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It was recently shown that the harmonic measure is absolutely continuous with respect

to the Hausdorff measure on a domain with an n − 1 dimensional uniformly rectifiable

boundary, in the presence of now well-understood additional topological constraints.

The topological restrictions, while mild, are necessary, as the counterexamples of

Bishop and Jones show, and no analogues of these results have been available for higher

co-dimensional sets. In the present paper, we show that for any d < n − 1 and for

any domain with a d-dimensional uniformly rectifiable boundary the elliptic measure

of an appropriate degenerate elliptic operator is absolutely continuous with respect

to the Hausdorff measure of the boundary. There are no topological or dimensional

restrictions contrary to the aforementioned results. Résumé en Français. On sait que

la mesure harmonique associée à un domaine de R
n dont la frontière est uniformément

rectifiable de dimension n − 1 est absolument continue par rapport à la mesure de

surface, sous des conditions topologiques récemment bien comprises. Ces conditions,

bien que faibles, sont nécessaires, comme l’ont montré des contre exemples de C. Bishop

and P. Jones. On ne disposait pas jusqu’ici de résultats analogues lorsque la frontière

est de codimension plus grande. On démontre dans cet article que lorsque la frontière

est uniformément rectifiable de dimension d < n − 1, la mesure elliptique associée à
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2 G. David and S. Mayboroda

des opérateurs elliptiques dégénérés appropriés est absolument continue par rapport à

la mesure de Hausdorff, sans avoir besoin de condition topologique supplémentaire.

1 Introduction

Spectacular achievements of the past 20 years at the interface of harmonic analysis,

geometric measure theory, and partial diffferential equations (PDEs) have finally iden-

tified the necessary and sufficient conditions for the absolute continuity of harmonic

measure with respect to the Hausdorff measure of an (n − 1)-dimensional set. In some

very informal terms, the problem is as follows. The harmonic measure of a subset E of

the boundary of a domain �, ωX(E), is the probability that a Brownian traveler, starting

at X ∈ �, would exit through the set E rather than its complement. The celebrated

1924 Wiener criterion has identified all boundary points where the harmonic functions

are continuous and, hence, the harmonic measure is classically well defined. However,

the quantitative information, that is, the question whether the resulting probability

is reasonably related to the Hausdorff measure of the set E, in other words, whether

the Brownian travelers see the portions of the boundary in accordance with their size,

turned out to be much more delicate. In PDE terms, it is equivalent to the question

whether for some p, the Dirichlet boundary value problem is well-posed with the Lp

(rather than continuous) data, with the appropriate dependence of solutions on the Lp

size of the data on the boundary [27].

It is quite remarkable that the key geometric notion in this context was

identified already in 1916, when Riesz [29] proved that the harmonic measure is

absolutely continuous with respect to the Lebesgue measure in a simply connected

planar domain bounded by a rectifiable curve. Rectifiability is the property that the

set can be covered by a countable collection of Lipschitz graphs, modulo a subset of

measure zero. Extending this result to higher dimensions took more than a century

and a development of harmonic analysis, singular integrals, and corona decomposition

techniques on uniformly rectifiable sets. We do not aim to provide a detailed overview

in this introduction, but let us mention that the key milestones were perhaps Dahlberg’s

treatment of Lipschitz domains in [8], then results on 2-sided and 1-sided NTA domains

with uniformly rectifiable boundaries in [23] and [20], and then, finally, the discovery

of necessary and sufficient geometric conditions that were recently identified in [1].

One of the main problems was that the uniform rectifiability is not sufficient [2],

for, in addition, the domain has to exhibit some quantitative connectedness, and the
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Harmonic Measure on Low-Dimensional UR Sets 3

exact, sharp form of this connectedness condition seemed elusive for many years.

It is interesting to point out that the converse result [1] for this seemingly PDE

question was ultimately resolved quite recently, and thanks to elaborate free boundary

techniques related to the Alt–Caffarelli–Friedman functional, or, in a later proof, to

the big advancements in the understanding of singular integrals and other harmonic

analysis objects on the uniformly rectifiable sets, for instance, the resolution of the

David–Semmes conjecture regarding the L2 boundedness of Riesz transforms in [28].

However, all of these results have been restricted to the sets with n − 1 dimensional

boundaries, and with very few exceptions, up to recently virtually no theorems treated

the higher co-dimensional case such as the complement of a curve in R
3. This was not

due to a lack of efforts: a characterization of d-dimensional uniformly rectifiable sets

for d < n−1 is a well-known open problem [16, 28]. For instance, one line of development

in this direction is the recent theory of reflectionless measures (see, e.g., [21, 22]).

However, it does not address any of the PDE aspects of the problem. With the latter in

mind, in [12], the authors of this paper, together with Feneuil, have launched a program

devoted specifically to the PDEs on domains with lower dimensional boundaries. To

this end, [12] introduces the degenerate elliptic operator L = −divA∇ whose matrix

of coefficients A has eigenvalues roughly proportional to dist (·, ∂�)n−d−1, a power of

the distance to the boundary. The idea to use degenerate elliptic operators for lower-

dimensional boundary features is not shocking: it is common in relativity, certain

diffusion problems in population biology [17], Caffarelli–Silvestre extension of the

fractional Laplacian [4] and its generalization to higher order operators in conformal

geometry by Chang and Yang [5]. The additional weight takes the dimension of the

boundary into account, and something like this is needed because the usual harmonic

functions do not “see” the lower dimensional sets. However, consideration of Lipschitz,

much less rectifiable, domains, was beyond reach. In [12], the authors proved the

existence of the associated elliptic measure ωL, together with fundamental properties

such as the Hölder continuity of solutions, the maximum principle, the doubling

property for ωL, the comparison principle, and estimates for the Green function. See [11,

12], and more recently [14] for an even more general setting of domains with boundaries

of mixed dimension that will be used here. They also proved in [13] a 1st absolute

continuity result for ωL as in the theorem below, but restricted to the special case of

Lipschitz graphs with small constants.

The present paper culminates this line of research by establishing the A∞
property (quantitative absolute continuity) of the elliptic measure with respect to the

surface measure in the most general setting of uniformly rectifiable domains.
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4 G. David and S. Mayboroda

Theorem 1.1. Let E be a d-dimensional uniformly rectifiable set in R
n, d ≤ n− 2, and

μ be a uniformly rectifiable measure on E. Let ω be the harmonic measure associated to

the operator L = −divD−(n−d−1)
μ,α ∇ in R

n \ E, with the distance function

Dμ,α(X) =
{ ∫

E
|X − y|−d−α dμ(y)

}−1/α

, α > 0. (1.2)

Then ω is absolutely continuous with respect to μ, and its density is a weight in the

Muckenhoupt class A∞(μ).

We chose to state the theorem for unbounded (uniformly rectifiable) sets, but

the case of bounded sets would work as well, with minor modifications.

All the notions in the theorem are customary quantifiable analogues of the prop-

erties we just discussed (rectifiability and absolute continuity), but for completeness let

us nonetheless carefully recall the definitions.

We say that the closed set E ⊂ R
n is Ahlfors regular of dimension d when there

is an accompanying Ahlfors regular measure μ on E, which means that

C−1
0 rd ≤ μ(E ∩ B(x, r)) ≤ C0r

d for x ∈ E and r > 0. (1.3)

We know that μ is then equivalent to Hd|E , the restriction to E of the Hausdorff measure,

but we prefer to keep the flexibility of choosing a different μ. The constant C0 will be

sometimes referred to as the AR constant of μ.

The notion of uniform rectifiability was officially introduced by David and

Semmes [16]. One of the many equivalent definitions (see [16, Chapter I.1]) is the

following.

Definition 1.4. A d-dimensional Ahlfors regular measure μ is uniformly rectifiable if

there exist θ ,C1 > 0 so that, for each x ∈ supp(μ) and r > 0, there is a Lipschitz mapping

g from the d-dimensional ball Bd(0, r) ⊂ R
d to R

n such that g has Lipschitz norm less

than or equal to C1 and

μ(B(x, r) ∩ g(Bd(0, r))) ≥ θrd.

That is, supp(μ) contains “big pieces of Lipschitz images of Rd”. An Ahlfors regular set

E ∈ R
n is called uniformly rectifiable if Hd|E is uniformly rectifiable. We refer to C1

and θ as the UR constants of μ (or simply the UR constants of E). This is a quantified

analogue of the classical concept of rectifiability of a set, as discussed above.
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Harmonic Measure on Low-Dimensional UR Sets 5

Finally, the A∞ absolute continuity of the elliptic (harmonic) measure with

respect to the Hausdorff measure is defined as follows.

Definition 1.5. Let E be a d-dimensional Ahlfors regular set in R
n, μ be an Ahlfors

regular measure on E, and set � = R
n \ E. Define an elliptic operator L as above, and

denote by ωX the corresponding elliptic measure with pole at X. We say that the elliptic

measure ω is A∞-absolutely continuous with respect to μ if for every choice of τ0 ∈ (0, 1)

and ε ∈ (0, 1), there exists δ ∈ (0, 1), such that for each choice of x ∈ E, r > 0, a Borel set

F ⊂ B(x, r) ∩ E, and a corkscrew point X = Ax,r (i.e., chosen as in (2.5) below),

ωX(F)

ωX(B(x, r) ∩ E)
< δ ⇒ μ(F)

μ(B(x, r) ∩ E)
< ε. (1.6)

The notion is a bit different from the notion of a (single) A∞ weight because our

ω actually refers a family of probability measures parameterized by X ∈ �, and our

definition accounts for this in a standard way. The coherence of this definition uses

the fact that the various harmonic measures ωX are related to each other through the

change of pole formulas. As in the classical case of a single measure, this A∞ property

self-improves into a seemingly stronger condition that says that the harmonic measure

and μ are virtually a power of each other, in the sense of Definition 2.25 below. We

refer to [19, 24] for general information on classical Muckenhoupt (single) weights, and

A∞, in the context of harmonic measures, will be discussed more in Section 2. In the

conclusion of Theorem 1.1, we also obtain, naturally, that δ depends on τ0, ε and the AR

and UR constants of the set E only.

Let us discuss Theorem 1.1 in more detail. Even though the motivation has come

from by now “classical” work in domains with (n − 1) dimensional boundaries, the

result itself and its proof are actually different, perhaps surprisingly stronger, than

their classical counterparts.

In contrast with the classical case of co-dimension 1, there is no need for an

additional topological connectedness conditions here. The lower dimensional nature of

E takes care of the topology, our boundary is so small that � = R
n \ E is sufficiently

connected, and contrary to Bishop–Jones counterexamples, in this setting we prove that

the uniform rectifiability by itself is sufficient for the absolute continuity of harmonic

measure.

Even more intriguing is the situation with the converse. Analogous results for

traditional co-dimension one boundaries suggest that Theorem 1.1 is of the nature of the

best possible, that is, rectifiability should be necessary and sufficient for the absolute
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6 G. David and S. Mayboroda

continuity of harmonic measure with respect to the Hausdorff measure of the boundary.

In our setting, however, there is a surprising “magical” counterexample. When d + α =
n−2 (which forces d < n−2), it turns out that the distance function in (1.2) is, in fact, the

Green function with the pole at infinity, and ω is automatically A∞ with respect to the

Hausdorff measure on any Ahlfors regular set, even when d is not an integer. See [10].

To the best of our knowledge, this is essentially a unique case where one can explicitly

derive the Green function for an arbitrary Ahlfors regular set. At this point, we tend to

believe that it is a miraculous algebraic cancellation and for other values of α the A∞

property of harmonic measure implies uniform rectifiability, that is, the condition in

Theorem 1.1 will be proved to be necessary and sufficient.

Returning to the discussion of the statement of Theorem 1.1, observe that the

higher co-dimensional setting requires a rather peculiar choice for the operators L

above. The fact that the coefficients are roughly proportional to a certain power of

distance to the boundary is almost a necessity, dictated by the scaling considerations,

Sobolev embeddings, etc. The usual Laplacian would not work because the harmonic

functions do not even see sets of dimension d ≤ n − 2. However, what is perhaps more

surprising, working with the conventional Euclidean distance would ruin our proof

of absolute continuity for the elliptic measure, even on a small Lipschitz graph—see

the discussion in [13]. The distance Dμ,α of (1.2) turns out to be a correct substitute,

smoothing out appropriately at all scales. It may also have some special algebraic

properties: as we mentioned above, for α = n − 2 − d it actually coincides with the

Green function with the pole at infinity. It appears to be a powerful and perhaps still

not completely understood version of the distance function used in geometric analysis—

see [10].

These observations lead to a question: what is the range of the operators for

which one could establish an analogue of Theorem 1.1? Certainly not every degenerate

elliptic operator for which A(X) has roughly the size of dist (X,E)−n+d+1 will give an

absolutely continuous elliptic measure. Even in the classical case of co-dimension 1,

there are many counterexamples (see [3, 25]), and most absolute continuity results

concern operators with a special form, or which are small perturbations of the

Laplacian. Here L = −divD−(n−d−1)
μ,α ∇ plays the role of the Laplacian, and in this case

too Theorem 1.1 also holds for any elliptic operator which is a Carleson perturbation of

L; see [26]. That is, the set of “good” operators is ultimately quite large, comparable to

the classical scenario.

Let us now discuss the proof. A brutal attempt to adapt the “classical” approach

to lower dimensional boundaries collapses spectacularly. The general principle, that we
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Harmonic Measure on Low-Dimensional UR Sets 7

still want to follow, is to start from [13], which provides the desired absolute continuity

result when E is a small Lipschitz graph, and then use approximations and stopping

time arguments to extend this result to sawtooth domains and then to general uniformly

rectifiable sets (in the classical case, we would need some additional connectivity). The

machinery that allows this is very beautiful, and also quite intricate, but let us highlight

at least two big problems which will make the situation different.

The main obvious one is that the principal engine of the construction is a com-

parison between domains. That is, we like to consider �, and hide parts of the boundary

that we do not control outside of sawtooth domains, and for the intersection of �

with the sawtooth domain, use the maximum principle to relate the two corresponding

elliptic measures. Here we manage to construct better approximating domains whose

boundaries coincide with E in some places, but how are we going to hide the rest of the

boundary and compare the harmonic measures on the intersection?

Another unpleasant issue is that in the classical case, we typically deal with the

Laplacian, which has a local definition, unlike our operator Lwhose coefficients depend

on E, and even tend to infinity along the boundary. In other words, all the domains,

including the approximating ones, come with their own operator L, which is not local

either, and which typically carries a “memory” of the original domain, and of course we

will need to be more careful about which operator we take when we make comparisons.

After many different attempts, we decided that the possibility to hide a bad piece

of E behind a sawtooth boundary was too important to be avoided, and this forced us to

consider domains with boundaries of mixed dimensions, that is, where some part of the

boundary would be (n−1)-dimensional (and could be used to hide parts of E that we do

not control), and other parts would be d-dimensional. Then we had to adapt the theory

of degenerate elliptic operators to such domains, and in particular understand how to

relate the size of our coefficients to the mass of a doubling measure on the boundary.

For the boundary of the sawtooth regions, for instance, it helps that the coefficient of

L is related to the distance to E, but is not necessarily singular along the sawtooth.

Fortunately, the reader will not have to deal with the extension of the elliptic theory

here because most of it was taken care of in [14].

Even so, we also have to replace, rather than shield, “bad” portions of the set

to create a better, Reifenberg flat surface. This construction takes a good part of the

present paper and heavily relies on the parametrization of Reifenberg flat domains

in [15] and on the A∞ results for the elliptic measure on lower dimensional small

Lipschitz graphs that we proved in [13]. Such a replacement is performed at all scales

which eventually have to be glued via a certain extrapolation argument. Here again,
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8 G. David and S. Mayboroda

we start from the Hofmann–Martell approach to extrapolation in [20] but quickly learn

that our hypothesis is quite a bit weaker than theirs, requiring a careful re-working of

the entire scheme. Finally, last but not the least, is the obstacle arising from the fact

that our operator is not local, the coefficients are the powers of distance to the original

boundary, and so changing the domain entails changing the operator. One has to prove

that such a change, at the correct scales, is not detrimental to the entire enterprise. An

experienced reader can take a look at Theorem 9.68 and compare it to a (considerably

easier) standard version in [9].

Finally, before we turn to the body of the paper, let us mention that during the

preparation of this manuscript an alternative approach to some of its results has been

developed in [18].

The authors wish to thank the referee for useful comments and suggestions on

this text.

2 Definitions and Preliminaries Related to the Elliptic Theory and Properties of

Weights

We are given an Ahlfors regular set E of dimension d in R
n and an accompanying Ahlfors

regular measure μ on E. We denote � = R
n \ E.

Before we proceed, we need to say a few words about dyadic pseudocubes. We

shall assume that a net of dyadic pseudocubes has been chosen on E. We use the cubes

given by [6], except that we will find it more convenient to use scales that are powers of

10 because this way we will be closer to the notation of [15]. We systematically set

rk = 10−k for k ∈ Z, (2.1)

and we suppose we chose a collection D = D(E) = ∪k∈Z Dk (our “dyadic cubes”), with the

usual properties. We will in particular use the facts that for each cube Q ∈ Dk, there is

a center xQ such that

E ∩ B(xQ,C
−1rk) ⊂ Q ⊂ B(xQ, rk), (2.2)

and that the different cubes Q ∈ Dk are disjoint, that when k ≤ l, Q ∈ Dk, and R ∈ Dl,

then either R ⊂ Q or else R ∩ Q = ø.

To get this, we merely assume that the cubes Q are Borel sets, but there is

a “small boundary condition”, that we shall not use in full before the last Carleson
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Harmonic Measure on Low-Dimensional UR Sets 9

estimates for the control on different distances, that implies in particular that

μ(Q \ Q) = 0 for Q ∈ D. (2.3)

We shall often denote by k(Q) the generation of Q (i.e., the integer k such that Q ∈ Dk),

and set l(Q) = rk(Q) = 10−k(Q). For any Q ∈ D(E), we let

D(Q) = DQ = {Q′ ∈ D(E) : Q′ ⊆ Q}.

Definition 2.4. The corkscrew points for � are points Ax,r ∈ �, associated to x ∈ E

and r > 0, such that (for some constant τ0 > 0)

τ0r ≤ dist (Ax,r,E) ≤ |Ax,r − x| ≤ r. (2.5)

Corkscrew points exist for all x, r whenever E is any Ahlfors regular set of dimension

d < n − 1, and we can take τ0 to depend only on n, d, and C0 from (1.3); see

[12,

Lemma 11.46].

It will also be convenient to use corkscrew points associated to the dyadic

decomposition of E, and for any Q ∈ D(E) we write AQ := AxQ,C−1l(Q) where the constant

C is from (2.2).

Since the set E satisfies (1.3), it enters the scope of the elliptic theory developed

in [12]. Let us recall some of the main properties that will be needed.

Let L = −divA∇ be a degenerate elliptic operator, in the sense that A : � →
Mn(R) satisfies

dist (X,�)n−d−1A(X)ξ · ζ ≤ C1|ξ | |ζ | for X ∈ � and ξ , ζ ∈ R
n, (2.6)

dist (X,�)n−d−1A(X)ξ · ξ ≥ C−1
1 |ξ |2 for X ∈ � and ξ ∈ R

n, (2.7)

for some C1 ≥ 1. We say that u is a weak solution of Lu = 0, if u ∈ W1,2
loc (�) and

∫
�

A∇u · ∇v = 0 ∀v ∈ C∞
0 (�). (2.8)

Here, W1,2
loc (�) is the set of functions u ∈ L2loc(�) whose derivative (in the sense of

distribution on �) also lies in L2loc(�).
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10 G. David and S. Mayboroda

For each X ∈ �, we can define a (unique) probability measure ωX = ωX
�,L on E,

with the property that for any bounded measurable function f on E, the function uf

defined by

uf (X) =
∫
E
f (y)dωX(y) (2.9)

is a weak solution. This is only stated in [12] when f ∈ C0
0(E) is continuous and compactly

supported in E (see Lemma 9.30 and (iii) of Lemma 9.23 there, and also (8.1) and (8.14)

for the definitions) and when f is a characteristic function of Borel set (see Lemma

9.38 there); the general case would not be hard, but we do not need it anyway. It has

been proved in [12] that ω is doubling on the Ahlfors regular set E, in the sense of

Definition 2.20.

There is also a dense subclass on which we can say a little more. Denote byM(E)

the set of measurable functions on E and then define the Sobolev space

H = Ḣ1/2(E) :=
{
g ∈ M(E) :

∫
E

∫
E

|g(x) − g(y)|2
|x − y|d+1

dμ(x)dμ(y) < ∞
}
. (2.10)

The class H ∩ C0
0(E) is dense in C0

0(E) (see about 13 lines above (9.25) in [12] for the proof

of density), and if f ∈ H ∩C0
0(E), the solution uf defined by (2.9) lies in the Sobolev space

W1,2(�, dist (X,E)d+1−ndX), which means that

∫
�

|∇uf (X)|2 dist (X,E)d+1−n dX < +∞, (2.11)

and also

uf has a continuous extension to R
n, which coincides with f on E. (2.12)

See [12, (i) of Lemma 9.23], together with its proof eight lines above (9.25).

