+β [ηNd+1η−d−β−1
2 + N−β ]r−β . (3.33)

Let us choose η2 = C1Nη1/(d+2+β). This way our constraint that η2 ≥ η1 is clearly 
satisfied (we just decreased the power a little bit), and (3.33) simplifies to

|Dβ,μ(X) − D(X)| ≤ C dist(X, P )1+β [η1− d+1+β
d+2+β N−β + N−β ]r−β

≤ C dist(X, P )1+βN−βr−β .
(3.34)



30 G. David, S. Mayboroda / Advances in Mathematics 410 (2022) 108717
This is good enough for (3.14), but we only get it for X ∈ H. When x ∈ B(r, Nr/5) \ H, 
we know that dist(X, P ) ≤ 3η2r by definition of H, and then dist(X, E) ≤ 4η2r by 
(3.13) and because η2 ≥ η1, hence Dβ,μ(X) ≤ C dist(X, E) ≤ Cη2r (because Dβ(X) is 
always comparable to dist(X, E)). So

|Dβ,μ(X) − D(X)| ≤ Cη2r = CNη1/(d+2+β)r (3.35)

for X ∈ B(r, Nr/5) \ H. Now (3.14) follows from this and (3.34), and this completes our 
proof of Lemma 3.10. �
Remark 3.36. The proof of (3.31) also shows that

|∇Rβ(X) − ∇R(X)| ≤ C[ηNd+1η−d−β−2
2 + N−β−1]r−β−1. (3.37)

This is because when we compute ∇R or ∇Rβ , we replace the kernel |X − y|−d−β with 
a kernel of size |X − y|−d−β−1; we can then follow the computations above with this 
different power. That is, the estimates are the same as they would be with Dβ+1. Then 
the proof of (3.34) yields

|∇Dβ(X) − ∇D(X)| ≤ C dist(X, P )2+βN−β−1r−β−2, (3.38)

for X ∈ B(x, Nr/5) such that dist(X, P ) ≥ Cη′
2r, with η′

2 = C1Nη1/(d+3+β).

We may now return to the proof of prevalence for the good approximation of G by 
Dβ,μ, that we need to complete our proof of Theorem 3.1. Let ε > 0, M ≥ 1 and 
(x, r) ∈ E × (0, +∞) be given. We want to show that prevalently, (x, r) lies in the good 
set GGDβ

(ε, M) of Definition 1.14. We may assume that (x, r) ∈ GGd(ε, M) because we 
already proved that this happens prevalently, or rather that (1.15) holds with ε/3. We 
may also assume that (x, r) ∈ Gα(η, N), with values of η and N that will be chosen 
soon, because (3.9) says that this happens prevalently. Then Lemma 3.10 says that 
(3.12)-(3.14) hold, but maybe this happens with a different plane P1. So we will need to 
see whether P1 is close enough to P .

First observe that in the proof of prevalence for GGd(ε/3, M), we can actually find P
such that in addition to (1.15), we also have that

dx,Mr(E, P ) ≤ (10M)−1ε; (3.39)

see the proof of (3.3) and (3.4), using the definition of uniform rectifiability. Now (3.12)
and (3.13) also imply that

dx,Mr(E, P1) ≤ (N/3)M−1dx,Nr/3(E, P1) ≤ M−1η1

≤ CNM−1η1/(d+1) ≤ (10M)−2ε (3.40)
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because we can pick N > 3M , and choose η small enough, depending on M , N , and ε. 
So P1 and P are close to each other, and

| dist(X, P1)| − dist(X, P )| ≤ εr/3 (3.41)

for X ∈ B(x, M). Finally, (3.14) says that for X ∈ B(x, Mr) ⊂ B(x, Nr/3),

|(caβ)−1/βDβ,μ(X) − dist(X, P1)| ≤ CNη1/(d+2+β)r

+ C dist(X, P1)1+βN−βr−β ≤ CNη1/(d+2+β)r + C(Mr)1+βN−βr−β (3.42)

(recall that c ≥ C−1 by (3.16)). We choose so N large, depending on M and β, that 
CM1+βN−β < ε/6, and then η so small, depending on M and N , that CNη1/(d+2+β) <

ε/6. Then |(caβ)−1/βDβ,μ(X) − dist(X, P1)| ≤ εr/3, and (1.16) follows from (3.41) and 
(1.15). That is, (x, r) ∈ GGDβ

(ε, M). This completes the proof of Theorem 3.1. �
The next statement is the version of Theorem 3.1 in Case 2.

Theorem 3.43. Let Ω be a domain in Rn, whose boundary E = ∂Ω is an Ahlfors regular 
and uniformly rectifiable set of (integer) dimension d ∈ (0, n). If d = n − 1, assume, in 
addition, that E satisfies the interior corkscrew point and Harnack chain conditions, as 
in (2.1). Let α > 0 be given, pick any AR measure μ on E (as in (1.1)), and define Dα

and L = − div ADd+1−n
α ∇ by (1.4), (1.3), and (2.7), with A satisfying (2.4), (2.5), and 

(1.9) with A0 ≡ I. Denote by G = G∞ the Green function for L, with pole at ∞. Then 
G is prevalently close to the distance to a plane (as in Definition 1.14) and for every 
β > 0 and every AR measure ν on E, G is prevalently close to Dβ,ν.

As was observed in the comments below Theorem 1.17, the special operators L of 
(1.2) are built with specific distance functions Dα that respect the rotation invariance of 
Rn; this is the reason why we restrict to A0 = I here, while we authorized other constant 
coefficient operators in Theorem 3.1.

See Section 2 for the definition and some information on G∞. Notice that the measure 
ν used to compute the distance Dβ,ν does not need to be the same as the measure μ
used to define Dα and L because the two measures are used in different places and never 
interact.

Proof. The proof will be nearly the same as for Theorem 3.1. We made sure, when we 
treated Part II (about Dβ = Dβ,ν) not to use the specific dimension of E, and even less 
the precise form of the operator. In particular Lemma 3.10 is still valid in the present 
situation, and this means that when (x, r) ∈ Gα(η, N) (for the measure ν), and η and N
are chosen correctly, we can find a d-plane P such that

dx,M1r(E, P ) ≤ (10M)−2ε1, (3.44)
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as in (3.39), and where ε1 and M1 are given in advance. We also require that (x, r) ∈
Gα(η, N) for the measure μ and we claim that (if η and N are chosen correctly again), 
then automatically

(x, r) ∈ GGd(ε, M), (3.45)

i.e., we have a good approximation of G by dist(X, P ) as required in (1.15), in fact with 
the same P as in (3.44).

We prove this as we did for Lemma 3.5, by contradiction and compactness. If we cannot 
get (3.45), there exist examples (Ωk, Ek, νk, Lk) where all the general assumptions are 
satisfied, yet for some pair (xk, rk) ∈ Ek × (0, +∞), we have that (3.44) holds with 
M = 2k and ε = 2−k, (xk, rk) ∈ Gα(2−(d+2)k, 2k), but (xk, rk) /∈ GGd(ε, M).

We may assume that xk = 0, rk = 1, and that all the planes Pk coming from (3.44)
are parallel to a same plane P through the origin (we did not require Pk to contain xk). 
Then by (3.44), {Ek} converges to P . If d = n − 1, we can proceed as in the proof of 
Theorem 3.1 to extract a subsequence (or turn the domains) so that Ωk converges to 
a fixed half space H bounded by P . If d ≤ n − 2, a direct inspection shows that Ωk

converges to Rn \ P .
We required that (xk, rk) ∈ Gα(2−(d+2)k, 2k) (for νk) because this way, we get the 

existence of a flat measure σk such that by (3.7)

∣∣∣
∫

ϕdνk −
∫

ϕdσk

∣∣∣ ≤ 2(d+1)kD0,2k (νk, σk) ≤ 2−k (3.46)

for every 1-Lipschitz function ϕ supported on B(0, 2k). By construction (and in particular 
the proof of (3.44)), we could make sure that σk is supported by Pk, but even if we were 
not that cautious, it follows from the proof of (3.12) and (3.13) that the support P ′

k of σk

tends to P too. In other words, the limiting measure of νk guaranteed by Theorem 2.19
is, in fact, flat.

