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It was recently shown that the harmonic measure is absolutely continuous with respect
to the Hausdorff measure on a domain with an n — 1 dimensional uniformly rectifiable
boundary, in the presence of now well-understood additional topological constraints.
The topological restrictions, while mild, are necessary, as the counterexamples of
Bishop and Jones show, and no analogues of these results have been available for higher
co-dimensional sets. In the present paper, we show that for any d < n — 1 and for
any domain with a d-dimensional uniformly rectifiable boundary the elliptic measure
of an appropriate degenerate elliptic operator is absolutely continuous with respect
to the Hausdorff measure of the boundary. There are no topological or dimensional
restrictions contrary to the aforementioned results. Résumé en Francais. On sait que
la mesure harmonique associée a un domaine de R” dont la frontiére est uniformément
rectifiable de dimension n — 1 est absolument continue par rapport a la mesure de
surface, sous des conditions topologiques récemment bien comprises. Ces conditions,
bien que faibles, sont nécessaires, comme 1'ont montré des contre exemples de C. Bishop
and P. Jones. On ne disposait pas jusqu'ici de résultats analogues lorsque la frontiere
est de codimension plus grande. On démontre dans cet article que lorsque la frontiere

est uniformément rectifiable de dimension d < n — 1, la mesure elliptique associée a
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des opérateurs elliptiques dégénérés appropriés est absolument continue par rapport a

la mesure de Hausdorff, sans avoir besoin de condition topologique supplémentaire.

1 Introduction

Spectacular achievements of the past 20 years at the interface of harmonic analysis,
geometric measure theory, and partial diffferential equations (PDEs) have finally iden-
tified the necessary and sufficient conditions for the absolute continuity of harmonic
measure with respect to the Hausdorff measure of an (n — 1)-dimensional set. In some
very informal terms, the problem is as follows. The harmonic measure of a subset E of
the boundary of a domain Q, ¥ (E), is the probability that a Brownian traveler, starting
at X € Q, would exit through the set E rather than its complement. The celebrated
1924 Wiener criterion has identified all boundary points where the harmonic functions
are continuous and, hence, the harmonic measure is classically well defined. However,
the quantitative information, that is, the question whether the resulting probability
is reasonably related to the Hausdorff measure of the set E, in other words, whether
the Brownian travelers see the portions of the boundary in accordance with their size,
turned out to be much more delicate. In PDE terms, it is equivalent to the question
whether for some p, the Dirichlet boundary value problem is well-posed with the LP
(rather than continuous) data, with the appropriate dependence of solutions on the LP
size of the data on the boundary [27].

It is quite remarkable that the key geometric notion in this context was
identified already in 1916, when Riesz [29] proved that the harmonic measure is
absolutely continuous with respect to the Lebesgue measure in a simply connected
planar domain bounded by a rectifiable curve. Rectifiability is the property that the
set can be covered by a countable collection of Lipschitz graphs, modulo a subset of
measure zero. Extending this result to higher dimensions took more than a century
and a development of harmonic analysis, singular integrals, and corona decomposition
techniques on uniformly rectifiable sets. We do not aim to provide a detailed overview
in this introduction, but let us mention that the key milestones were perhaps Dahlberg’s
treatment of Lipschitz domains in [8], then results on 2-sided and 1-sided NTA domains
with uniformly rectifiable boundaries in [23] and [20], and then, finally, the discovery
of necessary and sufficient geometric conditions that were recently identified in [1].
One of the main problems was that the uniform rectifiability is not sufficient [2],

for, in addition, the domain has to exhibit some quantitative connectedness, and the
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Harmonic Measure on Low-Dimensional UR Sets 3

exact, sharp form of this connectedness condition seemed elusive for many years.
It is interesting to point out that the converse result [1] for this seemingly PDE
question was ultimately resolved quite recently, and thanks to elaborate free boundary
techniques related to the Alt-Caffarelli-Friedman functional, or, in a later proof, to
the big advancements in the understanding of singular integrals and other harmonic
analysis objects on the uniformly rectifiable sets, for instance, the resolution of the
David-Semmes conjecture regarding the L? boundedness of Riesz transforms in [28].
However, all of these results have been restricted to the sets with n — 1 dimensional
boundaries, and with very few exceptions, up to recently virtually no theorems treated
the higher co-dimensional case such as the complement of a curve in R3. This was not
due to a lack of efforts: a characterization of d-dimensional uniformly rectifiable sets
ford < n—1 is a well-known open problem [16, 28]. For instance, one line of development
in this direction is the recent theory of reflectionless measures (see, e.g., [21, 22]).
However, it does not address any of the PDE aspects of the problem. With the latter in
mind, in [12], the authors of this paper, together with Feneuil, have launched a program
devoted specifically to the PDEs on domains with lower dimensional boundaries. To
this end, [12] introduces the degenerate elliptic operator L = —divAV whose matrix
of coefficients A has eigenvalues roughly proportional to dist (-, 9)" %4~1, a power of
the distance to the boundary. The idea to use degenerate elliptic operators for lower-
dimensional boundary features is not shocking: it is common in relativity, certain
diffusion problems in population biology [17], Caffarelli-Silvestre extension of the
fractional Laplacian [4] and its generalization to higher order operators in conformal
geometry by Chang and Yang [5]. The additional weight takes the dimension of the
boundary into account, and something like this is needed because the usual harmonic
functions do not “see” the lower dimensional sets. However, consideration of Lipschitz,
much less rectifiable, domains, was beyond reach. In [12], the authors proved the
existence of the associated elliptic measure w;, together with fundamental properties
such as the Holder continuity of solutions, the maximum principle, the doubling
property for w;, the comparison principle, and estimates for the Green function. See [11,
12], and more recently [14] for an even more general setting of domains with boundaries
of mixed dimension that will be used here. They also proved in [13] a 1st absolute
continuity result for w; as in the theorem below, but restricted to the special case of
Lipschitz graphs with small constants.

The present paper culminates this line of research by establishing the A,
property (quantitative absolute continuity) of the elliptic measure with respect to the

surface measure in the most general setting of uniformly rectifiable domains.
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Theorem 1.1. Let E be a d-dimensional uniformly rectifiable set in R”, d < n — 2, and
1 be a uniformly rectifiable measure on E. Let @ be the harmonic measure associated to
the operator L = — div D;};“d‘”v in R\ E, with the distance function

—1/a
D, oX) = {/ X — y|_d_°‘ d,u(y)} , a>0. (1.2)
E

Then w is absolutely continuous with respect to w, and its density is a weight in the

Muckenhoupt class A ().

We chose to state the theorem for unbounded (uniformly rectifiable) sets, but
the case of bounded sets would work as well, with minor modifications.

All the notions in the theorem are customary quantifiable analogues of the prop-
erties we just discussed (rectifiability and absolute continuity), but for completeness let
us nonetheless carefully recall the definitions.

We say that the closed set E C R" is Ahlfors regular of dimension d when there

is an accompanying Ahlfors regular measure x on E, which means that
Calrd <uwENBX,T)) < Cord forx e Eandr > 0. (1.3)

We know that u is then equivalent to HldE, the restriction to E of the Hausdorff measure,
but we prefer to keep the flexibility of choosing a different n. The constant C, will be
sometimes referred to as the AR constant of u.

The notion of uniform rectifiability was officially introduced by David and
Semmes [16]. One of the many equivalent definitions (see [16, Chapter I.1]) is the

following.

Definition 1.4. A d-dimensional Ahlfors regular measure u is uniformly rectifiable if
there exist 0, C; > 0 so that, for each x € supp(n) and r > 0, there is a Lipschitz mapping
g from the d-dimensional ball B;(0,r) C R? to R" such that g has Lipschitz norm less

than or equal to C; and
1(B(x,7) N g(B4(0,1))) > o<,

That is, supp(u) contains “big pieces of Lipschitz images of R?”. An Ahlfors regular set
E € R" is called uniformly rectifiable if #%|; is uniformly rectifiable. We refer to C,
and 6 as the UR constants of u (or simply the UR constants of E). This is a quantified

analogue of the classical concept of rectifiability of a set, as discussed above.
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Finally, the A, absolute continuity of the elliptic (harmonic) measure with

respect to the Hausdorff measure is defined as follows.

Definition 1.5. Let E be a d-dimensional Ahlfors regular set in R”, u be an Ahlfors
regular measure on E, and set Q = R™ \ E. Define an elliptic operator L as above, and
denote by »* the corresponding elliptic measure with pole at X. We say that the elliptic
measure o is A -absolutely continuous with respect to u if for every choice of 7, € (0, 1)
and € € (0, 1), there exists § € (0, 1), such that for each choice of x € E, r > 0, a Borel set

F C B(x,r)NE, and a corkscrew point X = Ay (i.e., chosen as in (2.5) below),

% (F) 5 w(F)

XBExNNE) 0 uBxHNE ¢ (1.6)

The notion is a bit different from the notion of a (single) A, weight because our
o actually refers a family of probability measures parameterized by X € @, and our
definition accounts for this in a standard way. The coherence of this definition uses
the fact that the various harmonic measures % are related to each other through the
change of pole formulas. As in the classical case of a single measure, this A_, property
self-improves into a seemingly stronger condition that says that the harmonic measure
and p are virtually a power of each other, in the sense of Definition 2.25 below. We
refer to [19, 24] for general information on classical Muckenhoupt (single) weights, and
A, in the context of harmonic measures, will be discussed more in Section 2. In the
conclusion of Theorem 1.1, we also obtain, naturally, that § depends on ty, ¢ and the AR
and UR constants of the set E only.

Let us discuss Theorem 1.1 in more detail. Even though the motivation has come
from by now “classical” work in domains with (n — 1) dimensional boundaries, the
result itself and its proof are actually different, perhaps surprisingly stronger, than
their classical counterparts.

In contrast with the classical case of co-dimension 1, there is no need for an
additional topological connectedness conditions here. The lower dimensional nature of
E takes care of the topology, our boundary is so small that Q@ = R" \ E is sufficiently
connected, and contrary to Bishop-Jones counterexamples, in this setting we prove that
the uniform rectifiability by itself is sufficient for the absolute continuity of harmonic
measure.

Even more intriguing is the situation with the converse. Analogous results for
traditional co-dimension one boundaries suggest that Theorem 1.1 is of the nature of the

best possible, that is, rectifiability should be necessary and sufficient for the absolute
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6 G. David and S. Mayboroda

continuity of harmonic measure with respect to the Hausdorff measure of the boundary.
In our setting, however, there is a surprising “magical” counterexample. When d + « =
n—2 (which forces d < n—2), it turns out that the distance function in (1.2) is, in fact, the
Green function with the pole at infinity, and w is automatically A, with respect to the
Hausdorff measure on any Ahlfors regular set, even when d is not an integer. See [10].
To the best of our knowledge, this is essentially a unique case where one can explicitly
derive the Green function for an arbitrary Ahlfors regular set. At this point, we tend to
believe that it is a miraculous algebraic cancellation and for other values of « the A*
property of harmonic measure implies uniform rectifiability, that is, the condition in
Theorem 1.1 will be proved to be necessary and sufficient.

Returning to the discussion of the statement of Theorem 1.1, observe that the
higher co-dimensional setting requires a rather peculiar choice for the operators L
above. The fact that the coefficients are roughly proportional to a certain power of
distance to the boundary is almost a necessity, dictated by the scaling considerations,
Sobolev embeddings, etc. The usual Laplacian would not work because the harmonic
functions do not even see sets of dimension d < n — 2. However, what is perhaps more
surprising, working with the conventional Euclidean distance would ruin our proof
of absolute continuity for the elliptic measure, even on a small Lipschitz graph—see

the discussion in [13]. The distance D of (1.2) turns out to be a correct substitute,

!
smoothing out appropriately at all s:ales. It may also have some special algebraic
properties: as we mentioned above, for « = n — 2 — d it actually coincides with the
Green function with the pole at infinity. It appears to be a powerful and perhaps still
not completely understood version of the distance function used in geometric analysis—
see [10].

These observations lead to a question: what is the range of the operators for
which one could establish an analogue of Theorem 1.1? Certainly not every degenerate
elliptic operator for which A(X) has roughly the size of dist(X,E)""+4+! will give an
absolutely continuous elliptic measure. Even in the classical case of co-dimension 1,
there are many counterexamples (see [3, 25]), and most absolute continuity results
concern operators with a special form, or which are small perturbations of the
Laplacian. Here L = — divD;gl_d_l)V plays the role of the Laplacian, and in this case
too Theorem 1.1 also holds for any elliptic operator which is a Carleson perturbation of
L; see [26]. That is, the set of “good” operators is ultimately quite large, comparable to
the classical scenario.

Let us now discuss the proof. A brutal attempt to adapt the “classical” approach

to lower dimensional boundaries collapses spectacularly. The general principle, that we
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Harmonic Measure on Low-Dimensional UR Sets 7

still want to follow, is to start from [13], which provides the desired absolute continuity
result when E is a small Lipschitz graph, and then use approximations and stopping
time arguments to extend this result to sawtooth domains and then to general uniformly
rectifiable sets (in the classical case, we would need some additional connectivity). The
machinery that allows this is very beautiful, and also quite intricate, but let us highlight
at least two big problems which will make the situation different.

The main obvious one is that the principal engine of the construction is a com-
parison between domains. That is, we like to consider €2, and hide parts of the boundary
that we do not control outside of sawtooth domains, and for the intersection of
with the sawtooth domain, use the maximum principle to relate the two corresponding
elliptic measures. Here we manage to construct better approximating domains whose
boundaries coincide with E in some places, but how are we going to hide the rest of the
boundary and compare the harmonic measures on the intersection?

Another unpleasant issue is that in the classical case, we typically deal with the
Laplacian, which has a local definition, unlike our operator L whose coefficients depend
on E, and even tend to infinity along the boundary. In other words, all the domains,
including the approximating ones, come with their own operator L, which is not local
either, and which typically carries a “memory” of the original domain, and of course we
will need to be more careful about which operator we take when we make comparisons.

After many different attempts, we decided that the possibility to hide a bad piece
of E behind a sawtooth boundary was too important to be avoided, and this forced us to
consider domains with boundaries of mixed dimensions, that is, where some part of the
boundary would be (n — 1)-dimensional (and could be used to hide parts of E that we do
not control), and other parts would be d-dimensional. Then we had to adapt the theory
of degenerate elliptic operators to such domains, and in particular understand how to
relate the size of our coefficients to the mass of a doubling measure on the boundary.
For the boundary of the sawtooth regions, for instance, it helps that the coefficient of
L is related to the distance to E, but is not necessarily singular along the sawtooth.
Fortunately, the reader will not have to deal with the extension of the elliptic theory
here because most of it was taken care of in [14].

Even so, we also have to replace, rather than shield, “bad” portions of the set
to create a better, Reifenberg flat surface. This construction takes a good part of the
present paper and heavily relies on the parametrization of Reifenberg flat domains
in [15] and on the A, results for the elliptic measure on lower dimensional small
Lipschitz graphs that we proved in [13]. Such a replacement is performed at all scales

which eventually have to be glued via a certain extrapolation argument. Here again,
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8 G. David and S. Mayboroda

we start from the Hofmann-Martell approach to extrapolation in [20] but quickly learn
that our hypothesis is quite a bit weaker than theirs, requiring a careful re-working of
the entire scheme. Finally, last but not the least, is the obstacle arising from the fact
that our operator is not local, the coefficients are the powers of distance to the original
boundary, and so changing the domain entails changing the operator. One has to prove
that such a change, at the correct scales, is not detrimental to the entire enterprise. An
experienced reader can take a look at Theorem 9.68 and compare it to a (considerably
easier) standard version in [9].

Finally, before we turn to the body of the paper, let us mention that during the
preparation of this manuscript an alternative approach to some of its results has been
developed in [18].

The authors wish to thank the referee for useful comments and suggestions on
this text.

2 Definitions and Preliminaries Related to the Elliptic Theory and Properties of
Weights

We are given an Ahlfors regular set E of dimension d in R and an accompanying Ahlfors
regular measure p on E. We denote 2 = R™ \ E.

Before we proceed, we need to say a few words about dyadic pseudocubes. We
shall assume that a net of dyadic pseudocubes has been chosen on E. We use the cubes
given by [6], except that we will find it more convenient to use scales that are powers of

10 because this way we will be closer to the notation of [15]. We systematically set
r,=107% fork ez, (2.1)

and we suppose we chose a collection D = ID(E) = U, D (our “dyadic cubes”), with the
usual properties. We will in particular use the facts that for each cube Q € Dy, there is

a center x, such that
ENB(xq,C ') € Q C B(xqg, 1), (2.2)

and that the different cubes Q € D, are disjoint, that when k <[, Q € Dy, and R € Dy,
then either RC Qorelse RNQ = o.
To get this, we merely assume that the cubes Q are Borel sets, but there is

a “small boundary condition”, that we shall not use in full before the last Carleson
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Harmonic Measure on Low-Dimensional UR Sets 9

estimates for the control on different distances, that implies in particular that
w(@\ Q) =0 forQ eD. (2.3)

We shall often denote by k(Q) the generation of Q (i.e., the integer k such that Q € I}),
and set 1(Q) =1y, = 107%@  For any Q € D(E), we let

D(@Q) =D, ={Q € DE): Q' < a}.

Definition 2.4. The corkscrew points for Q are points 4, , € , associated to x € E

X,r

and r > 0, such that (for some constant 7, > 0)

Tor < dist (4, E) < |A,, —x| <. (2.5)

X,r!

Corkscrew points exist for all x,r whenever E is any Ahlfors regular set of dimension
d < n —1, and we can take 7; to depend only on n, d, and C, from (1.3); see
(12,
Lemma 11.46].

It will also be convenient to use corkscrew points associated to the dyadic
decomposition of E, and for any Q € D(E) we write A, := A
C is from (2.2).

x0,c-11(0) Where the constant

Since the set E satisfies (1.3), it enters the scope of the elliptic theory developed
in [12]. Let us recall some of the main properties that will be needed.

Let L = —div2lV be a degenerate elliptic operator, in the sense that 20 : Q@ —
M, (R) satisfies

dist (X, T)* 4 1(X)g - ¢ < C,l€1¢| forX e Qand &,¢ € R, (2.6)
dist (X, )" 4 1AX)E - £ > €7 'E|? forX e Q and & € R", (2.7)

for some C; > 1. We say that u is a weak solution of Lu =0, if u € Wllo’f(Q) and

/ AVu-vVv =0 Vv € C3° (). (2.8)
Q

2

ioc(§2) whose derivative (in the sense of

Here, WZIO'CZ,(Q) is the set of functions u € L

distribution on Q) also lies in L2 ().

€20z Aienuep L€ uo Jasn saijin) UIM| - BJOSBUUIN JO AlSIaAuN AQ $80S8S9/60 L OBUIUIWIEE0 L "0 /10P/[0IMB-80UBAPE/UIWI/WOD dNO"OlWapeoe//:sdy WoJj papeojumoq



10 G. David and S. Mayboroda

For each X € Q, we can define a (unique) probability measure ¥

= a)}é,L on E,
with the property that for any bounded measurable function f on E, the function u,

defined by
up(X) =/Ef(y) de* (y) (2.9)

is a weak solution. This is only stated in [12] when f € 08 (E) is continuous and compactly
supported in E (see Lemma 9.30 and (iii) of Lemma 9.23 there, and also (8.1) and (8.14)
for the definitions) and when f is a characteristic function of Borel set (see Lemma
9.38 there); the general case would not be hard, but we do not need it anyway. It has
been proved in [12] that « is doubling on the Ahlfors regular set E, in the sense of
Definition 2.20.

There is also a dense subclass on which we can say a little more. Denote by M(E)

the set of measurable functions on E and then define the Sobolev space

_ 2
H=HY%*E) = {geM(E): //Mdu(x)du(y)<oo]. (2.10)
EJE |x—yl%t
The class HN Cg(E) is dense in Cg(E) (see about 13 lines above (9.25) in [12] for the proof
of density), and if f € HNCJ(E), the solution uy defined by (2.9) lies in the Sobolev space
wl2(Q, dist (X, E)3*t!1-"dX), which means that

/ |Vuf(X)|2 dist (X, )31 " dX < 400, (2.11)
Q
and also

Up has a continuous extension to R", which coincides with f on E. (2.12)

See [12, (i) of Lemma 9.23], together with its proof eight lines above (9.25).
It should be stressed that since X is a probability measure, Ug is a nondecreas-
ing function of f > 0. This is of course a manifestation of the maximum principle.
Recall now the definition of the absolute continuity of the elliptic measure in
Definition 1.5. Here, § depends on t, and ¢ as well possibly other parameters, and
we shall refer to the latter as A, constants of w;. Typically, those include ellipticity
constants of L as well as some geometric characteristics of the set. We will try to be

prudent below listing them carefully.
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Harmonic Measure on Low-Dimensional UR Sets 11

Let us temporarily narrow down to €, = R" \R%, where we shall write the generic
point as X = (x, t), with x € R% and t € R" <. The following theorem is the starting point

of our absolute continuity results.

Definition 2.13. We say that a matrix-valued (or scalar-valued) measurable function
F on Q, = R" \ R? satisfies the Carleson measure condition with constant C and write
F € CM(C) or simply F € CM if there is a constant C > 0 such that for X = (x,0) € R?
and R > O,

dydt
/ F(y, 02 = < CR. (2.14)
QoNB(X,R) [t

Theorem 2.15. [13] Let A, be a degenerate elliptic matrix satisfying (2.6) and (2.7)

in Q; = R"\ R% and set then L, = —divA,V. Define the rescaled matrix A by
A = |t|”_d_1A0, so that now A satisfies the usual ellipticity bounds and L, =
—div |t|%t1-" AV, and assume that A has the following block structure:
Alx A%(x
AX) = X) %) , (2.16)
C3X) bXO)I,_4+CHX)

where A!(X) is a matrix in My, 4, A%(X) is a matrix in My, ,_g), b is a function on €,
I,_q4 is the identity matrix in M, g ,—q). @nd in addition we can find constants C > 0
and A > 1 such that

A l<b<i onQ, (2.17)
|t|Vb € CM(C), (2.18)
c3, c* e cM(C). (2.19)

Then the harmonic measure w‘go Io is A -absolutely continuous with respect to the

Lebesgue measure on R? (with the Definition 1.5).

Definition 1.5 might seem confusing at first because traditionally the A, prop-
erty of one weight with respect to another is formulated somewhat differently. However,
when the weight is doubling, the A -absolute continuity as stated in Definition 1.5 is
equivalent to the traditional A property (see, e.g., [7], Lemma 5, where it is proved for
any two doubling measures). Let us list the main definitions and results to this effect,
complemented by their dyadic counterparts, as they will be used throughout the paper

for a variety of measures.
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12 G. David and S. Mayboroda

Definition 2.20. Let E be a d-dimensional Ahlfors regular set in R” (or more generally,

any metric space). A nontrivial measure o on E is doubling if for any x € E, r > 0,
0 <w(Bx,2r)NE) < Co(Bx,r)NE) < o0, (2.21)

with a uniform constant C.

When E possesses a dyadic structure, for example, when E is a d-dimensional
Ahlfors regular set in R” and we chose a collection of pseudocubes D(E) as near (2.1), we
say that w is dyadically doubling on Q, C D(E) if for every Q € D(Q,) and every dyadic

“child” of Q, Q’, there exists a uniform constant C such that
0 < w(Q) < Cw(Q) < .

In the particular case when o is in fact a family {w*} of elliptic measures
on E, we say that w is doubling if for any surface ball A(x,r) = B(x,r) NE, x € E,

r > 0, the harmonic measure with a pole at A w?xr, is doubling on on A(x,r), and

X,r!
the constant C in the doubling property is independent of x,r. Similar definitions
apply in the dyadic case, with the pole at A,. Equivalently, one could say that w
is doubling when (2.21) holds for «* as long as X is far enough from B(x,r) (for
instance, X € Q \ B(x,4r)), and similarly, in the definition of dyadically doubling for
the family o = {0}, we would only ask for the doubling condition when X is far enough
from Q.

In [12, Lemma 11.102], it is proved that for any d-dimensional Ahlfors regular
set E in R", d < n — 1, the harmonic measure of any elliptic operator is doubling and,
hence, dyadically doubling on E.

Next we say a little more about local versions of the A, condition. For a single

measure o, we would use the following definition.

Definition 2.22. Let E be a d-dimensional Ahlfors regular set in R” and x be an Ahlfors
regular measure on E. Given any surface ball A(x,r) = B(x,r)NE, x € E, r > 0, we say
that a doubling measure w on E is A -absolutely continuous with respect to u on A(x, )
(denoted by A*(A(x,1))), if for every € € (0, 1), there exists § € (0, 1), such that for every
surface ball A’ = B'NE, B C B(x,r) and every Borel set F C A’

o (F) BPN w(F)

<e. (2.23)
w(A) u(A)
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Harmonic Measure on Low-Dimensional UR Sets 13

Similarly, replacing surface balls by dyadic cubes, we say that a dyadically doubling
measure o is (dyadically) A -absolutely continuous with respect to u on Q € D(E)
(denoted by A (Q)), if for every € € (0, 1), there exists § € (0,1) such that for every
Q' € D(Q) and every Borel set F C Q/,

w(F) 5= n(F)

— < — <e€. (2.24)
(@) n(Q’)

As the reader can guess from Definition 1.5, in the particular case when v = {&*)}
is (a family of) harmonic measures on E, we say that w is A -absolutely continuous
with respect to if for any surface ball A(x,r) = B(x,r) NE, x € E, r > 0, the harmonic
measure with a pole at 4, ,, @*r, is A -absolutely continuous with respect to u on
A(x, 1), and the choice of § depends on € (and 7, in the definition of the corkscrew point
as well as AR and doubling constants) but not on x, r. In fact, it would then be possible,
using estimates on o (that the reader may find in [12]), to deduce the same estimates
for other poles X € Q \ B(x,4r). All these definitions are equivalent, in the sense that
we get estimates for § with different definitions that depend only on those with the
initial definition, our bounds for E and L, and the various corkscrew constants. Similar
definitions apply in the dyadic case, with a pole at 4.