It should be stressed that since ωX is a probability measure, uf is a nondecreas-

ing function of f ≥ 0. This is of course a manifestation of the maximum principle.

Recall now the definition of the absolute continuity of the elliptic measure in

Definition 1.5. Here, δ depends on τ0 and ε as well possibly other parameters, and

we shall refer to the latter as A∞ constants of ωL. Typically, those include ellipticity

constants of L as well as some geometric characteristics of the set. We will try to be

prudent below listing them carefully.
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Harmonic Measure on Low-Dimensional UR Sets 11

Let us temporarily narrow down to �0 = R
n\Rd, where we shall write the generic

point as X = (x, t), with x ∈ R
d and t ∈ R

n−d. The following theorem is the starting point

of our absolute continuity results.

Definition 2.13. We say that a matrix-valued (or scalar-valued) measurable function

F on �0 = R
n \ R

d satisfies the Carleson measure condition with constant C and write

F ∈ CM(C) or simply F ∈ CM if there is a constant C ≥ 0 such that for X = (x, 0) ∈ R
d

and R > 0, ∫
�0∩B(X,R)

|F(y, t)|2 dydt

|t|n−d
≤ CRd. (2.14)

Theorem 2.15. [13] Let A0 be a degenerate elliptic matrix satisfying (2.6) and (2.7)

in �0 = R
n \ R

d, and set then L0 = −divA0∇. Define the rescaled matrix A by

A = |t|n−d−1A0, so that now A satisfies the usual ellipticity bounds and L0 =
−div |t|d+1−nA∇, and assume that A has the following block structure:

A(X) =
(

A1(X) A2(X)

C3(X) b(X)In−d + C4(X)

)
, (2.16)

where A1(X) is a matrix in Md×d, A2(X) is a matrix in Md×(n−d), b is a function on �0,

In−d is the identity matrix in M(n−d)×(n−d), and in addition we can find constants C ≥ 0

and λ ≥ 1 such that

λ−1 ≤ b ≤ λ on �0, (2.17)

|t|∇b ∈ CM(C), (2.18)

C3, C4 ∈ CM(C). (2.19)

Then the harmonic measure ωX
�0,L0

is A∞-absolutely continuous with respect to the

Lebesgue measure on R
d (with the Definition 1.5).

Definition 1.5 might seem confusing at first because traditionally the A∞ prop-

erty of one weight with respect to another is formulated somewhat differently. However,

when the weight is doubling, the A∞-absolute continuity as stated in Definition 1.5 is

equivalent to the traditional A∞ property (see, e.g., [7], Lemma 5, where it is proved for

any two doubling measures). Let us list the main definitions and results to this effect,

complemented by their dyadic counterparts, as they will be used throughout the paper

for a variety of measures.
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12 G. David and S. Mayboroda

Definition 2.20. Let E be a d-dimensional Ahlfors regular set in R
n (or more generally,

any metric space). A nontrivial measure ω on E is doubling if for any x ∈ E, r > 0,

0 < ω(B(x, 2r) ∩ E) < Cω(B(x, r) ∩ E) < ∞, (2.21)

with a uniform constant C.

When E possesses a dyadic structure, for example, when E is a d-dimensional

Ahlfors regular set in R
n and we chose a collection of pseudocubes D(E) as near (2.1), we

say that ω is dyadically doubling on Q0 ⊂ D(E) if for every Q ∈ D(Q0) and every dyadic

“child” of Q, Q′, there exists a uniform constant C such that

0 < ω(Q) < Cω(Q′) < ∞.

In the particular case when ω is in fact a family {ωX} of elliptic measures

on E, we say that ω is doubling if for any surface ball �(x, r) = B(x, r) ∩ E, x ∈ E,

r > 0, the harmonic measure with a pole at Ax,r, ωAx,r , is doubling on on �(x, r), and

the constant C in the doubling property is independent of x, r. Similar definitions

apply in the dyadic case, with the pole at AQ. Equivalently, one could say that ω

is doubling when (2.21) holds for ωX as long as X is far enough from B(x, r) (for

instance, X ∈ � \ B(x, 4r)), and similarly, in the definition of dyadically doubling for

the family ω = {ωX}, we would only ask for the doubling condition when X is far enough

from Q.

In [12, Lemma 11.102], it is proved that for any d-dimensional Ahlfors regular

set E in R
n, d < n − 1, the harmonic measure of any elliptic operator is doubling and,

hence, dyadically doubling on E.

Next we say a little more about local versions of the A∞ condition. For a single

measure ω, we would use the following definition.

Definition 2.22. Let E be a d-dimensional Ahlfors regular set in R
n and μ be an Ahlfors

regular measure on E. Given any surface ball �(x, r) = B(x, r) ∩ E, x ∈ E, r > 0, we say

that a doubling measure ω on E is A∞-absolutely continuous with respect to μ on �(x, r)

(denoted by A∞(�(x, r))), if for every ε ∈ (0, 1), there exists δ ∈ (0, 1), such that for every

surface ball �′ = B′ ∩ E, B′ ⊆ B(x, r) and every Borel set F ⊂ �′

ω(F)

ω(�′)
< δ ⇒ μ(F)

μ(�′)
< ε. (2.23)
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Harmonic Measure on Low-Dimensional UR Sets 13

Similarly, replacing surface balls by dyadic cubes, we say that a dyadically doubling

measure ω is (dyadically) A∞-absolutely continuous with respect to μ on Q ∈ D(E)

(denoted by A∞
D

(Q)), if for every ε ∈ (0, 1), there exists δ ∈ (0, 1) such that for every

Q′ ∈ D(Q) and every Borel set F ⊂ Q′,

ω(F)

ω(Q′)
< δ ⇒ μ(F)

μ(Q′)
< ε. (2.24)

As the reader can guess from Definition 1.5, in the particular case when ω = {ωX}
is (a family of) harmonic measures on E, we say that ω is A∞-absolutely continuous

with respect to if for any surface ball �(x, r) = B(x, r) ∩ E, x ∈ E, r > 0, the harmonic

measure with a pole at Ax,r, ωAx,r , is A∞-absolutely continuous with respect to μ on

�(x, r), and the choice of δ depends on ε (and τ0 in the definition of the corkscrew point

as well as AR and doubling constants) but not on x, r. In fact, it would then be possible,

using estimates on ω (that the reader may find in [12]), to deduce the same estimates

for other poles X ∈ � \ B(x, 4r). All these definitions are equivalent, in the sense that

we get estimates for δ with different definitions that depend only on those with the

initial definition, our bounds for E and L, and the various corkscrew constants. Similar

definitions apply in the dyadic case, with a pole at AQ.

The A∞ condition is known to imply a stronger form of absolute continuity,

which we define now, starting with the case of a single measure.

Definition 2.25. Let E be a d-dimensional Ahlfors regular set in R
n and μ be an Ahlfors

regular measure on E, � = R
n\E. Given any surface ball �(x, r) = B(x, r)∩E, x ∈ E, r > 0,

we say that a Borel measure ω is strongly absolutely continuous in �(x, r), with respect

to μ, if there are positive constants C and θ such that for every surface ball �′ = B′ ∩ E,

B′ ⊆ B(x, r) and every Borel set F ⊂ �′,

ω(F) ≤ C
(

μ(F)

μ(�′)

)θ

ω(�′). (2.26)

Similarly, replacing surface balls by dyadic cubes, we say that a dyadically

doubling measure ω is strongly dyadically absolutely continuous in Q, with respect to

μ, if there are positive constants C and θ such that for every Q′ ∈ D(Q) and every Borel

set F ⊂ Q′,

ω(F) ≤ C
(

μ(F)

μ(Q′)

)θ

ω(Q′). (2.27)
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14 G. David and S. Mayboroda

Much as above, in the particular case when ω = {ωX} is in fact a family of

harmonic measures on E, we say that ω is strongly absolutely continuous with respect

to μ if for any surface ball �(x, r) = B(x, r) ∩ E, x ∈ E, r > 0, the harmonic measure

with a pole at Ax,r, ωAx,r , is strongly absolutely continuous with respect to μ, and the

constants C, θ depend on τ0 in the definition of the corkscrew point as well as AR and

doubling constants but not on x, r. Similar definitions apply in the dyadic case, with the

pole at AQ.

Remark 2.28. It was proved in [7, Lemma 5] that for any two doubling measures μ and

ω, if ω is A∞-absolutely continuous with respect to μ, then ω is also strongly absolutely

continuous with respect to μ, and also μ is also strongly absolutely continuous with

respect to ω. Also see [24] or [19].

The dyadic (and local) analogues of these facts were established, for example,

in [20, Appendix B, Remark 2.10]. That is, under the definitions above, a dyadically

doubling measure ω is strongly dyadically absolutely continuous on Q ∈ D(E) with

respect to μ if and only if it is dyadically A∞ absolutely continuous with respect to

μ. In fact, both are equivalent to an (apparently) weaker statement that there exist

0 < ε, δ < 1 such that (2.23) (respectively, (2.24)) hold—the latter property is referred to

as comparability for doubling measures. Moreover, A∞ and its local, dyadic, and strong

versions are equivalence relationships, in the sense that for instance, if ω is strongly

absolutely continuous with respect to μ with some constants C > 0, θ > 0, then μ is

strongly absolutely continuous with respect to ω with some other constants C′ > 0,

θ ′ > 0; see [7, Lemma 5] for the standard case and [20, Lemma B.7] for the dyadic one.

3 Preliminary Geometric Considerations

In Sections 3–9, we define a correct change of variables, adapted to a stopping time

region associated to a uniformly rectifiable set of integer dimension d in R
n. To be more

precise, for any stopping time region subject to some flatness and regularity constraints

we construct a Reifenberg flat set �, which coincides with our initial set E in the “base”

of the sawtooth and which has a nice parametrization, in fact coming from a nice change

of variables transforming R
n \ � into R

n \ Rd.

The change of variables will be inspired by that in [15], but unfortunately we

need an array of properties, which was not explicitly targeted in [15]. Indeed, we need

to use it similarly to the change of variables of [13], to ensure the absolute continuity

of a certain elliptic measure on the underlying set. In both cases, the philosophy is to

respect the orthogonal direction to the tangent plane to the boundary set. However, the
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Harmonic Measure on Low-Dimensional UR Sets 15

details are quite different and we will have to devote a considerable effort to the proof

that (a slightly modified) construction from [15] satisfies the desired properties. We try

to take notations that are fairly close to those of [15], which we shall cite abundantly.

To start, let us describe a stopping time region.

We are given an Ahlfors regular set E of dimension d in R
n. In our end-game

applications, E will be uniformly rectifiable, but we do not need to assume this for the

moment. The definition of the stopping time regions will take care of the regularity

needed for the 1st few chapters.

In this section, we are given a stopping time region �, with some definite

constraints on how it is built, and associate to it a few geometric objects. There will

be a specific way to construct � from its top cube Q0, but let us keep some latitude,

without making our life too complicated. So we start from a cube Q0, and without loss

of generality we assume that

Q0 ∈ D0. (3.1)

Then � will be a subset of D(Q0), the set of subcubes of Q0. For Q ∈ � and 0 ≤ k ≤ k(Q),

denote by Rk(Q) the cube of Dk that contains Q; thus, Rk(Q) is an ancestor of Q and

Rk(Q) ⊆ Q0. We demand that Q0 ∈ � (otherwise, there in no construction to be done)

and that � is hereditary, which means that

Rk(Q) ∈ � for Q ∈ � and 0 ≤ k ≤ k(Q) (3.2)

(i.e., if Q ∈ �, then all its ancestors between Q and Q0 lie in �).

For the remaining properties of �, we need to choose a large constant M ≥ 1, a

very small constant ε1 > 0, and another constant δ1 > 0, in practice much larger than

ε1. Apparently, our construction will not put any constraint on δ1, except for the fact

that some constants will become very large when δ1 is large. We will take M quite large,

depending on other geometric constants of the construction, and then ε1 will need to

be small enough, depending on n, d, the constant C0 in (1.3), and M. This includes a

dependence on our choice of D through the constant in (2.2), but we can choose D once

and for all, with a constant in (2.2) that depends only on n, d, and C0.

It will simplify our definition if we assume that for each Q ∈ �, a d-plane P(Q)

has been chosen, with the following properties. First of all, P(Q) is quite close to E near

Q. That is, if we define a normalized Hausdorff distance between sets dx,r(F,G) by

dx,r(F,G) = r−1 sup
y∈F∩B(x,r)

dist (y,G) + r−1 sup
y∈G∩B(x,r)

dist (y, F), (3.3)
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16 G. David and S. Mayboroda

then we require that

dxQ,Ml(Q)(E, P(Q)) ≤ ε1 for Q ∈ �, (3.4)

where l(Q) = 10−k(Q) is the official sidelength of Q and the center xQ is as in (2.2). We

also measure the average distance from points of E near Q to P(Q) and encode them into

numbers β(Q) such that∫
E∩B(xQ,Ml(Q))

dist (y, P(Q)) dμ(y) ≤ l(Q)d+1β(Q), (3.5)

where μ is the measure on E that we started with (but its precise choice does not matter

here). These numbers are close to the β-numbers of Jones associated to E and computed

with L1-norms, but we reserve the right to make β(Q) larger than the actual number

β1(xQ,Ml(Q)) and choose the P(Q) differently. Then we define a Jones function J on �

by setting

J(Q) =
∑

0≤k≤k(Q)

β̃(Rk(Q))2, (3.6)

where as before Rk(Q) is the ancestor of Q, which is of generation k, and unfortunately

we need need to replace β(Q) with a slightly larger, more regular, function of Q, namely

β̃(R) = sup
{
β(S) ; S ∈ �(k(R)) and dist (R,S) ≤ Ml(R)

}
, (3.7)

where

�(k) = {
Q ∈ � ; l(Q) = rk

}
. (3.8)

Notice that we may count the same set R twice in (3.6), if successive ancestors of Q

happen to be given by the same subset of E. This is all right and probably even more

reasonable. Notice also that replacing β(R) with β̃(R) will not cost us much in practice;

we will just need to control E (and possibly μ) on an even larger ball. Finally, observe

that J(Q) ≥ J(R) when Q ⊂ R ⊂ Q0 and k(Q) ≥ k(R) ≥ 0. We demand that

J(Q) ≤ δ1 for Q ∈ �. (3.9)

This completes the list of conditions that we put on �. We do not need to say yet

how we produce �, but the algorithm that will be used later is as follows. For each cube
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Harmonic Measure on Low-Dimensional UR Sets 17

Q, we shall define a quantity α(Q), for instance using the α-numbers coming from [31]

and choose a plane P(Q) that is nearly optimal in the definition of α(Q). These numbers

will be introduced in Section 7; for the moment, we do not need to know what they are.

Then we will start from the top cube Q0 and decide to remove a cube Q ∈ D(Q0),

as well as all its descendants, as soon as α(Q) > ε0 or

Jα(Q) :=
∑

0≤k≤k(Q)

α(Rk(Q))2 ≥ δ0.

It will turn out that the numbers α(Q) control the properties (3.4) and (3.9), in the sense

that if ε0 is chosen small enough, then (3.4) follows from the fact that α(Q) < ε0, and

similarly (3.9) follows from the fact that Jα(Q) ≤ δ0.

Remark 3.10. There are constraints on M and ε1. The 1st ones will come soon, to

verify the CCBP properties at the beginning of the next section, and then there will be

other ones in the last section. Since we want to keep some freedom in the choices, we

announce now that all we need, up to Section 8, is to take M large enough, and then ε1

small enough, depending on M, δ1, and the other parameters.

We can let M depend on δ1 (in fact, we claim below that we could even let δ1 be a

large number).

The relation between δ1 and ε1 is more delicate, and we announce it in advance so

that we cannot be suspected of cheating. Both constants will be small in our argument,

and correspond to stopping time conditions. The basic reason for stopping in our

geometric construction of a parameterization is when the set starts being flat enough,

and ε1 corresponds to the minimal amount of flatness that we demand. We will choose

ε1 last, possibly depending on the other parameters. Now we also want to control the

bilipschitz constants for our approximations, and we use the Jones function to do this.

The role of δ1 is to control the Jones function, and then the bilipschitz constants for our

mappings. In a sense, ε1 acts like the L∞ norm of some quantity (the β-numbers) that

needs to stay small, and δ1 like the L∞ norm of some integral, or sum, of some related

(but different) quantity (the α-numbers).

We promise that we will not let ε1 depend on δ1 because this would contradict

the spirit of stopping times, but we will nonetheless do an offense to that spirit because

in some argument, and for the sake of laziness, we will use δ1 to control some quantity

that should be in fact be controlled by ε1 in a cleaner (but longer) argument. Because

of this, we will require δ1 to be small, but a real purist would allow it to be large too,

and this would create a more interesting parameterization when we only stop when this
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18 G. David and S. Mayboroda

is really needed. Formally speaking, we could also take δ1 much smaller than ε1, with

the effect of stopping because of δ1 all the time and never because of ε1; this would be

allowed by our argument, but it would be a bad and confusing practice.

There is a 2nd issue with δ1, which is that allowing δ1 to be small (as we will do

to simplify the proof) should have an advantage, which is that our bilipschitz mappings

are actually bilipschitz with constants that are as close to 1 as we want. We claim that

this is true, but it is less easy to use because the estimates in [15] that prove this are

rather well hidden, so we decided that we shall not use this extra information (other

than saying that we have a uniform bound on the bilipschitz constants) and merely add

remarks along the proof that explain how we could get and deal with this additional

information.

4 The Approximating Surface �

We shall now describe the main lines of the construction of [15], where one starts from

a stopping time region � like the one above and constructs an associated Reifenberg

flat set �, parameterized by a mapping f : �0 = P0 = R
d → �, and even a global change

of variable g : Rn → R
n (with g|�0

= f ).

For the construction to work, one needs to find what is called a coherent

collection of balls and planes (in short, a CCBP), which will be our 1st task here. This

will involve choosing some collections of d-planes, and let us first see what we have.

Recall that for each Q ∈ �, we are given a d-plane P(Q) that satisfies (3.4)–(3.9).

In particular, (3.4) says that dxQ,Ml(Q)(E, P(Q)) ≤ ε1. This means that

dist (y, P(Q)) ≤ ε1Ml(Q) for y ∈ E ∩ B(xQ,Ml(Q)), (4.1)

(and in particular P(Q) passes within 2ε1Ml(Q) of xQ), but also

dist (y,E) ≤ ε1Ml(Q) for y ∈ P(Q) ∩ B(xQ,Ml(Q)). (4.2)

We do this also for Q0 (which we have assumed to lie in �), and call P0 = P(Q0) the plane

that we get. We shall even assume, without loss of generality, that

P0 = R
d and xQ0

= 0 (4.3)

In [15], which we shall often refer to as “there”, a CCBP starts with the choice

of families {Bj,k}, j ∈ Jk of balls, where k ≥ 0 still denotes a generation. In fact
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Harmonic Measure on Low-Dimensional UR Sets 19

Bj,k = B(xj,k, rk), where rk = 10−k as above, so we just need to choose the centers {xj,k},
j ∈ Jk. Recall the definition of �(k) in (3.8), let

E(k) = {
x ∈ E ; dist (x,Q) ≤ Mrk

10
for some Q ∈ �(k)

}
, (4.4)

and finally pick a maximal family {xj,k}, j ∈ Jk, of points of E(k) that lie at distances at

least rk from each other. This defines our family of balls. We need to check a coherence

condition, (2.3) in [15], that demands that for k ≥ 1, each xj,k lies in B(xi,k−1, 2rk−1) for

some i ∈ Jk−1. This comes from the heredity condition for �: since xj,k ∈ E(k), we know

that dist (xj,k,Q) ≤ Mrk
10 for some Q ∈ �(k); the parent Q′ of Q lies in �(k − 1), and since

dist (xj,k,Q
′) ≤ dist (xj,k,Q) ≤ Mrk

10 , xj,k ∈ E(k− 1) and we can find a point xi,k−1, i ∈ Jk−1,

that lies within rk−1 of xj,k.

We should also choose a nice surface �0 with which we start the construction;

here we simply take �0 = P0 = P(Q0), and the properties (2.4)–(2.7) required in [15] are

easily satisfied; in particular (2.7), there follows from (4.1) if ε1 is chosen small enough,

depending on ε there.

Finally, we need to associate a d-plane Pj,k to each ball Bj,k, and this is easy to

do: for each j ∈ Jk we choose Qj,k ∈ �(k) such that dist (xj,k,Qj,k) ≤ Mrk
10 , and then we set

Pj,k = P(Qj,k). Notice that when k = 0, we have many points xj,0 (because E(0) is rather

large), but all of them are associated to P0.