Similarly to the argument of Theorem 2.19 in the paragraph right after (2.27), it 
follows easily from (3.46) (and the uniform convergence of the integrals in (1.3) at ∞) 
that the functions Rα,νk

of (1.3) (but associated to νk) converge, uniformly on every 
compact subset of Rn \ P , to the function Rα,σ associated to the limit of the σk (maybe 
after extraction of a subsequence so that the coefficients ck converge).

Now look at the operators. We also required that (x, r) ∈ Gα(η, N) for the measure μ, 
and so we may assume, by extracting a subsequence again, that μk converges to a limit 
μ∞ which is a flat measure on the same plane P as before. Then by Theorem 2.19 the 
(properly normalized) Green functions with the pole at infinity of Lk = − div Dd+1−n

α,μk
∇

and L∞ = − div Dd+1−n
α,μ∞ ∇ converge uniformly on compact subsets of Rn, to the Green 

function with the pole at infinity for L∞ = − div AkDd+1−n
α,μ∞ ∇ on the domain Ω∞. Here 

μ∞ is a flat measure of a plane P , Ω∞ is H if d = n − 1 and Rn \ P otherwise, and 
so the Green function with the pole at infinity for the limiting operator is c dist(X, P ). 
This contradicts our assumption that
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|ckGk(Xk) − dist(X, P )| ≥ ε (3.47)

for some Xk ∈ Ωk ∩ B(0, M) and for any ck. It is here that we use A0 = I in the 
approximation of Ak in order to ensure that the solution of the limiting equation in the 
exterior of Rd is the distance to the boundary.

So the Green function G is prevalently close to the distance to a plane, and now the 
same argument as for Theorem 3.1 shows that it is also prevalently close to any Dβ,ν. 
Theorem 3.43 follows. �
4. Approximation of ∇G∞ when E is uniformly rectifiable

We want to extend the positive results of Section 3 to a more precise notion of ap-
proximation of G with distance functions, where we also control the first derivative of 
G. This time, we will not control ∇G all the way to the boundary, so our notion of 
approximation will use the Whitney regions associated to balls B(x, r) centered on E, 
and defined as in (1.8) by

WM (x, r) =
{

X ∈ Ω ∩ B(x, Mr) ; dist(X, E) ≥ M−1r
}

. (4.1)

Also, we only control (a little bit more than) the L2
loc norm of ∇G, so we will use that 

norm. Except for this, the following definition is similar to Definition 1.14 above.

Definition 4.2. Let G∞ denote the Green function for the operator L in the domain Ω
bounded by an Ahlfors regular set E of dimension d < n. We say that ∇G∞ is prevalently 
close to the gradient of the distance to a plane when for each choice of ε > 0 and M ≥ 1, 
the set G∇Gd(ε, M) of pairs (x, r) ∈ E × (0, +∞) such that there exists a d-plane P (x, r)
and a positive constant c > 0, with

∫

WM (x,r)

|∇ dist(X, P ) − c∇G∞(X)|2 ≤ εrn, (4.3)

is a Carleson-prevalent set.
If in addition we are given an AR measure ν on E and an exponent β > 0, and Dβ,ν

is defined in (1.3)-(1.4), we say that ∇G∞ is prevalently close to ∇Dβ,ν when for any 
ε > 0 and M ≥ 1, the set G∇GDβ

(ε, M) of pairs (x, r) ∈ E × (0, +∞) such that there 
exists a positive constant c > 0, with

∫

WM (x,r)

|∇Dβ,ν(X) − c∇G∞(X)|2dX ≤ εrn, (4.4)

is Carleson-prevalent.
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In Definition 1.14, we were able to require the approximation to go all the way to the 
boundary, because, in particular, we had the uniform convergence of Green functions to 
their limit on compacta of Rn rather than just compacta in Ω∞, but this is no longer the 
case with the gradients, and we shall content ourselves with estimates on the values of 
∇G on Whitney cubes. We expect better estimates to be valid, but we shall not pursue 
this issue here because the point of this paper is rather to prove weak estimates with 
compactness arguments. It will be interesting to investigate more the precise way our 
approximations quantify, including near the boundary.

Theorem 4.5. Let Ω, E, and L satisfy the assumptions of Theorem 3.1 or Theorem 3.43, 
and let G denote the Green function for L in Ω, with pole at ∞. Then ∇G∞ is prevalently 
close to the gradient of the distance to a plane and to ∇Dβ,ν, for any β > 0 and any 
AR measure ν on E.

Proof. We will keep the same structure for the proofs, but will need to replace some 
estimates. We start as in the proof of Theorem 3.1, but need to replace GGd(ε, M) with 
G∇Gd(ε, M) in Lemma 3.5. This means that instead of (3.6), we now want to prove

∫

WM (x,r)

|∇ dist(X, P ) − ∇Gk(X)|2 ≤ εrn. (4.6)

In the proof of Theorem 3.1, the desired estimate comes from the uniform convergence 
in Theorem 2.19; in the present case, Lemma 2.29 provides exactly the L2 convergence 
estimate that we need (because G∞(X) = dist(X, P ) here).

Then we stay in Case 1, as in Theorem 3.1, but approximate ∇G with ∇Dβ,μ. We 
start the same way, but need to replace our main estimates for the difference between 
Dβ,μ(X) by C dist(X, P ) by estimates on the difference of gradients. That is, we need 
to replace (3.14), which itself comes from estimates for differences of integrals, which 
culminate with (3.34), at least in the region H of (3.27). Here we don’t care about what 
happens on B(r, Nr/5) \ H which was treated at the end of the argument, because 
this region does not meet the given Whitney region WM (x, r) if N is large enough and 
η2 is small enough. That is, if we only care about WM (x, r), (3.34) is enough for the 
corresponding analogue of (3.14).

Now Remark 3.36 says that instead of (3.34) we can prove (3.38), which is just similar 
but controls the difference of gradients. That is, repeating (3.38), we claim that we have 
the better estimate

|∇Dβ,μ(X) − ∇D(X)| ≤ C dist(X, P )2+βN−β−1r−β−2, (4.7)

where D(X) = (caβ)−1/β dist(X, P ) as needed (see the line below (3.31)), and which is 
valid in the region

H(N, η′
2) =

{
X ∈ B(x, Nr/5) ; dist(X, P ) ≥ Cη′

2r
}

(4.8)
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where η′
2 = C1Nη1/(d+3+β) and η1 = CNη1/(d+1). This estimate will be a good replace-

ment for (3.14), but let us check that we do not go wrong with the management of 
Whitney regions.

Recall that we want to prove that ∇G is prevalently close to ∇Dβ,μ. We give ourselves 
ε > 0, M ≥ 1, and we need to show that for (x, r) ∈ E × (0, +∞), (x, r) ∈ G∇GDβ

(ε, M)
prevalently, which means that we want to prove (4.4). We may assume that (x, r) ∈
G∇Gd(ε/2, M), because this is a prevalent condition. So we have (4.3), and we only need 
to check that

∫

WM (x,r)

|∇ dist(X, P ) − c∇Dβ(X)|2 ≤ εrn/2. (4.9)

We may also assume that (x, r) ∈ Gα(η, N), with values of η and N that we can choose, 
and then we get (4.7), but maybe for some other d-plane P ′ that comes from the α-
number. Let us first assume that P ′ = P , and check that (4.7) then implies (4.9). In 
particular we need to make sure that in (4.7), C dist(X, P )2+βN−β−1r−β−1 ≤ ε/2 when 
X ∈ B(x, Mr); we can do this by taking N large enough, depending on M and ε. We 
also need H(N, η′

2) above to contain WM (x, r), which is easy to arrange by taking N
large and then η small. So (4.7) would imply (4.9) if we had the same plane.