The A,, condition is known to imply a stronger form of absolute continuity,

which we define now, starting with the case of a single measure.

Definition 2.25. Let E be a d-dimensional Ahlfors regular set in R” and x be an Ahlfors
regular measure on E, Q = R"™\ E. Given any surface ball A(x,r) = B(x,r)NE,x € E,r > 0,
we say that a Borel measure w is strongly absolutely continuous in A(x, r), with respect
to u, if there are positive constants C and 6 such that for every surface ball A’ =B NE,
B’ C B(x,r) and every Borel set F C A/,

w@®\
F)y<C A). 2.26
w(F) < (M(A’)) w(A") (2.26)

Similarly, replacing surface balls by dyadic cubes, we say that a dyadically
doubling measure w is strongly dyadically absolutely continuous in Q, with respect to
u, if there are positive constants C and 6 such that for every Q' € D(Q) and every Borel
setFc Q,

w@®\
w(F) <C (M(Q/)) »(Q). (2.27)
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14 G. David and S. Mayboroda

Much as above, in the particular case when w = {»*} is in fact a family of
harmonic measures on E, we say that o is strongly absolutely continuous with respect
to u if for any surface ball A(x,r) = B(x,r) NE, x € E, r > 0, the harmonic measure

with a pole at A, ., w?*r, is strongly absolutely continuous with respect to u, and the

x,r!
constants C,0 depend on 7, in the definition of the corkscrew point as well as AR and
doubling constants but not on x, r. Similar definitions apply in the dyadic case, with the

pole at A,.

Remark 2.28. It was proved in [7, Lemma 5] that for any two doubling measures x and
w, if w is A -absolutely continuous with respect to i, then w is also strongly absolutely
continuous with respect to u, and also u is also strongly absolutely continuous with
respect to w. Also see [24] or [19].

The dyadic (and local) analogues of these facts were established, for example,
in [20, Appendix B, Remark 2.10]. That is, under the definitions above, a dyadically
doubling measure o is strongly dyadically absolutely continuous on Q € ID(E) with
respect to p if and only if it is dyadically A, absolutely continuous with respect to
w. In fact, both are equivalent to an (apparently) weaker statement that there exist
0 < ¢,8 < 1 such that (2.23) (respectively, (2.24)) hold—the latter property is referred to
as comparability for doubling measures. Moreover, A, and its local, dyadic, and strong
versions are equivalence relationships, in the sense that for instance, if w is strongly
absolutely continuous with respect to u with some constants C > 0, 6 > 0, then u is
strongly absolutely continuous with respect to w with some other constants C' > O,

0’ > 0; see [7, Lemma 5] for the standard case and [20, Lemma B.7] for the dyadic one.

3 Preliminary Geometric Considerations

In Sections 3-9, we define a correct change of variables, adapted to a stopping time
region associated to a uniformly rectifiable set of integer dimension d in R™. To be more
precise, for any stopping time region subject to some flatness and regularity constraints
we construct a Reifenberg flat set ¥, which coincides with our initial set E in the “base”
of the sawtooth and which has a nice parametrization, in fact coming from a nice change
of variables transforming R" \  into R” \ R%.

The change of variables will be inspired by that in [15], but unfortunately we
need an array of properties, which was not explicitly targeted in [15]. Indeed, we need
to use it similarly to the change of variables of [13], to ensure the absolute continuity
of a certain elliptic measure on the underlying set. In both cases, the philosophy is to

respect the orthogonal direction to the tangent plane to the boundary set. However, the
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Harmonic Measure on Low-Dimensional UR Sets 15

details are quite different and we will have to devote a considerable effort to the proof
that (a slightly modified) construction from [15] satisfies the desired properties. We try
to take notations that are fairly close to those of [15], which we shall cite abundantly.
To start, let us describe a stopping time region.

We are given an Ahlfors regular set E of dimension d in R”. In our end-game
applications, E will be uniformly rectifiable, but we do not need to assume this for the
moment. The definition of the stopping time regions will take care of the regularity
needed for the 1st few chapters.

In this section, we are given a stopping time region ®, with some definite
constraints on how it is built, and associate to it a few geometric objects. There will
be a specific way to construct ® from its top cube Qg , but let us keep some latitude,
without making our life too complicated. So we start from a cube Q,, and without loss

of generality we assume that
Q, € Dy,. (3.1)

Then ® will be a subset of D(Qy), the set of subcubes of Q,. For Q € ® and 0 < k < k(Q),
denote by R;(Q) the cube of D, that contains Q; thus, R;(Q) is an ancestor of Q and
Ry (Q) € Q,. We demand that Q, € © (otherwise, there in no construction to be done)

and that © is hereditary, which means that
Ri(Q) e ®forQ e ® and 0 <k < k(Q) (3.2)

(i.e., if Q € ©, then all its ancestors between Q and Q lie in ©).

For the remaining properties of ®, we need to choose a large constant M > 1, a
very small constant ¢; > 0, and another constant §; > 0, in practice much larger than
€,. Apparently, our construction will not put any constraint on §;, except for the fact
that some constants will become very large when §; is large. We will take M quite large,
depending on other geometric constants of the construction, and then ¢; will need to
be small enough, depending on n, d, the constant C; in (1.3), and M. This includes a
dependence on our choice of D through the constant in (2.2), but we can choose D once
and for all, with a constant in (2.2) that depends only on n, d, and C,.

It will simplify our definition if we assume that for each Q € ©, a d-plane P(Q)
has been chosen, with the following properties. First of all, P(Q) is quite close to E near

Q. That is, if we define a normalized Hausdorff distance between sets d, ,.(F, G) by

d,.(F,G) = r1 sup dist(y,6)+r ! sup dist(y,F), (3.3)
' yeFNB(x,r) y€GNB(x,r)
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16 G. David and S. Mayboroda

then we require that
Ay, ma)E P(Q) <& forQe®, (3.4)

where 1(Q) = 107%@ is the official sidelength of Q and the center x, is as in (2.2). We
also measure the average distance from points of E near Q to P(Q) and encode them into
numbers B(Q) such that

/ dist (v, P(Q)) du(y) < Q) B(), (3.5)
ENB(xq,MI(Q))

where 1 is the measure on E that we started with (but its precise choice does not matter
here). These numbers are close to the f-numbers of Jones associated to E and computed
with L!'-norms, but we reserve the right to make 8(Q) larger than the actual number
B1(xq, Ml(Q)) and choose the P(Q) differently. Then we define a Jones function J on ®
by setting

J@) = D BRQ)? (3.6)

0<k<k(Q)

where as before R; (Q) is the ancestor of Q, which is of generation k, and unfortunately

we need need to replace 8(Q) with a slightly larger, more regular, function of Q, namely
B(R) = sup {B(S); S € Ok(R)) and dist (R,S) < MI(R)}, (3.7)

where
Ok) ={0 € ®; Q) =r}. (3.8)

Notice that we may count the same set R twice in (3.6), if successive ancestors of Q
happen to be given by the same subset of E. This is all right and probably even more
reasonable. Notice also that replacing S(R) with E(R) will not cost us much in practice;
we will just need to control E (and possibly u) on an even larger ball. Finally, observe
that J(Q) > J(R) when Q C R C Q, and k(Q) > k(R) > 0. We demand that

J(Q) <8, forQ e O. (3.9)

This completes the list of conditions that we put on ®. We do not need to say yet

how we produce ©, but the algorithm that will be used later is as follows. For each cube
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Harmonic Measure on Low-Dimensional UR Sets 17

Q, we shall define a quantity «(Q), for instance using the ¢-numbers coming from [31]
and choose a plane P(Q) that is nearly optimal in the definition of «(Q). These numbers
will be introduced in Section 7; for the moment, we do not need to know what they are.

Then we will start from the top cube Q, and decide to remove a cube Q € D(Q,),

as well as all its descendants, as soon as «(Q) > g, or

J(Q = > a® (@)= 5.
0<k<k(Q)

It will turn out that the numbers «(Q) control the properties (3.4) and (3.9), in the sense
that if ¢; is chosen small enough, then (3.4) follows from the fact that «(Q) < gy, and
similarly (3.9) follows from the fact that J,(Q) < §,.

Remark 3.10. There are constraints on M and ¢;. The 1st ones will come soon, to
verify the CCBP properties at the beginning of the next section, and then there will be
other ones in the last section. Since we want to keep some freedom in the choices, we
announce now that all we need, up to Section 8, is to take M large enough, and then ¢,
small enough, depending on M, §,, and the other parameters.

We can let M depend on §; (in fact, we claim below that we could even let §; be a
large number).

The relation between §; and ¢, is more delicate, and we announce it in advance so
that we cannot be suspected of cheating. Both constants will be small in our argument,
and correspond to stopping time conditions. The basic reason for stopping in our
geometric construction of a parameterization is when the set starts being flat enough,
and ¢, corresponds to the minimal amount of flatness that we demand. We will choose
¢, last, possibly depending on the other parameters. Now we also want to control the
bilipschitz constants for our approximations, and we use the Jones function to do this.
The role of §, is to control the Jones function, and then the bilipschitz constants for our
mappings. In a sense, ¢; acts like the L norm of some quantity (the f-numbers) that
needs to stay small, and §; like the L* norm of some integral, or sum, of some related
(but different) quantity (the «-numbers).

We promise that we will not let ¢; depend on §, because this would contradict
the spirit of stopping times, but we will nonetheless do an offense to that spirit because
in some argument, and for the sake of laziness, we will use §; to control some quantity
that should be in fact be controlled by ¢, in a cleaner (but longer) argument. Because
of this, we will require §; to be small, but a real purist would allow it to be large too,

and this would create a more interesting parameterization when we only stop when this
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18 G. David and S. Mayboroda

is really needed. Formally speaking, we could also take §; much smaller than ¢;, with
the effect of stopping because of §; all the time and never because of ¢;; this would be
allowed by our argument, but it would be a bad and confusing practice.

There is a 2nd issue with §;, which is that allowing §, to be small (as we will do
to simplify the proof) should have an advantage, which is that our bilipschitz mappings
are actually bilipschitz with constants that are as close to 1 as we want. We claim that
this is true, but it is less easy to use because the estimates in [15] that prove this are
rather well hidden, so we decided that we shall not use this extra information (other
than saying that we have a uniform bound on the bilipschitz constants) and merely add
remarks along the proof that explain how we could get and deal with this additional

information.

4 The Approximating Surface =

We shall now describe the main lines of the construction of [15], where one starts from
a stopping time region ® like the one above and constructs an associated Reifenberg
flat set X, parameterized by a mapping f : £, = P, = R? — %, and even a global change
of variable g : R — R" (with g5 = f).

For the construction to work, one needs to find what is called a coherent
collection of balls and planes (in short, a CCBP), which will be our 1st task here. This
will involve choosing some collections of d-planes, and let us first see what we have.

Recall that for each Q € ®, we are given a d-plane P(Q) that satisfies (3.4)—(3.9).
In particular, (3.4) says that an,Ml(a) (E,P(Q)) < ;. This means that

dist (y, P(Q)) < e;MI(Q) for y € ENB(xy, MI(Q)), (4.1)
(and in particular P(Q) passes within 2¢;MI(Q) of x), but also
dist (y, E) < e;MI(Q) for y € P(Q) N B(x,, MI(Q)). (4.2)

We do this also for Q, (which we have assumed to lie in ®), and call P; = P(Q,) the plane

that we get. We shall even assume, without loss of generality, that
Py =R? andxy, =0 (4.3)

In [15], which we shall often refer to as “there”, a CCBP starts with the choice

of families {Bjyk}, J € J of balls, where k¥ > 0 still denotes a generation. In fact
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B; = B(Xj, i), where rp = 107 k as above, so we just need to choose the centers {x Gk

J € Ji.. Recall the definition of ©(k) in (3.8), let
. Mry,
Ek)={x€E; dist(x,Q) < To for some Q € ©(k)}, (4.4)

and finally pick a maximal family {x;;}, j € Ji, of points of E(k) that lie at distances at
least ry from each other. This defines our family of balls. We need to check a coherence
condition, (2.3) in [15], that demands that for k > 1, each x;; lies in B(x;;_,, 2ry_;) for
some i € Jy_;. This comes from the heredity condition for ©: since x;; € E(k), we know
that dist (x ke Q) < rk for some Q € ®(k); the parent Q' of Q lies in ®(k — 1), and since
dist (x k,Q) < dlst( ik @) <

that lies within r;_; of x;

16" , X € E(k—1) and we can find a point x;;_;, i € Ji_;,

We should also choose a nice surface X, with which we start the construction;
here we simply take ¥, = P; = P(Q,), and the properties (2.4)—(2.7) required in [15] are
easily satisfied; in particular (2.7), there follows from (4.1) if ¢; is chosen small enough,
depending on ¢ there.

Finally, we need to associate a d-plane P;; to each ball B;;, and this is easy to
do: for each j € Ji we choose Q;; € ©(k) such that dist (x;, Q;z) < 1—6’“, and then we set
Pj = P(Q; ). Notice that when k = 0, we have many points x 0 (because E(0) is rather
large), but all of them are associated to P,.

There is an unfortunate little catch here because it is also required in [15] that

P; i goes through x;,, but we really like P(Q;;) here, in fact more than the precise
location of x;;. So we modify the construction a little bit. We start with a maximal
collection of points X; € E(k), at mutual distances at least 1116’“, define the Q;; and P
as above, and then use (4.1) (with ¢; small enough) to find x;; € P(Q; ;) NB(X;, 1&5) and
use these in the definition of B; ;. This does not perturb our proof of (2.3) there we lose
the fact that x;; € E, which looked nicer, but this is not needed to apply Theorems 2.4
and 2.5 there. Starting from (13.3) in [15], another trick is explained, which allows us to
replace X;  with another point x; ; € E that lies so close to P;; = P(Q(j, k)) that we could
translate P;; slightly and keep (3.5) with almost the same constant, but we don't need
to do this.

We need to check that the P;; satisfy compatibility conditions (namely,
(2.7)-(2.10) there). We start with (2.8), which demands that for k¥ > 0 and all i,j € J,

such that |x; ; — x; ;| < 100ry, P;, and P; ; are so close that

d Py Pig) <& (4.5)

X;j k, 1007k
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for some ¢ > 0 that needs to be small enough for the construction of [15] to work. We
choose ¢; small enough, depending on ¢ and our constant M, and then this follows from
our definitions, and in particular (4.1) and (4.2); the verification is fairly simple, and is
essentially done in [15], below Lemma 12.2 on page 66, so we skip it.

In our case, (2.9) there is just a special case of (2.8) because X, = P, and (2.10)

demands that for k > 0, i € Ji, and j € Jy;, such that |x; ; — X1l < 21,
i, 1, 20m, Pifor Pe1) < € (4.6)

The verification is almost the same as for (4.5), and we also refer to the argument in [15],
below Lemma 12.2.

At this stage, we are able to apply Theorem 2.4 in [15], which provides us with a
Ce-Reifenberg flat set ¥ and biHélder mappings f : P; — X and g : R — R", with some

good properties.

Theorem 4.7 (Theorem 2.4 from [15]). Let (20, {Bj i} {Pj ) be a CCBP as above and
assume that ¢ is small enough depending on n and d. Then there is a bijection

g : R™ — R™ with the following properties;
g(z) =z when dist(z,Xj) > 2,

g(z)—z<Cs for zeR",

1
217 2" <192) —9(2)| < 317 — 2!~

forz,z' € R" such that |z—Z'| < 1, and ¥ = g(X,) is a Ce-Reifenberg flat set that contains
the accumulation set defined as the collection of all x € R”, which can be written as
x = lim Xj(m),k(m) with k(m) € N such that lim k(m) = oo and j(m) € Ji(m) for

m— 00 m—oo

m > 0. The constant C depends on n and d only.

However, we are interested in more precise properties of g (such as the fact
that it is bilipschitz), and we will also need some information that comes from the
construction, because in [15] no special attention was given to the specific form of the
Jacobian matrix of g, which we need to study for our application to degenerate elliptic

operators. We start with the bilipschitz part.

Lemma 4.8. If ¢; is small enough, the mapping g : R®* — R" is bilipschitz, with a
constant that depends only on §;, n, d, and the different choices above (that depend on

M,, for instance).
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This will follow from Theorem 2.5 there and our additional constraint (3.9),
once we decipher some additional definitions. But before we do this, let us check that
whenever Q € ®(k) and R € ®(k) U ®(k — 1) are such that dist(Q,R) < @, then

dy, w0 (P(Q), P(R)) < CB(Q) + CA(R), 4.9)

where C depends on M, Cy, n, and d, but this will not matter.

Let us rapidly prove (4.9). The argument is similar to what was done in [16],
below (13.25). We intend to use the fact that both P(Q) and P(R) are very close to E in a
common region to compare their positions. First choose an orthonormal basis e, ..., e,
of the vector d-plane parallel to P(R), and consider the points £, = xz and, for1 <i <d,
& = xp + rie;. Notice that B(xy, 2r;) lies well inside B(xp, MI(R)), so by (4.2) we can find
points x; € E, 0 < i < d, such that |x; — §| < ¢, MI(R) < 10‘2rk. Then we use (3.5), the
Ahlfors regularity of u, and Chebyshev’s inequality to find that for more than half of
the points z € E N B(x;, 10*2rk), dist (z, P(R)) < CI(R)B(R). But also, B(xg, 2r;) lies well
inside B(x,, MI(R)), so we can also apply (3.5) to P(Q), and find that for a majority of
points z € E N B(x;, 10‘2rk), dist (z, P(Q)) < Cl(Q)B(Q). For each i, we select a point y;
with both properties, and this gives z; € P(R) N B(§;,1071r,) and w; € P(R) N B(§;, 1071)
such that |z; — w;| < Cr(B(Q) + B(R)). At this point, we have sufficiently many points
of contact between P(Q) and P(R) to control their relative positions and prove (4.13); see
also Lemma 12.7 there.

Now return to the lemma and Theorem 2.5 there. Define the numbers ¢/(y), k > 1

and y € R", by

Sg(y) = sup {dXi'l,IOOVZ(Pj,k’Pi,l) ; _] € Jk’ le {k — 1,k}, 4.10)

i€J, andy € 11B;; N12B;}

when y € V' = Uj;, B(x;, 117y), and simply by ¢}/ (y) = 0 when y ¢ V;'. This is the
same definition as in (2.17) and (2.18) there, and then Theorem 2.5 there says that g is

bilipschitz as soon as there is a constant M; > 0 such that

> e1(9(2)* < My forall z € P, (4.11)
k>0

Thus, in order to deduce the lemma from that result, we will just need to show
that the numbers 8(Q) of (3.5) control the ¢]/(y), y € V3.
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So let z € P, be given, set y = g(z), and let k > 1 be such that y V,il (we don't
care about the other k, since s%(y) = 0). This last means that y € B(Xj, jr 111%) for some
Jo € Ji, but this will not really matter.

Next let j, [, and i be as in (4.10), and follow the definitions: we picked a cube
Q=Qj € ®(k) such that dist (Xj'k, 0) < Z‘f—g’“, and then we set P; = P(Q), and similarly
we chose R = Q;; € ©()) such that dist(x;;, R) < 1% and then set P;; = P(R). We record

for later the fact that
dist (y,Q) < ]‘% and dist(y,R) < Z‘% (4.12)
Obviously, dist(Q,R) < n@, so (4.9) says that
Ay, 100r P(Qj 1), P(Q; ) = dy,; 100, (P(Q), P(R)) < C(B(Q) + B(P)). (4.13)

For each scale k > 0, denote by Q(y, k) the collection of cubes Q € ©(k) such that
dist (y, Q) < 1% Obviously,

DleigN*<c> > ) (4.14)

k>0 k>0QeQ(y,k)

by (4.12) and (4.13), and we shall use (3.9) to control the right-hand side. If the Jones
function J were only using the 8(Q), this may seem complicated; here we can proceed
as follow. Let k, be such that Q(y, k;) is not empty, and select Q € Q(y, ky); then for
0 < k < k;, denote by Q; the ancestor of Q that lies in D;; observe that Q; € ®(k) by
heredity, and Q; € Q(y, k) because dist(y,Q;) < dist(y,Q) < 1‘% Now all the other
cubes S of Q(y, k) lie at distance less than Mr;, = MI(Q;) from Q;, so B(S) < E(Ok) by
(3.7). Thus,

> D B@P=C D BQp? =CIQ) <C8 (4.15)

0<k<ko QeQ(y k) 0<k=<ko

because each Q(y, k) has at most C elements, and by (3.6) and (3.9). Since this is true for
every k, (with the same constant), we get (4.11) and, as promised, Lemma 4.8 follows

from Theorem 2.5 there.

Remark 4.16. For this lemma, we do not need §; to be small, but the 1st author claims
that taking §; small would allow us to get a bound for the bilipschitz constant for g

which is as close to 1 as we want. This would be reassuring, but apparently the authors
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of [15] were too busy controlling the large constants to make a clear remark, anywhere
in that paper, to the effect that small bounds for J yield small bilipschitz bounds for
g. We will manage not to use this remark in this paper, so as not to make the reader
feel too bad, but will add some comments to this effect for the case when they would be

badly needed in the future.

Lemma 4.8 will be quite useful to help us control other terms; for instance, we
will not need to worry about supremum norms for the derivatives of our mappings. But
we will need more information, typically on the structure of Df and Dg, so let us step
back and recall the construction of f and auxiliary functions f; and then we will pass
to the construction of g in Section 6.

In [15, Section 3], one constructs a partition of unity for each generation k > 0,
composed of functions 6; ;, j € Ji, supported in 10B; ; plus a function y; supported away
from V2 = Ujes, 8B; k- Thus,

Vit D O =1 (4.17)
JeJk
as in (3.13) there, and
>0, =1 onVp =U,;8B;. (4.18)

JeJk

In addition, |Vm9j,k| < Cmr,;m, as expected (see (3.15) there).
Then we can define the mapping f on £y, = P; = R4, as the limit of functions fx
defined by induction by

fow) =y and fi , =0 of, (4.19)

(as in (4.1) there), where o} is a map that tries to move points in the direction of E (or

rather, the local lek), and is defined by

o) =y + D00 74 (y) — Yl = Dy + D00 71 (¥) (4.20)
JjeJx JeJk

(as in (4.2) there), where 7;; denotes the orthogonal projection from R™ onto P;; and
the equality comes from (4.17). It turns out that the f; converge quite fast to a limit

mapping f, which is our parameterization of the nice Reifenberg-flat surface X = f(X;).
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We remind the reader that g will ultimately be defined so that g = f on X (see (10.13)
in [15] and Section 6) but the construction in [15] starts with the f; and f.
Some observations will be useful concerning the local regularity of the interme-

diate surfaces
e =fi(Zo), (4.21)

and the way each one maps to the next one. Proposition 5.1 in [15] gives a good local
description of ¥ in terms of Lipschitz graphs, which we can summarize as follows. For
each j € Jy, there is a Ce-Lipschitz function A;; : P, — lek
that inside 49B;;, X coincides with the graph I'; ; of A; over P; ;. The same proposition

with |A],k(X_],k)| < Cerk, such

also says that A is of class C?, but does not record estimates on this, and this is a part
that we will need to complement.

We shall not use Proposition 5.1 there directly so much, but it is important in
the description of trajectories that follows, and contains the estimate (5.11) there, which

says that
lop(¥) —y| < Cerpfork>0andy € X, (4.22)
which, after using (4.19) repeatedly and summing a geometric series, yields
If(x) — frx)| < Cery forx € ¥, and k > 0. (4.23)
For the description of trajectories that follows, we continue to use the notation

Ve = | Bxjp Arp) = | ABjy, (4.24)
jegx JeJk

when A is an integer. When y € ¥, N Vg (we call this the active region), then v (y) = 0,

and the formula (4.20) becomes the simpler

ox(¥) = D05 ¥) 7 @), (4.25)
JeJk

where we know that in addition

> 0y = 1. (4.26)

JjeJk
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When on the opposite y € R™ \ V,io (we call this the dead region), things are simple too,
because all the 0k (¥) vanish, hence ¥, (y) = 1, and (4.20) says that

or(y) =y fory e R™\ ;0. (4.27)

Things are a little more unpleasant in Véo \ V8, but fortunately the next lemma says
that this never happens more than once along a given trajectory, and this will leave a
reasonably small trace in our Carleson measure estimates. We call V,io \ V,f the dying

region.
Lemma 4.28. Letx € X, be given, and denote by y;, = f;.(x) € £, its successive images.

If y;, € R"\ V40 for some k > 0, then y; = y;, € R™\ V}? for I > k; (4.29)

Ify, € V,io for some k > 1, theny; e Vl4 forO<l<k-1. (4.30)

This is Lemma 6.1 in [16]. Notice that if y; € V;°\ Vg, (4.30) says that the previous
images were in the active region, and also (applying it to y;_ ;) that y;_; € Z; . \ V,i?rl
lies in the dead region, as well as all its successors (by (4.29)).

We need some estimates on o, and its derivative that were not necessarily

recorded there. We claim that
frp1 X = fr@)| < Cs}c’(f(x)) i, for x € X such that fi.(x) € VE. (4.31)

Sety = fi,(x) € V,E, and choose j € J(k) such that |y — Xjpl < 8rp. Then (7.9) there says
that

log (V) — 7 (V| < Cerp (V)T (4.32)

where 7, denotes the orthogonal projection onto P;; and the function ¢; is defined in

(7.8) there (we shall return to this soon). Thus,

i1 ®) = fi@)| = log(y) — yl = dist(y, P;p) + Cer()ry, (4.33)

and we now evaluate that distance. When k = 0, y = f;(x) = x € Py, we actually took

P;, = Py, and the distance is 0. Otherwise, set y’ = f_,(x), observe that y’ € Vi | by
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Lemma 4.28, and choose i € J(k — 1) such that |y’ — X; k1| < 4rg_;. This time (7.9) there
says that

log 1 (V) — 7 k1 (V)| < Cep (YT, (4.34)

where 7;; ; denotes the orthogonal projection onto P;; ;. Since y = o;_;(y'), we get
that

dist (y, P x_1) < Cej_, Y "re_q- (4.35)

Recall from (4.23) that |f(x) — y| < Cery, and similarly [f(x) — y/| < 10Cer,. Notice
then that f(x) € 11B;; N 12B;;_;, so the definition (4.10) says that P;; and P;;_, are
1007y _,e;(f(x))-close to each other in B(x;; ;,100r;_;). In particular, (4.35) implies
that

dist(y,Pjp) < Cex_4 Y1 + Ce(fF (X)) 7. (4.36)

Now we compare the definition (7.7) there of ¢, (y) with (4.10) and find out that g (y) <
Ce}(f(x)) because if y € 10B;; N 10B; for some i,j € J(k), then f(x) € 11B;; N 11B; .
Similarly, &;_;(y') < Ce;(f(x)), with the only small difference that since this time we are
comparing two planes of generation k — 1, we need to go through our chosen plane P;
of generation k. Now our claim (4.31) follows from (4.33) and (4.36).