There is an unfortunate little catch here because it is also required in [15] that

Pj,k goes through xj,k, but we really like P(Qj,k) here, in fact more than the precise

location of xj,k. So we modify the construction a little bit. We start with a maximal

collection of points x̃j,k ∈ E(k), at mutual distances at least 11rk
10 , define the Qj,k and Pj,k

as above, and then use (4.1) (with ε1 small enough) to find xj,k ∈ P(Qj,k) ∩B(̃xj,k,
rk
100 ), and

use these in the definition of Bj,k. This does not perturb our proof of (2.3) there, we lose

the fact that xj,k ∈ E, which looked nicer, but this is not needed to apply Theorems 2.4

and 2.5 there. Starting from (13.3) in [15], another trick is explained, which allows us to

replace x̃j,k with another point xj,k ∈ E that lies so close to Pj,k = P(Q(j, k)) that we could

translate Pj,k slightly and keep (3.5) with almost the same constant, but we don’t need

to do this.

We need to check that the Pj,k satisfy compatibility conditions (namely,

(2.7)–(2.10) there). We start with (2.8), which demands that for k ≥ 0 and all i, j ∈ Jk
such that |xi,k − xj,k| ≤ 100rk, Pj,k and Pi,k are so close that

dxj,k,100rk(Pi,k, Pj,k) ≤ ε, (4.5)
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20 G. David and S. Mayboroda

for some ε > 0 that needs to be small enough for the construction of [15] to work. We

choose ε1 small enough, depending on ε and our constant M, and then this follows from

our definitions, and in particular (4.1) and (4.2); the verification is fairly simple, and is

essentially done in [15], below Lemma 12.2 on page 66, so we skip it.

In our case, (2.9) there is just a special case of (2.8) because �0 = P0, and (2.10)

demands that for k ≥ 0, i ∈ Jk, and j ∈ Jk+1 such that |xi,k − xj,k+1| ≤ 2rk,

dxi,k,20rk(Pi,k, Pj,k+1) ≤ ε. (4.6)

The verification is almost the same as for (4.5), and we also refer to the argument in [15],

below Lemma 12.2.

At this stage, we are able to apply Theorem 2.4 in [15], which provides us with a

Cε-Reifenberg flat set � and biHölder mappings f : P0 → � and g : Rn → R
n, with some

good properties.

Theorem 4.7 (Theorem 2.4 from [15]). Let (�0, {Bj,k}, {Pj,k}) be a CCBP as above and

assume that ε is small enough depending on n and d. Then there is a bijection

g : Rn → R
n with the following properties;

g(z) = z when dist (z,�0) ≥ 2,

g(z) − z ≤ Cε for z ∈ R
n,

1

4
|z′ − z|1+Cε ≤ |g(z) − g(z′)| ≤ 3 |z′ − z|1−Cε

for z, z′ ∈ R
n such that |z−z′| ≤ 1, and � = g(�0) is a Cε-Reifenberg flat set that contains

the accumulation set defined as the collection of all x ∈ R
n, which can be written as

x = limm→∞ xj(m),k(m) with k(m) ∈ N such that limm→∞ k(m) = ∞ and j(m) ∈ Jk(m) for

m ≥ 0. The constant C depends on n and d only.

However, we are interested in more precise properties of g (such as the fact

that it is bilipschitz), and we will also need some information that comes from the

construction, because in [15] no special attention was given to the specific form of the

Jacobian matrix of g, which we need to study for our application to degenerate elliptic

operators. We start with the bilipschitz part.

Lemma 4.8. If ε1 is small enough, the mapping g : R
n → R

n is bilipschitz, with a

constant that depends only on δ1, n, d, and the different choices above (that depend on

M0, for instance).
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Harmonic Measure on Low-Dimensional UR Sets 21

This will follow from Theorem 2.5 there and our additional constraint (3.9),

once we decipher some additional definitions. But before we do this, let us check that

whenever Q ∈ �(k) and R ∈ �(k) ∪ �(k − 1) are such that dist (Q,R) ≤ Ml(Q)
2 , then

dxQ,Ml(Q)(P(Q),P(R)) ≤ Cβ(Q) + Cβ(R), (4.9)

where C depends on M, C0, n, and d, but this will not matter.

Let us rapidly prove (4.9). The argument is similar to what was done in [16],

below (13.25). We intend to use the fact that both P(Q) and P(R) are very close to E in a

common region to compare their positions. First choose an orthonormal basis e1, . . . , ed
of the vector d-plane parallel to P(R), and consider the points ξ0 = xR and, for 1 ≤ i ≤ d,

ξi = xR + rkei. Notice that B(xR, 2rk) lies well inside B(xR,Ml(R)), so by (4.2) we can find

points xi ∈ E, 0 ≤ i ≤ d, such that |xi − ξi| ≤ ε1Ml(R) ≤ 10−2rk. Then we use (3.5), the

Ahlfors regularity of μ, and Chebyshev’s inequality to find that for more than half of

the points z ∈ E ∩ B(xi, 10
−2rk), dist (z,P(R)) ≤ Cl(R)β(R). But also, B(xR, 2rk) lies well

inside B(xQ,Ml(R)), so we can also apply (3.5) to P(Q), and find that for a majority of

points z ∈ E ∩ B(xi, 10
−2rk), dist (z,P(Q)) ≤ Cl(Q)β(Q). For each i, we select a point yi

with both properties, and this gives zi ∈ P(R) ∩ B(ξi, 10
−1rk) and wi ∈ P(R) ∩ B(ξi, 10

−1)

such that |zi − wi| ≤ Crk(β(Q) + β(R)). At this point, we have sufficiently many points

of contact between P(Q) and P(R) to control their relative positions and prove (4.13); see

also Lemma 12.7 there.

Now return to the lemma and Theorem 2.5 there. Define the numbers ε′′
k(y), k ≥ 1

and y ∈ R
n, by

ε′′
k(y) = sup

{
dxi,l,100rl(Pj,k, Pi,l) ; j ∈ Jk, l ∈ {k − 1,k},

i ∈ Jl, and y ∈ 11Bj,k ∩ 12Bi,l

} (4.10)

when y ∈ V11
k = ⋃

j∈Jk B(xj,k, 11rk), and simply by ε′′
k(y) = 0 when y /∈ V11

k . This is the

same definition as in (2.17) and (2.18) there, and then Theorem 2.5 there says that g is

bilipschitz as soon as there is a constant M3 ≥ 0 such that

∑
k≥0

ε′′
k(g(z))2 ≤ M3 for all z ∈ P0. (4.11)

Thus, in order to deduce the lemma from that result, we will just need to show

that the numbers β(Q) of (3.5) control the ε′′
k(y), y ∈ V11

k .
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So let z ∈ P0 be given, set y = g(z), and let k ≥ 1 be such that y ∈ V11
k (we don’t

care about the other k, since ε′′
k(y) = 0). This last means that y ∈ B(xj0,k, 11rk) for some

j0 ∈ Jk, but this will not really matter.

Next let j, l, and i be as in (4.10), and follow the definitions: we picked a cube

Q = Qj,k ∈ �(k) such that dist (xj,k,Q) ≤ Mrk
10 , and then we set Pj,k = P(Q), and similarly

we chose R = Qi,l ∈ �(l) such that dist (xi,l,R) ≤ Mrl
10 and then set Pi,l = P(R). We record

for later the fact that

dist (y,Q) ≤ Mrk
5

and dist (y,R) ≤ Mrk
5

. (4.12)

Obviously, dist (Q,R) ≤ Ml(Q)
2 , so (4.9) says that

dxi,l,100rl(P(Qj,k), P(Qi,l)) = dxi,l,100rl(P(Q),P(R)) ≤ C(β(Q) + β(P)). (4.13)

For each scale k ≥ 0, denote by Q(y, k) the collection of cubes Q ∈ �(k) such that

dist (y,Q) ≤ Mrk
5 . Obviously,

∑
k≥0

ε′′
k(g(z))2 ≤ C

∑
k≥0

∑
Q∈Q(y,k)

β(Q)2 (4.14)

by (4.12) and (4.13), and we shall use (3.9) to control the right-hand side. If the Jones

function J were only using the β(Q), this may seem complicated; here we can proceed

as follow. Let k0 be such that Q(y, k0) is not empty, and select Q ∈ Q(y, k0); then for

0 ≤ k ≤ k0, denote by Qk the ancestor of Q that lies in Dk; observe that Qk ∈ �(k) by

heredity, and Qk ∈ Q(y, k) because dist (y,Qk) ≤ dist (y,Q) ≤ Mrk
5 . Now all the other

cubes S of Q(y, k) lie at distance less than Mrk = Ml(Qk) from Qk, so β(S) ≤ β̃(Qk) by

(3.7). Thus,

∑
0≤k≤k0

∑
Q∈Q(y,k)

β(Q)2 ≤ C
∑

0≤k≤k0

β̃(Qk)
2 ≤ CJ(Q) ≤ Cδ1 (4.15)

because each Q(y, k) has at most C elements, and by (3.6) and (3.9). Since this is true for

every k0 (with the same constant), we get (4.11) and, as promised, Lemma 4.8 follows

from Theorem 2.5 there.

Remark 4.16. For this lemma, we do not need δ1 to be small, but the 1st author claims

that taking δ1 small would allow us to get a bound for the bilipschitz constant for g

which is as close to 1 as we want. This would be reassuring, but apparently the authors
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of [15] were too busy controlling the large constants to make a clear remark, anywhere

in that paper, to the effect that small bounds for J yield small bilipschitz bounds for

g. We will manage not to use this remark in this paper, so as not to make the reader

feel too bad, but will add some comments to this effect for the case when they would be

badly needed in the future.

Lemma 4.8 will be quite useful to help us control other terms; for instance, we

will not need to worry about supremum norms for the derivatives of our mappings. But

we will need more information, typically on the structure of Df and Dg, so let us step

back and recall the construction of f and auxiliary functions fk and then we will pass

to the construction of g in Section 6.

In [15, Section 3], one constructs a partition of unity for each generation k ≥ 0,

composed of functions θj,k, j ∈ Jk, supported in 10Bj,k plus a function ψk supported away

from V8
k = ∪j∈Jk8Bj,k. Thus,

ψk +
∑
j∈Jk

θj,k = 1 (4.17)

as in (3.13) there, and

∑
j∈Jk

θj,k = 1 on V8
k = ∪j∈Jk8Bj,k. (4.18)

In addition, |∇mθj,k| ≤ Cmr−m
k , as expected (see (3.15) there).

Then we can define the mapping f on �0 = P0 = R
d, as the limit of functions fk

defined by induction by

f0(y) = y and fk+1 = σk ◦ fk, (4.19)

(as in (4.1) there), where σk is a map that tries to move points in the direction of E (or

rather, the local Pj,k), and is defined by

σk(y) = y +
∑
j∈Jk

θj,k(y) [πj,k(y) − y] = ψk(y)y +
∑
j∈Jk

θj,k(y) πj,k(y) (4.20)

(as in (4.2) there), where πj,k denotes the orthogonal projection from R
n onto Pj,k and

the equality comes from (4.17). It turns out that the fk converge quite fast to a limit

mapping f , which is our parameterization of the nice Reifenberg-flat surface � = f (�0).
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24 G. David and S. Mayboroda

We remind the reader that g will ultimately be defined so that g = f on �0 (see (10.13)

in [15] and Section 6) but the construction in [15] starts with the fk and f .

Some observations will be useful concerning the local regularity of the interme-

diate surfaces

�k = fk(�0), (4.21)

and the way each one maps to the next one. Proposition 5.1 in [15] gives a good local

description of �k in terms of Lipschitz graphs, which we can summarize as follows. For

each j ∈ Jk, there is a Cε-Lipschitz function Aj,k : Pj,k → P⊥
j,k, with |Aj,k(xj,k)| ≤ Cεrk, such

that inside 49Bj,k, �k coincides with the graph �j,k of Aj,k over Pj,k. The same proposition

also says that A is of class C2, but does not record estimates on this, and this is a part

that we will need to complement.

We shall not use Proposition 5.1 there directly so much, but it is important in

the description of trajectories that follows, and contains the estimate (5.11) there, which

says that

|σk(y) − y| ≤ Cεrk for k ≥ 0 and y ∈ �k, (4.22)

which, after using (4.19) repeatedly and summing a geometric series, yields

|f (x) − fk(x)| ≤ Cεrk for x ∈ �0 and k ≥ 0. (4.23)

For the description of trajectories that follows, we continue to use the notation

VA
k =

⋃
j∈Jk

B(xj,k,Ark) =
⋃
j∈Jk

ABj,k, (4.24)

when A is an integer. When y ∈ �k ∩ V8
k (we call this the active region), then ψk(y) = 0,

and the formula (4.20) becomes the simpler

σk(y) =
∑
j∈Jk

θj,k(y) πj,k(y), (4.25)

where we know that in addition

∑
j∈Jk

θj,k(y) = 1. (4.26)
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When on the opposite y ∈ R
n \ V10

k (we call this the dead region), things are simple too,

because all the θj,k(y) vanish, hence ψk(y) = 1, and (4.20) says that

σk(y) = y for y ∈ R
n \ V10

k . (4.27)

Things are a little more unpleasant in V10
k \ V8

k , but fortunately the next lemma says

that this never happens more than once along a given trajectory, and this will leave a

reasonably small trace in our Carleson measure estimates. We call V10
k \ V8

k the dying

region.

Lemma 4.28. Let x ∈ �0 be given, and denote by yk = fk(x) ∈ �k its successive images.

If yk ∈ R
n \ V10

k for some k ≥ 0, then yl = yk ∈ R
n \ V10

l for l ≥ k; (4.29)

If yk ∈ V10
k for some k ≥ 1, then yl ∈ V4

l for 0 ≤ l ≤ k − 1. (4.30)

This is Lemma 6.1 in [16]. Notice that if yk ∈ V10
k \V8

k , (4.30) says that the previous

images were in the active region, and also (applying it to yk+1) that yk+1 ∈ �k+1 \ V10
k+1

lies in the dead region, as well as all its successors (by (4.29)).

We need some estimates on σk and its derivative that were not necessarily

recorded there. We claim that

|fk+1(x) − fk(x)| ≤ Cε′′
k(f (x)) rk for x ∈ �0 such that fk(x) ∈ V8

k . (4.31)

Set y = fk(x) ∈ V8
k , and choose j ∈ J(k) such that |y − xj,k| ≤ 8rk. Then (7.9) there says

that

|σk(y) − πj,k(y)| ≤ Cεk(y)rk, (4.32)

where πj,k denotes the orthogonal projection onto Pj,k and the function εk is defined in

(7.8) there (we shall return to this soon). Thus,

|fk+1(x) − fk(x)| = |σk(y) − y| ≤ dist (y, Pj,k) + Cεk(y)rk, (4.33)

and we now evaluate that distance. When k = 0, y = f0(x) = x ∈ P0, we actually took

Pj,k = P0, and the distance is 0. Otherwise, set y′ = fk−1(x), observe that y′ ∈ V4
k−1 by
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26 G. David and S. Mayboroda

Lemma 4.28, and choose i ∈ J(k − 1) such that |y′ − xi,k−1| ≤ 4rk−1. This time (7.9) there

says that

|σk−1(y
′) − πi,k−1(y

′)| ≤ Cεk−1(y
′)rk−1, (4.34)

where πi,k−1 denotes the orthogonal projection onto Pi,k−1. Since y = σk−1(y
′), we get

that

dist (y, Pi,k−1) ≤ Cεk−1(y
′)rk−1. (4.35)

Recall from (4.23) that |f (x) − y| ≤ Cεrk, and similarly |f (x) − y′| ≤ 10Cεrk. Notice

then that f (x) ∈ 11Bj,k ∩ 12Bi,k−1, so the definition (4.10) says that Pj,k and Pi,k−1 are

100rk−1ε
′′
k(f (x))-close to each other in B(xi,k−1, 100rk−1). In particular, (4.35) implies

that

dist (y, Pj,k) ≤ Cεk−1(y
′)rk + Cε′′

k(f (x)) rk. (4.36)

Now we compare the definition (7.7) there of εk(y) with (4.10) and find out that εk(y) ≤
Cε′′

k(f (x)) because if y ∈ 10Bi,k ∩ 10Bj,k for some i, j ∈ J(k), then f (x) ∈ 11Bi,k ∩ 11Bj,k.

Similarly, εk−1(y
′) ≤ Cε′′

k(f (x)), with the only small difference that since this time we are

comparing two planes of generation k − 1, we need to go through our chosen plane Pj,k
of generation k. Now our claim (4.31) follows from (4.33) and (4.36).

We also need estimates on the derivatives of fk, and of course we first differen-

tiate σk. We start in the active region (the open set V8
k ), where we can use the simpler

formulas (4.25) and (4.26), and hence

Dσk(y) =
∑
j∈Jk

θj,k(y)Dπj,k +
∑
j∈Jk

Dθj,k(y)πj,k(y), (4.37)

where the differential Dπj,k of πj,k is the vector projection (which does not depend on

y), which we try not to mix with the affine projection πj,k. In this sort of situation, we

like to pull out a specific index j(y) = jk(y) such that θj(y),k(y) �= 0, and use the fact that∑
Dθj,k(y) = 0 by (4.26) to write that

Dσk(y) =
∑
j∈Jk

θj,k(y)Dπj,k +
∑
j∈Jk

Dθj,k(y) [πj,k(y) − πj(y),k(y)], (4.38)
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and even

Dσk(y) − Dπj(y),k =
∑
j∈Jk

θj,k(y) [Dπj,k − Dπj(y),k] +
∑
j∈Jk

Dθj,k(y) [πj,k(y) − πj(y),k(y)]. (4.39)

We differentiate once more (but keep the same index j(y) to do the computations near y;

we certainly do not want to differentiate j(y)) and get that

D2σk(y) = 2
∑
j∈Jk

Dθj,k(y) [Dπj,k − Dπj(y),k] +
∑
j∈Jk

D2θj,k(y) [πj,k(y) − πj(y),k(y)]. (4.40)

Let us not pay too much attention on what we mean by multiplication in these formulas;

the main thing is the size estimate that follows. In this sum, the only terms that do not

vanish come from balls such that y ∈ 10Bj,k, and there are at most C of them. The size of

Dθj,k and D2θj,k is controlled below (4.18). We look at the definition (4.10) of ε′′
k, and find

out that for y ∈ V8
k

|D2σk(y)| ≤ Cε′′
k(z) r

−1
k for any z ∈ B(y, rk), (4.41)

which we take as a good estimate. Here we shall just take z = f (x) for the point x ∈ R
d

such that y = fk(x), and the fact that z ∈ B(y, rk) comes from (4.23). This was our better

estimate for y ∈ V8
k .

In the dead region R
n \ V10

k where all the θj,k vanish, we have ψk = 1, σk(y) = y

(by (4.20)), and hence Dσk = I and D2σk = 0 (see also (4.5) there).

In the dying region V10
k \ V8

k , we do not have very good estimates because ψk is

not identically 1 near y. This time we start from the 1st part of (4.20), which yields

Dσk(y) − I =
∑
j∈Jk

Dθj,k(y) [πj,k(y) − y] +
∑
j∈Jk

θj,k(y) [Dπj,k − I] (4.42)

and then

D2σk(y) =
∑
j∈Jk

D2θj,k(y) [πj,k(y) − y] + 2
∑
j∈Jk

Dθj,k(y) [Dπj,k − I]; (4.43)

we observe that |πj,k(y) − y| ≤ 10rk when Dθj,k(y) �= 0 or D2θj,k(y) �= 0 because Pj,k goes

through xj,k and θj,k is supported in 10Bj,k; this yields the brutal estimate

|Dσk(y)| ≤ C and |D2σk(y)| ≤ C10k for y ∈ V10
k \ V8

k . (4.44)
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28 G. David and S. Mayboroda

Next we use this to estimate Dfk and D2fk. Recall from (4.19) that fk+1 = σk ◦ fk;

thus (with probably very bad but yet understandable) notation,

Dfk+1(x) = Dσk(fk(x)) ◦ Dfk(x) (4.45)

(but we shall not always write the variables) and then

D2fk+1(x) = D2σk(fk(x))[Dfk(x),Dfk(x)] + Dσk(fk(x))[D2fk(x)] (4.46)

with ugly notation, but we immediately put norms everywhere, forget the algebra, and

get that

|D2fk+1(x)| ≤ C|D2σk(fk(x))| + 2|D2fk(x)| (4.47)

also because we know that all the fk are bilipschitz with uniform constants (that may

depend on δ1). We may rewrite this as

rk+1|D2fk+1(x)| ≤ Crk|D2σk(fk(x))| + 1

5
|rkD2fk(x)| (4.48)

because this is the proper scaling, and this way we insist on the fact that the 2nd term

contributes less.

We start in the most interesting case when y = fk(x) lies in the active region V8
k ;

then we use (4.41) with z = f (x) and get that

rk+1|D2fk+1(x)| ≤ Cε′′
k(f (x)) + 1

5
|rkD2fk(x)| (4.49)

where z is any point of B(y, rk). It should be noted that when y = fk(x) lies in the active

region V8
k , Lemma 4.28 says that this was the case for all the previous images fl(x), l < k,

so we also have estimates like (4.49) for these, that we can compose. We get that

|rk+1D
2fk+1(x)| ≤ C̃εk(x), where ε̃k(x) =

∑
l≤k

5l−kε′′
l (f (x)). (4.50)

This was when y ∈ V8
k . When y lies in the dying region V10

k \ V8
k , we use the bad

estimate (4.44) for k, but observe that the previous fl(x), l < k, were in the active region
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(by Lemma 4.28), so we can use the estimate (4.50) for D2fk. Thus, (4.48) yields

|rk+1D
2fk+1(x)| ≤ C + C̃εk(x) ≤ C, (4.51)

which is not a great estimate but should be enough. In the remaining case when

y ∈ �k \ V10
k , we denote by l < k the last time when fl(x) was in the active or dying

region, and use (4.50) or (4.51) to prove that

|D2fk+1(x)| = |D2fl+1(x)| ≤ Cr−1
l . (4.52)

These estimates on the 2nd derivatives will be enough for the better control that we

want on the Jacobian matrix of our global mapping g.