Maybe P , that we get for our proof that (x, r) ∈ G∇Gd(ε/2, M) prevalently, and P ′, 
that we choose in terms of α-numbers (because (x, r) ∈ Gα(η, N)), are not the same. 
But we can choose them as close to each other as we want, in particular because the 
α-numbers also control the flatness, by (3.12) and (3.13). See an analogous argument in 
the proof of Theorem 3.1. Then we can control the difference between ∇ dist(X, P ) and 
∇D(X), where D is the distance associated to dist(X, P ′), and this is enough for (4.9). 
This ends the proof for Case 1.

Now we need to follow the proof of Theorem 3.43 to take care of Case 2. In this case, 
we can follow the proof above and, when it comes to applying Theorem 2.19, we observe 
as in Case 1 that Lemma 2.29 gives the L2 convergence of the ∇Gk to G∞ away from 
E∞ = P . The approximation by ∇Dβ,ν is treated exactly as in Case 1 (we made sure not 
to use anything specific, just the good approximation of ∇Dβ,ν(X) by ∇ dist(X, P )). �
Remark 4.10. Assume that Ak = I in Case 2 (this is the center of our interests anyway). 
Then the coefficients of our operator Lα,μ are smooth away from E, so we could replace 
the L2 norm in (4.3) and (4.4) by a L∞ norm, and even write prevalent approximation 
properties with higher gradients. We decided not to check any details here, and anyway 
the best way to prove such estimates is probably to start from the fact that G or its first 
gradient is close to D(X) = dist(X, P ), or ∇D, and then follow the same route as for 
Lemma 2.29. That is, we would say that in balls B(Y, R) ⊂ Ω∞, G is prevalently close to 
(some) D, that Lα,μG = 0 while ΔD = 0, that these two operators are prevalently close 
to each other (including for the derivatives of coefficients), and use some integrations 
by parts to conclude that the derivatives of G are also close to the derivatives of D in, 
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say, B(Y, R/2). The difference between the derivatives of Dβ,ν and those of D can be 
handled by Remark 3.36.

5. Local variants with GX

Maybe the reader does not like too much the function G∞, and prefers to use Green 
functions GY with poles at finite distance. In this section we prove local estimates with 
GY , which will follow from the previous proofs because the difference between GY and 
G∞ is quite small, in particular in small balls B(x, r) ⊂ B(x0, r0), r � r0. We need a 
local notion of prevalence.

Definition 5.1. Let E ⊂ Rn be Ahlfors regular of dimension d, and let B0 = B(x0, r0)
be a ball centered on E. We say that G ⊂ (E ∩ B0) × (0, r0) is locally prevalent in B0
when its complement relative to B0, (E ∩ B0) × (0, r0) \ G, satisfies the Carleson Packing 
condition (1.6). Then the (best) constant C in (1.6) is also called the prevalence constant 
for G in B0.

It may happen that G comes from a globally defined subset of E × (0, +∞), but this 
will not always be the case, typically because G depends on the choice of a pole that we 
take far enough from E ∩ B0, but anyway when this is the case we simply forget about 
that part of G that does not lie in (E ∩ B0) × (0, r0).

More importantly, we usually ask for uniform estimates, by which we mean that the 
Carleson constant C in (1.6) does not depend on B0 (and the associated set G).

Now what sets G (associated to B0) shall we consider? Let C0 ≥ 1 be given; we shall 
only consider poles Y such that

dist(Y, E ∩ B0) ≥ C−1
0 r0 (5.2)

and then, for the local prevalent approximation of GY by a distance function, we select 
a pole Y such that (5.2) holds, and use the good set GB0,Y

Gd (ε, M) of pairs (x, r) ∈
(E ∩ B0) × (0, r0) such that there exists a d-plane P (x, r) and a positive constant c > 0, 
with

| dist(X, P ) − cGY (X)| ≤ εr for X ∈ Ω ∩ B(x, Mr). (5.3)

For the approximation of GY by a distance function Dβ,ν , we use instead the good 
set GB0,Y

GDβ
(ε, M) defined the same way, but with (5.3) replaced by

|Dβ,ν − cGY (X)| ≤ εr for X ∈ Ω ∩ B(x, Mr). (5.4)

Finally we define the prevalent approximation property in the way that will suit our 
results.
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Definition 5.5. Let E ⊂ Rn and L be as above. We say that the GY are locally prevalently 
close to the distance to a plane (respectively, locally prevalently close to the function 
Dβ,ν) when for each ball B0 = B(x0, r0) and each Y ∈ Ω such that (5.2) holds, the set 
GB0,Y

Gd (ε, M) (respectively, GB0,Y
GDβ

(ε, M)) is locally prevalent in B0, with constants that 
do not depend on B0 or on Y satisfying (5.2).

Notice that this definition depends on C0; this will not disturb us, because we will be 
able to prove the desired result for any C0, and with Carleson constants that do not even 
depend too badly on C0. In fact, with a little bit of manipulations of the definitions, it 
is easy to check that different constants C0 give the same notion of local prevalence (but 
different constants). The proof below gives a good idea of that.

Theorem 5.6. Retain the assumptions of Theorem 3.1 or 3.43. Denote by GY , Y ∈ Ω, the 
Green function associated to L in Ω with pole at Y . Then the GY are locally prevalently 
close to the distance to a plane, and to any function Dβ,ν where β > 0 and ν is an AR 
measure on E.

As before, in the second statement, we are even allowed to define Dβ,ν with a different 
AR measure ν than the one in the definition of Lα.

The reader should not be too surprised that we also allow poles Y that are far from 
E ∩ B0 but close to (faraway parts of) E; the comparison principle says that the cor-
responding Green functions do not behave in a different way than if we forced Yk to 
be corkscrew points in large balls centered at x0. Of course we may need to normalize 
differently, i.e., choose very different constants c in (5.3) or (5.4), but this is all right.

We do not expect to have a good approximation of GY in the balls B(x, r) such that 
x ∈ E ∩ 2B0 and r ≥ C−1r0, even when E is a plane and L = Δ, but those balls will 
satisfy a Carleson packing condition. Indeed, once ε and M are given (as in (5.3) or 
(5.4)), our first action is to remove the set

B0 =
{

(x, r) ; x ∈ E ∩ B0 and τr0 ≤ r ≤ r0
}

(5.7)

for some very small τ ∈ (0, 1) that we allow to depend on ε, M , and C0. We can do this 
because B0 satisfies a Carleson packing condition (with a constant that depends on τ
and the AR constants).

Now we pick (x, r) ∈ (E ∩ B0) × (0, τr0), and follow the same argument as in the 
proofs above. Essentially, we use the fact that r is so small that Y will appear as very 
far, and seen from B(x, r), GY will look a lot as G∞. Let us for instance consider Case 
1, for the approximation by distances to planes. There is a moment, in the proof of 
Lemma 3.5, where we want to show by compactness that if (x, r) satisfies some preva-
lently good properties, then (x, r) ∈ GB0,Y

Gd (ε, M). We approach it by contradiction and 
find a sequence of counterexamples (Ωk, Ek, Lk, xk, yk), and now we also need to add a 
larger ball B0,k = B(x0,k, r0,k) and a pole Yk such that dist(Yk, Ek ∩ B0,k) ≥ C−1

0 r0,k. 
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We also let τk tend to 0, and recall that rk ≤ τkr0,k. Finally, Gk is no longer a Green 
function at ∞, but rather Gk = GYk

Lk
, with the pole Yk.