We also need estimates on the derivatives of f;, and of course we first differen-
tiate o;.. We start in the active region (the open set VE), where we can use the simpler
formulas (4.25) and (4.26), and hence

Doy(y) = D 0;x(¥) Drjs + > DO (¥)m; (¥, (4.37)
JjeJk JeJk

where the differential Dr;; of 7;; is the vector projection (which does not depend on
y), which we try not to mix with the affine projection k- In this sort of situation, we
like to pull out a specific index j(y) = j;(¥) such that Qj(y),k(y) # 0, and use the fact that
> Db;(y) = 0 by (4.26) to write that

Doy(y) = > 6;x(¥) Djp+ D D6, (r) o (¥) — 75 k), (4.38)
JeJk JjeJk
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and even

Doy (y) — Dy o = Z 0 kW) (D7 ;. — Drtjipy) il + ZDej,k(Y) (7 (V) = Ty W] (4.39)
jedx Jedk

We differentiate once more (but keep the same index j(y) to do the computations near y;

we certainly do not want to differentiate j(y)) and get that

D0(y) = 2 3, DO; () D5 — Dy il + X D*05e(0) b (1) = Ty x 01 (4:40)
JeJk JeJk

Let us not pay too much attention on what we mean by multiplication in these formulas;
the main thing is the size estimate that follows. In this sum, the only terms that do not
vanish come from balls such that y 1OBj,k, and there are at most C of them. The size of
DO; . and D20j'k is controlled below (4.18). We look at the definition (4.10) of ¢/, and find
out that for y € V3

|D%0.(y)| < Cey(2) r,;l for any z € B(y, ry,), (4.41)

which we take as a good estimate. Here we shall just take z = f(x) for the point x € R%
such that y = f; (x), and the fact that z € B(y, r;) comes from (4.23). This was our better
estimate for y € V5.

In the dead region R™ \ V;° where all the 6, ; vanish, we have y;, = 1, o3(y) = y
(by (4.20)), and hence Doy = I and D?0;, = O (see also (4.5) there).

In the dying region V,io \ V8, we do not have very good estimates because Yy 1is

not identically 1 near y. This time we start from the 1st part of (4.20), which yields

Doy(y) —I= D Db,4(y) [n;1(y) — y1+ D 6;,(y) Dy — 11 (4.42)
JjeJk JeJk
and then
Doy (y) = D D%*0;3(y) ;1 (y) — y1 + 2 D" DO, (y) D7 — I; (4.43)
jeJx JeJk

we observe that |7k (¥) — ¥l < 107y, when DO, (y) # 0 or Dzej'k(y) # 0 because P; . goes
through x;; and 6, ; is supported in 10B;; this yields the brutal estimate

IDoy(y)| < C and |D?0,(y)| < C10% fory e Vi0\ V8. (4.44)
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Next we use this to estimate Df and D?f;. Recall from (4.19) that fi ., = oy o fj;
thus (with probably very bad but yet understandable) notation,

ka+1 (x) = Doy (fi,(x)) o Dfi.(x) (4.45)

(but we shall not always write the variables) and then

D’fi11 () = D?03 (fi.())[Df (%), Df;c ()] + Doy (i () [D*fi (x)] (4.46)

with ugly notation, but we immediately put norms everywhere, forget the algebra, and
get that

ID?*fe1 )| < CID%03 (fie(x))| + 2ID*fi ()] (4.47)

also because we know that all the f;, are bilipschitz with uniform constants (that may

depend on §;). We may rewrite this as

1
Tes11D%fii1 0] < Cri| D20y (f(x))| + glrszfk(X)l (4.48)

because this is the proper scaling, and this way we insist on the fact that the 2nd term
contributes less.

We start in the most interesting case when y = f,(x) lies in the active region V¢;
then we use (4.41) with z = f(x) and get that

1
Ter 11D frr1 )] < CeL(F(x)) + glrszfk(X)l (4.49)

where z is any point of B(y, r},). It should be noted that when y = f} (x) lies in the active
region V,?, Lemma 4.28 says that this was the case for all the previous images fj(x), [ < k,

so we also have estimates like (4.49) for these, that we can compose. We get that

rk 1 D% i1 ()| < CEi(x), where §.(x) = > 57 e/ (f(x)). (4.50)
1<k

This was when y € V§. When y lies in the dying region V;°\ V§, we use the bad

estimate (4.44) for k, but observe that the previous fj(x), I < k, were in the active region
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(by Lemma 4.28), so we can use the estimate (4.50) for D?f;. Thus, (4.48) yields
|rk+1D2fk+1(X)| <C+Ce(x) <C, (4.51)

which is not a great estimate but should be enough. In the remaining case when
y € % \ V1% we denote by I < k the last time when f;(x) was in the active or dying
region, and use (4.50) or (4.51) to prove that

ID*fi 11 ()| = D2, ()| < Cry (4.52)

These estimates on the 2nd derivatives will be enough for the better control that we

want on the Jacobian matrix of our global mapping g.

Remark 4.53. Yet we feel bad about using such crude estimates, so let us rapidly say
why (4.44), and then (4.51) can be improved. Our estimate 17 (¥) — ¥l < 101y below
(4.43) was really lousy, because in fact |r;;(y) — y| < Cer; when y € E; (we have a good
Lipschitz graph description of X, near y). We need to be more careful about the terms
with Dr; ;. —I, because of course it is not small. Yet, when we apply it to a tangent vector
v to X, its effect is indeed of size at most Ce|v|, because T, (y) is nearly parallel to
P This is good because when we compose with f;, we only compute Do;, on vectors
v parallel to TX,(y). So we can add a factor of size ¢ in (4.44) and then (4.52). This
way, we get the not too surprising result that f (and then g later) is bilipschitz with a
constant which can be taken as close to 1 as we want, provided that we take §; small

enough.

5 Tangent Planes and Fields of Rotations

Once the mappings f;, and the surfaces X; = f;(P,) are under control, [15] starts the
construction of the mapping g. The general idea is that for (x,t) € R? x R* ¢, g(x,t)
should be obtained from f(x) by going in the orthogonal direction, and at distance
roughly |¢|. Of course, we need to organize this in a coherent way, and also it actually
makes more sense to start from f} (x), and go in a direction orthogonal to the tangent
direction of X, because X; is smoother. This makes a difference because the limit object
3 may be spiraling at small scales.

So our 1st task will be to study a little the variations of the tangent plane to
¥,. Here we roughly follow [15, Chapter 9]. We know, for instance from the 1st lines of

Chapter 7 there, or more directly the description in Proposition 5.1 there, that each %,
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is (at least) of class C2. Let us denote by TX,(y) the tangent plane to X at y € ;. We

also set

T,(x) = T (fr, (), (5.1)

and denote by 7, (x) the orthogonal projection on the vector d-space parallel to T} (x); it
is easier to define the differential of 7 than T}, which is why we will often consider .

We claim that when f; (x) € V,f (the active region),
Dy (@) < Cry '8 (0. (5.2)

There is no problem with the existence of Dy (%), because X is C?%, soitis enough to

show that for x’ € P, close enough to x,
|71 (%) — Mg (X)] < Cr,;lgk(x)lx’ —x|. (5.3)

Let us evaluate the distance between T}, (x), the vector space parallel to Ty, (x), and
its analogue T,’CJrl (x') for T}, (x'). Let w € T,’chl (x) be given; we can write w = Df} ;(x) -V
for some vector v € R%, and since we know (from Lemma 4.8 and the proof of Theorem
2.5 there) that the f; are bilipschitz with uniform bounds, we also get that |v| < C|lw].

We know from (4.50) that for x’ close to x,
IDfie41(X) - V= Dfie1 (X) - v| < CE() 1} Ix — X ||v; (5.4)
since Dfy,,(x') - v € T,;H(X/) by definition, we see that
dist (w, T(x) < |Dfjy1(x) - v — Dfy 1 (%) - v| < C&p(x) r,;il |x — x| |w].

Similarly, dist(w’, T,;H(X)) < C’Ek(x)r,;il |x —x'||w'| for w’ € T,;H(X/). It is easy to deduce
(5.3) from this because both spaces are d-dimensional. Our claim (5.2) follows.

The estimates when f; (x) € V20 \ V3 are less glamorous; we use (4.51) instead of
(4.50) and get that

\Dmy ()] < Cri (5.5)
When f,.(x) € T \ V20, we use (4.52) and get that
IDmy ()| < Cry Y, (5.6)

where [ is the last index for which f;(x) lies in the active or dying zone.
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Now we turn to the field of linear isometries, which is constructed in
[15, Proposition 9.3]. Let R be the set of linear isometries of R™. There exist C' functions

Ry : £y — R, with the following main properties:

Rk(Rd) =T (x) forx e X;; (5.7)
IRj41 (%) — Ri(x)| < Ce forx € £, and k > 0; (5.8)
IDRy,,(x)| < Cyr'e fork > 0and x € Z. (5.9)

For (5.9), it comes from (9.33) there, which we can simplify because f; is bilipschitz in
the present situation.

We like these estimates, but want to improve them in many places to include
Carleson bounds that use the 8%' For this, we want to use our bounds on the Dm;, and
the way the 7, are used to produce the R;.

Let us recall how this goes. We start with R, = I. Then we suppose that R;, was

already constructed, and start with a 1st approximation S;, defined by

Sp(x) = M1 (%) 0 R (x) 0 g + mje 1 (%) 0 Ry (%) 0 gy, (5.10)

where nkﬁrl(x) = I — m,,(x) is the orthogonal projection in the direction orthogonal to
T, (x), and we set 7y = py(x) (the projection on P,) and T[d‘ =1-— ﬂd‘. This is the same
formula as (9.34) there, with just minor changes in the notation.

The now usual computation on composition, together with (5.2), yield that
IDS)(x)| < 2|DRy(x)| + Cry '%;(x) when fi(x) € V§. (5.11)

Then we look at (8.43) there, which says that R, ; (x) is obtained from Sy (x) by the simple

rule

Ry, (%) = H(S (%)), (5.12)

where R is a simple nonlinear projection from a set U of linear transformations that
are almost isometries, to the set R of linear isometries. This projection R is given by a
reasonably simple formula, but the main point here is that by (9.45) there it is (141072)-

Lipschitz on U, where S, (x) takes its values. As a consequence, (5.11) implies that

IDRy 1 (%)| < 3IDR(x)| + Cry '8 (fi(x)) when fi(x) € VE. (5.13)
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Recall that when f; (x) € V,?, Lemma 4.28 says that this happened also for the previous

indices. Then the same induction computations as for (4.50) yields

741 DRy (¥)| < Cer(x), where &, (x) = ZZZ’kel”(f(X)). (5.14)
i<k

This is a good complement to (5.9), and now let us see how we may improve the

estimate (5.8) on |Ry ; — Ry|. We claim that
|Rp 1 (%) — Rg(x)| < Cs%(f(x)) < C¢,(x) when x € X and f.(x) € Ve, (5.15)
where the 2nd part follows at once from the definition (4.50). So suppose that
Yy = fy(x) € V8. Choose i € J; such that |y — x;;| < 10r;; then (7.19) there says that
Angle(Ty(x), P; ;) < Cel(y), (5.16)

where ¢ (y) is defined by (7.16) there (recall that Ty (x) = TX;(y)). Similarly, (7.10) there
says that

Angle(Ty (%), P; ) = Angle(T%y, 1 (0 (1)), P; ) < Cer(y), (5.17)

where this time ¢ (y) is defined in (7.7) there, but we can forget about this because it is
noted in (1.17) there that g (y) < &,.(y). Thus,

Angle(Ty (%), Ty (%)) < Cer(y). (5.18)
To be honest, we did not define the angles above and [15] is not much more precise;
however, all our angles here are small, and they are equivalent to, for instance, the
norm of the difference of orthogonal projections on the vector spaces parallel to the two
spaces that we consider. That is, (5.18) can be taken to mean that

7 (X) — Tpey1 (O] < Cer(p). (5.19)

When we compare ¢, and ¢}, we see that the only difference is that ¢ reaches ry further,

which means that ¢} (y) < ¢/(2) for any z € B(y, ry). This is very convenient because this
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allows us to take z = f(x) (by (4.23) and because y = f; (x)); then (5.19) implies that
|74 (%) — 7pe1 (0] < Cef (F (). (5.20)

Next we use the definition (5.10) to estimate |S;(x) — Ry (x)|. Since R, sends R? to Ty (%)

and hence its orthogonal complement R”~¢ to T, (x)+, we see that
R (%) = (%) 0 Ry (%) 0 71y + 7 (%) 0 R (%) 0 71,
and then (5.10) implies that

S (X) — Ry(x)]

IA

T (0 — (O] + |73, () — - (0]

= 21y (%) — M) < Cef(FX)). (5.21)

This is good because (5.12) says that Ry ;(x) = H(S;(x)) for a Lipschitz mapping H such
that H(R,(x) = Ry(x) because R; is a linear isometry (check with the definition (9.44)
there); (5.15) follows.

6 The Mapping g and Its Jacobian Matrix

We are now finally ready to define the mapping g. We shall keep g =f on X, = R%, and
now we define g on Q, = R"\ X,. Since g will be a bilipschitz mapping of R", it will map
Qy to @ =R"\ X, where X = f(X).

In this section, the generic point of @, is denoted by (x,t), with x € R4 and
t € R 2\ {0}. We set

90 = p(®) {fk(x) + R () - t} for (x, 1) € Q, 6.1)
k>0

where the p, form a partition of 1 that will be discussed shortly. This is the same thing
as (10.14) or (10.19) there, but some things were simplified, because here our initial
surface X is just Py = R%, so the projections p and g are just the projections 7y and noL
on R? and R" ¢,

The functions p; are defined by (10.15)—(10.17) there. They are radial,

> () =1 forteR"%\ {0} (6.2)
k>0
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(by (16) there), pg(t) = 0 when |t| < 1, and (by (10.17) there) for k > 1,
pr(t) =0 unless ry < [t| < 20r;. (6.3)

Thus, for each ¢, there are at most three consecutive k > 0 such that p; (¢) # 0.

Notice that g does roughly what was announced at the beginning of the previous
section: we start from f;(x) € X; and go in the orthogonal direction for about [t|. The
fact that we actually use an average of up to three different R; (x) does not matter much,
because (5.8) and (5.15) say that they are almost the same. And we are happy that we do
not need to take a limit this time.

We want to use the change of variable g : Q; — € to reduce the study of some
degenerate elliptic operators L on 2 to the study of operators L, on ,, and because
of this we are interested in the structure of the the matrix of the differential mapping
Dg:Qy— Q.

As in [13], we prefer to study the matrix J(x,t) of Dg(x,t) in a set of two
orthonormal bases of R”, where the 1st one is the canonical basis of R"?, and the 2nd one
its image by Ry (x), where k = k(¢) is chosen such that p; (t) # 0. It does not really matter
much which one, but for the sake of definiteness, let us choose k(t) as large as possible.
Let us denote Jac(x, t) = Dg(x, t) in the usual Euclidean basis and J(x, t) := Dg(x, t)Q(x, t)
where Q(x, t) is our matrix of isometry in the sense that Ry, (x)(y,s) = (y,$)Q(x,t) for
(v,s) € R™. We know, just because g is bilipschitz, that for small ¢; > 0 the matrix J(x)
is (uniformly) bounded and invertible, with a (uniformly) bounded inverse, and we are

mostly interested now in the block structure of J (when we cut R” into R% x R*~9),

Proposition 6.4. We can write a decomposition of J as a block matrix

Al(x,t) C?(x,t)
J(X! t) = 3 A ' (65)
C3(x,t) I, 4+ C*x,1t)

where the d x d matrix A! is bounded, C?, €2, and C* are bounded and satisfy
Carleson measure conditions, and I, ,; is our notation for an identity matrix of size
n — d. Specifically, (2.14) holds with a constant C = C,(¢ + §;), where C, depends on

n,d, Cy, My, M (but obviously not on §; or ¢), and also we have the L* estimate
IC2(x, 1) + 1C3(x, 1) + |C*(x, )| < Cy (e +6y) (6.6)

for (x,t) € R™.
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Remark 6.5. We claim that with the help of Remark 4.53, we can show that Al is as
close to the identity matrix as we want, as long as we take ¢ and §, small enough. This is
because g is bilipschitz with a constant close to 1, and hence Dg is as close as we want
to an isometry. But in this paper we shall content ourselves with the fact that J(x, t) is

uniformly bilipschitz because g is.

Proof. The proof of the proposition will keep us busy for some time. We first consider
the t-derivatives of g. Let us compute 9, g(x, t), where 9, is our notation for % Here we
single out the 1st t-variable because this way we do not have an extra index, but the

other t-derivatives would be the same. From (6.1), we deduce that

9,9(x,t) =D, + D, (6.8)
where
Dy =" 0 ({0 + Ry - ¢} (6.9)
l
and
Dy =) p(ORx) eqy,, (6.10)

l

where e, ; is the 1st element of the basis of R"~%. In both term, the sum has at most 3
terms, corresponding to l = k, k — 1, by the comment below (6.3) and our choice of k as
the largest index for which p(t) # 0.

We start with D, notice that > ; 3, (p;(t)) = 0 because >_; p;(t) = 0 (see (6.2)), use
this to subtract fj,(x) + Ry (x) - t, and get that

D = DI — bl + IR0 — Ry ol - 1]}
l

= ad Y {0 - A+ HIRE - Re@)l] =Dy + Dy 611
k—2<l<k-1

where some of the terms may not exist. That is, if kK = 0, then there was only one term in
the initial sum, coming from k = 0, we managed to kill it, and thus D; = 0. Similarly, if
k =1, we are left with only one term, coming from [ = 0. And it could be that even when

k > 2, we do not need l = k — 2, but the extra term will not hurt.
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We start with D,, because the needed estimates are more recent. When f;_; (x) €

V2 | (the active region), (5.15) says that
IRy () — Ry ()] = C_y (). (6.12)

Then (by Lemma 4.28) f;,_,(x) € V,f_z (if £ > 2, otherwise there is no term with [ = k — 2),

and

[Rp_1(X) = Rg_p(x)| = C&p_»(x) < C&p_;(X). (6.13)

Iffi_ e V,igl \ Vg_l (the dying region), we replace (6.12) with (5.8), which says that

In this case, Lemma 4.28 still says that f;_,(x) € V,ffz, and we can use (6.13). We are left
with the case when y = f;_,(x) lies in the dead region. Then Ry (x) = Rj_;(x) (because
or_1(¥) =y, ; and X;_; coincide at y, and the definitions give S;_;(x) = R;_;(x) and
then Ry (x) = Ry_;(x). It is still possible that f;_;(x) lies in the dying or active region,

and then we use (6.14) (for k — 1) or (6.13). We summarize the cases and find that

Dy, < C5_ (%) 4 Ces(x, 1), (6.15)
where §(x,t) = 1if f;_; (%) or fj,_,(x) lies in their respective dying region, and é(x,t) =0
otherwise. We will see later that this leads to a good Carleson estimate for D,.

Next consider Dy, = Clt|™' X ;55 1 fi® — fr®)|, and first assume that
Jio1(x) € Vlf_l. Then by (4.31),

frx) — fr_1 @) < ng_l(f(X)) Th_1- (6.16)
If k > 2, Lemma 4.28 says that fj,_,(x) € VE_Z, and (4.31) yields

i1 (0 — fr2 (] < Cep_o(f (X)) gz (6.17)

Otherwise, we do not need this estimate because D;; has only one term. Altogether,

Dy, < Cey_ 1 (f(x) + Cey_,(f(%)) (6.18)

(because t > ry by (6.2)).
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Next we assume that fi_;(x) € Z;_; \ V§_,. If fi_, () or f;_,(x) lies in the dying
region, we use the more brutal estimate (4.22) to see that |f;(x) — fi,_;(x)| < Cs, or
similarly for k — 1, and get that D;; < C. Otherwise, f;_;(x) and f;_,(x) lie in their

dead regions, and D,; = 0. We summarize the estimates as we did above, by saying that

Dy, < Ce}_,(f(0)) + Ce}_,(f(x)) + Ced(x, t) (6.19)

with the same definition for §(x, t) and where we set ¢;'(f(x)) = 0 for [ < 0.

Next we study D,, which we write as D, = D,; + D,,, where

and by (6.2) the rest is
Dyy= D p®IRE —RX)] eqy,. (6.21)
k—2<l<k-1

The main piece D,; gives the 1st term of the identity matrix I,,_; in (6.5), and of course
its analogue for the other t-derivatives of g give the rest of I,,_;. As for D,,, we use the

same estimates (6.12)—(6.14) as above and find that
Dy, < C&j_1(X) + Ced(x, 1). (6.22)

We may now consider the x-derivatives of g, and which we feel courageous

enough to consider all at the same time and denote by D, g. By (6.1),

D,g(x,t) = > p;(0){Df;(x0) + DR;(x) - t} =: D3 + D, (6.23)
Jj=0

We start with D,. Notice that when k = 0, R;, = I, and DR; = 0, so we may assume that
k > 1. As usual begin with the case when y = f;,_; (%) € Vg_l, apply (5.14), and find that
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|reDRy (x)| < C&;_,(x), and similarly for the previous iterates if they are needed. This
yields

|Dy| < Cej_1 (%) + Cej_o(x) + C&p_»(x) < Cep_1(x) (6.24)

because |t| < 20r, (by (6.3) and because k > 1), and where the last part comes from the
definition of the g in (5.14). When f;_,(x), or one of its two predecessors, lies in the
closure of its dying region, we use (5.9) for all of them and find that |D,| < Cs.

We are left with the case where the three points lie in the interior of their dead
region. Denote by [ the smallest integer such that fj(x) lies in the the interior of its dead
region; thus I < k—2. We know that all the f,,,(x), m > [, are equal to f; in a neighborhood
of x, and when we follow the computations we see that this means that the R,,, m > [,
also coincide with R; near x (for instance, we check first that since o;(y) = y near fj(x),
we get that ¥, = ¥; near fi(x), then 7, = m; near x, then S = Ry, etc.). Now the DR;
in the formula (6.23) are all equal to DR;, and (5.9) yields

ID,| < Cergryt < Ce107F, (6.25)

Again we claim that this decay will lead to a Carleson measure estimate, but let

us now concentrate on our last term

D, = Z p;(t)Df;(x), (6.26)

j=0

which as usual we cut in two. The 1st part
D3, = (%) 0 Dy, (6.27)

where we project on the vector plane Ry (x) (R%) parallel to Ty (x), falls in the matrix Al
of the decomposition (6.5), and we do not need any special information about it, except
that we know that A! is bounded (and even J is bilipschitz). We are left with

Dyy = m(x)T 0Dy = Z p;()lm (x)" o Df;(x)]. (6.28)
j=0

€20z Aienuep L€ uo Jasn saijin) UIM| - BJOSBUUIN JO AlSIaAuN AQ $80S8S9/60 L OBUIUIWIEE0 L "0 /10P/[0IMB-80UBAPE/UIWI/WOD dNO"OlWapeoe//:sdy WoJj papeojumoq



Harmonic Measure on Low-Dimensional UR Sets 39

Observe that the image of DfJ-(X) is contained in the tangent direction R;(x) (R%) (parallel

to T]-(X)), and JTj(X)J‘ vanishes on this space. Also, D]‘}-(X) is bounded, so

Dyl <C D im0 —m@t=C Y Im - m@l. (6.29)
k—2<j<k k—2<j<k

The simplest for us is to observe that I7;(x) — m ()| = CIRj(X) — R (X)I. Indeed u4169)
is the projection on Rj(x)(]Rd), and an orthonormal basis of that space is given by the
Ri(x)(ep, 1 < l <d, so Ti(x)(v) = Zle(V,Rj(X)(el))Rj(X)(el). Of course using this is a
little strange because the estimates (5.15) and (5.8) that we are about to use come from
estimates on |7;(x) — m (%), as in (5.19). Anyway, |Dj3,| < CZk—25j<k IR;j(x) — Ry (x)| can

now be estimated exactly as D,, and D;;, and we get that

Dy, < C&p_; (%) + Ced(x,t) (6.30)

as in (6.22).

We completed the decomposition of J; now we need to show that the error terms
in (6.15), (6.19), (6.22), (6.24), (6.25), and (6.30) are functions that satisfy a Carleson
measure estimate.

We start with the function %,_;(x) that show up in (6.24). Recall from (5.14)
that & (x) = 2,1 2l_k+182/(f(X)). This is a function of ¢t as well because since
k = k() (and k > 1), (6.3) says that r, < || < 20r,. We will use the fact that
2 (%) < CY 25 e/ (f(x))? by Cauchy-Schwarz.