Remark 4.53. Yet we feel bad about using such crude estimates, so let us rapidly say

why (4.44), and then (4.51) can be improved. Our estimate |πj,k(y) − y| ≤ 10rk below

(4.43) was really lousy, because in fact |πj,k(y) − y| ≤ Cεrk when y ∈ �k (we have a good

Lipschitz graph description of �k near y). We need to be more careful about the terms

with Dπj,k − I, because of course it is not small. Yet, when we apply it to a tangent vector

v to �k, its effect is indeed of size at most Cε|v|, because T�k(y) is nearly parallel to

Pj,k. This is good because when we compose with fk, we only compute Dσk on vectors

v parallel to T�k(y). So we can add a factor of size ε in (4.44) and then (4.52). This

way, we get the not too surprising result that f (and then g later) is bilipschitz with a

constant which can be taken as close to 1 as we want, provided that we take δ1 small

enough.

5 Tangent Planes and Fields of Rotations

Once the mappings fk and the surfaces �k = fk(P0) are under control, [15] starts the

construction of the mapping g. The general idea is that for (x, t) ∈ R
d × R

n−d, g(x, t)

should be obtained from f (x) by going in the orthogonal direction, and at distance

roughly |t|. Of course, we need to organize this in a coherent way, and also it actually

makes more sense to start from fk(x), and go in a direction orthogonal to the tangent

direction of �k, because �k is smoother. This makes a difference because the limit object

� may be spiraling at small scales.

So our 1st task will be to study a little the variations of the tangent plane to

�k. Here we roughly follow [15, Chapter 9]. We know, for instance from the 1st lines of

Chapter 7 there, or more directly the description in Proposition 5.1 there, that each �k
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30 G. David and S. Mayboroda

is (at least) of class C2. Let us denote by T�k(y) the tangent plane to �k at y ∈ �k. We

also set

Tk(x) = T�k(fk(x)), (5.1)

and denote by πk(x) the orthogonal projection on the vector d-space parallel to Tk(x); it

is easier to define the differential of πk than Tk, which is why we will often consider πk.

We claim that when fk(x) ∈ V8
k (the active region),

|Dπk+1(x)| ≤ Cr−1
k ε̃k(x). (5.2)

There is no problem with the existence of Dπk+1(x), because �k is C2, so it is enough to

show that for x′ ∈ P0, close enough to x,

|πk+1(x) − πk+1(x
′)| ≤ Cr−1

k ε̃k(x)|x′ − x|. (5.3)

Let us evaluate the distance between T ′
k+1(x), the vector space parallel to Tk+1(x), and

its analogue T ′
k+1(x

′) for Tk+1(x
′). Letw ∈ T ′

k+1(x) be given; we can writew = Dfk+1(x) ·v
for some vector v ∈ R

d, and since we know (from Lemma 4.8 and the proof of Theorem

2.5 there) that the fk are bilipschitz with uniform bounds, we also get that |v| ≤ C|w|.
We know from (4.50) that for x′ close to x,

|Dfk+1(x) · v − Dfk+1(x
′) · v| ≤ C̃εk(x) r−1

k+1|x − x′||v|; (5.4)

since Dfk+1(x
′) · v ∈ T ′

k+1(x
′) by definition, we see that

dist (w,T ′
k(x

′)) ≤ |Dfk+1(x) · v − Dfk+1(x
′) · v| ≤ C̃εk(x) r−1

k+1|x − x′||w|.

Similarly, dist (w′,T ′
k+1(x)) ≤ C̃εk(x)r−1

k+1|x−x′||w′| for w′ ∈ T ′
k+1(x

′). It is easy to deduce

(5.3) from this because both spaces are d-dimensional. Our claim (5.2) follows.

The estimates when fk(x) ∈ V10
k \ V8

k are less glamorous; we use (4.51) instead of

(4.50) and get that

|Dπk+1(x)| ≤ Cr−1
k . (5.5)

When fk(x) ∈ �k \ V10
k , we use (4.52) and get that

|Dπk+1(x)| ≤ Cr−1
l , (5.6)

where l is the last index for which fl(x) lies in the active or dying zone.
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Harmonic Measure on Low-Dimensional UR Sets 31

Now we turn to the field of linear isometries, which is constructed in

[15, Proposition 9.3]. Let R be the set of linear isometries of Rn. There exist C1 functions

Rk : �0 → R, with the following main properties:

Rk(R
d) = Tk(x) for x ∈ �0; (5.7)

|Rk+1(x) − Rk(x)| ≤ Cε for x ∈ �0 and k ≥ 0; (5.8)

|DRk+1(x)| ≤ C1r
−1
k ε for k ≥ 0 and x ∈ �0. (5.9)

For (5.9), it comes from (9.33) there, which we can simplify because fk is bilipschitz in

the present situation.

We like these estimates, but want to improve them in many places to include

Carleson bounds that use the ε′′
k. For this, we want to use our bounds on the Dπk, and

the way the πk are used to produce the Rk.

Let us recall how this goes. We start with R0 = I. Then we suppose that Rk was

already constructed, and start with a 1st approximation Sk, defined by

Sk(x) = πk+1(x) ◦ Rk(x) ◦ π0 + π⊥
k+1(x) ◦ Rk(x) ◦ π⊥

0 , (5.10)

where π⊥
k+1(x) = I − πk+1(x) is the orthogonal projection in the direction orthogonal to

Tk(x), and we set π0 = p0(x) (the projection on P0) and π⊥
0 = I − π⊥

0 . This is the same

formula as (9.34) there, with just minor changes in the notation.

The now usual computation on composition, together with (5.2), yield that

|DSk(x)| ≤ 2|DRk(x)| + Cr−1
k ε̃k(x) when fk(x) ∈ V8

k . (5.11)

Then we look at (8.43) there, which says that Rk+1(x) is obtained from Sk(x) by the simple

rule

Rk+1(x) = H(Sk(x)), (5.12)

where R is a simple nonlinear projection from a set U of linear transformations that

are almost isometries, to the set R of linear isometries. This projection R is given by a

reasonably simple formula, but the main point here is that by (9.45) there it is (1+10−2)-

Lipschitz on U, where Sk(x) takes its values. As a consequence, (5.11) implies that

|DRk+1(x)| ≤ 3|DRk(x)| + Cr−1
k ε̃k(fk(x)) when fk(x) ∈ V8

k . (5.13)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac109/6585084 by U

niversity of M
innesota - Tw

in C
ities user on 31 January 2023



32 G. David and S. Mayboroda

Recall that when fk(x) ∈ V8
k , Lemma 4.28 says that this happened also for the previous

indices. Then the same induction computations as for (4.50) yields

|rk+1DRk+1(x)| ≤ Ĉεk(x), where ε̂k(x) =
∑
l≤k

2l−kε′′
l (f (x)). (5.14)

This is a good complement to (5.9), and now let us see how we may improve the

estimate (5.8) on |Rk+1 − Rk|. We claim that

|Rk+1(x) − Rk(x)| ≤ Cε′′
k(f (x)) ≤ C̃εk(x) when x ∈ �0 and fk(x) ∈ V8

k , (5.15)

where the 2nd part follows at once from the definition (4.50). So suppose that

y = fk(x) ∈ V8
k . Choose i ∈ Jk such that |y − xi,k| ≤ 10rk; then (7.19) there says that

Angle(Tk(x), Pi,k) ≤ Cε′
k(y), (5.16)

where ε′
k(y) is defined by (7.16) there (recall that Tk(x) = T�k(y)). Similarly, (7.10) there

says that

Angle(Tk+1(x), Pi,k) = Angle(T�k+1(σk(y)),Pi,k) ≤ Cεk(y), (5.17)

where this time εk(y) is defined in (7.7) there, but we can forget about this because it is

noted in (1.17) there that εk(y) ≤ ε′
k(y). Thus,

Angle(Tk(x),Tk+1(x)) ≤ Cε′
k(y). (5.18)

To be honest, we did not define the angles above and [15] is not much more precise;

however, all our angles here are small, and they are equivalent to, for instance, the

norm of the difference of orthogonal projections on the vector spaces parallel to the two

spaces that we consider. That is, (5.18) can be taken to mean that

|πk(x) − πk+1(x)| ≤ Cε′
k(y). (5.19)

When we compare ε′
k and ε′′

k, we see that the only difference is that ε′′
k reaches rk further,

which means that ε′
k(y) ≤ ε′′

k(z) for any z ∈ B(y, rk). This is very convenient because this
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Harmonic Measure on Low-Dimensional UR Sets 33

allows us to take z = f (x) (by (4.23) and because y = fk(x)); then (5.19) implies that

|πk(x) − πk+1(x)| ≤ Cε′′
k(f (x)). (5.20)

Next we use the definition (5.10) to estimate |Sk(x) − Rk(x)|. Since Rk sends R
d to Tk(x)

and hence its orthogonal complement Rn−d to Tk(x)⊥, we see that

Rk(x) = πk(x) ◦ Rk(x) ◦ π0 + π⊥
k (x) ◦ Rk(x) ◦ π⊥

0 ,

and then (5.10) implies that

|Sk(x) − Rk(x)| ≤ |πk+1(x) − πk(x)| + |π⊥
k+1(x) − π⊥

k (x)|
= 2|πk+1(x) − πk(x)| ≤ Cε′′

k(f (x)). (5.21)

This is good because (5.12) says that Rk+1(x) = H(Sk(x)) for a Lipschitz mapping H such

that H(Rk(x) = Rk(x) because Rk is a linear isometry (check with the definition (9.44)

there); (5.15) follows.

6 The Mapping g and Its Jacobian Matrix

We are now finally ready to define the mapping g. We shall keep g = f on �0 = R
d, and

now we define g on �0 = R
n \�0. Since g will be a bilipschitz mapping of Rn, it will map

�0 to � = R
n \ �, where � = f (�0).

In this section, the generic point of �0 is denoted by (x, t), with x ∈ R
d and

t ∈ R
n−d \ {0}. We set

g(x, t) =
∑
k≥0

ρk(t)
{
fk(x) + Rk(x) · t

}
for (x, t) ∈ �0, (6.1)

where the ρk form a partition of 1 that will be discussed shortly. This is the same thing

as (10.14) or (10.19) there, but some things were simplified, because here our initial

surface �0 is just P0 = R
d, so the projections p and q are just the projections π0 and π⊥

0

on R
d and R

n−d.

The functions ρk are defined by (10.15)–(10.17) there. They are radial,

∑
k≥0

ρk(t) = 1 for t ∈ R
n−d \ {0} (6.2)
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34 G. David and S. Mayboroda

(by (16) there), ρ0(t) = 0 when |t| ≤ 1, and (by (10.17) there) for k ≥ 1,

ρk(t) = 0 unless rk ≤ |t| ≤ 20rk. (6.3)

Thus, for each t, there are at most three consecutive k ≥ 0 such that ρk(t) �= 0.

Notice that g does roughly what was announced at the beginning of the previous

section: we start from fk(x) ∈ �k and go in the orthogonal direction for about |t|. The
fact that we actually use an average of up to three different Rk(x) does not matter much,

because (5.8) and (5.15) say that they are almost the same. And we are happy that we do

not need to take a limit this time.

We want to use the change of variable g : �0 → � to reduce the study of some

degenerate elliptic operators L on � to the study of operators L0 on �0, and because

of this we are interested in the structure of the the matrix of the differential mapping

Dg : �0 → �.

As in [13], we prefer to study the matrix J(x, t) of Dg(x, t) in a set of two

orthonormal bases of Rn, where the 1st one is the canonical basis of Rn, and the 2nd one

its image by Rk(x), where k = k(t) is chosen such that ρk(t) �= 0. It does not really matter

much which one, but for the sake of definiteness, let us choose k(t) as large as possible.

Let us denote Jac(x, t) = Dg(x, t) in the usual Euclidean basis and J(x, t) := Dg(x, t)Q(x, t)

where Q(x, t) is our matrix of isometry in the sense that Rk(t)(x)(y, s) = (y, s)Q(x, t) for

(y, s) ∈ R
n. We know, just because g is bilipschitz, that for small ε1 > 0 the matrix J(x)

is (uniformly) bounded and invertible, with a (uniformly) bounded inverse, and we are

mostly interested now in the block structure of J (when we cut Rn into R
d × R

n−d).

Proposition 6.4. We can write a decomposition of J as a block matrix

J(x, t) =
(

A1(x, t) C2(x, t)

C3(x, t) In−d + C4(x, t)

)
, (6.5)

where the d × d matrix A1 is bounded, C2, C3, and C4 are bounded and satisfy

Carleson measure conditions, and In−d is our notation for an identity matrix of size

n − d. Specifically, (2.14) holds with a constant C = C1(ε + δ1), where C1 depends on

n,d,C0,M0,M (but obviously not on δ1 or ε), and also we have the L∞ estimate

|C2(x, t)| + |C3(x, t)| + |C4(x, t)| ≤ C1(ε + δ1) (6.6)

for (x, t) ∈ R
n.
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Harmonic Measure on Low-Dimensional UR Sets 35

Remark 6.5. We claim that with the help of Remark 4.53, we can show that A1 is as

close to the identity matrix as we want, as long as we take ε and δ1 small enough. This is

because g is bilipschitz with a constant close to 1, and hence Dg is as close as we want

to an isometry. But in this paper we shall content ourselves with the fact that J(x, t) is

uniformly bilipschitz because g is.

Proof. The proof of the proposition will keep us busy for some time. We first consider

the t-derivatives of g. Let us compute ∂1g(x, t), where ∂1 is our notation for ∂
∂t1

. Here we

single out the 1st t-variable because this way we do not have an extra index, but the

other t-derivatives would be the same. From (6.1), we deduce that

∂1g(x, t) = D1 + D2 (6.8)

where

D1 =
∑
l

∂1(ρl(t))
{
fl(x) + Rl(x) · t

}
(6.9)

and

D2 =
∑
l

ρl(t)Rl(x) · ed+1, (6.10)

where ed+1 is the 1st element of the basis of Rn−d. In both term, the sum has at most 3

terms, corresponding to l = k, k − 1, by the comment below (6.3) and our choice of k as

the largest index for which ρ(t) �= 0.

We start with D1, notice that
∑

l ∂1(ρl(t)) = 0 because
∑

l ρl(t) = 0 (see (6.2)), use

this to subtract fk(x) + Rk(x) · t, and get that

|D1| ≤
∑
l

|∂1(ρl(t))|
{
|fl(x) − fk(x)| + ∣∣[Rl(x) − Rk(x)] · t∣∣}

≤ C|t|−1
∑

k−2≤l≤k−1

{
|fl(x) − fk(x)| + |t| |Rl(x) − Rk(x)|

}
= D11 + D12, (6.11)

where some of the terms may not exist. That is, if k = 0, then there was only one term in

the initial sum, coming from k = 0, we managed to kill it, and thus D1 = 0. Similarly, if

k = 1, we are left with only one term, coming from l = 0. And it could be that even when

k ≥ 2, we do not need l = k − 2, but the extra term will not hurt.
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36 G. David and S. Mayboroda

We start with D12 because the needed estimates are more recent. When fk−1(x) ∈
V8
k−1 (the active region), (5.15) says that

|Rk(x) − Rk−1(x)| ≤ C̃εk−1(x). (6.12)

Then (by Lemma 4.28) fk−2(x) ∈ V8
k−2 (if k ≥ 2, otherwise there is no term with l = k − 2),

and

|Rk−1(x) − Rk−2(x)| ≤ C̃εk−2(x) ≤ C̃εk−1(x). (6.13)

If fk−1(x) ∈ V10
k−1 \ V8

k−1 (the dying region), we replace (6.12) with (5.8), which says that

|Rk(x) − Rk−1(x)| ≤ Cε. (6.14)

In this case, Lemma 4.28 still says that fk−2(x) ∈ V8
k−2, and we can use (6.13). We are left

with the case when y = fk−1(x) lies in the dead region. Then Rk(x) = Rk−1(x) (because

σk−1(y) = y, �k and �k−1 coincide at y, and the definitions give Sk−1(x) = Rk−1(x) and

then Rk(x) = Rk−1(x). It is still possible that fk−1(x) lies in the dying or active region,

and then we use (6.14) (for k − 1) or (6.13). We summarize the cases and find that

D12 ≤ C̃εk−1(x) + Cεδ(x, t), (6.15)

where δ(x, t) = 1 if fk−1(x) or fk−2(x) lies in their respective dying region, and δ(x, t) = 0

otherwise. We will see later that this leads to a good Carleson estimate for D12.

Next consider D11 = C|t|−1 ∑
k−2≤l≤k−1 |fl(x) − fk(x)|, and first assume that

fk−1(x) ∈ V8
k−1. Then by (4.31),

|fk(x) − fk−1(x)| ≤ Cε′′
k−1(f (x)) rk−1. (6.16)

If k ≥ 2, Lemma 4.28 says that fk−2(x) ∈ V8
k−2, and (4.31) yields

|fk−1(x) − fk−2(x)| ≤ Cε′′
k−2(f (x)) rk−2. (6.17)

Otherwise, we do not need this estimate because D11 has only one term. Altogether,

D11 ≤ Cε′′
k−1(f (x)) + Cε′′

k−2(f (x)) (6.18)

(because t ≥ rk by (6.2)).
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Next we assume that fk−1(x) ∈ �k−1 \ V8
k−1. If fk−1(x) or fk−2(x) lies in the dying

region, we use the more brutal estimate (4.22) to see that |fk(x) − fk−1(x)| ≤ Cε, or

similarly for k − 1, and get that D11 ≤ C. Otherwise, fk−1(x) and fk−2(x) lie in their

dead regions, and D11 = 0. We summarize the estimates as we did above, by saying that

D11 ≤ Cε′′
k−1(f (x)) + Cε′′

k−2(f (x)) + Cεδ(x, t) (6.19)

with the same definition for δ(x, t) and where we set ε′′
l (f (x)) = 0 for l < 0.

Next we study D2, which we write as D2 = D21 + D22, where

D21 = Rl(x) · ed+1 (6.20)

and by (6.2) the rest is

D22 =
∑

k−2≤l≤k−1

ρl(t)[Rl(x) − Rk(x)] · ed+1. (6.21)

The main piece D21 gives the 1st term of the identity matrix In−d in (6.5), and of course

its analogue for the other t-derivatives of g give the rest of In−d. As for D22, we use the

same estimates (6.12)–(6.14) as above and find that

D22 ≤ C̃εk−1(x) + Cεδ(x, t). (6.22)

We may now consider the x-derivatives of g, and which we feel courageous

enough to consider all at the same time and denote by Dxg. By (6.1),

Dxg(x, t) =
∑
j≥0

ρj(t)
{
Dfj(x) + DRj(x) · t

}
=: D3 + D4. (6.23)

We start with D4. Notice that when k = 0, Rk = I, and DRk = 0, so we may assume that

k ≥ 1. As usual begin with the case when y = fk−1(x) ∈ V8
k−1, apply (5.14), and find that
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38 G. David and S. Mayboroda

|rkDRk(x)| ≤ Ĉεk−1(x), and similarly for the previous iterates if they are needed. This

yields

|D4| ≤ Ĉεk−1(x) + Ĉεk−2(x) + Ĉεk−2(x) ≤ Ĉεk−1(x) (6.24)

because |t| ≤ 20rk (by (6.3) and because k ≥ 1), and where the last part comes from the

definition of the ε̂l in (5.14). When fk−1(x), or one of its two predecessors, lies in the

closure of its dying region, we use (5.9) for all of them and find that |D4| ≤ Cε.