As before we normalize things so that xk = 0 and rk = 1. Then |Yk| ≥ C−1r0,k ≥
C−1

0 τ−1
k tends to +∞, and by Theorem 2.19 and Remark 2.23, the functions ckGYk

k (cor-
rectly normalized by constants ck) converge to the Green function G∞

∞ for Ω∞ and L∞. 
From there on, we can keep the same proof. Case 2 is similar, and for the approxima-
tion with our special distances Dβ,ν , we only need to observe that since Dβ,ν and the 
distance to a plane are prevalently close to each other, the result stays true locally, just 
by definitions. We leave the details to the reader. �
Theorem 5.8. Retain the assumptions of Theorem 3.1 or 3.43. Denote by GY , Y ∈ Ω, the 
Green function associated to L in Ω with pole at Y . Then the ∇GY are locally prevalently 
close to the gradient of the distance to a plane, and to any ∇Dβ,ν where β > 0 and ν is 
an AR measure on E.

The proof would follow the proof of Theorem 4.5, using the fact that Lemma 2.29
remains valid in the conditions of Remark 2.23. We could also deduce the approximation 
of the gradients from the approximation of the functions, as in the proof of Lemma 2.29
itself.

6. The basic converse, with the distance to a d-plane

We want to say that when Ω ⊂ Rn is bounded by an unbounded AR set E = ∂Ω of 
integer dimension d, and the Green function G∞ associated to one of our operators is 
prevalently close to the distance to a d-plane, then E is uniformly rectifiable.

Let us state the assumptions of our theorem in advance. We are given a domain 
Ω ⊂ Rn, whose boundary E = ∂Ω is an (unbounded) AR set of integer dimension 
d ≤ n −1. When d = n −1, we also assume that Ω contains corkscrew balls and Harnack 
chains, as in (2.1). Recall that when d < n − 1, we don’t need to ask for (2.1), because 
it is always true.

Then we are also given an operator L = − div A∇, and we distinguish two cases. 
In Case 1, we assume that d = n − 1 and that A satisfies the ellipticity conditions 
(2.4) and (2.5). In particular we do not need to know that L is close to a constant 
coefficient operator in any way: as in the next case, we just want to make sure that there 
is a reasonable definition of the Green function G∞, as in Section 2, with some basic 
properties.

In Case 2, we allow any integer 0 < d ≤ n −1, and any operator (2.7), or, equivalently, 
L = − div A dist(X, E)d−n+1∇, such that A satisfies the ellipticity conditions (2.4) and 
(2.5). This includes the good operators Lα of (1.2)-(1.3), but also any degenerate elliptic 
operator in the class that was studied in [8]. Again we need something like this because 
we want to quote general results concerning Harnack’s inequality and the Green function, 
but no delicate geometry will be used concerning L.
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Since d is integer in this Theorem, Case 2 automatically includes Case 1.

Theorem 6.1. Let Ω ⊂ Rn be a domain bounded by an unbounded d-AR set E = ∂Ω, 
0 < d < n integer, and assume that when d = n − 1 the domain Ω contains corkscrew 
balls and Harnack chains, as in (2.1). Let L = − div A dist(X, E)d−n+1∇, with A elliptic 
as per (2.4), (2.5). Assume that the Green function G∞ associated to Ω, L, with a pole 
at ∞, is prevalently close to the distance to a d-plane. Then E is uniformly rectifiable.

Proof. Our assumption is that for every choice of ε > 0 and M ≥ 1, the good set 
GGd(ε, M) of Definition 1.14 is prevalent. We want to show that for each τ > 0, the 
other good set Gur(τ) of Definition 1.13 is prevalent, and the simplest way is to show 
that if M and ε are chosen correctly, GGd(ε, M) ⊂ Gur(τ). In the present case, taking 
M = 10 will be enough.

So we pick (x, r) ∈ GGd(ε, 10) and by definition there is a d-plane P and a constant 
c > 0 such that, as in (1.15),

| dist(X, P ) − cG∞(X)| ≤ εr for X ∈ Ω ∩ B(x, 10r). (6.2)

Recall that G∞ is Hölder continuous on Ω ∩ B(x, 10r), so we can safely say that 
limX→y G∞(X) = G∞(y) = 0 when y ∈ E ∩ B(x, 10r) without thinking about the 
notion of trace, and by (6.2)

dist(y, P ) ≤ εr for y ∈ E ∩ B(x, 10r). (6.3)

If we have this property alone, we get what is known as the weak geometric lemma, 
which is somewhat weaker than the uniform rectifiability of E, so we have to continue 
the argument and show that conversely,

dist(X, E) ≤ τr/2 for X ∈ P ∩ B(x, r). (6.4)

Obviously, if we prove (6.4) and take ε < τ/2, we get that dx,r(E, P ) ≤ τ , and hence 
(x, r) ∈ Gur(τ) as needed.

Set u = cG∞. We will derive (6.4) via estimates on the size of u. Since (6.3) says that 
dist(y, P ) ≤ εr for y ∈ E ∩ B(x, 10r), we now get that

u(X) ≤ dist(X, P ) + εr ≤ 11r for X ∈ Ω ∩ B(x, 10r), (6.5)

and we shall now find a point A1 such that u(A1) is not too small. First take a corkscrew 
point A0 for B(x, r). That is, A0 ∈ B(x, r) ∩ Ω and dist(A0, E) ≥ C−1r, and then (6.3)
allows us to find a new point A1 such that |A1−A0| ≤ (2C)−1r (and so A1 ∈ Ω ∩B(x, 2r)) 
and in addition dist(A1, P ) ≥ (2C)−1r. Thus we can also use A1 as a corkscrew point, 
and now
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u(A1) ≥ (2C)−1r − εr ≥ (3C)−1r (6.6)

by (6.2) (and if ε is chosen small enough). Now we claim that

u(X) ≥ C[r−1 dist(X, E)]γ u(A1) ≥ c′r[r−1 dist(X, E)]γ for X ∈ Ω ∩ B(x, r), (6.7)

where C ≥ 1, γ > 0, and then c′ > 0 depend only on the geometric constants for Ω and 
the ellipticity (or degenerate ellipticity) constant for L. This will be basically due to the 
fact that the length of the Harnack chain from A1 to X is C log( dist(X, E)−1r).

Indeed let X ∈ Ω ∩B(x, r), and pick y ∈ E ∩B(x, 2r) such that |X −y| = dist(X, E). 
Then pick for k ≥ 0 a corkscrew point Xk for B(y, 2k dist(X, E)). We can take X0 = X, 
and we stop as soon as 2k dist(X, E) ≥ r. Thus our final Xk lies in B(y, 2r) ⊂ B(x, 4r), 
and its distance to E is more than C−1r. By Harnack’s inequality, u(A1) ≤ Cu(Xk). We 
can also apply Harnack’s inequality to consecutive points of the sequence, and get that 
u(Xj+1) ≤ Cu(Xj) for 0 ≤ j < k. Altogether, u(A1) ≤ Ck+1u(X0) = Ck+1u(X); (6.7)
follows because k + 1 ∼ log2( dist(X, E)−1r).

Now set

H =
{

X ∈ B(x, 2r) ; dist(X, P ) ≤ 2εr
}

(6.8)

and let X ∈ H ∩ Ω be given. By (6.2),

u(X) = cG∞(X) ≤ dist(X, P ) + εr ≤ 3εr for all X ∈ H.

Then by (6.7),

c′r[r−1 dist(X, E)]γ ≤ u(X) ≤ 3εr,

hence r−1 dist(X, E) ≤ Cε1/γ ; we choose ε so small that Cε1/γ ≤ τ/3, and get that

dist(X, E) ≤ τr/3 for X ∈ H ∩ Ω ∩ B(x, 2r). (6.9)

When d < n − 1, E is so small that Rn \ E is connected, so Rn = Ω ∪ E. Then for any 
X ∈ P ∩ B(x, 2r), either X ∈ Ω and dist(X, E) ≤ τr/3 by (6.9), or else X ∈ E and 
dist(X, E) = 0. So (6.4) holds in this case.