In order to prove (2.14) for this function, we have to estimate

dydt

R dydt 3
I(X,R) =/ B GO < c/ > 2R (r? T (6.31)
QoNB(X,R) It QNBXR) o fop_ It

First observe that since r;, < |t| < 20r and |t| < R when (y,t) € B(X,R) (recall
that here X = (x,0) lies in Py), we only sum over k such that r, < R. Let us fix x, k, and
I, and integrate in t first. We integrate in the region A(k,l) where r, < |t| < 20r;, and

dt :
Jacy g < C. We are left with

IX,R) <C / > 2k (Fx))? dy. (6.32)

y€PoNB(X,R) 0<l<k—1

We now sum over k, then [. The sum over k disappears because of the converging factor
2!=k and the sum over [ is less than C$,, by (4.14) and (4.15) (recall that g(y) = f(y) on
P,). We are left with I(X,R) < C(SI”HUZ(P0 NB(X,R)) < cale, as needed.
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The numbers g,_, (x) are just smaller than the €;_, (x), so we do not need to worry
about them; the same is true of ¢ ,(f(x) and &} ,(f(x), which are just two pieces of
%_1(x). The next function to control is 3(x, t), which counts whether f},_; (x) or f;_»(x)
lies in the dying zone, or its variant where we also include fj,_,(x) which is implicit in

the description below (6.24). We need to control

, _ dydt
I'X,R) = £d(x,1) I (6.33)
QoNB(X,R) [t|™—

We know from Lemma 4.28 that for a given x, there is at most one [ > 0 such that
fix) € V}°\ v}, and the only ¢ for which ! € {k—1,k—2,k— 3} are such that r; < |t| < 207
forke{l+1,14+2,14+3}. Thatis, t [10_3rl,2rl/10]. We integrate against |t|d_”dt, get at
most Ce, then integrate against y and get at most CeR%, as needed.

Our last contribution comes from (6.25), where for some earlier I = l(x) < k — 2,
fi(x) lies in the dead region for the 1st time, and then we pay D, < Ce10"F. This yields
the integral

I'(X,R)=c¢ /

/ > 100* dydt (6.34)
yeZNB(X,R)

0<ItI=R 1 A=1x0) |t|n—a

where Z is the set of points y € P, such that I(y) exists. As before, we integrate first
against the t such that kK = k(t) and get a constant, then sum in k and get another
constant, and finally integrate in y and get at most CsR%.

This completes our verification that the functions in our various estimates
satisfy a Carleson condition, as announced with a constant dominated by C(e + §,).
The L* bound (6.6) is easier (we do not even have to sum the terms); Proposition 6.4
follows. |

It will be good to know that the class of matrices that have the special form given
in Proposition 6.4 is stable under taking inverses, products, and transposes. Indeed we
start from our favorite operator L = — divDa(Y)d‘H_"V, and then we use g to change
variables and get an operator L, on the simpler domain Q; = R" \ R4, A fairly standard
computation, which the reader may find in [13, Lemma 6.17] shows that L, = divAV,

where the matrix of A is

A(x,t) = (D, (g(x, 1))~ 9D | detJ(x, )| (J(x, ) HTT(x, t) 7} (6.35)
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maybe the reader expected the same formula with J(x,t) replaced with Dg(x,t), but
J(x,t) = Dg(x,t)Q(x,t) and the isometry Q(x,t) does not change (J(x,t)"')TJ(x,t)"! nor
the determinant (and J has a simpler form!). The next lemma will thus tell us that

Theorem 2.15 can be applied to Ly and A.

Lemma 6.36. Denote by M(M, 7, K) the class of matrix-valued functions J that have a
decomposition (6.5), where A! is bounded and invertible, with a bounded inverse such
that A + (A1), < M, each C, i = 2,3, 4, satisfies the Carleson bound (2.14) with
C = K, and ||Ci||Oo < 7 for i = 2,3,4. Also assume that t < (6M)~!. Then MM, 1, K)
is stable under taking the transposed matrices, J~! € M(M?, 6M?r,36M*K) for
J € M(M,t,K), and JJ' € M(M?,8M?7,64M*K) for J,J € M(M,t,K).

Here, || - || is the norm of the associated operator acting on the Euclidean R” and

| - Il is its supremum in x, t.

We decided to compute invertibility on the block matrix A! rather than the full
matrix J because this is easier, but as soon as the C! are small enough, there is no real
difference. That is, we know that g is bilipschitz, so J = J(x, t) is invertible, with some
uniform bound M on ||J(x,t)"}|]. Of course, M does not depend on ¢ or §,; taking these
constants smaller only makes our assumptions on the stopping time region C harder to
check. Set

A 0
T = ! andE=J - T; (6.37)
0 In—d

then ||E|| is as small as we want, by (6.6), and T and A4, are invertible too, with ||T~!|| =
||T1|| < 2M, so we can apply the lemma to J, with M = 2M and t = C(¢ + 5p).

Because of the way we once used §; to control some geometric quantities that
should really have been controlled by ¢,, we have to take §; small. Also, we decided not
to use the various remarks leading to Remark 6.5, so we do not know officially that our
changes of variable are in fact bilipschitz with a constant near 1. So our argument is

sound, but not optimal.

Proof. Let us now prove the lemma; the verification will be mostly a pointwise thing.
The fact that JT € M(M,t,K) when J € M(M, t,K) is clear; let us now consider the
inverse of J € M(M, 1,K). Define T and E as in (6.37), and observe that T~! is a block

matrix like T (the associated linear mapping acts as we want on R? and R"*~9)

Jl=(T+E) '=[T0+T'E) ' =0+ T 'E)IT! (6.38)
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(where the invertibility of J follows from the computation below) and then use our

assumption that ¢ < (6M)~! to write (I + T~'E)~! as a Neumann series. This gives
W=t =T < 20T YT E] < 2M?||E|| < 6M°r, (6.39)

which means that J~! has a nice block decomposition. This give pointwise bounds,
and the L™ bounds follow by taking supremums. The Carleson estimate also follows
directly from (6.39); we need squares because C in Definition 2.13 is quadratic. Now
we consider the product with another matrix J € M(M, t,K). Write J' = E' + T/, with

similar notation, notice that
JJI =E+TYE +T)=TT +R (6.40)

where TT' is a diagonal block matrix like T and T’ (again look at the corresponding
endomorphism), and ||R|| < 6tM + 972 < 6tM. As before, the L* and Carleson bounds
follow. |

7 Distance Functions like D,

The next string of estimates concerns the Carleson behavior of two things that are

related. The distance function D = D_, associated to our final set X, or in fact any

o’
uniformly rectifiable set E, and a control function A(x,r) for the average density of an
Ahlfors-regular measure living on E. Later on, we shall study relations between two dis-
tance functions, typically one coming from E and one coming from our approximating

surface.

7.1 The function A

Let E be a uniformly rectifiable set E, and ¢ any Ahlfors regular measure supported on
E. We want to define a A(x, r) that will measure, in a reasonable smooth way, the density
of o.

Pick a smooth radial, nonnegative function 5, supported in the unit ball of R?,
with [n =1, and set 5, = t% n (’7‘) (notice the normalization adapted to R%). We will use
the 7, for different things.

For x € E and r > 0, we define a first, not too precise, measure of the density,

namely

Aolx, 1) = / Ny —x)do(y) > 0, (7.1)
ENB(x,r)
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and then a center of mass

®,(x) = Ag(x, 1) / Y,y —x)do(y)
ENB(x,r)
(7.2)
=X+/\o(x,r)‘1/ (y —x)n.(y —x)do(y),
ENB(x,r)
where we write the 2nd formula to insist on the translation invariance, and finally the

better density
A7) = / 1y — ©,(0) o (p). (7.3)
ENB(®,(x),7)

We prefer to use A rather than A, because maybe x itself lies far from an optimal
plane for «(x, 10r) (defined below).

Anyway, we want to show that
r|V, , A(x, 1) € CM(E x R,), (7.4)

where we define CM(E x R,) as in Definition 2.13, but with R4 replaced with E. That
is, we say that a function F(x, t), defined on E x (0, +00), satisfies the Carleson measure

condition, and write F € CM(E x R,), when there is a constant C > 0 such that

2 m < CR? (7.5)

/ / |F(x,1)]
xeENB(X,R) Jte(0,R)

for X € E and R > 0. We could replace o with ’HldE without changing the class CM(E xR ).

The logical plan for proving (7.4) will work: for each (x,r) € E x R, we will find
a flat measure u that approximates o well in B(x, 10r) and compare the three quantities
above to the same ones with o replaced by . The good approximation will be in terms
of the Tolsa numbers a(x, r), which we discuss now.

We will use the same definition of «(x, r) is the same as in [13].

We first define flat measures and local Wasserstein distances. Denote by P the
set of affine d-planes in R”, and for each plane P € PP, denote by i = H%|p the restriction
of H% to P (in other words, the Lebesgue measure on P). By flat measure, we shall mean
simply mean a measure cup, with ¢ > 0 and P € P. The number «(z, r) will measure the
distance between our measure o and flat measures, locally in the ball B(z, r), which we

shall often take centered on E because this way we know that u(B(z,r)) is fairly large.
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Definition 7.6. For z € R" and r > 0, denote by Lip(z, r) the set of Lipschitz functions
f :R" — R such that f(y) = 0 fory € R®"\B(z,r) and |f(y) —f(w)| < |y —w]| fory,w € R".

Then define the normalized (local) Wasserstein distance between two measures o

/fdo—/fdu’ (7.7)

and u by

dist , (o, u) = =471 sup

feLip(z,r)

and the local distance from o to flat measures by

alz,r) = ngllfep dist , (o, cup). (7.8)
We normalized dist , (o, u) with r—@-1 because this way, if u(B(z,r)) < Cr? and
o(B(z,1) < Crd, then dist, (0, n) < 2C because

Ifllo <1 forf € Lip(z,r). (7.9)

Also observe that if B(y,s) C B(zr), then Lip(y,s) C Lip(z,r); it follows that
dist, (0, p) < (r/s)d+1 dist, (o, 1), and hence

a(y,s) < (r/s)* a(z,r) when B(y,s) C B(z,r). (7.10)

Return to the proof of (7.4). We want to show that
r|Vy Ax, )| < Ca(x,10r) for x € Eand r > 0, (7.11)

because then (7.4) will follow from Theorem 1.2 in[31], which says that when E is

uniformly rectifiable and o is any Ahlfors regular measure on E, then
(x,7) — a(x,r) € CM(E x R,). (7.12)

Strictly speaking, [31] defines the function « slightly differently, on the set of dyadic
cubes in R™ rather than balls centered on E. But the difference is really minor, in the
sense that one quantity controls the other, and we refer to Lemma 5.9 in [13] for the
verification.

It is easy to see that |[rV, A(x,7)| < C, so (7.11) is trivial when «(x,10r) > c L.
Therefore, we may assume that a(x,10r) < C~!, with C as large as we want. Choose an

almost optimal flat measure u = a?—lﬁ, in the definition of «(x, 10r), where of course P is
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a d-plane and a > 0. We do not intend to use the fact that u is nearly optimal here, just
that its distance to o is small. That is, if this distance was some small 8 > 0, we would
just get (7.11) with CB. The most trivial application of this (obvious) remark is that we
may use a(x,107r) instead, or use some other numbers and planes.

With the assumption that a(x,10r) < C~! (and by testing for example the
definition against a multiple of n,), we get that C~! < a < C, for some C that depends on
n and the regularity constant for o.

Set @ = a(x,10r) to save energy. Also write XO(X, r) for the analogue of Ay(x,7),
but with u, and do the same thing for 5r(x) and A(x,r). We use the definition of « and
find easily that

[hg(X,7) — Ao(x,7)| < Ca (7.13)
and then, with just a bit more of computation, that
|, (x) — ©,(x)| < Cra. (7.14)
Then we first try to differentiate with respect to x, that is, estimate
VX, 1) = /EVX[nr(Y — ®,.(x)]do(y), (7.15)

and the 1st thing to do is differentiate ®,.. Thus, we first differentiate (with respect to x)
the quantity n,.(y —x) = r*dn((y —x)/r) and we get —r*d*IVr;((y —x)/r). So, for instance,

Vohox,r) = —rd-1 / Vi((y - x)/r) do () (7.16)
E

and, using the 2nd part of (7.2),

Viro(x, 1)

Vil®,.(x) — x] o x )
0 '

(9,0 =21 = ho(x, 17" [ 0,y =20 do ()
E
—Ao(x, )" trmd1 /(y —x)Vn(y/r —x/r)do (y). (7.17)
E

We prefer to subtract x because despite the more complicated formula, the flawless

homogeneity makes it easier to check that |V, ®,.(x)| < C. We will also need to know that

dist (®,(x),P) < Car. (7.18)
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Indeed, it is obvious that <T>r(X) € P because u is supported in P, so dist(®.(x),P) <
|®,(x) — ®,(x)| < Cra by (7.14).

Let us return to (7.15), set V(x) = V,®,.(x) to save notation, and notice that
Vil (y — @, = =~ Vn((y — @,.(x) /1) - V(x0),

so that (7.15) becomes
T / iy - ®,0) do () - V), (7.19)
E

where we pulled V(x) out of the integral to stress the fact that it does not depend on y.

Since V(x) is bounded, we see that |V, A(x, )| < CA, where

A=r941 / Vi((y — ®,(x)) do (p). (7.20)
E

Let us compare A with the same expression A, where we just replace o by . Notice that
the integrand f(y) = Vn((y — ®,(x)/r) is a nice Lipschitz function supported on B(x, ),

with Lipschitz norm less than cr1, so
a-a,1=r0) [ o) - duy)| = car?
E

by (7.7) and the definition of 1, and where we get an extra r~! coming from the Lipschitz

norm of f. Next set denote by & the orthogonal projection of ®,.(x) on P, and consider

Ay =141 /P Vi((y — £)/r) du(y),

where we just replaced ®,(x) by £ in the definition of A;. We claim that A, -V = 0
for every vector V (and hence A, = 0). When V is parallel to P, A, - V = 0 because
we integrate the partial derivative in the direction of V of a function with compact
support. When instead V is orthogonal to P, V(x) - Vp((y — &)/r) = O for every y € P,
because 5 is radial and V is orthogonal to the direction of y — £. So A,(V) = 0. Finally,
|A;(V)—A,(V)| < Cr 1@, (x)/r—&/r| < Crla, by differentiating again under the integral,
between ®,.(x) and £. Altogether |V, A(x,1)| < CA < Cr~la; this proves the x-derivative
part of (7.11), and indeed the only important properties of ®..(x) are that

|V, ®,.(x)| < C anddist (®,(x),P) < Car. (7.21)
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We still need to take care of r-derivatives, and this will work the same way. This

time we need to compute
o) = [ 80,5 = @, do (), (7.22)
E

and we start with the derivatives of Ay and ®,.(x) with respect to r. The derivative of

Ny —x) = r’dn((y —x)/r) is

d
Sy = %)) = —dr~y((y —x)/r) — 1 2Vn((y = x) /1) - (¥ — %), (7.23)

which means that for instance
tpio(r) = =4 [ [dny —0/m -+ Vniy —20m - v =0/r|doy. 729

Then rd Ay (x,7) is also bounded, as for V A(x,1).

Next we study W = 9,®,.(x) = 9,[P.(x) — x], with ®.(x) — x = Ay(x, r)~1 fEmB(x,r)
(y—x) n,(y—x) do (y). Recall that cl< M, 1) <Cand fEﬂB(X,r) y—x)n.(y—x)do(y) < Cr.
The part W; where we differentiate A,(x, r)~1 is thus at most Cr|d,Aq(x, )| < C; we are left
with Wy = [grpon @ — %) (n.(y — %)) do(y). We use (7.23) again, get one more power of
r than in (7.24), and it follows that W is bounded. Finally, we return to (7.22); compared

to the computation for A, we get an extra term coming from W. That is,

daxr) = —rd! /E [dn((v = @,G0/r) + Vi((y = ©,0)/m) - (v = @, G/

+V((y = ®,(0)/) - W] do (@) (7.25)

and we just need to estimate A = r~ 41 fE Vn((y — ®,.(x))/r) because W is bounded. We
are lucky; A is the same as in (7.20), and we proved that |A| < Cr~la, so |3,A(x, r)Cr—la as

well, and the full (7.11) follows. This also completes our proof of (7.4) (because of (7.12)).

7.2 The distance function D, versus the distance to a good plane

Now we take a distance D = D_ , related to o, and use the @ numbers to compare it

o,

locally to the distance to a plane.

Lemma 7.26. Let o be any Ahlfors-regular measure on any AR set, and define D =D, ,

by (11.2). Forx € E, r > 0, any d-plane P = P(x, r) that almost minimizes in the definition
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of a(x,16r), z € B(x, 2r) such that

min( dist (z, P), dist (z, E)) > 10~?r, (7.27)
we have
L _ -1/ —al 1
Ttz 2T C M (x,7) < céz a(x,2'r), (7.28)

where C depends on n and the AR constants for o and C, is a dimensional constant that

does not depend on E or o.

We could stop the sum when 2l > 10 if we are really talking about o and the
approximating surface ¥, but we continue it forever because we are talking about an
arbitrary Ahlfors-regular set E with an Ahlfors regular measure o on it. We did not
require E to be uniformly rectifiable in the statement, but this assumption will be very
useful to control the right-hand side through Tolsa’s theorem.

We like to keep some choice on which good plane P = P(x, r) to use because some

different constraints may show up.

Proof. This statement looks like [13, Lemma 6.57], but since the notation may be
confusing we give a proof here. This will allow us to think at the same time about a sim-
ilar control on the difference between the quantities V,D and C, A(x, r)~ e v, dist (z, P),
which of course is C,A(x, r)~1/¢ times the unit vector that points in the direction opposite
(and orthogonal) to P.

Notice that with our assumption (7.27), both D(z) and dist (z, P) are both of the

order of r, and A(x, r) is bounded from above and below, we may instead check that

|D(2)7 dist (z, P)* — C,a(x,7)| < CZ 2%y (x, 2kr), (7.29)
>1
where by (11.2)
D(z)™* = / Iz —y|4 " do(y), (7.30)
E

which is easier to compute. And in the gradient variant, we would compare the gradient
of D™ to C,A(x,r) times the gradient of dist (z, P(2))™*.
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When we say that P = P(x, r) that almost minimizes in the definition of a(x, 167),

we mean that there is a flat measure p, on P such that, say,
dist , 16.(0, i) < 2a(x, 167). (7.31)
We proceed as in [13, Lemma 6.57], and cut D(z)"“ into pieces
Iy = / |z =y~ 0 (y) do (p), (7.32)

where the 6, form a smooth partition of 1 such that 6, is supported in the annulus
Ay = B(x,2K4r) \ B(x, 2K+2r) (but just A, = B(x, 167) for k = 0). We also set

= [ 2=y 0y) duo(y). (7.33)

Next write ug = )»’H,lcli,, and observe that
> L= x/ 1z —y|~4*dH%(y) = C/r dist (z,P) "¢, (7.34)
k P

by rotation and dilation invariance. So we want to estimate >[I, — I,/C|. Also, for k
large, a(x,16r) does not control the difference between o and uy, so we will need a
flat measure pu; = )\'ng’k that nearly minimizes in the definition of a(x, 254, as in

(7.31) but at a larger scale; we also set
I = / 1z = y17 0 (y) Ay (y) = / Jew) dug(y), (7.35)

with fi (y) = |z—y|*d*°‘6k(y). Obviously, we want to use the definition of dist , jk+a,.(0, 1g)
to the function f}.. Notice that f; is supported in B, = B(x, 2k+4r) but the reader may be
afraid that it is not smooth near z.

When k > 1, we know that z € B(x,2r) and y € Ay, so |z —y| > 2k+1y, fi is
Lipschitz with a constant C(2¥r)~@+e+D and (7.7) yields

Iy — Il < Cllfellip @RI dist | geran(o, ) < €)™ a(x, 2547, (7.36)

When k = 0, the function f; as it is defined has a singularity at z, but our assumption

(7.27) says that it lies at distance at least 10~2r from both E and P. So we may modify 6,
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so that 6, and f,, take the same values as before on E and P, but now f}, is smooth, with
Wfollyp < Cr=@r+1); then (7.36) is also valid with k = 0.

Note that if we wanted to estimate a derivative of order m of D,, , we could just
apply the same argument, with a function f; coming from a derivative of |z — yl~9e,
with the effect of merely adding C2~%¥™r~™ in the the right-hand side of (7.36). The same
remark will apply to the computations and estimates that follow.

Next we estimate |I,’C/—I,/c|, where we go from u to u;; we write this as a telescopic

sum, that is, say that |I,’€/ — I,’<| < Zlgjfk 8 kr where

Sjk = /fk(y)(duj(y) — dpj_ (). (7.37)

The difference between I and K1 is controlled by «(x, 2/T4r) + a(x, 27*3r) (compare
both measures to o and use the triangle inequality in (7.7)). Since we are talking
about flat measures here, this has two contributions on SJ-. The 1st one is from the
difference of densities |1; — 4;_;| < Ca(x, 2/t4r) 4+ a(x, 2773r), which we need to multiply
by C2*N?||fi,(")llw < C(2¥r)~¢. The 2nd one is from the distance between the planes
in the region A, which is less than C(a(x, 27*4r) + a(x, 2/*3r))(2kr), which we need to

multiply by C2*n?||f, (¥)|l, < C(2¥r)~17%. We sum and get that

8, < CC2Fr) ™ (a(x, 27r) + a(x, 273, (7.38)
and then
DR —LI<D 0 D 8 < D @, 27r) +a(x, 273m) (2T (7.39)
k>1 k>11<j<k j>1

Finally, we need to evaluate A — A(x,r). Let us compute I = [ n,(y — ®,.(x)) dug,
where 7, (y — ®,(x)) is the same function that was used in the definition (7.3) of A(x, ).

We finally evaluate A, by computing I = [ 5, (y—®,(x)) dug(y), where n,(y—®,.(x))
is the same function that was used in the definition (7.3) of A(x,r). This way, replacing

o with o in I would yield A(x,7), and so
I — A(x, )] < Créthn, (- — ,.(x)|ljzp o (x,167) < Ca(x,167) (7.40)

by (7.7) and the definition of u,. If ®,.(x) were luckily lying on P, we would get I = A

immediately, because 5 is radial and [5, =1 on R%; this is not necessarily true, but we
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will check in a moment that
dist (®,(x), P) < Cra(x, 161), (7.41)

and then it will follow, by the usual argument where we estimate the derivative of

& — fP(X'r) n.(z — &) duy(2) along a segment from ®,.(x) to P, that
A — A(x,1)| < Ca(x,167T). (7.42)

Incidentally, this is the reason why we decided to use A(x,r) rather than A,: it could
happen that dist (x, P) is much larger than Cra(x, 16r). To check (7.41), we return to the
definition of ®,.(x) by (7.2), project on the (n—d)-space orthogonal the direction of P(x, r),
and then use the triangle inequality to find that

dist (®,.(x), P) < Ay(x, ! / dist (y, P(x,7) n(y —x) do(y)
ENB(x,r) (743)

< Cro(x, 1) 'ra(x, 16r) < Cra(x, 167),

where the last inequalities come again from (7.7) and the definition of uy because the
same integral, but against du,, would give O because we would integrate on P(x,r);
(7.41) follows.

We may now summarize. We have seen that D(z)™* = > ; I; is quite close to
ZkI,’c’, by (7.36), and then to >’ I,’c, by (7.39); then by (7.34) >, I,’C = C, 1 dist (z, P)"® Thus,
by (7.42),

|D(2)™ — C)a(x,7) dist (z,P) ™| < Cr™® Z 27 ke (x, 284, (7.44)
k
which is the same as (7.29) and implies (7.28). Lemma 7.26 follows. |

7.3 The distance Dy (g(x,t))

In what follows, we return to the construction of a bilipschitz change of variable
associated to a stopping time region ® and give a good evaluation of the distance
Dy (g(x,t)) associated to ¥ = g(R%), first compared to the distance to a good plane.

We shall use the same notation as in the 1st part, and in particular work on R"”,
except that we use the coordinates y € R% and t € R" ¢ to avoid some confusion with

the previous subsection. In the present subsection, we use the distance Dy, associated
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with the surface £ = g(R%), where we put any Ahlfors-regular measure o, and we relate
this to our change of variable. We no longer mention the exponent « in the notation,

both because it is fixed and we want to avoid extra confusion with the Tolsa numbers.

Proposition 7.45. The function ® defined by

By, ) = W Gy (P, 1) (7.46)

satisfies a Carleson condition on €.

As the reader guessed, A is the same function A as above, but associated to the
measure o and the set . The constant C, is the same as above.

Later in the subsection, we will manage to apply (7.28), but for the moment we
first estimate the distance from g(y,t) to some other plane that we define now. Let
(v, t) € Q¢ be given, and as always set r = [t|. Also set x = f(y) and z = g(y, t). Choose
k = k(t), as we did above, to be the largest integer such that p;(t) # O (see near the
definition (6.1) of g). Let as before T;(y) denote the tangent plane to X, at f;(y), and
recall from (6.1) that

z=90.t =X s ®f0) + Rjw) - ¢}, (7.47)

Jj=0

In this sum, there are at most 3 terms, corresponding to j = k,k — 1,k — 2 (when they
are nonnegative), and we will see that these terms are almost the same. Set z’' = f;(y) +
Ry (y) - t; notice that since z’ — fi(y) = R (y) - t is orthogonal to T} (y) (because Ry (y) maps
(the orthogonal complement of) R? to (the orthogonal complement of) T (y),

dist (Z', T () = |12 — fr(»)| = Itl. (7.48)

We want to compare Dy (g(x,t)) = Dy (z) to dist(Z, Ty(y)). Some error terms will come

from |z — Z/|, but observe that

=1tz =2 <1l D @) — i@l + 18 R;(y) — Ri(n)l; (7.49)
k—2<j<k—1

(by (7.47)). Notice that iy, satisfies a Carleson condition by our treatment of D,
from (6.11).
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Next we want to use (7.48) to estimate dist (2, P(x,r)) where P(x,r) is a good
plane to apply (7.28). More precisely, since we want to apply (7.28) to various points, we
choose for each x € ¥ and r > 0 a nearly optimal flat measure u, , for a(x, 16r) (where
the a-numbers are associated to ¥ and o), and then let P(x, r) be the support of u,,.

We return to our initial pair (y,t), and try to estimate the distance between
P(x,r) and T} (y). This will take some time, but we shall remember that the main property

of P(x,r) in this respect is that
/ dist (w, P(x,1)) do(w) < Crd“a(x, 167r), (7.50)
YNB(x,8r)

which as usual we obtain by testing the product of dist (w, P(x,r)) by a bump function
against the difference o —pu, ... Thus, it makes sense to estimate the distance from points
of ¥ NB(x,8r) to Ty (y) too.