We are left with the case where the three points lie in the interior of their dead

region. Denote by l the smallest integer such that fl(x) lies in the the interior of its dead

region; thus l < k−2. We know that all the fm(x),m ≥ l, are equal to fl in a neighborhood

of x, and when we follow the computations we see that this means that the Rm, m ≥ l,

also coincide with Rl near x (for instance, we check first that since σl(y) = y near fl(x),

we get that �l+1 = �l near fl(x), then πl+1 = πl near x, then Sk = Rk, etc.). Now the DRj

in the formula (6.23) are all equal to DRl, and (5.9) yields

|D4| ≤ Cεrkr
−1
l ≤ Cε10l−k. (6.25)

Again we claim that this decay will lead to a Carleson measure estimate, but let

us now concentrate on our last term

D3 =
∑
j≥0

ρj(t)Dfj(x), (6.26)

which as usual we cut in two. The 1st part

D31 = πk(x) ◦ D3, (6.27)

where we project on the vector plane Rk(x)(Rd) parallel to Tk(x), falls in the matrix A1

of the decomposition (6.5), and we do not need any special information about it, except

that we know that A1 is bounded (and even J is bilipschitz). We are left with

D32 = πk(x)⊥ ◦ D3 =
∑
j≥0

ρj(t)[πk(x)⊥ ◦ Dfj(x)]. (6.28)
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Harmonic Measure on Low-Dimensional UR Sets 39

Observe that the image of Dfj(x) is contained in the tangent direction Rj(x)(Rd) (parallel

to Tj(x)), and πj(x)⊥ vanishes on this space. Also, Dfj(x) is bounded, so

|D32| ≤ C
∑

k−2≤j≤k

|πj(x)⊥ − πk(x)⊥| = C
∑

k−2≤j<k

|πj(x) − πk(x)|. (6.29)

The simplest for us is to observe that |πj(x) − πk(x)| ≤ C|Rj(x) − Rk(x)|. Indeed πj(x)

is the projection on Rj(x)(Rd), and an orthonormal basis of that space is given by the

Rj(x)(el), 1 ≤ l ≤ d, so πj(x)(v) = ∑d
l=1〈v,Rj(x)(el)〉Rj(x)(el). Of course using this is a

little strange because the estimates (5.15) and (5.8) that we are about to use come from

estimates on |πj(x) − πk(x)|, as in (5.19). Anyway, |D32| ≤ C
∑

k−2≤j<k |Rj(x) − Rk(x)| can
now be estimated exactly as D22 and D11, and we get that

D22 ≤ C̃εk−1(x) + Cεδ(x, t) (6.30)

as in (6.22).

We completed the decomposition of J; now we need to show that the error terms

in (6.15), (6.19), (6.22), (6.24), (6.25), and (6.30) are functions that satisfy a Carleson

measure estimate.

We start with the function ε̂k−1(x) that show up in (6.24). Recall from (5.14)

that ε̂k−1(x) = ∑
l≤k−1 2

l−k+1ε′′
l (f (x)). This is a function of t as well because since

k = k(t) (and k ≥ 1), (6.3) says that rk ≤ |t| ≤ 20rk. We will use the fact that

ε̂2k−1(x) ≤ C
∑

l≤k−1 2
l−k+1ε′′

l (f (x))2 by Cauchy–Schwarz.

In order to prove (2.14) for this function, we have to estimate

I(X,R) =
∫

�0∩B(X,R)

|̂εk−1(x)|2 dydt

|t|n−d
≤ C

∫
�0∩B(X,R)

∑
0≤l≤k−1

2l−kε′′
l (f (x))2

dydt

|t|n−d
. (6.31)

First observe that since rk ≤ |t| ≤ 20rk and |t| ≤ R when (y, t) ∈ B(X,R) (recall

that here X = (x, 0) lies in P0), we only sum over k such that rk ≤ R. Let us fix x, k, and

l, and integrate in t first. We integrate in the region A(k, l) where rk ≤ |t| ≤ 20rk, and∫
A(k,l)

dt
|t|n−d ≤ C. We are left with

I(X,R) ≤ C
∫
y∈P0∩B(X,R)

∑
0≤l≤k−1

2l−kε′′
l (f (x))2 dy. (6.32)

We now sum over k, then l. The sum over k disappears because of the converging factor

2l−k, and the sum over l is less than Cδ1, by (4.14) and (4.15) (recall that g(y) = f (y) on

P0). We are left with I(X,R) ≤ Cδ1Hd(P0 ∩ B(X,R)) ≤ Cδ1R
d, as needed.
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40 G. David and S. Mayboroda

The numbers ε̃k−1(x) are just smaller than the ε̂k−1(x), so we do not need to worry

about them; the same is true of ε′′
k−1(f (x) and ε′′

k−2(f (x), which are just two pieces of

ε̂k−1(x). The next function to control is εδ(x, t), which counts whether fk−1(x) or fk−2(x)

lies in the dying zone, or its variant where we also include fk−2(x) which is implicit in

the description below (6.24). We need to control

I ′(X,R) =
∫

�0∩B(X,R)

ε δ(x, t)
dydt

|t|n−d
. (6.33)

We know from Lemma 4.28 that for a given x, there is at most one l ≥ 0 such that

fl(x) ∈ V10
l \V8

l , and the only t for which l ∈ {k−1,k−2,k−3} are such that rk ≤ |t| ≤ 20rk
for k ∈ {l+ 1, l+ 2, l+ 3}. That is, t ∈ [10−3rl, 2rl/10]. We integrate against |t|d−ndt, get at

most Cε, then integrate against y and get at most CεRd, as needed.

Our last contribution comes from (6.25), where for some earlier l = l(x) < k − 2,

fl(x) lies in the dead region for the 1st time, and then we pay D4 ≤ Cε10l−k. This yields

the integral

I ′′(X,R) = ε

∫
y∈Z∩B(X,R)

∫
0<|t|≤R

∑
k(t)≥l(x)

100l−k dydt

|t|n−d
, (6.34)

where Z is the set of points y ∈ P0 such that l(y) exists. As before, we integrate first

against the t such that k = k(t) and get a constant, then sum in k and get another

constant, and finally integrate in y and get at most CεRd.

This completes our verification that the functions in our various estimates

satisfy a Carleson condition, as announced with a constant dominated by C(ε + δ1).

The L∞ bound (6.6) is easier (we do not even have to sum the terms); Proposition 6.4

follows. �

It will be good to know that the class of matrices that have the special form given

in Proposition 6.4 is stable under taking inverses, products, and transposes. Indeed we

start from our favorite operator L = −divDα(Y)d+1−n∇, and then we use g to change

variables and get an operator L0 on the simpler domain �0 = R
n \ R

d. A fairly standard

computation, which the reader may find in [13, Lemma 6.17] shows that L0 = divA∇,

where the matrix of A is

A(x, t) = (Dα(g(x, t))−(n−d−1) |det J(x, t)|(J(x, t)−1)TJ(x, t)−1; (6.35)
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Harmonic Measure on Low-Dimensional UR Sets 41

maybe the reader expected the same formula with J(x, t) replaced with Dg(x, t), but

J(x, t) = Dg(x, t)Q(x, t) and the isometry Q(x, t) does not change (J(x, t)−1)TJ(x, t)−1 nor

the determinant (and J has a simpler form!). The next lemma will thus tell us that

Theorem 2.15 can be applied to L0 and A.

Lemma 6.36. Denote by M(M, τ ,K) the class of matrix-valued functions J that have a

decomposition (6.5), where A1 is bounded and invertible, with a bounded inverse such

that ‖A1‖∞ +‖(A1)−1‖∞ ≤ M, each Ci, i = 2, 3, 4, satisfies the Carleson bound (2.14) with

C = K, and ‖Ci‖∞ ≤ τ for i = 2, 3, 4. Also assume that τ < (6M)−1. Then M(M, τ ,K)

is stable under taking the transposed matrices, J−1 ∈ M(M2, 6M2τ , 36M4K) for

J ∈ M(M, τ ,K), and JJ ′ ∈ M(M2, 8M2τ , 64M4K) for J, J ′ ∈ M(M, τ ,K).

Here, ‖ · ‖ is the norm of the associated operator acting on the Euclidean R
n and

‖ · ‖∞ is its supremum in x, t.

We decided to compute invertibility on the block matrix A1 rather than the full

matrix J because this is easier, but as soon as the Ci are small enough, there is no real

difference. That is, we know that g is bilipschitz, so J = J(x, t) is invertible, with some

uniform bound M̃ on ||J(x, t)−1||. Of course, M̃ does not depend on ε or δ1; taking these

constants smaller only makes our assumptions on the stopping time region C harder to

check. Set

T =
(

A1 0

0 In−d

)
and E = J − T; (6.37)

then ||E|| is as small as we want, by (6.6), and T and A1 are invertible too, with ||T−1|| =
||T−1|| ≤ 2M̃, so we can apply the lemma to J, with M = 2M̃ and τ = C(ε + δ1).

Because of the way we once used δ1 to control some geometric quantities that

should really have been controlled by ε1, we have to take δ1 small. Also, we decided not

to use the various remarks leading to Remark 6.5, so we do not know officially that our

changes of variable are in fact bilipschitz with a constant near 1. So our argument is

sound, but not optimal.

Proof. Let us now prove the lemma; the verification will be mostly a pointwise thing.

The fact that JT ∈ M(M, τ ,K) when J ∈ M(M, τ ,K) is clear; let us now consider the

inverse of J ∈ M(M, τ ,K). Define T and E as in (6.37), and observe that T−1 is a block

matrix like T (the associated linear mapping acts as we want on R
d and R

n−d)

J−1 = (T + E)−1 = [T(I + T−1E)]−1 = (I + T−1E)−1T−1 (6.38)
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42 G. David and S. Mayboroda

(where the invertibility of J follows from the computation below) and then use our

assumption that τ ≤ (6M)−1 to write (I + T−1E)−1 as a Neumann series. This gives

||J−1 − T−1|| ≤ 2||T−1||||T−1E|| ≤ 2M2||E|| ≤ 6M2τ , (6.39)

which means that J−1 has a nice block decomposition. This give pointwise bounds,

and the L∞ bounds follow by taking supremums. The Carleson estimate also follows

directly from (6.39); we need squares because C in Definition 2.13 is quadratic. Now

we consider the product with another matrix J ′ ∈ M(M, τ ,K). Write J ′ = E′ + T ′, with

similar notation, notice that

JJ ′ = (E + T)(E′ + T ′) = TT ′ + R (6.40)

where TT ′ is a diagonal block matrix like T and T ′ (again look at the corresponding

endomorphism), and ||R|| ≤ 6τM + 9τ2 ≤ 6τM. As before, the L∞ and Carleson bounds

follow. �

7 Distance Functions like Dα

The next string of estimates concerns the Carleson behavior of two things that are

related. The distance function D = Dα, associated to our final set �, or in fact any

uniformly rectifiable set E, and a control function λ(x, r) for the average density of an

Ahlfors-regular measure living on E. Later on, we shall study relations between two dis-

tance functions, typically one coming from E and one coming from our approximating

surface.

7.1 The function λ

Let E be a uniformly rectifiable set E, and σ any Ahlfors regular measure supported on

E. We want to define a λ(x, r) that will measure, in a reasonable smooth way, the density

of σ .

Pick a smooth radial, nonnegative function η, supported in the unit ball of Rn,

with
∫

η = 1, and set ηt = 1
td

η
(x
t

)
(notice the normalization adapted to R

d). We will use

the ηt for different things.

For x ∈ E and r > 0, we define a first, not too precise, measure of the density,

namely

λ0(x, r) =
∫
E∩B(x,r)

ηr(y − x)dσ(y) > 0, (7.1)
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Harmonic Measure on Low-Dimensional UR Sets 43

and then a center of mass

�r(x) = λ0(x, r)
−1

∫
E∩B(x,r)

y ηr(y − x)dσ(y)

= x + λ0(x, r)
−1

∫
E∩B(x,r)

(y − x) ηr(y − x)dσ(y),

(7.2)

where we write the 2nd formula to insist on the translation invariance, and finally the

better density

λ(x, r) =
∫
E∩B(�r(x),r)

ηr(y − �r(x))dσ(y). (7.3)

We prefer to use λ rather than λ0, because maybe x itself lies far from an optimal

plane for α(x, 10r) (defined below).

Anyway, we want to show that

r|∇x,rλ(x, r)| ∈ CM(E × R+), (7.4)

where we define CM(E × R+) as in Definition 2.13, but with R
d replaced with E. That

is, we say that a function F(x, t), defined on E × (0,+∞), satisfies the Carleson measure

condition, and write F ∈ CM(E × R+), when there is a constant C ≥ 0 such that

∫
x∈E∩B(X,R)

∫
t∈(0,R)

|F(x, t)|2 dσ(x)dt

t
≤ CRd (7.5)

for X ∈ E and R > 0. We could replace σ withHd|E without changing the class CM(E×R+).

The logical plan for proving (7.4) will work: for each (x, r) ∈ E ×R+, we will find

a flat measure μ that approximates σ well in B(x, 10r) and compare the three quantities

above to the same ones with σ replaced by μ. The good approximation will be in terms

of the Tolsa numbers α(x, r), which we discuss now.

We will use the same definition of α(x, r) is the same as in [13].

We first define flat measures and local Wasserstein distances. Denote by P the

set of affine d-planes in R
n, and for each plane P ∈ P, denote by μP = Hd|P the restriction

of Hd to P (in other words, the Lebesgue measure on P). By flat measure, we shall mean

simply mean a measure cμP, with c > 0 and P ∈ P. The number α(z, r) will measure the

distance between our measure σ and flat measures, locally in the ball B(z, r), which we

shall often take centered on E because this way we know that μ(B(z, r)) is fairly large.
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44 G. David and S. Mayboroda

Definition 7.6. For z ∈ R
n and r > 0, denote by Lip(z, r) the set of Lipschitz functions

f : Rn → R such that f (y) = 0 for y ∈ R
n \B(z, r) and |f (y)− f (w)| ≤ |y−w| for y,w ∈ R

n.

Then define the normalized (local) Wasserstein distance between two measures σ

and μ by

dist z,r(σ ,μ) = r−d−1 sup
f∈Lip(z,r)

∣∣∣∣ ∫ f dσ −
∫

f dμ

∣∣∣∣ (7.7)

and the local distance from σ to flat measures by

α(z, r) = inf
c≥0,P∈P dist z,r(σ , cμP). (7.8)

We normalized dist z,r(σ ,μ) with r−d−1 because this way, if μ(B(z, r)) ≤ Crd and

σ(B(z, r)) ≤ Crd, then dist z,r(σ ,μ) ≤ 2C because

‖f ‖∞ ≤ r for f ∈ Lip(z, r). (7.9)

Also observe that if B(y, s) ⊂ B(z, r), then Lip(y, s) ⊂ Lip(z, r); it follows that

dist y,s(σ ,μ) ≤ (r/s)d+1 dist z,r(σ ,μ), and hence

α(y, s) ≤ (r/s)d+1α(z, r) when B(y, s) ⊂ B(z, r). (7.10)

Return to the proof of (7.4). We want to show that

r|∇x,rλ(x, r)| ≤ Cα(x, 10r) for x ∈ E and r > 0, (7.11)

because then (7.4) will follow from Theorem 1.2 in[31], which says that when E is

uniformly rectifiable and σ is any Ahlfors regular measure on E, then

(x, r) �→ α(x, r) ∈ CM(E × R+). (7.12)

Strictly speaking, [31] defines the function α slightly differently, on the set of dyadic

cubes in R
n rather than balls centered on E. But the difference is really minor, in the

sense that one quantity controls the other, and we refer to Lemma 5.9 in [13] for the

verification.

It is easy to see that |r∇x,rλ(x, r)| ≤ C, so (7.11) is trivial when α(x, 10r) ≥ C−1.

Therefore, we may assume that α(x, 10r) ≤ C−1, with C as large as we want. Choose an

almost optimal flat measure μ = aHd|P in the definition of α(x, 10r), where of course P is
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Harmonic Measure on Low-Dimensional UR Sets 45

a d-plane and a > 0. We do not intend to use the fact that μ is nearly optimal here, just

that its distance to σ is small. That is, if this distance was some small β > 0, we would

just get (7.11) with Cβ. The most trivial application of this (obvious) remark is that we

may use α(x, 107r) instead, or use some other numbers and planes.

With the assumption that α(x, 10r) ≤ C−1 (and by testing for example the

definition against a multiple of ηr), we get that C−1 ≤ a ≤ C, for some C that depends on

η and the regularity constant for σ .

Set α = α(x, 10r) to save energy. Also write λ̃0(x, r) for the analogue of λ0(x, r),

but with μ, and do the same thing for �̃r(x) and λ̃(x, r). We use the definition of α and

find easily that

|̃λ0(x, r) − λ0(x, r)| ≤ Cα (7.13)

and then, with just a bit more of computation, that

|�̃r(x) − �r(x)| ≤ Crα. (7.14)

Then we first try to differentiate with respect to x, that is, estimate

∇xλ(x, r) =
∫
E

∇x[ηr(y − �r(x))] dσ(y), (7.15)

and the 1st thing to do is differentiate �r. Thus, we first differentiate (with respect to x)

the quantity ηr(y−x) = r−dη((y−x)/r) and we get −r−d−1∇η((y−x)/r). So, for instance,

∇xλ0(x, r) = −r−d−1
∫
E

∇η((y − x)/r)dσ(y) (7.16)

and, using the 2nd part of (7.2),

∇x[�r(x) − x] = −∇xλ0(x, r)

λ0(x, r)
[�r(x) − x] − λ0(x, r)

−1
∫
E

ηr(y − x)dσ(y)

−λ0(x, r)
−1r−d−1

∫
E
(y − x)∇η(y/r − x/r)dσ(y). (7.17)

We prefer to subtract x because despite the more complicated formula, the flawless

homogeneity makes it easier to check that |∇x�r(x)| ≤ C. We will also need to know that

dist (�r(x), P) ≤ Cαr. (7.18)
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46 G. David and S. Mayboroda

Indeed, it is obvious that �̃r(x) ∈ P because μ is supported in P, so dist (�r(x), P) ≤
|�r(x) − �̃r(x)| ≤ Crα by (7.14).

Let us return to (7.15), set V(x) = ∇x�r(x) to save notation, and notice that

∇x[ηr(y − �r(x))] = −r−d−1∇η((y − �r(x))/r) · V(x),

so that (7.15) becomes

∇xλ(x, r) = −r−d−1
( ∫

E
∇η((y − �r(x))dσ(y)

)
· V(x), (7.19)

where we pulled V(x) out of the integral to stress the fact that it does not depend on y.

Since V(x) is bounded, we see that |∇xλ(x, r)| ≤ CA, where

A = r−d−1
∫
E

∇η((y − �r(x))dσ(y). (7.20)

Let us compare Awith the same expression A1, where we just replace σ by μ. Notice that

the integrand f (y) = ∇η((y − �r(x)/r) is a nice Lipschitz function supported on B(x, r),

with Lipschitz norm less than Cr−1, so

|A − A1| = r−d−1
∣∣∣ ∫

E
f (y)(dσ(y) − dμ(y))

∣∣∣ ≤ Cαr−1

by (7.7) and the definition of μ, and where we get an extra r−1 coming from the Lipschitz

norm of f . Next set denote by ξ the orthogonal projection of �r(x) on P, and consider

A2 = −r−d−1
∫
P

∇η((y − ξ)/r)dμ(y),

where we just replaced �r(x) by ξ in the definition of A1. We claim that A2 · V = 0

for every vector V (and hence A2 = 0). When V is parallel to P, A2 · V = 0 because

we integrate the partial derivative in the direction of V of a function with compact

support. When instead V is orthogonal to P, V(x) · ∇η((y − ξ)/r) = 0 for every y ∈ P,

because η is radial and V is orthogonal to the direction of y − ξ . So A2(V) = 0. Finally,

|A1(V)−A2(V)| ≤ Cr−1|�r(x)/r−ξ/r| ≤ Cr−1α, by differentiating again under the integral,

between �r(x) and ξ . Altogether |∇xλ(x, r)| ≤ CA ≤ Cr−1α; this proves the x-derivative

part of (7.11), and indeed the only important properties of �r(x) are that

|∇x�r(x)| ≤ C anddist (�r(x), P) ≤ Cαr. (7.21)
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Harmonic Measure on Low-Dimensional UR Sets 47

We still need to take care of r-derivatives, and this will work the same way. This

time we need to compute

∂rλ(x, r) =
∫
E

∂r[ηr(y − �r(x))] dσ(y), (7.22)

and we start with the derivatives of λ0 and �r(x) with respect to r. The derivative of

ηr(y − x) = r−dη((y − x)/r) is

∂

∂r

(
ηr(y − x)

) = −dr−d−1η((y − x)/r) − r−d−2∇η((y − x)/r) · (y − x), (7.23)

which means that for instance

∂rλ0(x, r) = −r−d−1
∫
E

[
dη((y − x)/r) + ∇η((y − x)/r) · (y − x)/r

]
dσ(y). (7.24)

Then r∂rλ0(x, r) is also bounded, as for ∇xλ(x, r).

Next we study W = ∂r�r(x) = ∂r[�r(x) − x], with �r(x) − x = λ0(x, r)
−1

∫
E∩B(x,r)

(y−x) ηr(y−x)dσ(y). Recall that C−1 ≤ λ0(x, r) ≤ C and
∫
E∩B(x,r)(y−x) ηr(y−x)dσ(y) ≤ Cr.

The partW1 where we differentiate λ0(x, r)
−1 is thus at most Cr|∂rλ0(x, r)| ≤ C; we are left

with W2 = ∫
E∩B(x,r)(y − x) ∂

∂r

(
ηr(y − x)

)
dσ(y). We use (7.23) again, get one more power of

r than in (7.24), and it follows that W is bounded. Finally, we return to (7.22); compared

to the computation for λ0, we get an extra term coming from W. That is,

∂rλ(x, r) = −r−d−1
∫
E

[
dη((y − �r(x))/r) + ∇η((y − �r(x))/r) · (y − �r(x))/r

+∇η((y − �r(x))/r) · W
]
dσ(y) (7.25)

and we just need to estimate A = r−d−1
∫
E ∇η((y − �r(x))/r) because W is bounded. We

are lucky; A is the same as in (7.20), and we proved that |A| ≤ Cr−1α, so |∂rλ(x, r)Cr−1α as

well, and the full (7.11) follows. This also completes our proof of (7.4) (because of (7.12)).