We are left with the case when d = n − 1. Recall that dist(A1, P ) ≥ (2C)−1r, so A1
lies in B(x, 2r) \ H. Denote by V the component of B(x, 2r) \ H that contains A1; then 
V ⊂ Ω because it meets Ω and not E (by (6.3) and (6.8)).

Now let X ∈ P ∩ B(x, r) be given. There exists Y ∈ V such that |Y − X| ≤ 3ε, and 
by (6.9) dist(Y, E) ≤ τr/3; if ε is small enough, this implies that dist(X, E) ≤ τr/2; 
this proves (6.4) and Theorem 6.1 follows. �
Remark 6.10. Notice that in the course of the proof of Theorem 6.1 we hardly use the 
fact that G∞ is a Green function (we only use the fact that it vanishes on E and the 
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nondegeneracy property (6.7)). This, however, is not shocking – see, e.g., [6], where 
the free boundary results also rely very moderately on the particular properties of the 
distance function. The situation may be even more peculiar for d = n −1 because it could 
happen (but the authors did not manage to prove this) that if E is Ahlfors regular of 
dimension n − 1 and satisfies the Weak Geometric Lemma (see for instance [15]), and, in 
addition, Ω contains corkscrew balls and Harnack chains, then E is uniformly rectifiable. 
If this were true, then we could stop the argument as soon as we proved (6.3), and the 
only properties of G∞ that we would use are the prevalent good approximation and the 
fact that G∞ = 0 on E.

Remark 6.11. Theorem 6.1 also holds when we assume that the Green functions GY

are locally prevalently close to distances to a d-plane (see Definition 5.5). The proof is 
the same; that is, we only used the fact that the function u = cG∞ is L-harmonic in 
Ω ∩ B(x, 10r), and reducing to the case when the pole Y lies outside of B(x, 10r) is just 
a matter of skipping the large balls B(x, r), r ≥ r0/C, i.e., restricting our attention to 
pairs (x, r) ∈ (E ∩ B(x0, r0)) × (0, r0/C), in Definition 5.1 of local prevalence.

Remark 6.12. Theorem 6.1 also holds when we replace dist(X, E) with any power 
dist(X, E)α, with the same proof. This is a quite natural condition as the Green function 
is expected to be only Hölder continuous at the boundary, that is, to behave as a power 
of the distance.

Remark 6.13. In this section and the next ones, we give statements with distance func-
tions, and not their gradients. The results of these sections should also hold with the 
prevalent approximation with the gradients, but we decided not to check them. Note 
however that in principle conditions on the good approximation of ∇G are stronger than 
those on G itself, because G can essentially be computed from its gradient.

7. The converse with the distance Dα

We are now interested in finding out whether if the Green function G∞ associated to 
one of our operators is prevalently close to some Dα (and later in this section, to some 
power of Dα), then d is an integer and E is uniformly rectifiable. The situation is more 
challenging than with the distance to d-planes, first because we allow dimensions that 
are not integers (this made little sense when discussing the distance to a plane), and also, 
due to the fact that Dα vanishes on E, and not on a d-plane as in Section 6, we cannot 
simply use the fact that Dα is small near E; that is, the answer is no longer hidden in 
the question.

Contrary to the previous section, we are now restricted to our special classes of elliptic 
operators, satisfying (1.9) or built from the distance functions. We start with the most 
classical case of co-dimension 1.
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Theorem 7.1. Let Ω ⊂ Rn be such that E = ∂Ω is Ahlfors regular of dimension n − 1
and assume, in addition, that the domain Ω has interior corkscrew balls and Harnack 
chains, that is, (2.1) holds. Let L = − div A∇ satisfy (2.4), (2.5), and (1.9). Suppose 
that the Green function G∞ for L on Ω is prevalently close to Dα,μ for some α > 0 and 
some AR measure μ of dimension n − 1 on E. Then E is uniformly rectifiable.

Proof. This time we shall not use Definition 1.13 to prove the uniform rectifiability, but 
rather show that, in addition to being 1-sided NTA, Ω has exterior corkscrew points. 
This is also known as Condition B. We say that the (unbounded) AR set E of dimension 
n −1 satisfies Condition B when there is a constant c > 0 such that for x ∈ E and r > 0,

∃ X1, X2 ∈ B(x, r), that lie in different connected components

of Rn \ E, and such that dist(Xi, E) ≥ cr for i = 1, 2.
(7.2)

This condition was introduced by S. Semmes in [26], and is known to imply the uniform 
rectifiability of E (see [26] in the smooth case and, probably for the simplest proof, [11]).

This property can be also written in terms of prevalent sets. Let GCB(c) denote the 
set of (x, r) ∈ E × (0, +∞) such that (7.2) holds. The definition requires that GCB(c) =
E × (0, +∞), but we claim that if the set GCB(c) is prevalent for some c > 0, then 
E satisfies Condition B (with a worse constant). Indeed, if GCB(c) is prevalent, we 
claim that there is a constant a > 0 such that for each (x, r) ∈ E × (0, +∞), we can 
find y ∈ E ∩ B(x, r/2) and t ∈ (ar, r/2) such that (y, t) ∈ GCB(c). Otherwise the set 
E ∩ B(x, r/2) × (ar, r/2) is contained in the bad set B = E × (0, +∞) \ GCB(c), and then

∫

y∈E∩B(x,r)

∫

0<t<r

1B(y, t)dμ(y)dt

t

∫

y∈E∩B(x,r/2)

∫

ar<t<r/2

dμ(y)dt

t

μ(E ∩ B(x, r/2)
∫

ar<t<r/2

dt

t
≥ C−1rd ln(1/(2a)), (7.3)

which contradicts (1.6) if a is chosen small enough, depending on the Carleson constant 
for B. But once we obtain that pair (y, t), the two points X1 and X2 that we get from 
(7.2) for B(y, t) also work for B(x, r), although with the worse constant ac.

Return to the theorem, and let Ω, E, L satisfy the assumptions. We only need to find 
c > 0 such that GCB(c) is prevalent. Since we know that for each choice of ε and M , the 
sets GGDα

(ε, M) and Gcc(ε, M) are prevalent, it is enough to show that for some choice 
of c > 0, M , and ε

GGDα
(ε, M) ∩ Gcc(ε, M) ⊂ GCB(c). (7.4)

We proceed by contradiction. Assume that (7.4) fails for ck = εk = M−1
k = 2−k, and 

pick an open set Ωk bounded by an AR set Ek, an operator Lk, and a pair (xk, rk) ∈
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E × (0, +∞) that all satisfy the assumptions, and for which (xk, rk) ∈ GGDα
(εk, Mk) ∩

Gcc(εk, Mk) \ GCB(ck).
By translation and dilation invariance, we may assume that xk = 0 and rk = 1. We 

may also extract a subsequence so that Ωk converges to a limit Ω∞, Ek converges to 
E∞, and per Theorem 2.19, Ω∞ is bounded by E∞ and Ω∞ satisfies the assumption 
(2.1). Moreover, we can extract a further subsequence so that the AR measure μk given 
on Ek converges weakly to a measure μ, and this limit is automatically AR. Because 
(0, 1) ∈ Gcc(2−k, 2k), the matrix Ak of Lk converges, in L1

loc(Ω∞), to a constant matrix 
A0.

By Theorem 2.19, the Green function Gk = G∞
k for Lk in Ωk, correctly normalized, 

converges to the Green function G = G∞
∞ for L0 on Ω∞, uniformly on compact sets 

of Ω∞. Here L0 is the constant coefficients operator L0 = − div A0∇. Hence, using the 
facts that (0, 1) ∈ GGDα

(2−k, 2k) and μk stays uniformly AR and converges to μ, we can 
conclude that G = CDα,μ.