We start with the distance from points of ¥; to Ty (y). Let L be a bound for the
bilipschitz constant for f and the f;. Such a uniform bound for the f; comes from the
proof of Lemma 4.8, but if the reader does not want to believe this, there is an easy fix

explained below. Set

Yo(y, t) = r! sup dist (w, Ty, (¥)); (7.51)
weSENB(x,(10L)~2r)

we want to show that this is a Carleson function. For ¢ so large that k = k(t) = 0,
¥, = T (y) = Py and so v¥,(y,t) = 0. Hence, we can restrict our attention to the pairs
(y,t) such that k = k(t) > 1.

We start with the simpler function

1)Z/:’,(Yr t) = sup rk|DRk(y/)|r (7-52)
y'€PoNB(y,((2L)~'rg)

where in fact we restrict to ¢ such that k(¢) > 1 (otherwise set y5(y, t) = 0).

To estimate V5(y, t), let y' € Py N B(y, (2L)"'ry), and first assume that fi.(y') € V}g.
Then (5.14) says that r|DRy(y")| < C&(y), where g,(y) = > <k 21_ks§/(f(y’). But recall
that when we chose f(y’) to evaluate the &/, we could in fact have chosen any point w
such that |[w — f(y)| < r;/2, and in particular, since f is M-bilipschitz and |y’ — y| <
(2L)"'ry, w = f(y). Thus, [DR,(y))| < C&(y) in this case. Notice also that if fi(y) € V]
and since f; is bilipschitz, this holds for all y’ € P, N B(y, (2L)~'r}). If you do not trust
this, use (4.23) to go through |f(y) — f(¥)I.
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A 2nd case is when fi (y) € V! \ V/; this is a little larger than the usual dying
zone, but Lemma 4.28 still says that for a given y this happens for at most one k. Then
we use (5.9), which is valid everywhere, to get that r; DR, (y')| < Ce on PyNB(y, (2L)‘1rk).

When fi(y) € % \ V3!, we return to the largest I such that fj(V}!), find that
Ri(y)) = Ry, (¥)), use the estimate above, and find that r;|DR(y)| < C10"%e on Py N
B(y, (2L)"'ry). Now we can follow our estimates for D, (see near (6.24)-(6.25)) and find
that v/ satisfies the Carleson condition.

Next we use 3 to control ¥,. Let w € ¥; NB(x, (10L)~2r) be given. A way to find
out where w lies is to return to u € X, such that f; (u) = w, take the line segment [y, ul,
and follow its image by f;. Recall that x = f(y) and |f(u) — w| = |f(w) — fi,(w)| < Crye by
(4.23), so |y — u| < (90L)~'r < (4L)"'r, because r < 20r; by (6.3). Then by (7.51)

IRi(s) — Rp(0)| < Is — yI i, " Y5 (v, t) fors e ly, ul. (7.53)

But Ry (y) maps R to the vector space parallel to T, (y), so the derivative in s € [y, u] of
dist (fi.(s), T (¥)) is at most C|Ry(s) — Ry (y)| < Cy¥3(y, t). Of course, this distance is null
for fi.(y); hence, it is at most Cryy53(y, t) at the end of the path, for w = fj (u). That is,
dist (w, Ty (y)) < Cry¥5(y, t), and this proves that ¢, < Cy5, hence v, satisfies a Carleson
measure estimate.

This is not over yet; now want to control the average distance from X to X,
that is,

Yy, t) =r 971 / dist (w, =) do (w), (7.54)
$NB(x,(20L)~1r)
and show that

Y, satisfies a Carleson estimate. (7.55)

We start when r > 1072 use the fact that for w € %, we can write w = f(u) for some
u € Py, and then dist (w, X)) < |w — fr(w)| = |f (u) — fi,(w)| < Ce by (4.23), so that

Yy, t) < Ce for |t| > 1072, (7.56)
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It is easy to see that (7.56) gives a bounded contribution to the Carleson norm of

Y, (x, )2 ‘fl’;dt Otherwise, when |t| < 1072, k > 1 and, since r, < r < 20r; by (6.3),

Vu(y,t) < Crdt /

dist (w, Ty) do(w) < Cry 4! / dist (f(w), Zy) du
SNB(x,L1ry) PoNB(y, 1)

< crpd! / F(w) — fi(w)] du < Cryd-! / > i W) — fiw] du.
PoNB(y, 1) Py

NB(y,rx) I>k

We take our earlier estimate for |f;, ; (u) — f;(w)|, which we did when we estimated D,; in
(6.19), and which writes

Ifir1 (W) — fiw)| < Cry(e] (w) + €8;(w)) (7.57)

where §; (w) = 1 when fij(u) € Vl10 \ V8, and 8;(u) = 0 otherwise. Thus by Cauchy-Schwarz

Yuly, % < Cr? > 1007F / g/ (W? + £28,(w)? du, (7.58)
I>k PoNB(y,rk)
where 10-% = r,;lrl. Set Y (v, t) = Yul(t, ¥)1g4>1 (the piece that we estimate now). We

integrate (7.58) on a Carleson box B(X,R) C R" centered at X = (x,,0) € Py, and get

dudydt
Va(y,t) <C 10 k/ / el (w)? + 628, (u)? ——2—.
/B(X,R) ¢ ItI” ra = €22 (7.0 eBE Ryk(t)=k JPorB(y.r) P pdjgn—d

k>1 1>k

Given y, u,l > 1, and k € [1,]], we integrate in the region where r, < |t| < 20r;, where
J | tlﬁf < C. Then we sum over y € B(u, ) and make the rk disappear. Then we sum the

geometric series in k, and are left with

2V, 2 d < / "w)? + &28 2 (7.59)
/B(X,R) Valy: D |t|n Z g (W) +e“8;(w)

PoNB(x0,2R)

where we used the fact that |u — x| < |u —y|+ |y — x| <1, + R and r, < |t| < R. Notice
that r; < rp < |t| < R in the sum above; we use the Carleson measure estimates proved
in Section 6 and get less than CR?. This completes our proof of (7.55).

We are now ready to compare P(x,r) (from (7.50)) and T} (y), and we start with
the most interesting case when r < 100 (so that r; ~ r). Since (7.50) and (7.54) are merely
averages, we start with a Chebyshev argument to select good points &; of £ N B(x,r). We
assume that ¥, (v, t), ¥4 (v, t), and a(x, 16r) are small; otherwise, we will be happy with

a trivial estimate.
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We first choose points near which we want to select these points. Lemma 6.2
in [15] says that in B(x,19ry), X; coincides with the graph over a plane P of some
Ce-Lipschitz function. Let P’ be the vector d-plane parallel to P, and choose an
orthonormal basis e;,...,eq of P'. Then set w; = fi(y) + (20L)_2ejrk for j > 1 and
wy = fi(¥). By the Lipschitz graph description, we can find points WJ’. € X, such that
|WJ/. — wj| < (ZOOL)_Zrk. Then by (7.50), (7.54), the Ahlfors regularity of ¥, and Chebyshev,
we can find points § € Xy, such that 1§ —w;l < (200L)_2rk, and for which

dist (&, P(x,1) < Ca(x, 1611 and dist & Zp) = CYu(y, 0). (7.60)

By the definition (7.51) of ¢, (and if ¥,(y,t) is small enough to guarantee that
dist (§;, ) < (4L)~1), we even get that

dist & Te() = CYa(y 1) + Yo (v, 1). (7.61)

Thus, we manage to find d + 1 points §; of X, that are sufficiently far from each other,
and that all lie very close to both P(x,r) and Tj(y). With a little bit of geometry, we
get that

dX,lOT‘k(P(X’ T'), Tk(y)) = Ca(XI 16r) + CI/IZ(YI t) + CI//4(Y: t)l (762)

see the discussion below (4.9) and [15, Lemma 12.7 on page 74]. Of course, this estimate
is still valid when the right-hand side of (7.62) is large, but it is useless.

Also, we forgot the case when r > 100, but then k¥ = 0, T)(y) = P, the
construction of X, gives dist (w,P,) < Ce for every w € X;, and the same argument

as above yields
dy10r(P(X, 1), Ti(y)) = dy 10,(P(x,1), Py) < Ca(x,167) + Cer 1. (7.63)

Finally, we return to the point z' of (7.48). Notice that zZ/ € B(x,2r) because
1z’ — fr(»)| = It| = r (by (7.48)) and |fi(y) — x| = |fx(¥) — fF¥)| < Cery < Cer (by (4.23)).
In addition,

r_1| diSt (Z/IP(XI r)) - r| = CO[(X, ]-6r)r + Clﬂz(Y, t) + CI//4(YI t)r (764)
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when r < 100 (by (7.48) and (7.62)), and
r~l|dist (Z,P(x,7) — r| < Ca(x,16r)r + Cer™! (7.65)

otherwise (by (7.63)). Let us first assume for the moment that these numbers are
small, and try to apply Lemma 7.26 to z' and P(x,r). Notice that dist(Z/,P(x,r)) > r/2
directly by (7.65), but we also need to show that dist(Z,P(x,r)) > 10~2r. Recall
that fsz(x,Sr) dist (w, P(x,7)) do(w) < Cr@tla(x, 16r), by (7.50); it then follows from
the Ahlfors regularity of ¥ that dist(w,P(x,r)) < 107 !r for w € E N B(x,7r), and
since z € B(x,2r), that dist(z,P(x,7)) > 10~2r, as needed for (7.27). So (7.28) holds,

hence

ID5(2) — Cyhy (x,7) "M/ dist (z, P(x, 7)) < Cr D 27 (x,2'r) (7.66)
>4

(where we also used the fact that dist (z, P(x,7)) < 3r to multiply the estimate). Recall
from (7.49) that |z — 2'| = |t|Y,(y,t) = ry, (v, t), and since it is easy to check that Dy is

Lipschitz, we also have
IDs(Z) — D5 (2)| < Cry (v, 1). (7.67)

We add (7.67), (7.66), and (7.65) or (7.64) and get a good control on r*1|DE(z) —
C, A, (x,r)~Y/|t||, which is the same as ®(y, t) in (7.46).

When the controlling numbers in (7.65) are large, we just say that ®(y,t) < C.

At this point, we have a good control of ®(y,t) by various quantities, which
are functions of (y,t), and we just need to check that they satisfy Carleson measure
estimates on Q.

For the functions v, this was proved along the way. For the «-function, it is
a function of (x,r) that satisfies a Carleson measure estimate in X x (0, +00), by the
theorem of Tolsa [31] (also see [13, Lemma 5.89] for the control of the geometric series
and Theorem 9.1 below for a statement of the dyadic version of this result), and it is
easy to see that when we compose it with the mapping (y,t) — (x,r) = (f(x), |t]), we get
a function of (x,t) that satisfies a Carleson estimate. We are left with the last term
Cer~'1,. 10, from (7.65), which also satisfies a Carleson measure estimate by direct

computation. This completes our proof of Proposition 7.45.
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8 Surgery with Dy and Dy

In the previous section, we managed to control reasonably well the effect of our change
of variable g, provided that we consider the distance Dy = Dy, , associated to an (in fact,
any) Ahlfors regular measure o on X.

In the larger picture, we started from a set E, with its own Ahlfors regular
measure (we shall now call it x), and we would like to use the corresponding distance
function Dy = Dg . Notice that both measures also depend on «, but we shall not
mention this in the notation.

It does not make sense to compare our two measures in the places where E and

¥ have nothing to do with each other, so we will only compare them in the same region

Qe = |J w, (8.1)
Qe®

where for each Q € ®, W(Q) is the Whitney box defined by
W(Q) = {x € B(xy, Mpl(Q)); dist(x,E) > My 'LQ)}. (8.2)

As the reader may have guessed, the precise shape of Q¢ does not matter so much, but
we probably do not want it to be too small because this is the region where we can play.

We state the main result of this section, and then discuss.

Proposition 8.3. Suppose E is uniformly rectifiable, u is an Ahlfors regular measure
on E, O satisfies the conditions of Section 4 (with M large enough and ¢, small enough),
and ¥ = f(P,) denote the surface constructed above. Then there is an Ahlfors regular

measure o on X such that

E.pn

D
V= 152@ D

— 1‘ satisfies a Carleson measure condition on R\ X. (8.4)
T.0

Here it is more convenient (or just safer) to let M, be as large as possible, then
choose M and ¢, and do the stopping time construction accordingly. We may pay a huge
price (depending on M), but this is more transparent.

We decided to require a Carleson measure estimate relative to ¥ because R"\ &
is the place the where distance function D below will live, and this is also the region
where we hope to use our change of variable to control operators. We could equally
prove a Carleson measure estimate relative to E, in fact with the same proof; see the

remark below (8.41).
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The goal of this is to control a degenerate elliptic operator L = L associated to
Dg, on Qg = R™\ E, and we hope to compare it to an operator L on Q5 = R"\ %, but we
would like to keep the same formula on a set which is as large as possible, so we let L

be associated to the distance function D defined by
D(z) = Dg ,(2) forze Qg (8.5)
and
D(2) = Dy ,(z) forzeR"\[ZUQgl (8.6)

We do not fear a discontinuity between the two regions; our elliptic conditions allow

this. But we will need to make sure that
c ldist(z, £) < D(z) < Cdist(z, ¥) (8.7)

(we will do this after (8.12)), to make sure that L lies in the class of acceptable operators
studied in [12]. This estimate is also reassuring because it says that Dy , and Dy , are
equivalent on Qg, which implies in particular that dist (z, X) > ¢~ 1(Q) on W(Q).

Then Proposition 8.3 will allow us to prove, via the change of variable g, that
the elliptic operator associated to I has an absolutely continuous harmonic measure,
because of a Carleson control on [¢|!D o g that comes from Proposition 8.3 and
Proposition 7.45. So what will be left to do is use the fact that D = Dy on the hopefully
sufficiently large region Q, to get some control on Ly itself.

We start our proof with some basic geometric information about E and X.
Lemma 8.8. Set M; = 10~2M. Then for each Q € 9,
M,dy, 1,10 (E. ) < Ce. (8.9)

See (3.3) for the definition of the normalized local Hausdorff distance d. As
usual, this is true if we assume that M is large enough, and ¢; is small enough,
depending on M. Also we added M, on the left-hand side just not to lose an additional
M uselessly, but this does not matter because we always choose ¢ and ¢; last. Let Q € ©
be given, and let P(Q) be as in (4.1) and (4.2). That is,

dy, ma)(E P(Q)) < 2¢,. (8.10)
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We now want to prove that

My dy, om10) (2, P(Q)) < Ce, (8.11)

and the lemma will follow. Set B(Q) = B(x,,3M,1(Q)) and let p € P(Q) N B(Q) be given.
First use (8.10) to find x € E such that [x — p| < CMI(Q)¢,. Set k = k(Q) (the generation
of Q and observe that x lies in the set E(k) of (4.4). Hence (by the line below (4.4)), we
can find j € Jy such that |x — x;,| < 2r. This is good because then [15, Proposition
5.1] gives a good description of X; N B(x;,49ry) as a piece of a Ce-Lipschitz graph over
P; . that passes within Cery from x;;. Recall that we even managed to pick planes P;
that contain x;, but if P;, was only Cery-close, what we are going to say would work
too. The small Lipschitz graph description implies that every point of P; ; N B(x; s, 48ry)
lies within Csry of ;. By (4.23), it also lies within er; of ¥ (recall that X, = f;(Py) and
¥ = f(Py)). Now P was chosen to be equal to P(Q;j ) for some Qj € ®(k) such that
dist (xj, Qjx) < 1‘/1[—6’“ (and we even had to move x; slightly so that P(Q; ;) goes through
Xj ., but this is not the point here), and so P(Q; ) is quite close to P(Q) near x;; (by (4.1)
and (4.2) for both cubes). Consequently, p lies within CeMry, of P; , N B(x;,47r;), and we
find £ € ¥ such that |§ — p| < CeMr;.

Now we take £ € ¥ NB(Q) and try to find p € P(Q) near £. Let x € P be such that
& = f(x). The easiest case is when f; (x) € V,io, because this means that we can find j € J;,
such that |x;, — fx(x)| < 10r;, and we can use the same Lipschitz graph description of
X N B(x;,49ry) as above. We find a point p’ € P;; N B(x; y, 49ry) such that [p’ — fi(x)| <
Cery, and use the fact that P(Oj'k) is quite close to P(Q) near Xj i to find p € P(Q) such
that |p — p'| < CMe 1y < Cery. Then |[p —&| < [p —p'| + [P’ — fr®)| + fx(x) — &| < Cery,
by (4.23).

We are left with the case when fi(x) € = \ V{°. First assume that fi(x) € V}°
for some [ € [0,k — 1], and take [ as large as possible. Then take j € J(I) so that |fj(x) —
Xj;l < 10r;. Again use the good Lipschitz description of ¥; N B(x;,49r) provided by
[16, Proposition 5.1], or the case k = [ of the description above: there are points of Pj'l,
and then points of E, that lie at distance less than Cer; from f; (x). Use this to pick
w € E N B(fy(x), 7, 1). By definition of [, w € R™ \ Vllfl, which implies that x ¢ E(l + 1).
In other words, dist(x,R) > 1‘% for every R € ®(l + 1). Since |w — &| = |w — f(x)] <
lw — fi(x)| + Cer; < 2ry,;, we see that dist(¢§,R) > I% for every R € ©(l + 1). We apply

this to the ancestor of Q of generation [/, and find that dist(¢,R) > 1'% > 10{‘;”’“, which

contradicts our assumption that & € £ N B(Q).
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If we cannot find I < k such that fj(x) € V}'?, then f} (x) = f,(x) = x € P\ V3°, and
as before dist (x,Q,) > M/11. This is also impossible because £ € B(Q). This completes
our proof of (8.11), and the lemma follows.

A simple consequence of this is the following improvement of (8.7). We claim
that

(1 — CMye) dist (z,E) < dist (2, £) < (1 + CM,e) dist (z,E) for z € Q. (8.12)

Indeed let z € Qg and let Q € © be such that z € W(Q). Let w € E be such that |[w —z| =
dist (z, E); observe that dist (z,E) < |z—x,| < Ml(Q) by (8.2), hence |[w —x,| < 2Myl(Q) <
M,l(Q) if M is large enough, Lemma 8.8 applies to w and gives dist (w, X) < Cel(Q), so
dist (z, X) < dist(z,E) + Cel(Q) < (1 + CM,¢) dist (z, E) because dist(z,E) > Mgll(()) by
(8.2). Now let £ € X be such that dist(z, X) = [z—&|. If |[z— &| > Myl(Q), the 1st inequality
in (8.12) is trivial. Otherwise, we can apply Lemma 8.8 to § and get that dist(§,E) <
Cel(Q), hence dist (z,E) < dist(z, X) + Cel(Q) < dist (z, ) + CM,e dist (z, E) and the 1st
part of (8.12) follows.

Notice that (8.7) follows from this, since Dg(z) is equivalent to dist(z, E) and
Dy (2) is equivalent to dist (z, E).

Our next task is to construct Whitney cubes (in fact, pseudocubes) in E, which
we will use to define the measure o on ¥ that approximates u. For this, we will use the

somewhat classic distance to small cubes of ®, defined by
de(2) = inf (dist (z, Q) +1(Q)) (8.13)
- Qe®

for z € R™. Notice that dg(2) < 1 + dist(z, Q,) (because we can try Q = Q, € ©), and dg

is 1-Lipschitz. Associated to dg are a closed set

F={zeE;dgy(z) =0} (8.14)
and a decomposition of E\ F into Whitney cubes that we describe now. We give ourselves
a small constant r € (0,1072), and we denote by R the collection of maximal cubes

R € D (for the inclusion as a 1st criterion, and then the smallest generation if a same set

corresponds to cubes of different generations), with the property

IR) < tdg(xR). (8.15)
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These cubes are disjoint (by maximality), they do not meet F because it is easy to see
that for R e R,

de(x) > (21) '(R) forx e R, (8.16)

because d, is 1-Lipschitz. The maximality of R implies that its parent S does not satisfy
(8.15), hence 10l(R) = I(S) > tdg(xs), and since

|dg(xg) — dg(xg)| < |xg — xg| < diam(S) < 20l(R) < 201dy(xg) < dg(xg)/5,
we get that
I(R) > 10" 'tdg(xg) > 20 tdg(xz) if R € R. (8.17)
We claim that
E\ F is the disjoint union of the cubes R,R € R. (8.18)

The fact that R € E \ F comes from (8.16). Conversely, if x € E \ F, then small cubes
that contain x satisfy (8.15) and are contained in a cube of R (because large cubes Q fail
(8.15), because dg(x,) < dist(xy, Qq) +1(Qy) < dist(x,Qy) + 2I(Q) +1(Qy) < 71(Q) for
1(Q) large). Finally, the cubes of R are disjoint by maximality.

We need a little more geometric information on dg and F before we start.

Lemma 8.19. Set By = B(xq,, M; + 10). Then

dist (2, E) < Cedg(z) forz e XN B, (8.20)
dist (z, X) < Cedg(2) forz e ENBy, (8.21)

and
FCENZNQ,. (8.22)

We start with the easy part of (8.22). If dg(2) = 0, then we can find cubes Q € ®
such that dist(x, Q) + I(Q) is arbitrarily small, and since Q C Q, C E, we get that
zeEN 50.
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Next let z € B be given, pick § > dg(z) close to dg(z), and choose a 1st cube
Q, € © such that dist (z, Q;)+1(Q;) < §. Then let Q denote the element of ® that contains
Q, and whose generation k = k(Q) is the smallest possible, but with the constraint
that I(Q) < 8. Such a cube Q exists, since Q, satisfies the constraint. First assume that
1(Q) < 1. Then the parent of Q does not satisfy the constraint, even though it lies in ®,
and this forces I[(Q) > §/10. Obviously, dist(z,x,;) < MI(Q), so Lemma 8.8 says that

dist (z,E) < Cel(Q)if z € ¥,and dist(z,X) < Cel(Q) if z € E. (8.23)

If instead I(Q) = 1, that is, Q = Q, then dist (z,x,) < MI(Q) in this case too, because
z € By, and (8.23) holds as well.

Recall that [(Q) < é§ and we can pick any § > dg(2); (8.20) and (8.21) follow. Also,
in the case when z € F, we already know that x € E, so (8.23) says that dist(z, X) is as
small as we want. Hence, z € X. The lemma follows.

We are now ready to define a measure o on ¥ that approximates u reasonably

well. Since we have a nice set F C EN ¥, we do not change the measure there, and set
09 = KiF- (8.24)
Next we consider the set
Ro={ReR; dist(R, Q) <1}, (8.25)

and to simplify some of the notation, enumerate R, as a collection {R;}, j € J. We want

to replace each pu; = ule,j € J, by a measure o; with the same mass. Set

lj = l(Rj) and Xj=Xpg.. (8.26)
We want to take
2(j) = £ NB(x;, Mpl)), (8.27)
where M, = 10~!'z~! > 10, and
M(Rj)

— d ; —
O'j = aj’Hl):(j), Wlth aj = WE(]_)), (828)
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but we need to check some things. First observe that

l; < 2t inf dg(2) < 2t(1 4 dist (R}, Q) < 4t (8.29)
zeRj

by (8.16) and (8.25). Pick a 1st cube Q" € ® such that
UQ") + dist (x;, Q) < 2dg(x;) <4071, (8.30)

SetQ; = Q' ifl(Q") > 1OlJ-, and otherwise let Q; be the ancestor of Q" such that l(OJ-) = 10l]-;
notice that Q; € © (by heredity and because (8.29) says that 10/; < 1), and

dist (x;, Q;) <40t ~'[; and 10l < Q;) <40t 'l (8.31)
If M is large enough (compared to r~!), we may apply Lemma 8.8, with the cube Q;, and

to the point x; € E. We find Sj € ¥ such that |§j — Xj| < lj, and this is good because this
implies that

HA= () = ¢ (8.32)
We also need to know that
the ¥(j) have bounded overlap and do not meet F. (8.33)
and indeed, if & € X(j), then
& — xj| < Myl; < Myrdg(x) = 107 dg (%)) (8.34)

by (8.15) and the definition of M,, hence
9 11 £ .
0< Ed@)(xj) <dg(€) < Ed@)(xj) or & € (). (8.35)

Hence £ ¢ F, and also the size of dg(§) determines roughly the generation of j; (8.33)

follows at once. We complement the measures o; by

Opo = Hik (o), With B(c0) = {£ € B; dist (¢, Qq) > 1/2}. (8.36)
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Finally, we set

0=0p+0s+ Z o;. (8.37)
jeg
It will be good to know that
o is an Ahlfors regular measure with support %, (8.38)

with the AR constant depending on n,d, C; only, provided that M is sufficiently large
and g, is sufficiently small. The verification is two-fold. First, we check that the density
f of o with respect to %% is bounded. On F, this is because u is Ahlfors regular, and the
measures o; and o, do not charge F. Concerning the o, their density a; is bounded, by
(8.32) and because n(Rj) < Clj, and then the global density is bounded because of (8.33).
As for o, its density is 1.

Conversely, f is bounded from below on F (by (8.24)) and on X(co). Now let
& € ¥\ (FU X(00)) be given. Thus, 0 < dg(§) < 3/2 (because dist(§,Q,) < 1/2). Let
Q' € © be such that [(Q') + dist(§,Q) < 2dg(§). Keep Q = Q' if [(Q) > d(£)/100, and
otherwise replace it with an ancestor Q such that dg(£§)/100 < I(Q) < dg(§)/10. Notice
that Q € © because [(Q) < 1. Thus,

dist (§,Q) < 2du(§) and dg(§)/100 < [(Q) < 2dg(é). (8.39)
We can apply Lemma 8.8 to &, and find x € E such that
|x — &| < Cel(Q) < Cedg(§); (8.40)

then dg(x) > dg(§)/2, x € E\ F, there is a cube R € R that contains x, dist(R,Q,) <1
because x € R and dist (§,Q,) < 1/2, and hence R is one of the Rj. In addition lj <1tdg (Xj)
by (8.15), so dg(x) < d®(xj) + lj < 2d@(XJ-) (by (2.2)), dg (&) < 2dg(x) < 4d@(XJ~) < 807_1lj
by (8.17), and (8.40) says that & lies well inside X(j). The coefficient q; is also bounded
from below, so f > a; > ¢! near Sj; (8.38) follows.