7.2 The distance function Dα versus the distance to a good plane

Now we take a distance D = Dσ ,α related to σ , and use the α numbers to compare it

locally to the distance to a plane.

Lemma 7.26. Let σ be any Ahlfors-regular measure on any AR set, and define D = Dσ ,α

by (11.2). For x ∈ E, r > 0, any d-plane P = P(x, r) that almost minimizes in the definition
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48 G. David and S. Mayboroda

of α(x, 16r), z ∈ B(x, 2r) such that

min(dist (z,P), dist (z,E)) ≥ 10−2r, (7.27)

we have

∣∣∣ D(z)

dist (z,P(x, r))
− Cαλ(x, r)−1/α

∣∣∣ ≤ C
∑
l≥4

2−αlα(x, 2lr), (7.28)

where C depends on n and the AR constants for σ and Cα is a dimensional constant that

does not depend on E or σ .

We could stop the sum when 2lr ≥ 10 if we are really talking about σ and the

approximating surface �, but we continue it forever because we are talking about an

arbitrary Ahlfors-regular set E with an Ahlfors regular measure σ on it. We did not

require E to be uniformly rectifiable in the statement, but this assumption will be very

useful to control the right-hand side through Tolsa’s theorem.

We like to keep some choice on which good plane P = P(x, r) to use because some

different constraints may show up.

Proof. This statement looks like [13, Lemma 6.57], but since the notation may be

confusing we give a proof here. This will allow us to think at the same time about a sim-

ilar control on the difference between the quantities ∇zD and Cαλ(x, r)−1/α∇z dist (z,P),

which of course is Cαλ(x, r)−1/α times the unit vector that points in the direction opposite

(and orthogonal) to P.

Notice that with our assumption (7.27), both D(z) and dist (z,P) are both of the

order of r, and λ(x, r) is bounded from above and below, we may instead check that

∣∣D(z)−α dist (z,P)α − C′
αλ(x, r)

∣∣ ≤ C
∑
l≥1

2−αlα(x, 2lr), (7.29)

where by (11.2)

D(z)−α =
∫
E

|z − y|−d−α dσ(y), (7.30)

which is easier to compute. And in the gradient variant, we would compare the gradient

of D−α to C′
αλ(x, r) times the gradient of dist (z,P(z))−α.
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Harmonic Measure on Low-Dimensional UR Sets 49

When we say that P = P(x, r) that almost minimizes in the definition of α(x, 16r),

we mean that there is a flat measure μ0 on P such that, say,

dist x,16r(σ ,μ0) ≤ 2α(x, 16r). (7.31)

We proceed as in [13, Lemma 6.57], and cut D(z)−α into pieces

Ik =
∫

|z − y|−d−αθk(y)dσ(y), (7.32)

where the θk form a smooth partition of 1 such that θk is supported in the annulus

Ak = B(x, 2k+4r) \ B(x, 2k+2r) (but just Ak = B(x, 16r) for k = 0). We also set

I ′k =
∫

|z − y|−d−αθk(y)dμ0(y). (7.33)

Next write μ0 = λHd|P, and observe that

∑
k

I ′k = λ

∫
P

|z − y|−d−αdHd(y) = C′′
αλdist (z,P)−α, (7.34)

by rotation and dilation invariance. So we want to estimate
∑ |Ik − I ′k|. Also, for k

large, α(x, 16r) does not control the difference between σ and μ0, so we will need a

flat measure μk = λkHd|Pk that nearly minimizes in the definition of α(x, 2k+4r), as in

(7.31) but at a larger scale; we also set

I ′′k =
∫

|z − y|−d−αθk(y)dμk(y) =
∫

fk(y)dμk(y), (7.35)

with fk(y) = |z−y|−d−αθk(y). Obviously, we want to use the definition of dist x,2k+4r(σ ,μk)

to the function fk. Notice that fk is supported in Bk = B(x, 2k+4r), but the reader may be

afraid that it is not smooth near z.

When k ≥ 1, we know that z ∈ B(x, 2r) and y ∈ Ak, so |z − y| ≥ 2k+1r, fk is

Lipschitz with a constant C(2kr)−(d+α+1), and (7.7) yields

|I ′′k − Ik| ≤ C||fk||lip (2k+4r)d+1 dist x,2k+4r(σ ,μk) ≤ C(2kr)−αα(x, 2k+4r). (7.36)

When k = 0, the function fk as it is defined has a singularity at z, but our assumption

(7.27) says that it lies at distance at least 10−2r from both E and P. So we may modify θ0,
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50 G. David and S. Mayboroda

so that θ0 and f0 take the same values as before on E and P, but now fk is smooth, with

||f0||lip ≤ Cr−(d+α+1); then (7.36) is also valid with k = 0.

Note that if we wanted to estimate a derivative of order m of Dσ ,α we could just

apply the same argument, with a function fk coming from a derivative of |z − y|−d−α,

with the effect of merely adding C2−kmr−m in the the right-hand side of (7.36). The same

remark will apply to the computations and estimates that follow.

Next we estimate |I ′′k−I ′k|, where we go from μ0 to μk; we write this as a telescopic

sum, that is, say that |I ′′k − I ′k| ≤ ∑
1≤j≤k δj,k, where

δj,k =
∫

fk(y)(dμj(y) − dμj−1(y)). (7.37)

The difference between μj and μj−1 is controlled by α(x, 2j+4r) + α(x, 2j+3r) (compare

both measures to σ and use the triangle inequality in (7.7)). Since we are talking

about flat measures here, this has two contributions on δj. The 1st one is from the

difference of densities |λj − λj−1| ≤ Cα(x, 2j+4r) + α(x, 2j+3r), which we need to multiply

by C(2kr)d||fk(y)||∞ ≤ C(2kr)−α. The 2nd one is from the distance between the planes

in the region Ak, which is less than C(α(x, 2j+4r) + α(x, 2j+3r))(2kr), which we need to

multiply by C(2kr)d||fk(y)||lip ≤ C(2kr)−1−α. We sum and get that

δj,k ≤ C(2kr)−α(α(x, 2j+4r) + α(x, 2j+3r)), (7.38)

and then

∑
k≥1

|I ′′k − I ′k| ≤
∑
k≥1

∑
1≤j≤k

δj,k ≤
∑
j≥1

(α(x, 2j+4r) + α(x, 2j+3r))(2jr)−α. (7.39)

Finally, we need to evaluate λ − λ(x, r). Let us compute I = ∫
ηr(y − �r(x))dμ0,

where ηr(y − �r(x)) is the same function that was used in the definition (7.3) of λ(x, r).

We finally evaluate λ, by computing I = ∫
ηr(y−�r(x))dμ0(y), where ηr(y−�r(x))

is the same function that was used in the definition (7.3) of λ(x, r). This way, replacing

μ0 with σ in I would yield λ(x, r), and so

|I − λ(x, r)| ≤ Crd+1||ηr(· − �r(x))||lip α(x, 16r) ≤ Cα(x, 16r) (7.40)

by (7.7) and the definition of μ0. If �r(x) were luckily lying on P, we would get I = λ

immediately, because η is radial and
∫

ηr = 1 on R
d; this is not necessarily true, but we

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac109/6585084 by U

niversity of M
innesota - Tw

in C
ities user on 31 January 2023



Harmonic Measure on Low-Dimensional UR Sets 51

will check in a moment that

dist (�r(x), P) ≤ Crα(x, 16r), (7.41)

and then it will follow, by the usual argument where we estimate the derivative of

ξ → ∫
P(x,r) ηr(z − ξ)dμ0(z) along a segment from �r(x) to P, that

|λ − λ(x, r)| ≤ Cα(x, 16r). (7.42)

Incidentally, this is the reason why we decided to use λ(x, r) rather than λ0: it could

happen that dist (x, P) is much larger than Crα(x, 16r). To check (7.41), we return to the

definition of �r(x) by (7.2), project on the (n−d)-space orthogonal the direction of P(x, r),

and then use the triangle inequality to find that

dist (�r(x), P) ≤ λ0(x, r)
−1

∫
E∩B(x,r)

dist (y, P(x, r) ηr(y − x)dσ(y)

≤ Cλ0(x, r)
−1rα(x, 16r) ≤ Crα(x, 16r),

(7.43)

where the last inequalities come again from (7.7) and the definition of μ0 because the

same integral, but against dμ0, would give 0 because we would integrate on P(x, r);

(7.41) follows.

We may now summarize. We have seen that D(z)−α = ∑
k Ik is quite close to∑

k I
′′
k , by (7.36), and then to

∑
k I

′
k, by (7.39); then by (7.34)

∑
k I

′
k = C′′

αλdist (z,P)−α Thus,

by (7.42),

∣∣D(z)−α − C′′
αλ(x, r)dist (z,P)−α

∣∣ ≤ Cr−α
∑
k

2−kαα(x, 2k+4r), (7.44)

which is the same as (7.29) and implies (7.28). Lemma 7.26 follows. �

7.3 The distance D�(g(x, t))

In what follows, we return to the construction of a bilipschitz change of variable

associated to a stopping time region � and give a good evaluation of the distance

D�(g(x, t)) associated to � = g(Rd), first compared to the distance to a good plane.

We shall use the same notation as in the 1st part, and in particular work on R
n,

except that we use the coordinates y ∈ R
d and t ∈ R

n−d to avoid some confusion with

the previous subsection. In the present subsection, we use the distance D� associated
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52 G. David and S. Mayboroda

with the surface � = g(Rd), where we put any Ahlfors-regular measure σ , and we relate

this to our change of variable. We no longer mention the exponent α in the notation,

both because it is fixed and we want to avoid extra confusion with the Tolsa numbers.

Proposition 7.45. The function � defined by

�(y, t) =
∣∣∣D�(g(y, t))

|t| − Cαλσ (f (y), |t|)−1/α
∣∣∣ (7.46)

satisfies a Carleson condition on �0.

As the reader guessed, λσ is the same function λ as above, but associated to the

measure σ and the set �. The constant Cα is the same as above.

Later in the subsection, we will manage to apply (7.28), but for the moment we

first estimate the distance from g(y, t) to some other plane that we define now. Let

(y, t) ∈ �0 be given, and as always set r = |t|. Also set x = f (y) and z = g(y, t). Choose

k = k(t), as we did above, to be the largest integer such that ρk(t) �= 0 (see near the

definition (6.1) of g). Let as before Tk(y) denote the tangent plane to �k at fk(y), and

recall from (6.1) that

z = g(y, t) =
∑
j≥0

ρk(t)
{
fj(y) + Rj(y) · t

}
. (7.47)

In this sum, there are at most 3 terms, corresponding to j = k, k − 1,k − 2 (when they

are nonnegative), and we will see that these terms are almost the same. Set z′ = fk(y) +
Rk(y) · t; notice that since z′ − fk(y) = Rk(y) · t is orthogonal to Tk(y) (because Rk(y) maps

(the orthogonal complement of) Rd to (the orthogonal complement of) Tk(y),

dist (z′,Tk(y)) = |z′ − fk(y)| = |t|. (7.48)

We want to compare D�(g(x, t)) = D�(z) to dist (z′,Tk(y)). Some error terms will come

from |z − z′|, but observe that

ψ1(y, t) := |t|−1|z − z′| ≤ |t|−1
∑

k−2≤j≤k−1

|fj(y) − fk(y)| + |t| |Rj(y) − Rk(y)|; (7.49)

(by (7.47)). Notice that ψ1 satisfies a Carleson condition by our treatment of D1

from (6.11).
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Harmonic Measure on Low-Dimensional UR Sets 53

Next we want to use (7.48) to estimate dist (z′, P(x, r)) where P(x, r) is a good

plane to apply (7.28). More precisely, since we want to apply (7.28) to various points, we

choose for each x ∈ � and r > 0 a nearly optimal flat measure μx,r for α(x, 16r) (where

the α-numbers are associated to � and σ ), and then let P(x, r) be the support of μx,r.

We return to our initial pair (y, t), and try to estimate the distance between

P(x, r) and Tk(y). This will take some time, but we shall remember that the main property

of P(x, r) in this respect is that

∫
�∩B(x,8r)

dist (w, P(x, r)) dσ(w) ≤ Crd+1α(x, 16r), (7.50)

which as usual we obtain by testing the product of dist (w, P(x, r)) by a bump function

against the difference σ −μx,r. Thus, it makes sense to estimate the distance from points

of � ∩ B(x, 8r) to Tk(y) too.

We start with the distance from points of �k to Tk(y). Let L be a bound for the

bilipschitz constant for f and the fk. Such a uniform bound for the fk comes from the

proof of Lemma 4.8, but if the reader does not want to believe this, there is an easy fix

explained below. Set

ψ2(y, t) = r−1 sup
w∈�k∩B(x,(10L)−2r)

dist (w,Tk(y)); (7.51)

we want to show that this is a Carleson function. For t so large that k = k(t) = 0,

�k = Tk(y) = P0 and so ψ2(y, t) = 0. Hence, we can restrict our attention to the pairs

(y, t) such that k = k(t) ≥ 1.

We start with the simpler function

ψ3(y, t) = sup
y′∈P0∩B(y,((2L)−1rk)

rk|DRk(y
′)|, (7.52)

where in fact we restrict to t such that k(t) ≥ 1 (otherwise set ψ3(y, t) = 0).

To estimate ψ3(y, t), let y
′ ∈ P0 ∩ B(y, (2L)−1rk), and first assume that fk(y

′) ∈ V8
k .

Then (5.14) says that rk|DRk(y
′)| ≤ Ĉεk(y

′), where ε̂k(y
′) = ∑

l≤k 2
l−kε′′

l (f (y′). But recall

that when we chose f (y′) to evaluate the ε′′
l , we could in fact have chosen any point w

such that |w − f (y′)| ≤ rk/2, and in particular, since f is M-bilipschitz and |y′ − y| <

(2L)−1rk, w = f (y). Thus, |DRk(y
′)| ≤ Ĉεk(y) in this case. Notice also that if fk(y) ∈ V7

k

and since fk is bilipschitz, this holds for all y′ ∈ P0 ∩ B(y, (2L)−1rk). If you do not trust

this, use (4.23) to go through |f (y) − f (y′)|.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac109/6585084 by U

niversity of M
innesota - Tw

in C
ities user on 31 January 2023



54 G. David and S. Mayboroda

A 2nd case is when fk(y) ∈ V11
k \ V7

k ; this is a little larger than the usual dying

zone, but Lemma 4.28 still says that for a given y this happens for at most one k. Then

we use (5.9), which is valid everywhere, to get that rk|DRk(y
′)| ≤ Cε on P0∩B(y, (2L)−1rk).

When fk(y) ∈ �k \ V11
k , we return to the largest l such that fl(V

11
k ), find that

Rk(y
′) = Rl+1(y

′), use the estimate above, and find that rk|DRk(y
′)| ≤ C10l−kε on P0 ∩

B(y, (2L)−1rk). Now we can follow our estimates for D4 (see near (6.24)–(6.25)) and find

that ψ3 satisfies the Carleson condition.

Next we use ψ3 to control ψ2. Let w ∈ �k ∩ B(x, (10L)−2r) be given. A way to find

out where w lies is to return to u ∈ �0 such that fk(u) = w, take the line segment [y,u],

and follow its image by fk. Recall that x = f (y) and |f (u) − w| = |f (u) − fk(u)| ≤ Crkε by

(4.23), so |y − u| ≤ (90L)−1r ≤ (4L)−1rk because r ≤ 20rk by (6.3). Then by (7.51)

|Rk(s) − Rk(y)| ≤ |s − y| r−1
k ψ3(y, t) for s ∈ [y,u]. (7.53)

But Rk(y) maps R
d to the vector space parallel to Tk(y), so the derivative in s ∈ [y,u] of

dist (fk(s),Tk(y)) is at most C|Rk(s) − Rk(y)| ≤ Cψ3(y, t). Of course, this distance is null

for fk(y); hence, it is at most Crkψ3(y, t) at the end of the path, for w = fk(u). That is,

dist (w,Tk(y)) ≤ Crkψ3(y, t), and this proves that ψ2 ≤ Cψ3, hence ψ2 satisfies a Carleson

measure estimate.

This is not over yet; now want to control the average distance from � to �k,

that is,

ψ4(y, t) = r−d−1
∫

�∩B(x,(20L)−1r)
dist (w,�k)dσ(w), (7.54)

and show that

ψ4 satisfies a Carleson estimate. (7.55)

We start when r ≥ 10−2 use the fact that for w ∈ �, we can write w = f (u) for some

u ∈ P0, and then dist (w,�k) ≤ |w − fk(u)| = |f (u) − fk(u)| ≤ Cε by (4.23), so that

ψ4(y, t) ≤ Cε for |t| ≥ 10−2. (7.56)
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Harmonic Measure on Low-Dimensional UR Sets 55

It is easy to see that (7.56) gives a bounded contribution to the Carleson norm of

ψ4(x, t)
2 dxdt

|t|n−d . Otherwise, when |t| ≤ 10−2, k ≥ 1 and, since rk ≤ r ≤ 20rk by (6.3),

ψ4(y, t) ≤ Cr−d−1
k

∫
�∩B(x,L−1rk)

dist (w,�k)dσ(w) ≤ Cr−d−1
k

∫
P0∩B(y,rk)

dist (f (u),�k)du

≤ Cr−d−1
k

∫
P0∩B(y,rk)

|f (u) − fk(u)|du ≤ Cr−d−1
k

∫
P0∩B(y,rk)

∑
l≥k

|fl+1(u) − fl(u)|du.

We take our earlier estimate for |fl+1(u) − fl(u)|, which we did when we estimated D11 in

(6.19), and which writes

|fl+1(u) − fl(u)| ≤ Crl(ε
′′
l (u) + εδl(u)) (7.57)

where δk(u) = 1 when fl(u) ∈ V10
l \V8

l , and δk(u) = 0 otherwise. Thus by Cauchy–Schwarz

ψ4(y, t)
2 ≤ Cr−d

k

∑
l≥k

10l−k
∫
P0∩B(y,rk)

ε′′
l (u)2 + ε2δl(u)2 du, (7.58)

where 10l−k = r−1
k rl. Set ψ ′

4(y, t) = ψ4(t, y)1k(t)≥1 (the piece that we estimate now). We

integrate (7.58) on a Carleson box B(X,R) ⊂ R
n centered at X = (x0, 0) ∈ P0, and get∫

B(X,R)

ψ ′
4(y, t)

2 dydt

|t|n−d
≤ C

∑
k≥1

∑
l≥k

10l−k
∫

(y,t)∈B(X,R);k(t)=k

∫
P0∩B(y,rk)

ε′′
l (u)2+ ε2δl(u)2

dudydt

rdk |t|n−d
.

Given y, u, l ≥ 1, and k ∈ [1, l], we integrate in the region where rk ≤ |t| ≤ 20rk, where∫
t

dt
|t|n−d ≤ C. Then we sum over y ∈ B(u, rk) and make the rdk disappear. Then we sum the

geometric series in k, and are left with∫
B(X,R)

ψ ′
4(y, t)

2 dydt

|t|n−d
≤ C

∑
l

∫
P0∩B(x0,2R)

ε′′
l (u)2 + ε2δl(u)2. (7.59)

where we used the fact that |u − x0| ≤ |u − y| + |y − x0| ≤ rk + R and rk ≤ |t| ≤ R. Notice

that rl ≤ rk ≤ |t| ≤ R in the sum above; we use the Carleson measure estimates proved

in Section 6 and get less than CRd. This completes our proof of (7.55).

We are now ready to compare P(x, r) (from (7.50)) and Tk(y), and we start with

the most interesting case when r ≤ 100 (so that rk ∼ r). Since (7.50) and (7.54) are merely

averages, we start with a Chebyshev argument to select good points ξj of � ∩ B(x, r). We

assume that ψ2(y, t), ψ4(y, t), and α(x, 16r) are small; otherwise, we will be happy with

a trivial estimate.
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56 G. David and S. Mayboroda

We first choose points near which we want to select these points. Lemma 6.2

in [15] says that in B(x, 19rk), �k coincides with the graph over a plane P of some

Cε-Lipschitz function. Let P′ be the vector d-plane parallel to P, and choose an

orthonormal basis e1, . . . , ed of P′. Then set wj = fk(y) + (20L)−2ejrk for j ≥ 1 and

w0 = fk(y). By the Lipschitz graph description, we can find points w′
j ∈ �k such that

|w′
j −wj| ≤ (200L)−2rk. Then by (7.50), (7.54), the Ahlfors regularity of �, and Chebyshev,

we can find points ξj ∈ �k, such that |ξj − wj| ≤ (200L)−2rk, and for which

dist (ξj, P(x, r)) ≤ Cα(x, 16r)rk and dist (ξj,�k) ≤ Cψ4(y, t). (7.60)

By the definition (7.51) of ψ2 (and if ψ4(y, t) is small enough to guarantee that

dist (ξj,�k) ≤ (4L)−1), we even get that

dist (ξj,Tk(y)) ≤ Cψ4(y, t) + ψ2(y, t). (7.61)

Thus, we manage to find d + 1 points ξi of �, that are sufficiently far from each other,

and that all lie very close to both P(x, r) and Tk(y). With a little bit of geometry, we

get that

dx,10rk(P(x, r),Tk(y)) ≤ Cα(x, 16r) + Cψ2(y, t) + Cψ4(y, t); (7.62)

see the discussion below (4.9) and [15, Lemma 12.7 on page 74]. Of course, this estimate

is still valid when the right-hand side of (7.62) is large, but it is useless.