We shall start many of our “free boundary” compactness arguments in this fashion, 
but now we need to use the specific assumption of co-dimension 1. Why does the fact 
that G = CDα,μ imply something nice about the domain? The simplest path would 
be to brutally use a known fact that on 1-sided NTA domains if the harmonic measure 
(associated to a constant coefficient elliptic operator on Ω) is absolutely continuous with 
respect to μ (any AR measure on E) and given by an A∞ weight, then E is uniformly 
rectifiable. This is essentially due to [21]. A careful reader might notice that formally 
speaking, they treat the Laplacian only, but this extends to all constant coefficients 
symmetric elliptic operators, and then a symmetrization argument could be used to get 
rid of the assumption of symmetry. See, e.g., [19] where an analogous result is obtained 
in much bigger generality (so it could serve as a reference by itself), but in particular, 
the symmetrization is discussed in the beginning of Proof of Theorem 1.6.

Our limiting domain Ω∞, with the constant coefficients operator L0, admits the Green 
function G = CDα,μ, and in particular

C−1 dist(X, E) ≤ G(X) ≤ C dist(X, E) for X ∈ Ω∞. (7.5)

We claim that this implies that the harmonic measure ω∞, with a pole at ∞, is also 
comparable to Hn−1

|E∞
, in the sense that

C−1Hn−1
|E∞

≤ ω∞ ≤ CHn−1
|E∞

on E∞.

Once this claim is established, we can apply the aforementioned result and obtain that

E∞ is uniformly rectifiable. (7.6)

The claim is due to the following estimate for the Green function, valid on any 1-sided 
NTA domain with an unbounded d-dimensional Ahlfors regular boundary when d ≥ n −1, 
and on any domain with an unbounded d-dimensional Ahlfors regular boundary when 
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d < n − 1. We consider the Green function with pole at a faraway point Y for any 
elliptic operator L on E, with (2.4) and (2.5), or the operator given by (2.6). Under 
these assumptions, there is a constant C ≥ 1, that depends on the dimensions and the 
constants in our assumptions on Ω and L, such that if B = B(x, r) is a ball centered on 
E = ∂Ω, and ZB ∈ B ∩ Ω denotes a corkscrew point for B,

C−1rn−2GY (ZB) ≤ ωY (E ∩ B) ≤ Crn−2GY (ZB) (7.7)

as soon as the pole Y lies out of 2B. We refer to Lemma 15.28 in [10], but in co-dimension 
1 this is of course a classical result. To be careful with the normalization of the Green 
functions, let us consider balls B that are contained in B0 for some fixed ball B0 and 
pick any Y ∈ Ω \2B0. The comparison principle says that C−1GY ≤ G∞ ≤ CGY , with a 
uniform constant, if for instance we normalize G∞ by G∞(Z0) = GY (Z0) for a corkscrew 
point Z0 for B0. Then by (7.5)

C−1r ≤ c GY (ZB) ≤ Cr, (7.8)

where the normalizing constant c depends on B0, but not C. By (7.7), this yields

C−1rn−1 ≤ c ωY (E ∩ B) ≤ Crn−1 for B ⊂ B0, (7.9)

which implies by an easy covering argument that ωY is essentially proportional to Hn−1

on E ∩ 1
2B0. So we may apply [21] and get (7.6).

Recall that we want to use (7.6) to derive a contradiction, in fact with our assumption 
that (0, 1) = (xk, rk) /∈ GCB(ck).

Let ε > 0 small, to be chosen soon. We know that the set Gur(ε) associated to E∞
is prevalent, so by the same argument as in (7.3) we can find y ∈ E∞ ∩ B(0, 1/2) and 
t ∈ (a, 1/2) such that dy,t(E∞, P ) ≤ ε for some hyperplane P .

Denote by H+ and H− the two connected components of H =
{

X ∈ B(y, a);
dist(X, P ) ≥ 2aεr

}
, and also let Z0 be a corkscrew point for Ω∞ in B(0, a); we know 

that it exists because 0 ∈ E∞ and Ω∞ satisfies (2.1). Then dist(Z0, P ) ≥ C−1a because 
dy,t(E∞, P ) ≤ ε, and so Z0 ∈ H+, say.

For k large, H+ and H− do not meet E, because dy,t(E∞, P ) ≤ ε and E∞ is the limit 
of Ek; then we know that H+ ⊂ Ωk (because Z0 ∈ Ωk for k large), and we have two 
options. The pleasant one is when H− is contained in some other component of Rn \ Ωk, 
because this contradicts immediately our contradiction assumption that (0, 1) /∈ GCB(ck)
(relative to Ωk): the two points Z0 and its symmetric relative to P would fit in (7.2). 
The other option is that H− meets Ωk, hence H− ⊂ Ωk (because it does not meet Ek). 
This is impossible too, this time because if ε is small enough, we contradict the existence 
of Harnack chains in Ωk; see the argument below (3.4).

We finally proved (7.4), and Theorem 7.1 follows. �
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Remark 7.10. It seems that we should not be forced to use [21,19]: this is a rather 
indirect route, and we have a detailed information about the Green function at hand, in 
particular, we know that it is a multiple of a suitably defined distance to the boundary, 
not just the fact that it satisfies the bounds from above and below (7.5). Yet, these 
matters are highly non-trivial, both for the Green function and for the harmonic measure. 
For instance, it is known that there are cones E, other than hyperplanes, such that ω∞ is 
proportional to Hn−1

|E . We do not know (but did not try to make a computation) whether 
the Green function will be a multiple of Dα for these examples. It could happen that in 
the situation of G = CDμ,α, μ really must be a flat measure (instead of being merely 
uniformly rectifiable, as in (7.6). We will return to this issue in the next section.

We now switch to the question of prevalent approximation by Dα,μ of the Green 
functions for elliptic operators in dimensions d ∈ (n − 2, n) \ {n − 1}. We want to say 
that this does not happen. That is, the fact that the Green function is prevalently close 
to Dα,μ implies that the dimension is integer, for the operators in Theorem 7.1, and, 
more generally, for all elliptic operators.

Proposition 7.11. Let Ω ⊂ Rn be such that E = ∂Ω is Ahlfors regular of dimension 
d ∈ (n − 2, n) \ {n − 1}. If d > n − 1, suppose in addition that Ω contains corkscrew 
balls and Harnack chains, as in (2.1). Then let L = − div A∇ be an elliptic operator (as 
in (2.4) and (2.5)), and denote by G∞ the Green function for L on Ω. Then G∞ is not 
prevalently close to Dα,μ for any choice of α > 0 and an AR measure μ of dimension d
on E.

This was demoted to the rank of proposition, because it will appear soon that the 
approximation fails just because Dα,μ does not have the right homogeneity.

Proof. Suppose the Proposition fails, so that we can find an example (Ω, E, L) for which 
G∞ is prevalently close to some Dα,μ. This means in particular that we can find pairs 
(x, r) ∈ GGDα

(ε, M), with arbitrary values of ε and M .
Pick such a pair; by translation and dilation invariance we may assume that (x, r) =

(0, 1), so we deduce from (1.16) that there is a constant c > 0 such that

|Dα,μ(X) − cG∞(X)| ≤ ε for X ∈ Ω ∩ B(0, M). (7.12)

In particular, recalling that Dα,μ(X) ∼ dist(X, E) and if ε is small enough, we get that

C−1 dist(X, E) ≤ cG∞(X) ≤ C dist(X, E) (7.13)

for X ∈ Ω ∩ B(0, M) such that dist(X, E)) ≥ 1. Now pick a pole Y ∈ Ω \ B(0, 10M) and 
a corkscrew point X0 for B(0, M), then set

λ = GY (X0)/G∞(X0) (7.14)
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and apply the comparison principle to the two function G∞ and GY , say, in Ω ∩B(0, 2M). 
We get that

C−1λ ≤ GY (X)
G∞(X) ≤ Cλ for X ∈ Ω ∩ B(0, M) (7.15)

and, because of (7.13),

C−1 dist(X, E) ≤ c

λ
GY (X) ≤ C dist(X, E) (7.16)

when in addition dist(X, E)) ≥ 1. Now consider a ball B = B(x, r) ⊂ B(0, M), and 
choose a corkscrew point ZB for B. We restrict to the case when r ≥ C0, where C0 is 
chosen so that (7.16) always holds for ZB and yields

GY (ZB) ∼ λ

c
dist(X, E) ∼ λ

c
r.