We are now about ready to prove that ¥ in (8.4) satisfies a Carleson measure

condition. By (8.12), gi"; is bounded and bounded from below on Qg (because Dy, is

equivalent to the distance to E, and Dy, to the distance to X), so it is enough to prove
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that ¥, satisfies a Carleson measure condition on Q5 = R"™ \ £, where
W, (2) := g, dist (z,E)"! |Dg ,(2) — Dy ,(2)|. (8.41)

Notice that we chose dist(z, E)~! because it seems simpler, but dist(z, ¥)~! would
have been equivalent. This remark also implies that although we decided to advertise a
Carleson measure condition on Qy, we would obtain a Carleson measure condition on
Qg = R™\ E just the same way.

Given the definition of Dy ,(2) and Dy , and the same equivalences as above, it
will be equivalent, and simpler, to prove that ¥, satisfies a Carleson measure condition,

where
W,(2) := 1g dist (z,E)* |Dg , (2)™® — Dy ,(2)™*|. (8.42)
So we gives ourselves z € Qg, and we want to estimate

A(z) = dist(z,E) *V¥,(2) = |Dg ,(2)"* — Dy ,(2)7°|

= ’/IZ—yl‘d‘“[du(y) — da(y)]). (8.43)

Recall that I = IR, let us also set py = pp and

Moo = Migoey With E(c0) = E\ (F uy Rj), (8.44)
jeT

so that u = ZJ- I (a sum that includes j = 0 and j = o0). Naturally, we write A(z) <
> Aj(2), where

Aj(z) = ’ / |z — yIm T [dy(y) — doj(p)]|. (8.45)

A priori the sum contains 0 as well as oo, but the term with j = 0 drops because uy = oy.

We now give an estimate on A;(z) forj € 7. Set
di(z) = dist (z,R; U £())). (8.46)
We claim that

dj(z) >c! lj, where we may take C = max(M,, 3t (M, + 1)M,) > 0. (8.47)
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Me may assume that dj(z) < lej because otherwise (8.47) holds. Then |z — xj| < 2M2lj
(see (8.27) and the definition of M, below (8.27)). Hence,

de(2) > d@(xj) — 2M2lj >(1-— ZMZT)d®(Xj) > d®(xj)/2 > (21)_1lj
by (8.15), the definition of M, below (8.27), and (8.15).

Let Q € © be such that z € W(Q); then dg(2) < 1(Q) + dist(z, Q) < (My+ 1)I(Q) by

the definition (8.2), and now

l; < 21dg(2) < 2t1(My + DIQ) < 27(M, + 1)M, dist (z, E)
by (8.2). On the other hand,

d;(z) = dist(z,R; U £(j)) > dist(z,EUX) > gdist (z,E)

by (8.12); our claim (8.47) follows.
In the next computations, we no longer record the dependence of our various

constants on M, M,, or . We now use (8.47) to prove that
—d—a—1 d+1 —d—a—1
Aj(z) < CM(RJ»)ZJ»[ZJ + dJ-(z)] < Clj [lj + dJ-(z)] o, (8.48)

Set §; = diam(Z(j) U Rj = Clj. When d]-(z) < 23;, we just use (8.47) and the fact
that the total masses of o; and n; are u(Rj) < Cl]‘.i to get the result. Otherwise, set
ag = |z—xl-|‘d_"‘,u(Rj), a, =/ |z—y| 4@ doj(y), anda, = [ |z—y| 4@ duj(y). Notice that

a; —ap = /Z 0 (12— 7170 =1z = x| duy(y), (8.49)

then observe that for y € X(j),

|7d70( |7d70{ |7d70(71

‘lz—y —lz—-x; SCéjlz—Xi
(differentiate the integrand along the line segment [y, x;]); this yields
lay = aol < 8jlz — x|~ oyl < CLn(Rpd;(2)~47

We have the same estimate on |a, — ay|, and (8.48) follows.
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At this point, we have enough information to prove the desired Carleson bound
on V¥;. The most important part will come from the sum over j € J. Each A; gives
a bump function with an L? norm controlled by r(R;), and sufficiently localized or
smooth for the different pieces to be almost orthogonal. The computations that follow
are reminiscent of other computations done in a similar context, but it seems that we
need to be courageous and do them.

We take a Carleson box B = B(X, R) centered on X (but E would give the same),

and want to prove that

2
J = / ‘ > Aj(z)‘ 8(z)¢"*t2* dz < CcRY, (8.50)
zeQeNB .

J

where we set §(z) = dist (z, E) (but dist (z, ¥) is equivalent on Qg), and the extra 2« come
from the fact that we have to multiply Zj A;(2)) by 5(2)* before checking the Carleson
condition; see (8.42).

We may assume that R < 1, because Qg < B(xq,,Mj) anyway. Also we first

concentrate on

2
J; ;:/ ‘ > Aj(z)‘ 8(2)3 2 dg, (8.51)
zeQeNB jeJ B

where J(B) is the collection of j € 7 for which R; C CB. The value of C will be decided
when we deal with the rest of the sum.

We write J; < 23>;>.,J(i,j), where it is enough to sum on the pairs such that
I, =IR) < lJ- = l(Rj), and

m@::/gmmw%wmﬁwww
zellp

1a+1 1d+1

c J i §(z)d "t 4z, (8.52)
/zeQ@)ﬂB [lj+dj(z)]d+"+1 [l + d,(z)ld+e+1 (2) z

IA

Recall that dj(z) = dist (z,R;U 2(j)), but in fact here (8.12) says that dj(z) > % dist(z, Z U
E) > 25(2). Then dj2)+ 1) <di2)7! < 28(z)~'. We may use this to replace a negative
power of (d;(z) + ;) by the same power of §(2) and simplify some things. And we can do
the same thing with i. Set

d+1
L

8 = T d e =
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we first use the fact that

l{iJrl ) )
I + dil(z)]d+a+1 =r1;2)l; + d;(2]™ = 2°ry(2)8(2) (8.54)
to get that
ld+1
JG, ) <C J r. S d—n+a dz. (8.55)
@) < /zesz@mB 0 + d,(zdras 1(2) 6(2) z

Next we divide the integral into annuli A;; where d;(z) ~ 2klj, and get contributions
J(,j, k). The smallest annulus should be replaced by a ball, but we still get the same

estimate, namely

J@,j, k) < cz*k(d“*“)lj—“ / ri(2) 8(z) " dz. (8.56)
zeQeNBNAjk

It will be good to know that

/ §(z)dnte gz < crite (8.57)
By

when B, is a ball of radius r centered on X (this is just easier). This estimate is very easy
when X is a d-plane; the main point then is that the integral in the direction orthogonal
to X converges because of the additional exponent «. When X, as here, is bilipschitz-
equivalent to a d-plane, this is as easy because we can change variables. But this would
also be true with E, with just a bit more work, because it is Ahlfors regular and the
measure of tubes of width tr near E are easy to estimate.

Denote by I(i,j, k) the integral on the right of (8.56) and further cut the domain

of integration into annuli A; where d;(z) ~ 2!,. We get integrals

I1G.j, kD) < / ri(@8(@* " dz < c27D min[(2!1)4®, (2¥1)*t, (8.58)
Aj’kﬁAl

where the 1st piece is an estimate of r;(z) and the 2nd one comes from (8.57), with the
two different choices of diameter. For strategic reasons (we do not want to distinguish
between @ < 1 and @ > 1, we choose 7 € (0, 1], smaller than «, and replace 2-Ud+D) with
2-Ud+1) in (8.58). No relation with our previous constant 7, though; this one will just be

here for the duration of the computation.
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We need to be careful about the region of integration. Set di,j = dist (Ri,RJ-),
and first assume that d;; < CZli-. In this case A; stays within Czklj of R;, and we can
content ourselves with [ such that ZIli < CZklj, because for larger ones A; does not meet

A; k. Then use the 1st option in (8.58) and observe that

1G,j, k) < D 1G,j, k1) < ¢ > 27 @lydte — ¢ glle-mdie (8.59)
1 l l

and the largest terms are when [ is as large as possible, that is, when ZZli ~ 2klj. This
yields I(i,j, k) < (2¥1;/1)*~*1¢+* and

J(i,j, k) < C27 M DR, k) < cz—k<d+f+1>lj—fl§i+’. (8.60)

Now assume that d; ; > Czklj. If C was chosen large enough, all the points of the annulus
A; . lie at distance roughly d;; from R;, which means that we just need to sum over the
few [ such that 2!, ~ d;;. For all these [, it is actually better to use the 2nd option in

(8.58), which yields I(i, j, k,I) < c271d+0) (2k1)d+e < ¢(d; ;/1)=977 (2k1)@+* and then

J(Q,j, k) < C27 MR, j, k) < c2m Mt (d, /1) 4T (2R A
(8.61)
<c2ka e,

Now we have to sum all these numbers. We start with the 1st case, and sum first over
i € J such that [; = 27™I; for a given m > 0. These cubes lie in a ball of size roughly 2klj
(because di'j < CZklj), so there is roughly (2klj/(2*mlj))d = 2m+h)d of them. We get a sum
bounded by

c2mthdy—k(d+r+1)-t g-—my yd+r
J 7

The exponent for m is —t, so we may sum over m and get CdeZ*k(d”“)le. Then we sum
over k and get Cl;i < Cu(R;). Then we sum over j, recall that the R; are disjoint and we
only sum over those that are contained in CB, and get less than CR?, as needed.

Now we consider the 2nd case and sum the terms from (8.61). Fix j, k, and m > 0,
and sum over i such that [; = 27™[;. Further decompose into annuli where d;; ~
2”2klj. The number of cubes R; in the annulus is less than c2tk+myd which gives a

contribution smaller than

(n+k+m)do—k g—d—tyd+7t3d _ (n+k+m)do—k onoky \—d—1 ;o—mj \d+77d
Cc2 2 di,j li lj =C2 277272 lj) (2 lj) lj .
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The power for m is —7, so we sum over m and forget about it; we are left with
CZ‘kZ‘T(”Jrk)lJ‘.i. We sum over k, n, get less than CZJ‘?Z, which as before we can sum over
j to get at most CR.

We are now finished with J;, but we still need to estimate
Jy = / |A@)[*8(2) 2 dg, (8.62)
zeQeNB
where A is the remaining part of A, that is,

A= D A, (8.63)

J€TeU{oo}

where J, is the set of indices j € J such that R]- is not contained in CB.

We start with 7. Let j € J be given. One possibility is that l(Rj) > R; then (8.47)
implies that dist(z,R; U 2(j)) > C~'R. Otherwise, and if C is chosen large enough, the
fact that R; is not contained in CB implies that R; U X(j) does not meet 2B, and hence
dist (z,R; U >(j)) > R.

Now set u, = Zjeje[ﬂj —o;], and observe that

8o(@) = 3 8y62) [ 12 = yI70 duely) (8.64)
jejé
is bounded by CR™¢, so
/ 1A, (2)|*8(2)¢ "2 dz < CR™* / §(z)d 22 g7 < cRY, (8.65)
zeQeNB zeB

as needed. We are left with A_ . We need to control
Jy = / |Aoo(z)|25(z)d*”+2“ dz. (8.66)
zeQeNB
Observe that
dist (z, Z(c0) U E(c0)) > C ! (8.67)
because either z € W(Q) for a cube Q such that diam(W(Q)) < 107!, and then (8.67)

holds because Q is centered on Q, and X(c0) U E(c0) is far from Q (see the definitions
and (8.36) and (8.44)), or else (8.67) comes directly from (8.2) and (8.12).
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Once we know (8.67), we see that A (z) > ¢! and (8.66) follows as for A,.

This concludes our proof of Proposition 8.3.

9 Construction of the Extrapolation Saw-Tooth Region and Related Results for the

Harmonic Measure Based on Sections 4-8,
9.1 Collecting the results of Sections 4-8

In this section, we summarize the results of Sections 4-8 in application to the particular
stopping time region, which we will use for the extrapolation procedure in the
forthcoming discussion. At this point, let us start by recalling Tolsa’'s e-numbers [31],
which give a good control on sums of squares of local Wasserstein distances to flat
measures, for every Ahlfors-regular measure on a uniformly rectifiable set.

First, recall the Tolsa's «-coefficients defined in (7.8). Fix some M > 0, which
will eventually be chosen sufficiently large. Given a d-dimensional Ahlfors regular set
E and an Ahlfors regular measure y on E, equipped with the usual dyadic grid D = ID(E)

(see Section 3), we denote
a(Q) = a(Xa,Ml(O)).

Recall the notion of uniform rectifiability from Definition 1.4. In [31,
Theorem 1.2], Tolsa proves the following result (a modification of which corresponding

to balls rather than dyadic cubes we already used in Section 7).

Theorem 9.1. For every uniformly rectifiable set E, every Ahlfors regular measure p

on E, and every dyadic cube R € D(E),

> @) < cu®?, 9.2)
QeD(R)

where the constant C depends on M, n, d, Cj, and the UR constants of pu.

Strictly speaking, [31] defines «(Q) slightly differently, indexed by the dyadic
cubes of R™ rather than (pseudo-)dyadic cubes of E and using M = 3, but possibly
adjusting the values of M (say, directly in the proof), the two statements are equivalent.
Indeed, every B(x,, MI(Q)) for Q € D(E) is contained in some B(x,,2M1(Q")) for
Q' € D(R™) with I(Q) ~ I(Q) and the number of different Qs corresponding to the same

Q’ is uniformly bounded.
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Now let us return to the construction of a stopping time region.

Definition 9.3. Let E be a d-dimensional Ahlfors regular set and let u be an Ahlfors
regular measure on E, equipped with the usual dyadic grid D = D(E). Fix some ¢; > 0,

8y > 0, and Q, € D. Then the stopping time region ® = 0, , (Q,) is constructed as

£0,80
follows (cf. the procedure in Section 3). We start from the top cube Q,, and decide to

remove a cube Q € D(Q), as well as all its descendants, as soon as

either «(Q) > ¢, or J,(Q) := Z oe(Rk(O))2 > §g. (9.4)
k(Qo)<k<k(Q)

Here, as before, for k(Q,) < k < k(Q), we denote by R, (Q) the cube of D; that contains
(Qg). For a fixed
M, > 0 a saw tooth region based on © is, as before, Qg defined in (8.1)-(8.2).

Q. The remaining collection of cubes will be referred to as ® = ©, ;5

It has become customary to also remove the siblings of any cube Q that we
remove as above because this gives a little more regularity to the decomposition of D
into stopping time regions like ®, and this costs essentially nothing. Here we do not
need this because of our specific description, but it would not hurt either.

It is convenient to write D(Q,) \ ® as UajefD(Oj) where F = {Q} is a disjoint
collection of cubes Q; € D(Q,) maximal under our stopping time procedure. That is,
the collection 7 = {Q;}; consists exactly of maximal cubes Q C Q, satisfying (9.4) and

the entire collection of all removed cubes (i.e., cubes of F and its descendants) is then
Uaje fID)(Oj).

Remark 9.5. At this point and throughout Section 9, we assume that 7 # {Q,}, for
otherwise ® = g and there is no ¥ to be constructed.

We remark also that we do not require Q, € Dy (i.e., k(Q,) = 0 hereafter). This
was often an assumption in previous chapters but the corresponding results rescale

easily—we will mention this in due time.
We shall now collect results from Sections 4-8, to arrive at the following.

Theorem 9.6. Let E be a d-dimensional Ahlfors regular set and p be an Ahlfors regular
measure on E. Then for M, > 1 large enough depending on n,d, C;, M > 1 large enough
depending on n,d, Cy, My, and ¢,,5, > 0 small enough depending on n,d, Cy, My, M, for

any Q, € D(E) and the associated ® = © (Qg) built as in Definition 9.3, there exists

£0,60
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a d-Ahlfors regular set ¥ C R™ and a d-Ahlfors regular measure o supported on X with

the following properties:

(1) for any ¢ > 0 the harmonic measure associated to L_ = — divD;(n_d_l)V,
Yy o

with
—1/a
D, = [ X-yrdaom) ", 9.7
)y

is A, with respect to o;
(2) for any @ > O the harmonic measure associated to L = —divD~®~4-Dy,
with D defined in (8.5)-(8.6), is A, with respect to o.

If M, M are chosen large enough and ¢, §, are chosen small enough as postulated above,
the A, constants of w; and w; and the Ahlfors regularity constant of o depend only on

n,d, Cy, «.

Proof. At this point, the proof is a collection of results from Sections 4-8.

First of all, since the assumptions and results are scale invariant, we assume
without loss of generality that Q, € Dy,

Going further, our stopping time region falls under the scope of Sections 4-8.
Indeed, the list of restrictions on ® in Sections 4-8 is exhausted by two properties,
(3.4) and (3.9). At the same time, as pointed out in Section 3, the numbers «(Q) control
the properties (3.4) and (3.9). To be precise, if J,(Q) < é§, and we use a suitable fixed
multiple of M in place of M in the definition of J,(Q), then J(Q) < §,, with §; being a
fixed multiple of §,. This is due to (7.10) and the fact that « numbers control (bilateral) g,
numbers proved in [31, Lemma 3.2]. Furthermore, bilateral §; numbers control powers
of bilateral 8., numbers (see [16, p. 27]) and, hence, slightly adjusting the choice of M
as above, similar considerations assure that the condition «(Q) < g, implies (3.4) with
¢, being a fixed multiple of a power of ¢,. Here, the power depends on the dimension
only and by a “fixed multiple” we mean multiplication by a numerical constant, which
is allowed to depend on dimension only.

Thus, we can follow the construction of the closed set ¥ € R” through Sections
4-8. According to Lemma 4.8, if ¢, (and hence, ¢,) is small enough, there exists a closed
set © € R” and g : R®” — R”, mapping R? to %, bilipschitz, with Lipschitz constants
depending on n,d, Cy,é,. Hidden in this statement is the dependence on choices of
M, and M as well (as the choice of ¢, ultimately depends on them) but all this is
harmless. We remark that since g is bilipschitz, ¥ is d-Ahlfors regular, with constants

depending on the same parameters as the bilipschitz constant for g. Furthermore, by
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Proposition 6.4, the matrix J = DgQ has the a form (6.5), where Al is bounded and
invertible by comment before the proof of Lemma 6.36.

Recalling that the Ry, (x) are isometries, it follows that
Alx,t) = | det(J(x, )| (x, )" HTIx, 7! 9.8)

has the same structure as J (with the same control of the Carleson and L* norms of its

components), due to Lemma 6.36. That is,

1 2
A(x, 1) =( As(x’ 2 ¢ (X':) ) (9.9)
C¥x,t) I, 4+Cix 0)

where C2, C3, and C* are bounded (with an L constant, which goes to 0 as 5 — 0) and
satisfy Carleson measure conditions (with a constant, which goes to 0 as §; — 0). Also,
if §y, ¢y are small enough (depending on n, d, Cy, M, M only), then Al and A are bounded
and invertible, with uniform bounds.

At this point, we introduce the d-dimensional Ahlfors regular measure o on X%,
with a uniform control on the AR constant and good approximation properties, which

has been constructed in Section 8 (see (8.38)), and use it to define the two matrices

Il n—d-1 R 1| n—d-1

A, (x,t) = (—) A(x,t) and A := (—A ) Ax,t), (9.10)
D, (g(x,1)) D(g(x,t)

defined for (x,t) € R™. These define degenerate elliptic operators on R" \ R¢, and we

want to show that they satisfy the conditions imposed in Theorem 2.15.

Lt and =1 are both bounded from above and

t
Dy (g(x,1)) D(g(x,t)
below on R™ \ R4 and, hence, A and A are bounded and elliptic. Next, let us write

First, we observe that

Il n—d-1
0= (o gg) A

_( It] )”‘d‘l Alx,t) 0 +( It] )”‘d‘l 0 C2(x, t)

- \D,(gx, 1) 0o I, D,(g(x,t) C3x, 1) Cxx,0) )
(9.11)

The 2nd term satisfies the same Carleson measure conditions as the original s,

j = 2,3,4, since the multiplicative factor is bounded from above and below. The

multiple of A is harmless and anyway we did not impose any specific conditions on A;.
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. Il n—d-1
It remains to analyze (m) I

—q- Turning to this task, we recall that according

to Proposition 7.45

P IEY e 9.12)

satisfies a Carleson condition on R"\R%. Since both W and A (f(y), |t|) are bounded

from above and below, applying the fundamental theorem of calculus to s > s~®~d-1),
we deduce that
11 )”‘d—l , nd-1
_ —C,h, (f), It]) "« (9.13)
’(Dg(g(y,t)) o O’(fy

satisfies a Carleson condition on R" \ R%. Thus, a multiple of I,,_4 by the expression in

(9.13) can be absorbed into C* and we are left with

—d—

Cay (F(p), It e =:b.

Since A is bounded from above and below, the condition (2.17) is verified. On the other
hand, (2.18) follows immediately from (7.4), and this finishes the argument for L .

At this point, we can apply Theorem 2.15 to the operator L, associated to A_,
and get that its harmonic measure is A, with respect to the Lebesgue measure on R,
But this operator is conjugated to L, by the bilipschitz mapping g (see for instance
[13, Lemma 6.17]), so the A result for L follows.

For L, we proceed similarly with A, write %' = % ‘Dil and use an argument
analogous to (11)-(9.12) along with Proposition 8.3 to conclude. |

9.2 Further geometric constructions: replacement sets, sawtooth domains, and projections

To set up the extrapolation procedure, we rest on the strategy pioneered by [20].
However, a large portion of our work happens on replacement sets rather than saw-
tooth domains, and the resulting geometric set up is necessarily different.

Let us start recalling (and adapting to our scenario) the definitions of the dyadic
saw-tooth domains from [20] and [27]. These are morally similar to the domains defined
in (8.1), but a more precise geometric structure will be helpful below. Since Q@ = R" \ E
is an open set, it has a Whitney decomposition—see [30, Theorem 1 on p. 167]. We will
perform the same argument as in [30], using powers of 10 instead of powers of 2, and

then subpartition emerging cubes further into subcubes of sidelength 10° times smaller.
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As a result, we get a collection of closed “Whitney” boxes in 2, denoted by W = W(Q),

which form a covering of Q with pairwise non-overlapping interiors and satisfy
9.10%diamI < dist(10%I,9Q) < dist(Z,9Q) < 21-10%diamI, VIe W, (9.14)
and
| . .
—diamI; < diamI, < 20diamI,; (9.15)
20

whenever I; and I, in W touch. Let X; denote the center of I and ¢(I) the side length of I;
then diam1I ~ £(I).

Let D be a collection of dyadic cubes for the Ahlfors regular set E, as in (2.1)—(2.3).
Pick two parameters n < 1 and K > 1, and for any cube Q € D define

WY = {I e W:nie(Q) < £() < K20(Q), dist (I, Q) < K24(Q)}. (9.16)

Recall from Definition 2.4 that A, denotes a corkscrew point for the surface ball

Axq, C*Irk(a)), with the constant C from (2.2). We can guarantee that we can choose

Aq = X; for some I € W) provided that we choose 1 small enough and K large enough.
We will further augment our collection to include pertinent Harnack chains. To

this end, recall the following definition.

Definition 9.17. We say that an open domain 2 satisfies the Harnack Chain condition
if there is a uniform constant C such that for every p > 0, A > 1, and every pair of
points X, X’ € Q with §(X), §(X’) > p, and |X — X'| < A p, there is a chain of open balls
By,....By C 2, N < C(A), with X € By, X' € By, By N B, # o and C~'diam(B;) <
dist (By, 92) < Cdiam(By,). Here C(A) does not depend on €, p, x, or y. The chain of balls

is called a “Harnack Chain”.

The boundary of the domain in the definition above is not presumed to exhibit
any particular dimension, but we recall that for @ = R" \ E for some Ahlfors regular set
E of dimension d < n — 1, the Harnack chain condition, and even something stronger,
holds.

Lemma 9.18 (Lemma 2.1 of [11]). Let E be a d-Ahlfors regular set in R” withd <n —1
and Q@ = R"\ E. Then there exists a constant ¢ € (0, 1), that depends only on d,n, Cy,
such that for A > 1 and X;,X, € @ such that §(X;) > s and |X; — X,| < As, we can find
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two points Y; € B(X;,s/2) such that dist ([V;, V,],E) > cA~#®~1-dg That is, there is a
thick tube in Q that connects the balls B(X;, s/2).

This a stronger property because it ensures that two points are connected by
a thick tube rather than just a chain, but we did verify that it formally implies the
Harnack chain condition from Definition 9.17, with the constants depending on the ADR
constants of E and the dimension only—see [27, Remark 2.2]. We review some of this for

the convenience of the reader.