Also, we forgot the case when r ≥ 100, but then k = 0, Tk(y) = P0, the

construction of �k gives dist (w, P0) ≤ Cε for every w ∈ �k, and the same argument

as above yields

dx,10r(P(x, r),Tk(y)) = dx,10r(P(x, r), P0) ≤ Cα(x, 16r) + Cεr−1. (7.63)

Finally, we return to the point z′ of (7.48). Notice that z′ ∈ B(x, 2r) because

|z′ − fk(y)| = |t| = r (by (7.48)) and |fk(y) − x| = |fk(y) − f (y)| ≤ Cεrk ≤ Cεr (by (4.23)).

In addition,

r−1|dist (z′, P(x, r)) − r| ≤ Cα(x, 16r)r + Cψ2(y, t) + Cψ4(y, t)r (7.64)
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Harmonic Measure on Low-Dimensional UR Sets 57

when r ≤ 100 (by (7.48) and (7.62)), and

r−1|dist (z′, P(x, r)) − r| ≤ Cα(x, 16r)r + Cεr−1 (7.65)

otherwise (by (7.63)). Let us first assume for the moment that these numbers are

small, and try to apply Lemma 7.26 to z′ and P(x, r). Notice that dist (z′, P(x, r)) ≥ r/2

directly by (7.65), but we also need to show that dist (z′, P(x, r)) ≥ 10−2r. Recall

that
∫
�∩B(x,8r) dist (w, P(x, r)) dσ(w) ≤ Crd+1α(x, 16r), by (7.50); it then follows from

the Ahlfors regularity of � that dist (w, P(x, r)) ≤ 10−1r for w ∈ E ∩ B(x, 7r), and

since z′ ∈ B(x, 2r), that dist (z′, P(x, r)) ≥ 10−2r, as needed for (7.27). So (7.28) holds,

hence

|D�(z′) − Cαλσ (x, r)−1/α dist (z,P(x, r))| ≤ Cr
∑
l≥4

2−αlα(x, 2lr) (7.66)

(where we also used the fact that dist (z,P(x, r)) ≤ 3r to multiply the estimate). Recall

from (7.49) that |z − z′| = |t|ψ1(y, t) = rψ1(y, t), and since it is easy to check that D� is

Lipschitz, we also have

|D�(z′) − |D�(z)| ≤ Crψ1(y, t). (7.67)

We add (7.67), (7.66), and (7.65) or (7.64) and get a good control on r−1|D�(z) −
Cαλσ (x, r)−1/α|t||, which is the same as �(y, t) in (7.46).

When the controlling numbers in (7.65) are large, we just say that �(y, t) ≤ C.

At this point, we have a good control of �(y, t) by various quantities, which

are functions of (y, t), and we just need to check that they satisfy Carleson measure

estimates on �0.

For the functions ψi, this was proved along the way. For the α-function, it is

a function of (x, r) that satisfies a Carleson measure estimate in � × (0,+∞), by the

theorem of Tolsa [31] (also see [13, Lemma 5.89] for the control of the geometric series

and Theorem 9.1 below for a statement of the dyadic version of this result), and it is

easy to see that when we compose it with the mapping (y, t) → (x, r) = (f (x), |t|), we get

a function of (x, t) that satisfies a Carleson estimate. We are left with the last term

Cεr−11r≥100, from (7.65), which also satisfies a Carleson measure estimate by direct

computation. This completes our proof of Proposition 7.45.
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58 G. David and S. Mayboroda

8 Surgery with D� and DE

In the previous section, we managed to control reasonably well the effect of our change

of variable g, provided that we consider the distance D� = D�,σ associated to an (in fact,

any) Ahlfors regular measure σ on �.

In the larger picture, we started from a set E, with its own Ahlfors regular

measure (we shall now call it μ), and we would like to use the corresponding distance

function DE = DE,μ. Notice that both measures also depend on α, but we shall not

mention this in the notation.

It does not make sense to compare our two measures in the places where E and

� have nothing to do with each other, so we will only compare them in the same region

�� =
⋃
Q∈�

W(Q), (8.1)

where for each Q ∈ �, W(Q) is the Whitney box defined by

W(Q) = {
x ∈ B(xQ,M0l(Q)) ; dist (x,E) ≥ M−1

0 l(Q)
}
. (8.2)

As the reader may have guessed, the precise shape of �� does not matter so much, but

we probably do not want it to be too small because this is the region where we can play.

We state the main result of this section, and then discuss.

Proposition 8.3. Suppose E is uniformly rectifiable, μ is an Ahlfors regular measure

on E, � satisfies the conditions of Section 4 (with M large enough and ε1 small enough),

and � = f (P0) denote the surface constructed above. Then there is an Ahlfors regular

measure σ on � such that

� := 1��

∣∣∣DE,μ

D�,σ
− 1

∣∣∣ satisfies a Carleson measure condition on R
n \ �. (8.4)

Here it is more convenient (or just safer) to let M0 be as large as possible, then

chooseM and ε1, and do the stopping time construction accordingly. We may pay a huge

price (depending on M0), but this is more transparent.

We decided to require a Carleson measure estimate relative to � because R
n \ �

is the place the where distance function D̂ below will live, and this is also the region

where we hope to use our change of variable to control operators. We could equally

prove a Carleson measure estimate relative to E, in fact with the same proof; see the

remark below (8.41).
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Harmonic Measure on Low-Dimensional UR Sets 59

The goal of this is to control a degenerate elliptic operator L = LE associated to

DE,μ on �E = R
n \ E, and we hope to compare it to an operator L̂ on �� = R

n \ �, but we

would like to keep the same formula on a set which is as large as possible, so we let L̂

be associated to the distance function D̂ defined by

D̂(z) = DE,μ(z) for z ∈ �� (8.5)

and

D̂(z) = D�,σ (z) for z ∈ R
n \ [� ∪ ��]. (8.6)

We do not fear a discontinuity between the two regions; our elliptic conditions allow

this. But we will need to make sure that

C−1 dist (z,�) ≤ D̂(z) ≤ C dist (z,�) (8.7)

(we will do this after (8.12)), to make sure that L̂ lies in the class of acceptable operators

studied in [12]. This estimate is also reassuring because it says that DE,μ and D�,σ are

equivalent on ��, which implies in particular that dist (z,�) ≥ C−1l(Q) on W(Q).

Then Proposition 8.3 will allow us to prove, via the change of variable g, that

the elliptic operator associated to L̂ has an absolutely continuous harmonic measure,

because of a Carleson control on |t|−1D̂ ◦ g that comes from Proposition 8.3 and

Proposition 7.45. So what will be left to do is use the fact that D̂ = DE on the hopefully

sufficiently large region ��, to get some control on LE itself.

We start our proof with some basic geometric information about E and �.

Lemma 8.8. Set M1 = 10−2M. Then for each Q ∈ �,

M1dxQ,M1l(Q)(E,�) ≤ Cε. (8.9)

See (3.3) for the definition of the normalized local Hausdorff distance d. As

usual, this is true if we assume that M is large enough, and ε1 is small enough,

depending on M. Also we added M1 on the left-hand side just not to lose an additional

M uselessly, but this does not matter because we always choose ε and ε1 last. Let Q ∈ �

be given, and let P(Q) be as in (4.1) and (4.2). That is,

dxQ,Ml(Q)(E, P(Q)) ≤ 2ε1. (8.10)
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60 G. David and S. Mayboroda

We now want to prove that

M1dxQ,2M1l(Q)(�, P(Q)) ≤ Cε, (8.11)

and the lemma will follow. Set B(Q) = B(xQ, 3M1l(Q)) and let p ∈ P(Q) ∩ B(Q) be given.

First use (8.10) to find x ∈ E such that |x − p| ≤ CMl(Q)ε1. Set k = k(Q) (the generation

of Q and observe that x lies in the set E(k) of (4.4). Hence (by the line below (4.4)), we

can find j ∈ Jk such that |x − xj,k| ≤ 2rk. This is good because then [15, Proposition

5.1] gives a good description of �k ∩ B(xj,k, 49rk) as a piece of a Cε-Lipschitz graph over

Pj,k that passes within Cεrk from xj,k. Recall that we even managed to pick planes Pj,k
that contain xj,k, but if Pj,k was only Cεrk-close, what we are going to say would work

too. The small Lipschitz graph description implies that every point of Pj,k ∩ B(xj,k, 48rk)

lies within Cεrk of �k. By (4.23), it also lies within εrk of � (recall that �k = fk(P0) and

� = f (P0)). Now Pj,k was chosen to be equal to P(Qj,k) for some Qj,k ∈ �(k) such that

dist (xj,k,Qj,k) ≤ Mrk
10 (and we even had to move xj,k slightly so that P(Qj,k) goes through

xj,k, but this is not the point here), and so P(Qj,k) is quite close to P(Q) near xj,k (by (4.1)

and (4.2) for both cubes). Consequently, p lies within CεMrk of Pj,k ∩ B(xj,k, 47rk), and we

find ξ ∈ � such that |ξ − p| ≤ CεMrk.

Now we take ξ ∈ � ∩ B(Q) and try to find p ∈ P(Q) near ξ . Let x ∈ P0 be such that

ξ = f (x). The easiest case is when fk(x) ∈ V10
k , because this means that we can find j ∈ Jk

such that |xj,k − fk(x)| ≤ 10rk, and we can use the same Lipschitz graph description of

�k ∩ B(xj,k, 49rk) as above. We find a point p′ ∈ Pj,k ∩ B(xj,k, 49rk) such that |p′ − fk(x)| ≤
Cεrk, and use the fact that P(Qj,k) is quite close to P(Q) near xj,k to find p ∈ P(Q) such

that |p − p′| ≤ CMε1rk ≤ Cεrk. Then |p − ξ | ≤ |p − p′| + |p′ − fk(x)| + |fk(x) − ξ | ≤ Cεrk
by (4.23).

We are left with the case when fk(x) ∈ �k \ V10
k . First assume that fl(x) ∈ V10

l

for some l ∈ [0,k − 1], and take l as large as possible. Then take j ∈ J(l) so that |fl(x) −
xj,l| ≤ 10rl. Again use the good Lipschitz description of �l ∩ B(xj,k, 49rl) provided by

[16, Proposition 5.1], or the case k = l of the description above: there are points of Pj,l,

and then points of E, that lie at distance less than Cεrl from fk(x). Use this to pick

w ∈ E ∩ B(fk(x), rl+1). By definition of l, w ∈ R
n \ V10

l+1, which implies that x /∈ E(l + 1).

In other words, dist (x,R) ≥ Mrl
10 for every R ∈ �(l + 1). Since |w − ξ | = |w − f (x)| ≤

|w − fl(x)| + Cεrl ≤ 2rl+1, we see that dist (ξ ,R) ≥ Mrl
11 for every R ∈ �(l + 1). We apply

this to the ancestor of Q of generation l, and find that dist (ξ ,R) ≥ Mrl
11 ≥ 10Mrk

11 , which

contradicts our assumption that ξ ∈ � ∩ B(Q).
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Harmonic Measure on Low-Dimensional UR Sets 61

If we cannot find l < k such that fl(x) ∈ V10
l , then fk(x) = f0(x) = x ∈ P0 \V10

0 , and

as before dist (x,Q0) ≥ M/11. This is also impossible because ξ ∈ B(Q). This completes

our proof of (8.11), and the lemma follows.

A simple consequence of this is the following improvement of (8.7). We claim

that

(1 − CM0ε)dist (z,E) ≤ dist (z,�) ≤ (1 + CM0ε)dist (z,E) for z ∈ ��. (8.12)

Indeed let z ∈ �� and let Q ∈ � be such that z ∈ W(Q). Let w ∈ E be such that |w − z| =
dist (z,E); observe that dist (z,E) ≤ |z−xQ| ≤ M0l(Q) by (8.2), hence |w−xQ| ≤ 2M0l(Q) <

M1l(Q) if M is large enough, Lemma 8.8 applies to w and gives dist (w,�) ≤ Cεl(Q), so

dist (z,�) ≤ dist (z,E) + Cεl(Q) ≤ (1 + CM0ε)dist (z,E) because dist (z,E) ≥ M−1
0 l(Q) by

(8.2). Now let ξ ∈ � be such that dist (z,�) = |z−ξ |. If |z−ξ | ≥ M0l(Q), the 1st inequality

in (8.12) is trivial. Otherwise, we can apply Lemma 8.8 to ξ and get that dist (ξ ,E) ≤
Cεl(Q), hence dist (z,E) ≤ dist (z,�) + Cεl(Q) ≤ dist (z,�) + CM0ε dist (z,E) and the 1st

part of (8.12) follows.

Notice that (8.7) follows from this, since DE(z) is equivalent to dist (z,E) and

D�(z) is equivalent to dist (z,E).

Our next task is to construct Whitney cubes (in fact, pseudocubes) in E, which

we will use to define the measure σ on � that approximates μ. For this, we will use the

somewhat classic distance to small cubes of �, defined by

d�(z) = inf
Q∈�

(dist (z,Q) + l(Q)) (8.13)

for z ∈ R
n. Notice that d�(z) ≤ 1 + dist (z,Q0) (because we can try Q = Q0 ∈ �), and d�

is 1-Lipschitz. Associated to d� are a closed set

F = {
z ∈ E ; d�(z) = 0

}
(8.14)

and a decomposition of E\F into Whitney cubes that we describe now. We give ourselves

a small constant τ ∈ (0, 10−2), and we denote by R the collection of maximal cubes

R ∈ D (for the inclusion as a 1st criterion, and then the smallest generation if a same set

corresponds to cubes of different generations), with the property

l(R) ≤ τd�(xR). (8.15)
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62 G. David and S. Mayboroda

These cubes are disjoint (by maximality), they do not meet F because it is easy to see

that for R ∈ R,

d�(x) ≥ (2τ)−1l(R) for x ∈ R, (8.16)

because d� is 1-Lipschitz. The maximality of R implies that its parent S does not satisfy

(8.15), hence 10l(R) = l(S) ≥ τd�(xS), and since

|d�(xS) − d�(xR)| ≤ |xS − xR| ≤ diam(S) ≤ 20l(R) ≤ 20τd�(xR) ≤ d�(xR)/5,

we get that

l(R) ≥ 10−1τd�(xS) ≥ 20−1τd�(xR) if R ∈ R. (8.17)

We claim that

E \ F is the disjoint union of the cubes R,R ∈ R. (8.18)

The fact that R ⊂ E \ F comes from (8.16). Conversely, if x ∈ E \ F, then small cubes

that contain x satisfy (8.15) and are contained in a cube of R (because large cubes Q fail

(8.15), because d�(xQ) ≤ dist (xQ,Q0) + l(Q0) ≤ dist (x,Q0) + 2l(Q) + l(Q0) < τ−1l(Q) for

l(Q) large). Finally, the cubes of R are disjoint by maximality.

We need a little more geometric information on d� and F before we start.

Lemma 8.19. Set B0 = B(xQ0
,M0 + 10). Then

dist (z,E) ≤ Cεd�(z) for z ∈ � ∩ B0, (8.20)

dist (z,�) ≤ Cεd�(z) for z ∈ E ∩ B0, (8.21)

and

F ⊂ E ∩ � ∩ Q0. (8.22)

We start with the easy part of (8.22). If d�(z) = 0, then we can find cubes Q ∈ �

such that dist (x,Q) + l(Q) is arbitrarily small, and since Q ⊂ Q0 ⊂ E, we get that

z ∈ E ∩ Q0.
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Harmonic Measure on Low-Dimensional UR Sets 63

Next let z ∈ B0 be given, pick δ > d�(z) close to d�(z), and choose a 1st cube

Q1 ∈ � such that dist (z,Q1)+l(Q1) < δ. Then letQ denote the element of � that contains

Q1 and whose generation k = k(Q) is the smallest possible, but with the constraint

that l(Q) ≤ δ. Such a cube Q exists, since Q1 satisfies the constraint. First assume that

l(Q) < 1. Then the parent of Q does not satisfy the constraint, even though it lies in �,

and this forces l(Q) ≥ δ/10. Obviously, dist (z,xQ) ≤ Ml(Q), so Lemma 8.8 says that

dist (z,E) ≤ Cεl(Q)if z ∈ �, and dist (z,�) ≤ Cεl(Q) if z ∈ E. (8.23)

If instead l(Q) = 1, that is, Q = Q0, then dist (z,xQ) ≤ Ml(Q) in this case too, because

z ∈ B0, and (8.23) holds as well.

Recall that l(Q) ≤ δ and we can pick any δ > d�(z); (8.20) and (8.21) follow. Also,

in the case when z ∈ F, we already know that x ∈ E, so (8.23) says that dist (z,�) is as

small as we want. Hence, z ∈ �. The lemma follows.

We are now ready to define a measure σ on � that approximates μ reasonably

well. Since we have a nice set F ⊂ E ∩ �, we do not change the measure there, and set

σ0 = μ|F . (8.24)

Next we consider the set

R0 = {
R ∈ R ; dist (R,Q0) ≤ 1

}
, (8.25)

and to simplify some of the notation, enumerate R0 as a collection {Rj}, j ∈ J . We want

to replace each μj = μ|Rj
, j ∈ J , by a measure σj with the same mass. Set

lj = l(Rj) and xj = xRj
. (8.26)

We want to take

�(j) = � ∩ B(xj,M2lj), (8.27)

where M2 = 10−1τ−1 ≥ 10, and

σj = ajHd
|�(j), with aj = μ(Rj)

Hd(�(j))
, (8.28)
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64 G. David and S. Mayboroda

but we need to check some things. First observe that

lj ≤ 2τ inf
z∈Rj

d�(z) ≤ 2τ(1 + dist (Rj,Q0) ≤ 4τ (8.29)

by (8.16) and (8.25). Pick a 1st cube Q′ ∈ � such that

l(Q′) + dist (xj,Q
′) ≤ 2d�(xj) ≤ 40τ−1lj. (8.30)

SetQj = Q′ if l(Q′) ≥ 10lj, and otherwise letQj be the ancestor ofQ
′ such that l(Qj) = 10lj;

notice that Qj ∈ � (by heredity and because (8.29) says that 10lj < 1), and

dist (xj,Qj) ≤ 40τ−1lj and 10lj ≤ l(Qj) ≤ 40τ−1lj. (8.31)

If M is large enough (compared to τ−1), we may apply Lemma 8.8, with the cube Qj, and

to the point xj ∈ E. We find ξj ∈ � such that |ξj − xj| ≤ lj, and this is good because this

implies that

Hd(�(j)) ≥ C−1ldj . (8.32)

We also need to know that

the �(j) have bounded overlap and do not meet F. (8.33)

and indeed, if ξ ∈ �(j), then

|ξ − xj| ≤ M2lj ≤ M2τd�(xj) = 10−1d�(xj) (8.34)

by (8.15) and the definition of M2, hence

0 <
9

10
d�(xj) ≤ d�(ξ) ≤ 11

10
d�(xj) for ξ ∈ �(j). (8.35)

Hence ξ /∈ F, and also the size of d�(ξ) determines roughly the generation of j; (8.33)

follows at once. We complement the measures σj by

σ∞ = Hd
|�(∞), with �(∞) = {

ξ ∈ � ; dist (ξ ,Q0) ≥ 1/2
}
. (8.36)
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Finally, we set

σ = σ0 + σ∞ +
∑
j∈J

σj. (8.37)

It will be good to know that

σ is an Ahlfors regular measure with support �, (8.38)

with the AR constant depending on n,d,C0 only, provided that M is sufficiently large

and ε0 is sufficiently small. The verification is two-fold. First, we check that the density

f of σ with respect to Hd is bounded. On F, this is because μ is Ahlfors regular, and the

measures σj and σ∞ do not charge F. Concerning the σj, their density aj is bounded, by

(8.32) and because μ(Rj) ≤ Clj, and then the global density is bounded because of (8.33).

As for σ∞, its density is 1.