Then apply (7.7) to B; this yields

C−1 λ

c
rn−1 ≤ ωY (E ∩ B(x, r)) ≤ C

λ

c
rn−1. (7.17)

We claim that this is incompatible with the Ahlfors regularity of E. We first take B0 =
B(0, M/2) and find that ωY (E ∩ B0) ∼ λ

c Mn−1.
First assume that d > n − 1; we can find more than C−1Md disjoint balls B of radius 

C0 that are contained in B0, and hence (7.17) yields

λ

c
Mn−1 � ωY (E ∩ B0) ≥

∑
B

ωY (E ∩ B0) ≥ C−1 λ

c
Md,

a contradiction if M is large enough and d > n − 1. Observe that λ
c disappears as it 

should (we could have replaced G∞ by a multiple so that λ
c = 1 anyway).

If instead d < n − 1 we can cover B0 by less than CMd balls B of radius C0 that are 
contained in B(0, M), and (7.17) yields

λ

c
Mn−1 � ωY (E ∩ B0) ≤

∑
B

ωY (E ∩ B0) ≤ C
λ

c
Md,

a contradiction again for M large enough.
This completes our proof of Proposition 7.11. �

Remark 7.18. The fact that proving Proposition 7.11 was a question of homogeneity 
should convince us to try something different in our Case 1 (elliptic operators): approx-
imate G∞ with the power Dα,μ(X)d+2−n, because this is the only one for which (7.7)
leaves us a fighting chance. (Notice that when d = n − 1 we keep the power 1, as in 
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Theorem 7.1, and this issue does not arise). It turns out such a power is indeed natural 
in a much more general context, but unfortunately – perhaps for this reason – the cor-
responding results are much more intricate as well. We turn to this question in the next 
section.

8. The condition Υflat, higher co-dimension, and more exotic free boundary results.

Many known free boundary results rely on some “zero-level” flatness statement, that 
is, a degenerate version of the hypothesis entails that the set is a hyperplane. In our 
context, such a degenerate hypothesis is an equality between the Green function and 
the distance of our choice. This was not a problem in Section 6: if the Green function 
is assumed to be the distance to a plane, then of course the boundary is a plane simply 
because the Green function ought to vanish on it. However, when working with Dα, 
an analogous statement is not as clear: both the Green function and Dα vanish on the 
boundary E, whatever E is. We were lucky not to have to prove any “zero-level” flatness 
in Section 7, by virtue of the results in [21], and, as far as the harmonic measure goes, a 
straightforward zero-level flatness statement would not even be true – see Remark 7.10, 
but as we pointed out in the same remark, it seems reasonable to expect that such 
a statement would nonetheless hold for the Green function. Unfortunately, we do not 
manage to prove it at this point for the desired class of operators at hand, and will 
simply state it as a hypothesis.

Definition 8.1. Let the dimension 0 < d < n, with d 
= n −2, α > 0, and a constant coeffi-
cient elliptic operator L0 = − div A0∇ be given. We say that the property Υflat(d, α, L0)
is true when for each domain Ω ⊂ Rn such that E = ∂Ω is AR of dimension d and (2.1)
is satisfied when d ≥ n − 1, the following holds. If μ is an AR measure of dimension d
on E and

L0Dd+2−n
α,μ = 0 on Ω, (8.2)

then d is an integer, E is a d-plane, and μ is a flat measure.

Remark 8.3. Our forthcoming results will primarily rely on the case when L0 = −Δ. In 
fact, when L is associated to a constant coefficient operator L0 
= −Δ, one could object 
that our definition of Dα,μ is not as appropriate as when L0 = −Δ. That is, maybe 
we should use different distances like the Dα, but adapted to the operators L0 that we 
intend to get at the limit. This could be more appropriate with respect to the rotation 
invariance, but it looks a little too far-fetched for this paper (and we do not want to 
have too many definitions).

Let us now discuss some particular cases and equivalent reformulations of the condition 
Υflat(d, α, L0). Even when d = n − 1 and L0 = −Δ, we do not know whether Υflat(n −
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1, α, L0) is valid. When d ∈ (n − 2, n) \ {n − 1}, the power in (8.2) is exactly the one 
that naturally arises in the proof of Proposition 7.11, see Remark 7.18. We could try 
to define an analogue of Υflat(n − 2, α, L0) (notice that the case d = n − 2, as is, does 
not make much sense), but at this time we will not try to do so. When d < n − 2, the 
exponent d + 2 − n in Definition 8.1 is negative, and Dd+2−n

α,μ becomes a function with a 
singularity near E.

To show that Definition 8.1 is reasonable we have to verify, at the very least, that 
(8.2) is satisfied if d is an integer, E is a d-plane, and μ is a flat measure. And indeed, 
if d is an integer and μ = cHd

|P is a flat measure, the scale invariance yields Rα,μ(X) =
C dist(X, E)−1/α, then Dα,μ(X) = C dist(X, E), and Dd+2−n

α,μ = C dist(X, E)d+2−n. 
When d = n − 1 and Ω is a half-space, Dd+2−n

α,μ = Ct (t denoting the coordinate perpen-
dicular to the boundary), which is a solution to any constant coefficient elliptic equation, 
as desired. When d < n −2, we denote by t the projection of X ∈ Rn on P ⊥ � Rn−d, and 
we see that Dd+2−n

α,μ = C|t|d+2−n is a function of t only. We can recognize a multiple of 
the Green function in Rn−d. So Dd+2−n

α,μ is indeed harmonic in that case. Alternatively, 
one could make a direct computation to check that Δx,t|t|d+2−n = 0 for t ∈ Rn−d \ 0. 
These computations ensure that the condition Υflat is, at least, coherent. Does it have a 
reasonable chance to be true?

Let us look at an equivalent reformulation of the condition Υflat.

Lemma 8.4. Assume that Ω ⊂ Rn is a domain with an unbounded d-Ahlfors regular 
boundary E, 0 < d < n, and μ is a d-AR measure on E. Then for any α > 0

ΔDd+2−n
α,μ = 0 on Ω if and only if L

α,μ
Dα,μ = 0 on Ω, (8.5)

where L
α,μ

is given by (1.2) with Dα = Dα,μ.
In particular, for 0 < d < n, with d 
= n − 2, and α > 0, the property Υflat(d, α, Δ)

is equivalent to the following. For each domain Ω ⊂ Rn such that E = ∂Ω is AR of 
dimension d and (2.1) holds if d ≥ n − 1, if μ is an AR measure of dimension d on E
and

L
α,μ

Dα,μ = 0 on Ω, (8.6)

then d is an integer, E is a d-plane, and μ is a flat measure.

Proof. The fact that (8.5) holds is the result of a direct computation. Notice that all 
these functions are smooth on Ω, so we can talk about strong solutions. The verification 
is easy, because

∇(Dd+2−n
α,μ ) = (d + 2 − n)Dd+1−n

α,μ ∇Dα,μ,
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so ΔDd+2−n
α,μ = 0 if and only if div Dd+1−n

α,μ ∇Dα,μ = 0; then we just need to compare 
with (1.2). Hence, Υflat(d, α, Δ) says that Dα,μ is only a solution of Lα,μ in the trivial 
case of a flat measure, which yields (1) in the statement of the lemma. �

There is one emblematic case when Lemma 8.4’s version of Υflat(d, α, Δ) fails miser-
ably; this is when α = n −d −2, the “magic α” case that we discussed in the introduction. 
In this case, both conditions in (8.5) hold on any d-Ahlfors regular set, which does not 
even need to have an integer dimension, much less possess any regularity or uniform 
rectifiability. In the context of this paper this case is certainly not amenable to any free 
boundary results besides Theorem 6.1, not only because of the failure of Υflat, but be-
cause the Green function of L = − div D

−(n−d−1)
α,μ ∇ is a multiple of Dα,μ and hence, the 

harmonic measure is equivalent to the Hausdorff measure of the boundary for any d-AR 
set E [6]. It remains to be seen whether Υflat(n − 2, α, Δ) holds in all other instances.