Remark 9.19. Note that in the situation above,
1Y, — Y,| < |Y, —X;| + X, — X,| + |X, + V| < 2As. (9.20)

Lett =cA ¥ M 1-dgand z, = V,. For2 <j <N, let Z; be consecutive points on the line
segment [V, ¥,] such that |Z; — Z;_,| = /3. Then

T T

Combined with (9.20), we get a bound for the length of the chain, namely

Y, — . -
v~ Yal o amy 9.21)
7/3

Let By = B(Xl,s/2),BJ- = B(Zj,r/4) for1 < j < N and By,1 = B(X;,5/2). Clearly,
Bj ﬂBj+1 # o for all 0 < j < N. Moreover, dist(Bg, E), dist(BN+1,E) > s/2 and for
1<j<N,

. 3 3 __d
dist(B;, E) > -1 = —cA~w-1-ds, (9.22)
J 4 4
and
s
dist (B, E) < min{8(X,),8(X,)} + 7 +1Y; = V,| < min(3(X,), 5(Xp)} + 3As. (9.23)
For each I < Wg, by Lemma 9.18 and the discussions after that, there is a
Harnack chain connecting its center X; to the corkscrew point A,; we call it H;. By

the definition of Wg, we may construct this Harnack chain so that it consists of a

bounded number of balls (depending on the values of 5, K) and stays a distance at least
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cn4("n—_11—d>£(0) away from 92 (see (9.22)). We let W, denote the set of all J € W, which

meet at least one of the Harnack chains #;, with I € Wg, that is,
Wq = {J € W : there exists I € W for which #; NJ # o). (9.24)

Clearly, W3 < W,. Besides, it follows from the construction of the augmented
collections W, and the properties of the Harnack chains (in particular (9.22) and (9.23))

that there are uniform constants ¢ and C such that
n—1
cnT 1@ ¢(Q) < ¢(I) < CK26(Q), dist(, Q) < CK2¢(Q) (9.25)

for any I € W,,. In particular, once 7, K are fixed, for any Q € D the cardinality of W, is
uniformly bounded, by an integer which we denote by I,
Next we choose a small parameter 6 € (0, 1) so that for any I € W, the concentric

dilation I* = (1 4 0)I still satisfies the Whitney property
diam1I ~ diamI* ~ dist (I*, 9Q) ~ dist (I, 9R). (9.26)

Moreover by taking 6 small enough we can guarantee that dist (I*,J*) ~ dist(,J) for
every I,J € W, that I* meets J* if and only if dI meets d.J, and that %J NI* = g for
any distinct I,J € W. In what follows, we will need to work with further dilations
I = (1 4+ 20)I or I*** = (1 + 40)I, etc. (We may need to take 6 even smaller to make
sure the above properties also hold for I**, I***, etc.) Given an arbitrary Q € D, we define

associated Whitney regions U, U}, by

U= |J rr, vh=J 1 (9.27)
IeWq IeWa

Let Do = {Q" € D: @' C Q}. For any Q € D and any family 7 = {Q;} of disjoint
cubes in D, \ {Q}, we define the local and global discretized sawtooth regions relative
to F by

Drq:=Dg\ |J Do, Dr:=D\ [J Dy, (9.28)
OJE]: OJE]:
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We also define the local sawtooth domain relative to F by

Qrq ::int( U Ua,), Q*f’azzint( U Ug,). (9.29)

O/E]D)]:’Q O/ED}"'Q

For convenience, we set

Wra= |J Wa, (9.30)

Q'eDr

so that in particular, we may write

szint( U 1*), Qjm:int( U I**). (9.31)

IEW]:’Q IEW}‘,a

We will need further fattened sawtooth domain Q? o etc. whose definitions follow the
same lines as above. We remark that by (9.25), there is a constant C; depending on K, 6
such that

Qr o C B(xq,C3£(Q) N Q (9.32)

for any Q € D and collection of maximal cubes F, where x, is the “center” of Q as
in (2.2).

The global versions Qr, Q%, Wx are defined analogously using D in place
of Dr .

The sawtooth domains thus defined, of course, have boundaries with portions
of different dimension: parts of their boundary are given by the intersection with the
original d-dimensional set E, and other parts are composed of the (n — 1)-dimensional
faces of Whitney cubes in Q. Yet, they are amenable to the analysis in [14]. In particular,
Qr itself satisfies corkscrew and Harnack chain conditions and dQ2» can be equipped

with a doubling measure ., defined as follows. For each Borel set E C 9Q £, let

p(E) =HA(ENT) + /E\F dist (X, [)dF1-n qyn-1 lagrX)- (9.33)
It has been demonstrated in [26] that u, is doubling, and moreover, the domain Q
equipped with the measure m(4) = ([, dist (x,E)""*9+! dX and the boundary measure
i, satisfies the conditions (H1)-(H6) from [14] (see [26, Theorem 4.2]). In particular, the

harmonic measure corresponding to the operator L is well defined on 922 ~, and we will
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denote the latter by w,. It satisfies the usual properties of an elliptic measure: doubling,
comparison principle, and change-of-pole inequalities—we send the reader to [14] for
details. We point out that the dyadic cubes in [26] have been built in powers of 2, while
ours are built in powers of 10, but otherwise the construction is identical and we will
freely use the results from [26].

Aslong as n and 6 are chosen small enough and K large enough depending on the
dimension and the AR constants of E only, all the properties listed above are satisfied
with constants depending on the dimension and the AR constants of E only, uniformly
for all F (in particular, because for a d-dimensional E, d < n — 1, its own corkscrew and
Harnack chain properties are satisfied with the constants depending on the dimension
and the AR constants of E only). We might adjust the choice of ,6, and K as we go along
but we will always make sure that it depends on the dimension and the AR constants of
E only.

At this point, we want to compare the two domains Qr and Qg that were
constructed above in (9.29) and (8.1). Retain the notation from Definition 9.3, where we
are given a top cube Q, and a stopping time region ® C D(Q,). Then we consider the
now very specific class 7 = {Q;}; of maximal cubes Q C Q, that are not contained in ©
(we may call them the stopped cubes). Then D~ consists of all the cubes of ® (those that
were used to construct Qg in (8.1)) and also the cubes Q that are not contained in Q. In

other words,
Drq, =©, and, respectively, Dz = (D\D(Qy)) U 6. (9.34)

Ultimately, we will be choosing 5,6, and K first and then M, large enough,
depending on 75,0, and K so that U*(Q) C W(Q) and hence

Qra, CUr g, C Lo- (9.35)

More generally, the geometric statements in the remainder of this subsection
implicitly assume that we are allowed to adjust our choices, while keeping their order
intact, that is, if n,0 are small enough and K is large enough depending on d,n, and
AR constants of E; M, is large enough depending on all these parameters; M is large
enough depending on d, n, and AR constants of E and our choice of 5,68, K, M,; and ¢, §,
are small enough depending on all of the above, then the statements are valid. Since
all of these ultimately depend on d,n, and AR constants of E, we shall suppress this

in many statements. We will need to define a “projection” of cubes Q; € 7 on X and a
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projection of Q; on 92 x. To this end, recall the collection R defined in (8.13)—(8.18). We
recall that by (8.18) E\ F = Jg g Rx and, hence, by (8.22),

E\ |J Ry=FCENZNQ, (9.36)
RxeR

that is, E coincides with ¥ on the complement of Ug, .z Ry.

Furthermore, we claim that every R, € R is contained in some OJ- € F. Indeed,
if Ry is not contained in any Q; € F then Ry € D(Q) \ Uojef Dg;- Then dg(xg,) < U(Ry)
by definition. However, by (8.16), we have d@(XRk) > (2t)"'(Ry) > 501(Ry), which is a
contradiction.

Having this and (9.36) in mind, we can write any OJ- e F as

aj:( U Rk)U(OJ-\ U Rk> with Q;\ |J R, cENZE, (9.37)

Rx<Qj Rg<Qj RrCQ;

and then let

7(Q;) = ( U 2<k>) U (a]-\ U Rk) cs, (9.38)

ROy RyCQ;

denote a “projection” of Q; on X. Here, ¥ (k) is defined in (8.27). The definition of 7 (Q)
depends on the choice of the numerical constant r in the definition of R; and, hence, of
% (k), but this is, as usual, harmless, as long as 7 is small enough for our considerations
from previous chapters to apply.

In order to define the projection of Q; on 92z, we recall the following result
from [26].

Proposition 9.39. Fix a disjoint family of cubes / C D. Then for each Q; € F, there is
an (n — 1)-dimensional cube P; C 0Qy, which is contained in a face of I* some I € W,

and which satisfies
E(Pj) ~ dist (P]-, Oj) ~ dist (P]-, Q) ~ L) ~ E(Oj), (9.40)

with uniform constants.
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Then we let

denote our “projection” of Q; € F on 92 z. We first point out the following.

Lemma 9.42. Retain the definitions above. Then

(1) for any Q; € F the set 7(Q;) is contained in some surface ball A(’)?Qj,’faj)
where 3"\0]- € E,’FO], = Cl(Q;) for some constant C depending on our choice of
7 only;

(2) for any Qe F the set 7(Q;) contains some surface ball A(’;?bj,’f’aj), where
’)?’Qj € n(Oj),'i‘”aj = cl(Oj) for some numerical constant ¢ depending on the AR
constant of u, d, and on the choice of t;

(3) the 7(Q;), Q; € F, have bounded overlap and for any Q; € F we have
o(m(Q))) =~ n(Q), with all implicit constants depending on the dimension,

AR constant of u, and our choice of t only.

Similar statements are valid for n, in place of n, u, in place of o, and dQ £ in place of
3. The relevant constants then depend on our choice of 5,6, K and, hence, ultimately, on

the dimension and AR constant of E only.

Proof. We start from the statement that
the 7(Q;) have bounded overlap and o (m(Q))) ~ n(@Qy). (9.43)

The fact that the 7(Q;) have bounded overlap is a direct consequence of (8.33) and of the
fact that the Q; € F are disjoint. The equivalence of sizes will follow from statements
(1) and (2) of the Lemma. Next,

every 7 (Q;) is contained in some surface ball A()?aj,?aj), (9.44)

where 201, € X, ?Oj = Cl(Q;) for some constant C depending on our choice of t only.
This follows from the observation that for every Ry, C Q; we have I(Ry) < l(OJ-) and from
definition (8.27) upon recalling that M, = 10~!z~! and t € (0,10~2). Thirdly,

every 7(Q;) contains some surface ball A(?'aj,’f'aj), (9.45)
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where 32/0], € n(Q)) and ?’Oj = cl(Oj) for some numerical constant ¢ depending on the AR

constant of u, d, and on the choice of t. First, we show that
every decomposition in (9.37) contains at least one R; with I(Ry) =~ l(Oj). (9.46)

Indeed, Oj contains a surface ball EN B(XO,C*IZ(Oj)) by (2.2). Here, C is the constant
denoted by C in (2.2). Using now the 2nd inclusion in (2.2) we deduce that there
is a dyadic cube Q' contained in E N B(XQ,C_ll(OJ-)/Z) with the sidelength I[(Q") =
c(C, d)l(aj) for a sufficiently small ¢;(C,d) depending on C and d only. For any
point z € Q'

de(2) = érel(f) dist (z, Q) +1(Q)

zmin{ inf  (dist(z, Q) +1Q)), inf (dist(z,O)—i—l(O))}
Qeo:Qjca Qe6:Q;NQ=0

> min (L)), c7'UQp/2} = c7'UQy/2.

Now, if C71/2 > 1/t then c—ll(aj)/z > ¢l(Q")/2 = I(Q")/t, and so Q' is a subset
of some R; by definition (8.15). And recalling that any R; intersecting Q; has to
be contained in Q;, we have I(Ry) ~ l(Q;) with the implicit constant depending on
C and d only. If, on the other hand, C™!/2 < 1/t then we can keep subdividing
Q' (the number of times only depending on 7, C~!, and d), until we reach a cube
Q" c Q' such that C‘ll(Oj)/Z > [(Q")/t. Then, similarly to above, there must be an
R; containing Q" with I(Q") < I(Ry) < l(OJ-) and therefore I(R;) depending on 7, ¢!, and
d only.

Finally, once we know that there exists an Ry C Q; with I(Ry) ~ l(Oj), it follows
from the definition of (k) in (8.27) that (possibly slightly enlarging M,) ¥ (k) contains
a surface ball of radius ~ I(Ry), and this surface ball will be used as A(X j,?’aj). This
finishes the proof of (9.45).

Proving analogous statements for the projection on 92 r is actually much easier:
(1) and (2) follow directly from the fact that PJ- is a cube, (3) is due to the fact that P]-s
have a bounded overlap and the definition of u, (the reader can consult [26] for more
general upper and lower estimates on u,, but in fact, in this case it is perhaps easier to

see the desired bound directly from definitions). |
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Next, for any Q € D(Qgp) \ Ug,e 7D(Q)), we let

7(Q) :

and

=( U ~@)U(en U o) 9.47)

Ojef,QjCO Oje]-', Qgjca
:( U 2(k))U(a\ U Rk)cE,
RyeR:RryCQ RreR:RxCQ

7,(Q) i= ( U n*(Oj)) U (a\ U aj) C 99 (9.48)

Q]'G]:, QjCQ O]‘E]:, O]'CQ

Lemma 9.49. Retain the definitions above. Then

(1)

(2)

(3)

(4)

(5)

for any Q € D(Q() \ UajefID)(Oj) the set 7(Q) is contained in some surface ball
A(Xq,To) where X, € %, 7y = Cl(Q) for some constant C depending on our
choice of 7 only;

for any Q € D(Qgp) \ Uajef]D)(Oj) the ball A(x,,27,) above is contained
in A(Xg,,4Tq,); for any Q; € F the ball A(xy,27,,) from Lemma 9.42 is
contained in A(Xy,,47q,);

for any Q € D(Qp) \ Ug;e7D(Q;) the corkscrew point of Q with respect to
E, A, is a corkscrew point for B(?Q,é}?a) N X on ¥ with implicit constants
depending on the AR constant of u, on our resulting choice of M, and on the
choice of t;

for any Q € D(Qy) \ UOjEfD(OJ-) the set 7(Q) contains some surface ball
A(Xp,Ty) where X, € n(Q), T, = cl(Q) for some numerical constant c
depending on the AR constant of u, d, and on the choice of t;

for any Q € D(Qp) \ Uajej_-]D)(O]-) we have o(7(Q)) ~ u(Q), with all implicit
constants depending on the dimension, AR constant of u, d, and our choice

of 7 only.

The analogues of statements (1)—(3) and (5) are valid for =, in place of 7, 1, in place of o,

and 9Q2 r in place of . The relevant constants then depend on our choice of 7,6, K, and,

hence, ultimately, on the dimension and AR constant of E only. The statement (4) for =,

should be substituted by the following property.
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ForQ; e F,let B(X;(, rJ’.*) be a ball, centered on 7.(Q)) = P;, and such that r; ~ l(Qj)

and

U Ua cB&E ).
QE]D)Q].

Then for each Q € D(Qg) \ UQjEfD(OJ-), there is a surface ball A'(x}, r;) where x; € 0Q £,
r;, ~ 1(Q), and such that

A, 1) C (a N aszf) U (uajef:QjCQ B(x!, ) N aszf), (9.50)

with dist (Q, A'(x, %)) S £(Q).

Proof. The fact that
every 7 (Q) is contained in some surface ball A(x,,7y), (9.51)

follows from the definition of 7 (Q): we recall that the surface ball A(x,,1(Q)) contains Q
by (2.2) and then observe that all X (k) such that R, C Q are contained A(x,, (1+M,)I(Q)).
Taking 7, = 2(1 + M,)l(Q)) and any X, € 7 (Q) we then have (9.51).

We note that the construction above and a virtually identical construction in the
proof of (1) in Lemma 9.42 ensure that (2) in the statement of the Lemma is satisfied.
Moreover, for any Q € D(Qp) \ UgerD(Q), A% € B(xq,C™'l(Q)) C B(Xq,47q) and
dist (A2, E) > 1,C~!l(Q) by definition. It follows that having chosen M, large enough
depending on the AR constant only, AQ ¢ Qgq, and, hence, by (8.12),

dist (42, %) > (1 — C Mye)7r,C 1 L(Q).

Assuming, as usual, that ¢ is small depending on M, and other parameters depending on
the AR constant, we have dist (A2, ¥) > 7,(2C)~'1(Q). It follows that A2 is a corkscrew
point for B(X,,47,) N = with implicit constants depending on the AR constant of x and
our resulting choices of M, and smallness of ¢, as well as on r.

As aresult, X, € £ and 7, = Cl(Q) for some constant C depending on our choice

of t only.
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The opposite inclusion, while less straightforward, is also true: for any
Q e D(Qg) \ UajefD(aj)

7(Q) contains some surface ball A(Xy, 7). (9.52)
where 5{\6 e n(Q), ’f’a = cl(Q) for some numerical constant ¢ depending on the AR

constant of u, d, and on the choice of r. Let us prove this. Fix some Q € D(Qgp) \

Ug;e7D(Q)). Recall (8.18) which, in particular, means that

QﬂF:Qﬂ(Q\[(E\F)ﬂQ]):Oﬂ(O\ U Rk)Cn(O).
RreR:RipcQ

Now, by (2.2), there exists a constant C; such that E N B(XO,Cl_ll(O)) C Q. Fix
Kk = C;'/4 < 1/4. If B(xo,«l(Q) N'E C QNF C 7(Q) then we can assign A%, 7)) =
B(x,«1(Q)) N ¥ and finish the argument.

If, on the other hand, there exists a X, € B(x,,«l(Q)) N X such that X, € £\ F, we
choose A(x,, 7)) = A= B(Xg,kl(Q)) N . Let us show that B(X,, xl(Q)) N £ C 7(Q).

Assume, on the contrary, that there exists & € A such that & ¢ 1(Q). First of all,
A C B(xg, 2¢1(Q)) (since [X, —xq| < «l(Q)) and, hence, ANF C B(x,, C{'1(Q))NF C QNF C
7(Q) for our choice of «. Therefore, & € (ﬁ N ) \ F and the discussion near (8.39)-(8.40)
applies. In particular, there exists a k, such that £ € X(k;) and there exists x € Ry such
that [x — £| < Cedg (). However,

de) = aigg(l(a/) + dist(§,Q")) < l(Q) + |§ — x4] < (1 + 2)(Q).
Therefore,
X — Xg| < |x — &| 4 |& — xg| < Ce(1 + 26)U(Q) + 2«1(Q) < 2Cel(Q) + 2¢1(Q).

Assuming that Ce < C;1/4 (which is always safe because C; depends only on the AR
constant of x) and recalling that « = Cl_l /4 (which is our choice), we conclude that
x € ENB(xq, Cl_ll(Q)) C Q. Therefore, Ry, meets Q. Then Ry, is necessarily a subcube
of Q and, therefore, & € Y (Ry,) C (@), which is a contradiction. We have finished the
proof of (9.52).

The last statement of the Lemma follows from (1), (4), and the Ahlfors regularity
of X.
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Let us turn to the analogous statements for the projection on the saw-tooth. (1)
remains true since 7, (Q)) is at a distance proportional to €(Qy = Q) from Q. (2) is
proved exactly as it is for x. (3) is due to the fact that Q ¢ F and, hence, A, belongs
to some Whitney region associated to Q whose interior (and even its enlargement) is a
subset of Q .

Therefore, A, is also a corkscrew point for a corresponding surface ball on 9Q

with the corkscrew constants depending on n and 6 in the definition of 9Q2 . As for (5),

/uWAOD=M(O\ U q)+m( U nggﬂ

Qje]-', O]’CO Ojé]:, OjCO
~ M(Q \ U Oj) + Z Moy (JT*(QJ-))
Qjé]:, gjca Qjé]'—, Q;ca
~ M(a\ U aj) + > w@)=p@ (953
Oje]-', gjca Oje]:, gjca

where the 1st equality is due to the fact that the corresponding regions are disjoint, the
2nd one uses the finite overlap property of P;, the third one follows from (3) of Lemma
9.42. Finally, (9.50) is proved in [26]. |

9.3 Projections and the harmonic measure(s)

With this setup, we are ready for the following results. The proofs of the two lemmas
below follow closely those of [20, Lemma B.2 and Lemma B.6] where analogous results
have been established for projections of the harmonic measure on a saw-tooth region
starting for an (n — 1) dimensional set E. Our geometric set-up is, however, different
not only because of mixed dimension but also because we need to tie in », the harmonic

measure on ¥ rather than E.

Lemma 9.54. Let E be a d-dimensional Ahlfors regular set in R™ and x an Ahlfors
regular measure on E and let F = {Q;} be the collection of disjoint cubes in D(Q,)
associated to our stopping time region ® as above. Then the following two statements

are valid.

(1) Assume that @ is a doubling measure on ¥. Then the projection of @ on F
within Q, € D(E) defined as

Prow =a(a\(U a))+ X

Ojef OJE]:

nANQ)

(@)

B(m(Q), ACQ, (9.55)
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is dyadically doubling on Q,. In particular, the conclusion of this lemma
holds for the elliptic measure @ = ®"%, associated to the operator L on
R™\ ¥.

(2) Assume that w, is a doubling measure on Q. Then the projection of w, on
F within Q4 € D(E) defined by

(AN Q)

Pro,A) = w*(A\( U aj)) + > Ww*(n*(aj)), A C Qg (9.56)
Oje]-" O]’E]: J

is dyadically doubling on Q. In particular, the conclusion of this lemma

o A
holds for the elliptic measure w, = w, °

associated to the operator L on Qr.
Proof. LetQ € D(Q,) and Q' C Q be a dyadic child of Q. There are three possible cases:
Q (and hence Q') is contained in one of the Oj € F; Q' coincides with one of the Q; C F
and, hence, Q is not contained in any Qj € F; Q' (and hence, Q) is not contained in any
Q; e F.

If Q (and hence Q') is contained in one of the Oj € F, then

n@ana)

@)

R ., w@' nNna)
o((Q)), Pra@)= M(—Qj)f

Pra(Q) = a(m(Q)),
and the desired result follows from the doubling property of u.

The 2nd case is when Q' coincides with one of the Q; € F and, hence, Q is not
contained in any of Q; C F. Notice that Q contains any cube Q; € F such that 0N Q; # o.
Since in addition the (Q;) have finite overlap and are disjoint from Q \ (Uaje FQ;),

@na;
P;@(O):@(O\( U aj))+ > M(T)J

(7 (Q)) (9.57)
QjeF Q;eF:QNQ;j#0 H

e Ua)e T m

QjeF QjeF:QNQ;j#0 M

a(1(Q))

=a(a\( U aj))+ > a@r@) S ).

QjeF Q;eF:QNQ;#0

We claim that there exists X, € 7(Q’) and ¢/, C’ > 0 such that

ARy, cl@)) C 7(Q), 7(Q) C ARy, ClQ)). (9.58)
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The 1st statement follows from (9.45). The 2nd one follows from (9.51) harmlessly
enlarging C so that the ball in (9.51) is contained in A(Xy, Cl(Q")) for any X, € 7(Q").
Now, recalling that @ is doubling (here, we have to use (2) and (3) of Lemma 9.49 to

ensure that the pole is properly placed), we have

Pro(Q) S o(7(Q)) < d(AXy, CLQ)) S D(AXy, cl(Q))) S o(r(Q)). (9.59)

Since we are in the case when Q' coincides with one of the Q; € F, we have, in particular,
Pro(Q) = o(@(Qy) = o(@(Q")), so that the right-hand side of (9.59) is equal to
Prao(Q).

Finally, we consider the third case when Q' (and hence, Q) is not contained in

any Q; € F. The very same argument as above, using (9.52) in place of (9.45), yields

Pro(Q) S o(r(Q)). (9.60)
However, much as in (57),
P}-G(Q’) = 6(0/ \ ( U (2]-) + z ZB(n(Qj)) > o (Q)), (9.61)
Oje]-' QjE]‘—: Q'NQj#e

as desired.

Passing to the projection of w,, we remark that the treatment of the 1st two

U
cases is literally the same. The only significant difference is the argument for the
third case when Q' (and hence, Q) is not contained in any Q; € F. Much as for @

we have

Pro,(Q) S w,(1,(Q)) S 0, (AX,, 1)),

where the 1st inequality follows from the argument analogous to (57) and the 2nd
one is due to Lemma 9.49, a version of (1) for dQr, and the surface ball A(X*O,T'B),
x5 € 0Qxr, 5y ~ 1(Q), is the one containing 7, (Q). Using the doubling property of w,,

we have

w*(A(XBI r;k))) 5 w*(A/(X*O/I r?)’))r
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where A/(Xg,, rg,) is the surface ball from (9.50) for the cube Q'. Now, by (9.50) and the
doubling property of w,,

w, (A (x5, 75)) <, (@ Ny + Z o, (B&, 1) NoQx)
Oje]'—:QjCO’

S0, (@Nn0R) + D 0,(1,(Q)) S w,r,@). (9.62)
QjeF:Q;cQ’

Then, analogously to (9.61), we can finish the argument.
We remark that the elliptic measure of L on d0Qx fits the hypothesis and, in
particular, is doubling by [14, 26]. ]

Lemma 9.63. Let E be a d-dimensional Ahlfors regular set in R” and x be an Ahlfors
regular measure on E. Under the conditions of Theorem 9.6, the projection of the
harmonic measure of L on F within Q, € D(E) defined by (9.55) with ® = @4 is Ap(Qg)

with respect to u.

Proof. As per Remark 2.28, we aim to show (2.24) for some §,¢ € (0, 1).

For brevity, we will write @ = @?% throughout the proof. We fix 0 < n < 1/2 and
A C Q € D(Qp) with £(4) > (1 — Nu(Q).

Ifac Oj for some Oj C F, then

n@na)

(@)

Praa) WANQ)
Pro(@ ~  u(@)

-1
~A _ n(4) _
» ao(n(oj») =Gz,

@ (n(oj»(

as desired.
If Q is not contained in any cube of F, then it belongs to D(Q) \ UQjEfD(Oj). It

might or might not intersect with the cubes of F and we let
Fe=1{Q; e F: n(ANQy = (1 —2n) u(Qp},

and

E:=a\|Jaq, 6= 1] q B= |J 0

Oje]-' O]E]:G Oje}—\]:(;
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Then simply dropping the cubes of 7 \ 7 in the sum,

(AN Q)

ProA) = 0(ANE) + > T&J (7 (Q;)) (9.64)

Oje]'—c, J

> w(ANEy +(1—2n) Z o(m(Q)) = (1 —2n) &((ANEy) Un(G)),
OJE]:G

where we set

7(G) = U 7(Q)),

QjG]'—G

and used the fact that 7(Q;) and E; are disjoint. Recall now (47)-(9.51). Using the

property that @ is A, with respect to o by Theorem 9.6, we have

(9.65)

o((AN Ey) Un(G)) > (0((A NEy) U n(G)))9
a(A(Ef\cplr\a)) U(A(EEQI?Q)) ’

Here again we have to use (2) and (3) of Lemma 9.49 to ensure that the pole is properly
placed.