At this point, let us pass to our main results assuming Condition Υflat. As usual, we 
start with Case 1.

Theorem 8.7. Let d ∈ (n −2, n) \{n −1} and α > 0 be given, and suppose that the property 
Υflat(d, α, L0) is true for every constant coefficient elliptic operator L0 = − div A0∇. 
Assume that E is Ahlfors regular of dimension d, L satisfies (2.4), (2.5), and (1.9), and 
Ω satisfies (2.1) if d > n − 1. Then the Green function G∞ for L on Ω is not prevalently 
close to Dd+2−n

α,μ for any AR measure μ of dimension d on E.

The question is already interesting when L is the Laplacian, and then of course Prop-
erty Υflat(d, α, Δ) is enough (see also Remark 8.3).

As we mentioned above, when d = n − 1, we do not know whether Υflat(n − 1, α, L0)
is true or not, but we proved Theorem 7.1 by different means.

Proof. We shall again prove this by contradiction and compactness. If G∞ is prevalently 
close to Dd+2−n

α,μ , this means that we can find pairs (x, r) in the analogue G∗(ε, M) of 
GGDα

(ε, M) but with the power d + 2 − n, with arbitrary values of ε and M . We can 
even choose (x, r) ∈ Gcc(ε, M) too, because one of our assumptions, (1.9), says that this 
condition is prevalent. We want to show that this is impossible, and in fact we will prove 
a little more: for each choice of constants in the assumptions of the theorem, we can find 
ε and M such that if Ω, E, L satisfy the assumptions, G∗(ε, M) ∩ Gcc(ε, M) is empty.

We prove this by contradiction, so we suppose that for each k ≥ 0, we can find a 
counterexample (Ωk, Ek, Lk) where this fails for εk = 2−k and Mk = 2k, and we want to 
derive a counterexample.

We are given a pair (xk, rk) ∈ G∗(εk, Mk) ∩Gcc(εk, Mk), and by translation and dilation 
invariance we may assume that xk = 0 and rk = 1. Then we proceed as in Theorem 7.1, 
for instance, and extract a subsequence for which (Ωk, Ek, Lk) converges to a triple 
(Ω∞, E∞, L0). As before, this triple satisfies the assumptions of the theorem (because the 
(Ωk, Ek, Lk) satisfy it uniformly), L0 is a constant coefficient elliptic operator (because 
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(0, 1) ∈ Gcc(εk, Mk)), and we even know that after renormalization the G∞
k converge, 

uniformly on compact subsets of Ω∞, to a Green function G for L0 on Ω∞. Finally, since 
(0, 1) ∈ G∗(εk, Mk), we see that G = Dd+2−n

α,μ∞ for some d-AR measure μ∞ that we obtain 
as a weak limit of the μk that were used to define G∗(εk, Mk) on Ωk.

But our assumption Υflat(d, α, L0) says that this cannot happen (recall that d 
= n −1, 
so flat measures are not allowed). Theorem 8.7 follows. �

Now we pass to Case 2. As before, we consider the question of whether the Green 
function for Lα,μ is prevalently close to distance functions, and the most natural ones 
in this instance are clearly the distances Dα,μ associated to the same α > 0 and μ (see 
(8.6)).

The natural conjecture is now that Υflat(d, α, Δ) holds, unless d + α = n − 2 or 
d = n − 2 (where it is not defined). At this time we have some additional information on 
this question, but no full proof, and for the moment we just state the consequence of a 
positive result.

Theorem 8.8. Let d ∈ (0, n) \ {n − 2} and α > 0, α 
= n − 2 − d, be given, 
and suppose that the property Υflat(d, α, Δ) holds. Let furthermore Ω be a domain in 
Rn, E = ∂Ω be d-Ahlfors regular, and assume that (2.1) holds if d ≥ n − 1. Let 
L = Lα,μ = − div ADd+1−n

α,μ ∇ be the degenerate elliptic operator associated to an AR 
measure μ on E as in (1.3) and (1.4), with the matrix of coefficients A satisfying (2.4), 
(2.5), and (1.9) with A0 ≡ I. If the Green function G∞ for Lα,μ, with pole at ∞, is 
prevalently close to the distance function Dα,μ (with the same α and μ) then d is an 
integer and E is uniformly rectifiable.

Again d + α = n − 2 is excluded here, because in this case Dα,μ is the Green function 
no matter what.

We already know that the result holds when d = n − 1, because in this case Lα,μ = Δ
and we have Theorem 7.1, which fortunately does not need Υflat(d, α, Δ).

Proof. We prove the theorem by compactness as usual, and we start as in Theorem 7.1. 
Let Ω, E, L satisfy the assumptions. We want to prove that d is an integer and that E is 
uniformly rectifiable, i.e. that for all τ > 0, the set Gur(τ) (associated to the integer d) 
is prevalent. By assumption, GGDα,μ

(ε, M) is prevalent, and we added μ in the notation 
because this time we really need Dα,μ to be defined in terms of μ. As before, it will be 
enough to prove that if ε and M−1 are chosen small enough, depending on n, d, τ , the 
AR constant for μ, and the constant in (2.1) when d ≥ n − 1,

GGDα,μ
(ε, M) = ∅ unless d is an integer (8.9)

and, when d is an integer,

GGDα,μ
(ε, M) ⊂ Gur(τ). (8.10)
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We proceed by contradiction, assume that (8.9) or (8.10) fails for εk = 4−k and Mk = 2k, 
and pick a counterexample for each k. This means, we find an open set Ωk bounded by 
an AR set Ek, an AR measure μk on Ek (with uniform AR bounds), and finally a 
pair (xk, rk) ∈ Ek × (0, +∞) such that the assumptions above hold (and in particular 
(xk, rk) ∈ GGDα,μ

(4−k, 2k)), but not the conclusions.
By translation and dilation invariance, we may assume that xk = 0 and rk = 1. We 

may also extract a subsequence so that Ωk converges to a limit Ω∞, Ek converges to 
E∞, and μk converges weakly to a limit μ∞ on E∞. As in the proof of Theorem 2.19, 
Ω∞ is bounded by E∞, Ω∞ satisfies the assumption (2.1) when needed, and μ∞ is 
automatically an AR measure on E∞.

The coefficients of the operator Lk converge in L1
loc(Ω∞) to the coefficients Dd+1−n

α,μ∞

of the operator L∞ associated to Dα,μ∞ on Ω∞ (see the argument near (2.28): we are 
now proceeding as in the proof of Theorem 3.43, but with different assumptions). In 
particular, we have (2.17) with A∞ = I, and we are allowed to apply Theorem 2.19. 
Hence the Green function G∞

k for Lk converges, uniformly on compact subsets of Ω∞ to 
a multiple of the Green function G for L∞.

But our assumption that (0, 1) ∈ GGDα,μ
(4−k, 2k) implies that

|Dα,μk
(X) − ckG∞

k (X)| ≤ 2−k for X ∈ Ωk ∩ B(0, 2k) (8.11)

(compare with (1.16)), and since Dα,μk
converges to Dα,μ∞ , we see that G = CDα,μ∞

on Ω∞. In particular L∞Dα,μ∞ = 0, and now (8.5) and our assumption Υflat(d, α, Δ)
imply that d is an integer, μ∞ is a flat measure, and of course E∞ is a d-plane.

So (8.9) did not fail, and the fact that Ek tends to E∞ implies that d0,1(E, Ek) tends 
to 0, so (8.10) is also true for k large. This contradiction completes our proof of (8.9)
and (8.10), and Theorem 8.8 follows. �
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