Now, from (9.43) and the fact that the Oj are disjoint we conclude that o (7(G)) =
1(G) and since furthermore A N E, and 7(G) as well as AN E, and G are disjoint,

0 ((ANEy) Un(G)) ~ u((ANEy)UG). (9.66)
Also,
WANB) <1 —2n) > w@) <=2,
Q;eF\Fe
and, hence,

A =mu@) = u) = n(ANE) UG +n(ANB) < n((ANEy UG + (1 —2nu(Q@),

so that

w((ANEyUG) > nuQ). (9.67)
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Since by Ahlfors regularity of o
0 (BRq,To) ¥ TG ~ 1(Q),

invoking (9.66) and (9.67) we see that the right-hand side of (9.65) is bounded from below
by n’, modulo a multiplicative constant.
Coming back to (64), this yields

Pra(A) 2 (1 — 21’ 3(ARg. To))-

Finally, we recall that the ball A(X,,7,) contains 7(Q) by (47)-(9.51) and the sets 7(Q))

have have finite overlap and are disjoint from Q N E;,. Therefore,

B(AXg,Tg)) = 0(7(Q)) 2 ®(Q NEy) + Z o(m(Q)) = Pro(Q),
OjeJ-'

as desired. [ |

Theorem 9.68. Let E be a d-dimensional Ahlfors regular set and u be an Ahlfors
regular measure on E. Let w be the harmonic measure associated to the operator
L=—divD," % VV in R" \ E, with

—1/a
D,(X) = {/ X — y| 4 du(y)} . a>0. (9.69)
E

Then let Q, € D(E) be given, construct ® = ® (Qp) and the complementary collection

£0,00
F as in Definition 9.3, assume that ® # g, and define the projection of w = ®?% on F

within Qg by

HANQ)
(@)

Pro(A) :=a)(A\( U aj)) + >

Q]'e]: Q]E]:

®(Q)), AC Q. (9.70)

If our various constants are chosen correctly (see below this statement), Prw lies in the

class Ag’(Q,) with respect to i, with A constants that depend only on n,d, Cy, and «a.

To be precise, if n (see above (9.16))and 6 (near (9.26)) are small enough and K
(above (9.16)) is large enough, depending on n,d, Cy; M, > 1 is large enough depending
onn,d,Cyand n,0,K; M > 1 large enough depending on n, d, Cy, M, and ¢y, 8, > 0 small
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enough depending on n,d, Cy, My, M, then Prw lies in the class A]‘I’)?(OO) with respect to
wu, with A constants that depend only on n, d, Cy, and «.

As usual, the uniform rectifiability is not needed at this stage.

Proof. The plan of the proof is to show that P~ a)fao

(where w,, is the elliptic measure
associated to the operator L on Q) is AX(Q,) with respect to Pr "% (associated to
the operatorf on the domain R" \ X) and P a)fao is AF’(Qq) with respect to Pr ®?, s0
that P 0% is AX(Q,) with respect to Pz &% (in the notation of Lemma 9.63) at which
point we can use Lemma 9.63 to achieve the desired result. This 2nd part is easier and is
closely related to the main lemma for sawtooth projections in [9], its version in [20], and
similar results. However, working with a “replacement boundary” ¥ and the associated
harmonic measure is new, and the 1st part, requiring both a change of the domain and
a change of the operator, is more intricate.

We remark that formally speaking, we only defined A> and A} properties with
respect to the Ahlfors regular measure on the boundary, but the same Definitions (2.22),
(2.25) apply to any doubling measure i together with the equivalent reformulations, in
particular, in Remark 2.28.

We start with the proof of the simpler statement that Pr a)fao is Ap’(Qq) with
respect to Pr 0.

AQO

As usual, we will simplify the notation by writing = %%, w, = w, °, and

*

o~

® = %% throughout the proof. Recall from Remark 2.28 that AP’ is an equivalence
relationship, and let us concentrate on showing that there is a constant C > 0 such that

for every Q € D(Q,) and every Borel set A C Q,

Pro,(Q) ~  Pro(Q) ©.71)

The simplest case is when Q C Oj for some Oj € F. Then, by definition,

Prw(A)  Pro, (A) wANQ)
Pro(Q)  Pro,Q) w(@QNQ)

Let us assume now that Q is not contained in any Q; € F. In this case, similarly
to (9.61) and (62)

Pro,(Q) > w,(1(Q) > w,(A (x5, 1)), (9.72)

where A’(x}),r3) is the surface ball from (9.50).
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Therefore, with the notation E; = Q \ ( Uaje}‘ OJ-),

(9.73)

Pro@ 0. NOQe) o £8 MG 0 W 6T

Using the change of pole formula for w, in [14] and, if necessary, Harnack's inequality

to slightly adjust the corkscrew point, we can write the above as

7)]:0)* (A) <

A nAN QJ') n
Pro,Q) ~ WfCANE)+ Y, — T wl%(m,(Q)). (9.74)

QjeF:Q;ca #aj)

By the maximum principle and the fact that a)X(Oj) ~1forXe 7, (Q;), we have
wf®(ANEy) S0 (ANEy) and of9(m,(Q) S 0?2(Q).

Then

A
oo @) S OANEY + >

as desired.

Now let us turn to the proof that P]:wfao (where o, is the elliptic measure
associated to the operator L on Q) is AX(Q,) with respect to Pr "% (associated to
the operator L on the domain R" \ %). The challenge is to change the operator and the
domain on which the harmonic measure is evaluated simultaneously.

To this end, we recall that by Remark 2.28 (which as we mentioned, applies
to general doubling measures) in order to show that a doubling measure w is Ax’(Qg)
with respect to another doubling measure v, it is sufficient to show that there exists

0 < ¢,8 < 1 such that for every Q € D(Q,) and every Borel set F C Q,

w(F) v(F)
R
0 (Q) v(Q)

< e&. (9.76)

We claim that it is moreover sufficient to show an even weaker property, where

we only check something like (9.76) in the middle of Q (but in a uniform way). First, we
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claim that if we choose the constant M’ large enough, then for each Q € D(Qgy), we can
find a dyadic subcube Q' C Q such that

Q) < Q) < ! £(Q nd dist(Q,E\Q) > M/Z(O/) (9.77)
1OM, = = ZW )r a S ( ' \ ) sl ? . .

Indeed, (2.2) gives a “center” x, for Q such that dist(x,),E\ Q) > Cc~1¢(Q), and if M’ is

1
1000

of cubes) and that contains x, will satisfy the 2nd part of (9.77) automatically.
Now pick any M’ as above, and for each Q € D(Q,) a cube Q' = Q'(Q) C Q

such that (9.77) holds; we claim that in order to show that a doubling measure w is

large enough, any cube Q' such that Q) < Q) < 1%6(0) (this covers a generation

Ap’(Qq) with respect to another doubling measure v it is enough to prove that there

exists 0 < ¢’,8’ < 1 such that for every Q € D(Q,) and every Borel set F C Q’,

w(F) _s v(F) - (9.78)
»(Q") v(Q)

Now assume that (9.79) holds for every F C Q' C Q as stated and that for some

v(F)
v(Q)

F C Q we have > ¢, with € € (0, 1) to be defined shortly. Obviously,

v(@Q\ Q) +v(FNQ) =vF) > ev(Q).

Since v is doubling, there exists a small constant ¢, depending on the doubling

constants of v, the dimension, and M’, such that v(Q) < Cl—v v(Q). Hence,

VENQ) ev@) -v@\D) @ 1
(@) v(Q) V(@) ¢

v

Choosing 0 < ¢ < 1 so that ¢,(1 — ¢’) = 1 — ¢ (which is always possible, for any given

0 <& < 1), we get "(fzgg/) > ¢'. Then, by (9.79), wc(f(’g%,) > §'. Therefore,

@>CCZ)(F—FW./)>CS/_-5
0@ T w@) ~ 7

where c,, is a constant depending on the doubling constants of », the dimension, and M’

only. We arrive at (9.76).
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Hence, in application to our situation, it is enough to show that there exists

0 < &,8 < 1 such that for every Q € D(Q,) and every Borel set F C @/,

A
Prw, °(F) . Prao®F) _

(9.79)
Prw.®(Q) Pr a0 (@ )

where the large constant M’ will be chosen below and Q' is a descendent of Q chosen as
above.

If Q' is a subcube of some Oj € F, there is nothing to prove, for

Prof(F)  Pror®®)  pFNQ)
Prat® (@)  profP@) #QNQ)

Therefore, we concentrate on the case when Q' and, hence, Q, belongs to D . Since
Pr@?% Q') < @%% (1(Q'))

(see (57), (9.60)), the usual change of pole considerations yield

Prao(F) _ a, HENQY
LS 7 F + o Q.
pramay < \(a% )) a%: wiay
. wENQ)
zate(FA (U @)+ X —af &% (7(Q))
QjeF o WENQ) ,u( )

zata(FA (U @))+n > @@

QeF unaj)
J QjeF: @y >n

znate (0 (U @)U (U @)

Oje]-' Oje]:g

Here O < n < 1 is a parameter to be chosen below, and F; is the collection of cubes in

(FNQ))
F such that £ wa) > - LetZ = (F\ (Uaje]—‘a ) U (Ua,efc 7(Q;)) be the set from the

"A a’

last line. By the maximum principle and the fact that L = Lin QrNQg, w'@(Z) is larger
than the solution to Lu = 0 on Qr N Qg with the data given by the restriction of 1, to
the boundary of Q r N Qg, evaluated at A,.

We claim that for some constants C,« > 0 depending on the usual geometric

parameters only, the latter is larger than a)fa' (Z2) — C(M')~%+1=2 1pn order to prove this,
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by the maximum principle, we only need to show that
w¥ (m(@)) < CM)~IH17Y for X € 3(Qr N Q) \ 02 = Qr NI (9.80)

because Z Cc #(Q’) since F C Q'.
Let us postpone for now the proof of (9.80) and try to finish the argument. At

this point, collecting all of the above, we have

Pr@toF) Wi n—d+l-a
i <t A M . 9.81
P iy 21 @~ ) (9.81)
However,
@) 2o (FN( | Q)+ D i@y (9.82)
QJ'E]: QjE}—G
, w(F N Q) ,
2o\ (J Q)+ 3 — o F el @
O]’E}— O'G]'—G s J
WENG) 4,

@@)-n >, @ @@
O'G]'—\J—'G

>a(F\(J Q)+ D

Q
Oje]-" Oje]-" ( ])

> Pros? (F) —n

where the 1st inequality is due to the finite overlap property of 7(Q;), the 2nd one is

simply due to the fact the density does not exceed 1, while in the 3rd one we have added

W(FNQ)
@)

finite overlap property and the fact that

back and subtracted the cubes where < n, and the 4th one uses once again the

> Wl m(@) < v (@) < 1.
Qj eF\Fg

Then (9.81) and (9.82) give

M Agt e —d+l—a

We started with the assumption that PF“’*—QO(F) > ¢ as in (9.79). After the change
Pro. - (@)

the poles (9.74) yields Pfa)* '(F) > C7le, where of course C does not depend on 7.
Choosing n and M’ so that (M)~ 4+1-¢ = C~l¢/4, n = C~le/4, we get (9.79) with § ~ &2
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Note that ¢ € (0,1) does not have to be small. In fact, to be more accurate, there are
some a priori constraints on the choice on M’ (depending on the allowable geometric
parameters only) so we will first choose M’ and then ¢ and n accordingly (recall that all
of the above are in our disposal).

To finish the proof, it remains to show (9.80). This is essentially the comparison

principle once we observe that
dist (Q', Qr N3 > CM'¢(Q)), (9.84)

where C depends on 5,6, and K, and the dimension and AR constants of E only. This
estimate was the entire reason for introducing M’ into the argument. To this end, we
observe that by (9.35)

We split into two cases. Assume first that QeD \ D(Qyp) is such that 20Q) >

€ £(Qyp), with a small constant ¢, to be determined below. Then

dist (U£, Q") > dist(U%,E) > C(n,0)¢(Q) > c,C(1,6) £(Qy) > cyC(n,0) M’ £(Q'), (9.85)

where we used (9.25) and (9.26) for the 3rd inequality above and (9.77) along with the
fact that £(Qy) > €(Q) for the last one.

If, on the other hand, Q € D\D(Qy) is such that Q) < € £(Qp), with ¢y < 1, then
QNQy,=oand

dist(U%,Q) > dist(Q,Q) — dist(U%, Q) > dist(Q,E\ Q) — C(K, 8) £(Q)
M , ~ M /
> —0(@) = C(K,0) Q) = —-1(Q) — C(K,6) 6y £(Qp) (9.86)
M , ’ ’
> 76(0 ) — 10C(K,0) c, M'¢(Q"),

where we used (9.25) for the 3rd and the 5th inequality and (9.77) for the 4th one. Now
choosing ¢, so that 10 (X, 0) ¢, = 1/4, and combining (85) and (9.86), we arrive at (9.84),
with a small constant C depending on 75,6,K, the dimension, and the AR constant of

E only.
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With (9.84) at hand, by [14, Lemma 15.28]

m(Bgy N Qr)

a9 AD),

wf(@@)) =C
where g, is the Green function of L on Qf, By is a ball of radius CI(Q") centered in
@', and the measure m is given by m(4) = [[, dist (X, E)~"td+l dx. Next, according to
[14, Lemma 14.83]

X —Ag|*™ (aye (M'e(Q))*@

9.X,A%) < @) < .
mBX,|X — Ay m(B(Aq, CM'£(Q") N Qx)

Combining the two estimates above,

(M/)Zfol

of(m(@)) <cC
m(B(Aa,, CM'¢(Q")) N Qf)

m(By NQx) = C(M')~ 1<,

as desired. [ |

10 Extrapolation

Let us start with the following definitions of dyadic Carleson measures.

Definition 10.1. Let E be a d-dimensional Ahlfors regular set, 4 be an Ahlfors regular
measure on E, and D(E) be our usual collection of dyadic cubes on E (associated to u).
Let {a(Q)}qep@) be a sequence of non-negative numbers indexed by Q € D(E). For any
subcollection D' C ID(E), Q, € D(E), we let

m(a, D) = > a(@)? 1(Q),

Qe
and

m(a, D(Q)) m(a, D(Q))

[m(a)]] = o lm(@)]] =
ity aen@E) M(Q) CMp(ag)

aed@g) M@
and if the latter two quantities are finite, we say that m(a) € CMp, or m(a) € CMpqq)

respectively.

These definitions pertain to the measure (rather than to the sequence) and could
seem different in homogeneity from their continuous analogue in geometric saw-tooth

in Definition 2.13. To reconcile these differences we say, slightly abusing the notation,
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that the sequence {a( @D} genE € CMp if the corresponding m(a) € CMj, and similarly
Furthermore, for any family of pairwise disjoint dyadic cubes F = Uj Q;, we

define the restriction of m on the sawtooth by

my(a, D) = > @@,
QED/\Uaje]: D(Qj)

and for any Q € D(E)
DOt .= D(Q) \ {Q).

As the reader may correctly guess, we aim to use the forthcoming lemmas for
Tolsa’'s a-numbers in place of a(Q). At this point, however, we keep the statements in
full generality and note that throughout Section 10 {a(Q)}qp g, denotes any sequence

with non-negative entries.

Lemma 10.2. Let E be a d-dimensional Ahlfors regular set, & be an Ahlfors regular
measure on E. Fix some Q, € ID(E) and some sequence of non-negative numbers

{aa}aen(ay) such that the corresponding m(a) satisfies
m(D(Qy)) < (ag + by) u(Qy), forsomeay >0, by > 0. (10.3)

Fix some K > 1 and construct a (maximal) family F of pairwise disjoint cubes obtained

by subdividing Q, and stopping when

either a(Q)? > 2byor J,(@Q) = > a(R(Q))* = 2Kb, (10.4)
k(Qo)<k<k(Q)

(at which point we assign Q € F). Then

Imzlleaty o, = 4Kbo (10.5)
and
ag + by
B) < 210 (), 10.6
M()_a0+2bou( ) (10.6)

where B is the union of cubes Qe F such that m(a, ng"”) > aou(Q;)).
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The lemma is analogous to [20, Lemma 7.2]. However, we have to slightly change
the stopping time region being constructed and carefully track emerging constants as
ultimately only for very special stopping time regions will we be able to use the results

of Sections 3-9.

Proof. If a(Qy)? > 2b,, then the result is trivial for the following reason. We stop

immediately with Qy, so 7 = {Q,}, The left-hand side of (10.5) is simply equal to 0, and

m(a, Dgﬁ,‘m) =m(a, DQO) - a(OO)zu(QO) <(ag+ bo)ﬂ(ao) - 2boM(Oo)
= (ag — bo)u(Qqp) < agu(Qy),
so that B = a.
Therefore, it is safe to assume from now on that a(Qy)? < 2b, and so F # {Qg}.

As usual, we write ' = {Q;};, where the Q; are thus disjoint (by maximality) cubes
(OFRS D(Qg). Then

D (m(a,DF™) +J,(Q) n(@))
OjEJ:

= > m@Dg)— D a@?u@)+ D>, D aR®(Q)*u@Q)

QjeF QjeF QjeF k(ao)fkfk(aj)
= > m@aDg)+ > > a(R)?u(Qy)
QjeF Q;eF ReD(Qo): Q;CR,Q;#R
(@)
=2 m@bg)+ > @@ > oo
QjeF OEDQO\UO],E}—DQj Q;eF:Q;CQ,Qj#R s
< > m(a,Dg) + > a(@?1(Q) < m(a,Dg,) (10.7)
Oje]-' OGDQO\UQje]_—DQj

where we used the fact that Q; are disjoint for the last line. Let Fp := {Q; € F :
m(a, Dsa’;ort) > aou(Q))}. Now,

(@9 +2bg) u(B) = (@g +2b) > n(@)=ay > @) +2by 3 (@)
QjE]:B Qje}—B Q]E]:B

hort
< D m@DF+ > J(@)u@), (10.8)
OjE]:B Q]E]:B
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where we used the definition of 75 and the fact that Q; is a stopping cube, hence, either
J.(Q) = 2Kb, > 2b, or J.(Q)) = a(Oj)2 > 2b,, so that in any case J.(Q)) = 2b,. Next,
using (10.7) and (10.3), the last expression in (10.8) is bounded from above by

> (m@ DI +7,(@) 1(@)) = m(@,Dg,) = (@ + by) 1(Q), (10.9)
QjEJ:B

and (10.8)—(10.9) yields (10.6).
Turning to (10.5), we observe that the latter amounts to showing that for every
Q € D(Qy),

/
> a(Q)? % < 4Kb,.
0'eD(@\Uge r Do o

Having fixed any such Q, it is convenient to introduce, for any large integer N, the

collection Fy; of maximal cubes (by inclusion) of
FUu{Q eD@Qy): Q) <107V 1
and the corresponding smaller family of cubes

Ho=D@\ |J Dg, = {a/ eD@)\ |J Dy, : kQ) > 10—1"}.
OkE}—N Q]'G}—

Clearly, it is sufficient to prove that for every Q € D(Q,)

> a(@)? w(@) < 4Kbg 11(Q) (10.10)
Q' eHa

uniformly in N. The main difference between F and F, is that the (disjoint by

construction) cubes of Fy cover any Q € D(Q,), which implies that

Q
Z a(Q)? (@) = Z Z La’f) a(Q)? (@) (10.11)
Q'eHa Q'eHq QreFy: QreD(Q) M( )
— D 1(Qy) > a(Q@)?.
QreFu: QreD(Q) Q'eD(Q): Q,CQ’,Qr#Q’
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We separately consider the elements of F, which belong to 7 and those that do not.

First,

> w(Qy) > a(Q)? (10.12)
QreFn\F: QreD(Q) Q’'eD(Q): QxCcQ’,Qr#Q’
< > 1(QpJ,(Qy) < 2Kb, > 1(Qy) < 2Kbg 11(Q).
QreFn\F: QreD(Q) QreFn\F:QreD(Q)

Here in the next-to-the-last inequality we used the fact that by the stopping time
construction J (Q,) < 2Kb, when Q; € Fy \ F, for otherwise it would belong to
F. Next consider Q; € Fy N F, denote by Q; denotes the parent of Q, observe that
> 0em)y: apea opea HQ)? < J,(Qy) < 2Kb, because otherwise Q; € F and this would
contradict the maximality of Q. We are also using the fact that Q; # Q, here. Now

> w(Qy) > a(Q)? (10.13)
QreFyNF: QreD(Q) Q'eD(Q): QxCQ’,Qx£Q’
< > 1(QpJ,(Qy) < 2Kb, > 1(Qy) < 2Kby 11(Q),
QreFn\F: QreD(Q) QreFw\F: QreD(Q)
This finishes the proof of (10.5) and Lemma 10.2 follows. ]

The next result is the main extrapolation step, analogous to [20, Lemma 8.5]. We
have to state it differently, however, because once again we can only afford to work with

very special stopping time regions.

Lemma 10.14. Let E be a d-dimensional Ahlfors regular set and x be an Ahlfors
regular measure on E. Fix some Q, € D(E) and a dyadically doubling Borel measure
o on Q. Assume that there is some sequence of non-negative numbers {ag}gep(q,) Such

that the corresponding m(a) satisfies
”m(a)”CMD(aO) <L, (10.15)

for some L < co. Furthermore, assume that there exists b, > 0 such that for some K > 1,
and any a, € [0, L] the stopping time region from the statement of Lemma 10.2, built
according to (10.4), satisfies the property that the projection of w on F within Q, defined
by (9.70), is Ay (Qq) with respect to . Finally, assume that whenever m(a, D(Q)) = 0 we
have that » is Ap’(Q) with respect to .

€20z Aienuep L€ uo Jasn saijin) UIM| - BJOSBUUIN JO AlSIaAuN AQ $80S8S9/60 L OBUIUIWIEE0 L "0 /10P/[0IMB-80UBAPE/UIWI/WOD dNO"OlWapeoe//:sdy WoJj papeojumoq



Harmonic Measure on Low-Dimensional UR Sets 105

Then w is Afy(Q,) with respect to .

Proof. The proof can be carried out closely following that of [20, Lemma 8.5]. There
the authors have a seemingly stronger hypothesis that there exists y > 0 such that for
every Q € D(Q,) and family of pairwise disjoint dyadic cubes F = {Q;}; c D) such
that Imzlep, <7 the projection of w on F within Q,, defined by (9.70), is AZ’(Q,) with
respect to u. The actual proof, however, relies only on the stopping time regions built in
their analogue of our Lemma 10.2.

In a few words, the proof proceeds by induction argument with a continuous

parameter, with the main hypothesis

dn, € (0,1),3C, < oco0: VA € D(Qp) with m(a,Dy) < an(Q) we have

Dy = 2D

1
O, i
- wQ) ~ a »(@Q) ~ C,

(10.16)

referred to as H(a), a > 0.

The induction proceeds in two steps. Step I is that H(0) holds. This is a
straightforward consequence of one of our assumptions as m(a,D;) = 0 implies that
w is Ap’(Q) with respect to u.

Turning to the induction step, one aims to show that H(a) implies H(a + b)), for
all a € [0,Ly] so that the conclusion of the theorem can be reached in k steps where
k is such that kb, > L. To this end, we fix 0 < a := a; < Ly and Q € D(Q,) such
that m(a,Dy) < (ag + by)u(Q). In the notation of [20], one would take y = 4Kb,. Then,
using the results of Lemma 10.2, the proof of the induction step follows the lines of the

argument for Lemma 8.5 from [20], and we omit the details. [ |

11 Conclusion

At this point, we finally collect the results of Sections 3-10 towards the proof of the

Main Theorem.

Theorem 11.1. Let E be a d-dimensional uniformly rectifiable set in R"”, d < n—2, and
1« be a uniformly rectifiable measure on E. Let w be the harmonic measure associated to
the operator L = — divD, " *"VV in R" \ E, with

—1/a
D,(X) = {/ X — p|d d,u(y)} . a>0. (11.2)
E
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Then w is A*° with respect to u in the sense of Definition 2.25.

Proof. Our 1st task is to show that for every fixed Q, € D(E) the harmonic measure
o = % is Ap’(Qg) with respect to u. Once this is established, we recover that by
Harnack inequality we also have o = w/% is A (Qg) with respect to u for any Q; with
I(Qp) = U(Qp) and dist (Qy, Qp) < Cl(Qy). And then, using the doubling property of w and
Harnack inequality once again, we can show that w is A* with respect to x in the sense
of Definition 2.25 (not only dyadically).

Now, as before, we let {«(Q)}, € D(E) stand for the Tolsa « numbers and recall

that by Theorem 9.1 and our assumptions there exists L, < oo such that

) laty g, < Lov

for any fixed Q, € D(E). We need to verify the rest of the assumptions of Lemma 10.14.

To this end, recall the statement of Theorem 9.68. Take, as in Theorem 9.68,
M, > 1 large enough depending on n,d,C,, M > 1 large enough depending on
n,d, Cy, My, and ¢,, 8, > 0 small enough depending on n,d, Cy, M,, M, for any Q, € D(E)
so that the conclusion of the Theorem is verified for ® = ®, ; (Q,) and the complemen-
tary collection F built in Definition 9.3.

We can safely assume that §, > &3 because we decided to chose ¢, last. We choose
by = £2/2 and K = §,/e3 so that 2Kb,, = §. The stopping time region from Lemma 10.2 is
then the same as the stopping time region from Theorem 9.68 (provided that 7 # {Q,})
and, hence, the desired property that the projection of w on F within Q,, defined by
(9.70), is Ap’(Qq) with respect to u, is verified.

If it happens that 7 = {Q}, then by definition (9.70) Prw(4) = % @3 (Qg) ~
wu(A), so that the hypothesis of Lemma 10.14 (Prw is Ap(Qq) with respect to u) is
trivially valid.

Finally, it remains to consider the case m(a,D(Q)) = 0, which we will reformulate
as m(a,D(Q,)) = 0. Then by definition «(Q) = 0 for all Q € D(Q,) and, hence, J,(Q) = 0
for all Q € D(Q). Therefore, for any &y, 8, > 0, we have F = g so that Prow = w and
Theorem 9.68 then gives the desired result. |
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