Conversely, f is bounded from below on F (by (8.24)) and on �(∞). Now let

ξ ∈ � \ (F ∪ �(∞)) be given. Thus, 0 < d�(ξ) < 3/2 (because dist (ξ ,Q0) ≤ 1/2). Let

Q′ ∈ � be such that l(Q′) + dist (ξ ,Q′) ≤ 2d�(ξ). Keep Q = Q′ if l(Q′) ≥ d�(ξ)/100, and

otherwise replace it with an ancestor Q such that d�(ξ)/100 ≤ l(Q) ≤ d�(ξ)/10. Notice

that Q ∈ � because l(Q) ≤ 1. Thus,

dist (ξ ,Q) ≤ 2d�(ξ) and d�(ξ)/100 ≤ l(Q) ≤ 2d�(ξ). (8.39)

We can apply Lemma 8.8 to ξ , and find x ∈ E such that

|x − ξ | ≤ Cεl(Q) ≤ Cεd�(ξ); (8.40)

then d�(x) ≥ d�(ξ)/2, x ∈ E \ F, there is a cube R ∈ R that contains x, dist (R,Q0) < 1

because x ∈ R and dist (ξ ,Q0) ≤ 1/2, and henceR is one of theRj. In addition lj ≤ τd�(xj)

by (8.15), so d�(x) ≤ d�(xj) + lj ≤ 2d�(xj) (by (2.2)), d�(ξ) ≤ 2d�(x) ≤ 4d�(xj) ≤ 80τ−1lj
by (8.17), and (8.40) says that ξ lies well inside �(j). The coefficient aj is also bounded

from below, so f ≥ aj ≥ C−1 near ξj; (8.38) follows.

We are now about ready to prove that � in (8.4) satisfies a Carleson measure

condition. By (8.12), DE,μ
D�,σ

is bounded and bounded from below on �� (because DE,μ is

equivalent to the distance to E, and D�,σ to the distance to �), so it is enough to prove
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that �1 satisfies a Carleson measure condition on �� = R
n \ �, where

�1(z) := 1��
dist (z,E)−1

∣∣∣DE,μ(z) − D�,σ (z)
∣∣∣. (8.41)

Notice that we chose dist (z,E)−1 because it seems simpler, but dist (z,�)−1 would

have been equivalent. This remark also implies that although we decided to advertise a

Carleson measure condition on �� , we would obtain a Carleson measure condition on

�E = R
n \ E just the same way.

Given the definition of DE,μ(z) and D�,σ and the same equivalences as above, it

will be equivalent, and simpler, to prove that �2 satisfies a Carleson measure condition,

where

�2(z) := 1��
dist (z,E)α

∣∣DE,μ(z)−α − D�,σ (z)−α
∣∣. (8.42)

So we gives ourselves z ∈ ��, and we want to estimate

�(z) := dist (z,E)−α�2(z) = ∣∣DE,μ(z)−α − D�,σ (z)−α
∣∣

=
∣∣∣ ∫ |z − y|−d−α[ dμ(y) − dσ(y)]

∣∣∣. (8.43)

Recall that μj = μ|Rj
; let us also set μ0 = μ|F and

μ∞ = μ|E(∞), with E(∞) = E \
(
F ∪

⋃
j∈J

Rj

)
, (8.44)

so that μ = ∑
j μj (a sum that includes j = 0 and j = ∞). Naturally, we write �(z) ≤∑

j �j(z), where

�j(z) =
∣∣∣ ∫ |z − y|−d−α[dμj(y) − dσj(y)]

∣∣∣. (8.45)

A priori the sum contains 0 as well as ∞, but the term with j = 0 drops because μ0 = σ0.

We now give an estimate on �j(z) for j ∈ J . Set

dj(z) = dist (z,Rj ∪ �(j)). (8.46)

We claim that

dj(z) ≥ C−1 lj, where we may take C = max(M2, 3τ(M0 + 1)M0) > 0. (8.47)
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Me may assume that dj(z) ≤ M2lj because otherwise (8.47) holds. Then |z − xj| ≤ 2M2lj
(see (8.27) and the definition of M2 below (8.27)). Hence,

d�(z) ≥ d�(xj) − 2M2lj ≥ (1 − 2M2τ)d�(xj) ≥ d�(xj)/2 ≥ (2τ)−1lj

by (8.15), the definition of M2 below (8.27), and (8.15).

Let Q ∈ � be such that z ∈ W(Q); then d�(z) ≤ l(Q)+ dist (z,Q) ≤ (M0 +1)l(Q) by

the definition (8.2), and now

lj ≤ 2τd�(z) ≤ 2τ(M0 + 1)l(Q) ≤ 2τ(M0 + 1)M0 dist (z,E)

by (8.2). On the other hand,

dj(z) = dist (z,Rj ∪ �(j)) ≥ dist (z,E ∪ �) ≥ 2

3
dist (z,E)

by (8.12); our claim (8.47) follows.

In the next computations, we no longer record the dependence of our various

constants on M0, M2, or τ . We now use (8.47) to prove that

�j(z) ≤ Cμ(Rj)lj[lj + dj(z)]
−d−α−1 ≤ Cld+1

j [lj + dj(z)]
−d−α−1. (8.48)

Set δj = diam(�(j) ∪ Rj) ≤ Clj. When dj(z) ≤ 2δj, we just use (8.47) and the fact

that the total masses of σi and μj are μ(Rj) ≤ Cldj to get the result. Otherwise, set

a0 = |z−xi|−d−αμ(Rj), a1 = ∫ |z−y|−d−α dσj(y), and a2 = ∫ |z−y|−d−α dμj(y). Notice that

a1 − a0 =
∫

�(j)

[
|z − y|−d−α − |z − xi|−d−α

]
dμj(y), (8.49)

then observe that for y ∈ �(j),

∣∣∣|z − y|−d−α − |z − xi|−d−α
∣∣∣ ≤ Cδj|z − xi|−d−α−1

(differentiate the integrand along the line segment [y, xi]); this yields

|a1 − a0| ≤ δj|z − xi|−d−α−1||σj|| ≤ Cljμ(Rj)dj(z)
−d−α−1.

We have the same estimate on |a2 − a0|, and (8.48) follows.
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68 G. David and S. Mayboroda

At this point, we have enough information to prove the desired Carleson bound

on �3. The most important part will come from the sum over j ∈ J . Each �j gives

a bump function with an L2 norm controlled by μ(Rj), and sufficiently localized or

smooth for the different pieces to be almost orthogonal. The computations that follow

are reminiscent of other computations done in a similar context, but it seems that we

need to be courageous and do them.

We take a Carleson box B = B(X,R) centered on � (but E would give the same),

and want to prove that

J :=
∫
z∈��∩B

∣∣∣∑
j

�j(z)
∣∣∣2δ(z)d−n+2α dz ≤ CRd, (8.50)

where we set δ(z) = dist (z,E) (but dist (z,�) is equivalent on ��), and the extra 2α come

from the fact that we have to multiply
∑

j �j(z)) by δ(z)α before checking the Carleson

condition; see (8.42).

We may assume that R ≤ 1, because �� ≤ B(xQ0
,M0) anyway. Also we first

concentrate on

J1 :=
∫
z∈��∩B

∣∣∣ ∑
j∈J (B)

�j(z)
∣∣∣2δ(z)d−n+2α dz, (8.51)

where J (B) is the collection of j ∈ J for which Rj ⊂ CB. The value of C will be decided

when we deal with the rest of the sum.

We write J1 ≤ 2
∑

i
∑

j J(i, j), where it is enough to sum on the pairs such that

li = l(Ri) ≤ lj = l(Rj), and

J(i, j) =
∫
z∈��∩B

�i(z)�j(z)δ(z)
d−n+2α dz

≤ C
∫
z∈��∩B

ld+1
j

[lj + dj(z)]
d+α+1

ld+1
i

[li + di(z)]
d+α+1

δ(z)d−n+2α dz. (8.52)

Recall that dj(z) = dist (z,Rj ∪�(j)), but in fact here (8.12) says that dj(z) ≥ 1
2 dist (z,� ∪

E) ≥ 1
2δ(z). Then (dj(z) + lj)

−1 ≤ dj(z)
−1 ≤ 2δ(z)−1. We may use this to replace a negative

power of (dj(z) + lj) by the same power of δ(z) and simplify some things. And we can do

the same thing with i. Set

ri(z) = ld+1
i

[li + di(z)]
d+1

≤ 1; (8.53)
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Harmonic Measure on Low-Dimensional UR Sets 69

we first use the fact that

ld+1
i

[li + di(z)]
d+α+1

= ri(z)[li + di(z)]
−α ≤ 2αri(z)δ(z)

−α (8.54)

to get that

J(i, j) ≤ C
∫
z∈��∩B

ld+1
j

[lj + dj(z)]
d+α+1

ri(z) δ(z)d−n+α dz. (8.55)

Next we divide the integral into annuli Aj,k where dj(z) ∼ 2klj, and get contributions

J(i, j, k). The smallest annulus should be replaced by a ball, but we still get the same

estimate, namely

J(i, j, k) ≤ C2−k(d+α+1)l−α
j

∫
z∈��∩B∩Aj,k

ri(z) δ(z)d−n+α dz. (8.56)

It will be good to know that

∫
Br

δ(z)d−n+α dz ≤ Crd+α (8.57)

when Br is a ball of radius r centered on � (this is just easier). This estimate is very easy

when � is a d-plane; the main point then is that the integral in the direction orthogonal

to � converges because of the additional exponent α. When �, as here, is bilipschitz-

equivalent to a d-plane, this is as easy because we can change variables. But this would

also be true with E, with just a bit more work, because it is Ahlfors regular and the

measure of tubes of width tr near E are easy to estimate.

Denote by I(i, j, k) the integral on the right of (8.56) and further cut the domain

of integration into annuli Al where di(z) ∼ 2lli. We get integrals

I(i, j, k, l) ≤
∫
Aj,k∩Al

ri(z)δ(z)
d−n+α dz ≤ C2−l(d+1) min[(2lli)

d+α, (2klj)
d+α], (8.58)

where the 1st piece is an estimate of ri(z) and the 2nd one comes from (8.57), with the

two different choices of diameter. For strategic reasons (we do not want to distinguish

between α ≤ 1 and α > 1, we choose τ ∈ (0, 1], smaller than α, and replace 2−l(d+1) with

2−l(d+τ) in (8.58). No relation with our previous constant τ , though; this one will just be

here for the duration of the computation.
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70 G. David and S. Mayboroda

We need to be careful about the region of integration. Set di,j = dist (Ri,Rj),

and first assume that di,j ≤ C2klj. In this case Aj,k stays within C2klj of Ri, and we can

content ourselves with l such that 2lli ≤ C2klj, because for larger ones Al does not meet

Aj,k. Then use the 1st option in (8.58) and observe that

I(i, j, k) ≤
∑
l

I(i, j, k, l) ≤ C
∑
l

2−l(d+τ)(2lli)
d+α = C

∑
l

2l(α−τ)ld+α
i (8.59)

and the largest terms are when l is as large as possible, that is, when 2lli ∼ 2klj. This

yields I(i, j, k) ≤ (2klj/li)
α−τ ld+α

i and

J(i, j, k) ≤ C2−k(d+α+1)l−α
j I(i, j, k) ≤ C2−k(d+τ+1)l−τ

j ld+τ
i . (8.60)

Now assume that di,j ≥ C2klj. If C was chosen large enough, all the points of the annulus

Aj,k lie at distance roughly di,j from Ri, which means that we just need to sum over the

few l such that 2lli ∼ di,j. For all these l, it is actually better to use the 2nd option in

(8.58), which yields I(i, j, k, l) ≤ C2−l(d+τ)(2klj)
d+α ≤ C(di,j/li)

−d−τ (2klj)
d+α and then

J(i, j, k) ≤ C2−k(d+α+1)l−α
j I(i, j, k) ≤ C2−k(d+α+1)l−α

j (di,j/li)
−d−τ (2klj)

d+α

≤ C2−kd−d−τ
i,j ld+τ

i ldj .
(8.61)

Now we have to sum all these numbers. We start with the 1st case, and sum first over

i ∈ J such that li = 2−mlj for a given m ≥ 0. These cubes lie in a ball of size roughly 2klj
(because di,j ≤ C2klj), so there is roughly (2klj/(2

−mlj))
d = 2(m+k)d of them. We get a sum

bounded by

C2(m+k)d2−k(d+τ+1)l−τ
j (2−mlj)

d+τ

The exponent form is −τ , so we may sum overm and get C2kd2−k(d+τ+1)ldj . Then we sum

over k and get Cldj ≤ Cμ(Rj). Then we sum over j, recall that the Rj are disjoint and we

only sum over those that are contained in CB, and get less than CRd, as needed.

Now we consider the 2nd case and sum the terms from (8.61). Fix j, k, and m ≥ 0,

and sum over i such that li = 2−mlj. Further decompose into annuli where di,j ∼
2n2klj. The number of cubes Ri in the annulus is less than C2(n+k+m)d, which gives a

contribution smaller than

C2(n+k+m)d2−kd−d−τ
i,j ld+τ

i ldj = C2(n+k+m)d2−k(2n2klj)
−d−τ (2−mlj)

d+τ ldj .
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Harmonic Measure on Low-Dimensional UR Sets 71

The power for m is −τ , so we sum over m and forget about it; we are left with

C2−k2−τ(n+k)ldj . We sum over k, n, get less than Cldj , which as before we can sum over

j to get at most CRd.

We are now finished with J1, but we still need to estimate

J2 =
∫
z∈��∩B

∣∣�̃(z)
∣∣2δ(z)d−n+2α dz, (8.62)

where �̃ is the remaining part of �, that is,

�̃(z) =
∑

j∈Je∪{∞}
�j(z), (8.63)

where Je is the set of indices j ∈ J such that Rj is not contained in CB.

We start with Je. Let j ∈ J be given. One possibility is that l(Rj) ≥ R; then (8.47)

implies that dist (z,Rj ∪ �(j)) ≥ C−1R. Otherwise, and if C is chosen large enough, the

fact that Rj is not contained in CB implies that Rj ∪ �(j) does not meet 2B, and hence

dist (z,Rj ∪ �(j)) ≥ R.

Now set μe = ∑
j∈Je

[μj − σj], and observe that

�e(z) :=
∑
j∈Je

�j(z)
∫

|z − y|−d−α dμe(y) (8.64)

is bounded by CR−α, so∫
z∈��∩B

∣∣�e(z)
∣∣2δ(z)d−n+2α dz ≤ CR−2α

∫
z∈B

δ(z)d−n+2α dz ≤ CRd, (8.65)

as needed. We are left with �∞. We need to control

J3 =
∫
z∈��∩B

∣∣�∞(z)
∣∣2δ(z)d−n+2α dz. (8.66)

Observe that

dist (z,�(∞) ∪ E(∞)) ≥ C−1 (8.67)

because either z ∈ W(Q) for a cube Q such that diam(W(Q)) ≤ 10−1, and then (8.67)

holds because Q is centered on Q0 and �(∞) ∪ E(∞) is far from Q0 (see the definitions

and (8.36) and (8.44)), or else (8.67) comes directly from (8.2) and (8.12).
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72 G. David and S. Mayboroda

Once we know (8.67), we see that �∞(z) ≥ C−1 and (8.66) follows as for �e.

This concludes our proof of Proposition 8.3.

9 Construction of the Extrapolation Saw-Tooth Region and Related Results for the

Harmonic Measure Based on Sections 4–8,

9.1 Collecting the results of Sections 4–8

In this section, we summarize the results of Sections 4–8 in application to the particular

stopping time region, which we will use for the extrapolation procedure in the

forthcoming discussion. At this point, let us start by recalling Tolsa’s α-numbers [31],

which give a good control on sums of squares of local Wasserstein distances to flat

measures, for every Ahlfors-regular measure on a uniformly rectifiable set.

First, recall the Tolsa’s α-coefficients defined in (7.8). Fix some M > 0, which

will eventually be chosen sufficiently large. Given a d-dimensional Ahlfors regular set

E and an Ahlfors regular measure μ on E, equipped with the usual dyadic grid D = D(E)

(see Section 3), we denote

α(Q) := α(xQ,M l(Q)).

Recall the notion of uniform rectifiability from Definition 1.4. In [31,

Theorem 1.2], Tolsa proves the following result (a modification of which corresponding

to balls rather than dyadic cubes we already used in Section 7).

Theorem 9.1. For every uniformly rectifiable set E, every Ahlfors regular measure μ

on E, and every dyadic cube R ∈ D(E),

∑
Q∈D(R)

α(Q)2μ(Q) ≤ Cμ(R)d, (9.2)

where the constant C depends on M, n, d, C0, and the UR constants of μ.

Strictly speaking, [31] defines α(Q) slightly differently, indexed by the dyadic

cubes of R
n rather than (pseudo-)dyadic cubes of E and using M = 3, but possibly

adjusting the values of M (say, directly in the proof), the two statements are equivalent.

Indeed, every B(xQ,M l(Q)) for Q ∈ D(E) is contained in some B(xQ′ , 2M l(Q′)) for

Q′ ∈ D(Rn) with l(Q′) ≈ l(Q) and the number of different Qs corresponding to the same

Q′ is uniformly bounded.
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Harmonic Measure on Low-Dimensional UR Sets 73

Now let us return to the construction of a stopping time region.

Definition 9.3. Let E be a d-dimensional Ahlfors regular set and let μ be an Ahlfors

regular measure on E, equipped with the usual dyadic grid D = D(E). Fix some ε0 > 0,

δ0 > 0, and Q0 ∈ D. Then the stopping time region � = �ε0,δ0(Q0) is constructed as

follows (cf. the procedure in Section 3). We start from the top cube Q0, and decide to

remove a cube Q ∈ D(Q0), as well as all its descendants, as soon as

either α(Q) > ε0 or Jα(Q) :=
∑

k(Q0)≤k≤k(Q)

α(Rk(Q))2 ≥ δ0. (9.4)

Here, as before, for k(Q0) ≤ k ≤ k(Q), we denote by Rk(Q) the cube of Dk that contains

Q. The remaining collection of cubes will be referred to as � = �ε0,δ0(Q0). For a fixed

M0 > 0 a saw tooth region based on � is, as before, �� defined in (8.1)–(8.2).

It has become customary to also remove the siblings of any cube Q that we

remove as above because this gives a little more regularity to the decomposition of D

into stopping time regions like �, and this costs essentially nothing. Here we do not

need this because of our specific description, but it would not hurt either.

It is convenient to write D(Q0) \ � as ∪Qj∈FD(Qj) where F = {Qj}j is a disjoint

collection of cubes Qj ∈ D(Q0) maximal under our stopping time procedure. That is,

the collection F = {Qj}j consists exactly of maximal cubes Q ⊂ Q0 satisfying (9.4) and

the entire collection of all removed cubes (i.e., cubes of F and its descendants) is then

∪Qj∈FD(Qj).

Remark 9.5. At this point and throughout Section 9, we assume that F �= {Q0}, for
otherwise � = ø and there is no � to be constructed.

We remark also that we do not require Q0 ∈ D0 (i.e., k(Q0) = 0 hereafter). This

was often an assumption in previous chapters but the corresponding results rescale

easily—we will mention this in due time.

We shall now collect results from Sections 4–8, to arrive at the following.

Theorem 9.6. Let E be a d-dimensional Ahlfors regular set and μ be an Ahlfors regular

measure on E. Then for M0 > 1 large enough depending on n,d,C0, M > 1 large enough

depending on n,d,C0,M0, and ε0, δ0 > 0 small enough depending on n,d,C0,M0,M, for

any Q0 ∈ D(E) and the associated � = �ε0,δ0(Q0) built as in Definition 9.3, there exists
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74 G. David and S. Mayboroda

a d-Ahlfors regular set � ⊂ R
n and a d-Ahlfors regular measure σ supported on � with

the following properties:

(1) for any α > 0 the harmonic measure associated to Lσ = −divD−(n−d−1)
σ ∇,

with

Dσ (X) =
{ ∫

�

|X − y|−d−α dσ(y)
}−1/α

, (9.7)

is A∞ with respect to σ ;

(2) for any α > 0 the harmonic measure associated to L̂ = −div D̂−(n−d−1)∇,

with D̂ defined in (8.5)–(8.6), is A∞ with respect to σ .

IfM0,M are chosen large enough and ε0, δ0 are chosen small enough as postulated above,

the A∞ constants of ωLσ
and ωL̂ and the Ahlfors regularity constant of σ depend only on

n,d,C0,α.

Proof. At this point, the proof is a collection of results from Sections 4–8.

First of all, since the assumptions and results are scale invariant, we assume

without loss of generality that Q0 ∈ D0.

Going further, our stopping time region falls under the scope of Sections 4–8.

Indeed, the list of restrictions on � in Sections 4–8 is exhausted by two properties,

(3.4) and (3.9). At the same time, as pointed out in Section 3, the numbers α(Q) control

the properties (3.4) and (3.9). To be precise, if Jα(Q) ≤ δ0 and we use a suitable fixed

multiple of M in place of M in the definition of Jα(Q), then J(Q) ≤ δ1, with δ1 being a

fixed multiple of δ0. This is due to (7.10) and the fact that α numbers control (bilateral) β1

numbers proved in [31, Lemma 3.2]. Furthermore, bilateral β1 numbers control powers

of bilateral β∞ numbers (see [16, p. 27]) and, hence, slightly adjusting the choice of M

as above, similar considerations assure that the condition α(Q) ≤ ε0 implies (3.4) with

ε1 being a fixed multiple of a power of ε0. Here, the power depends on the dimension

only and by a “fixed multiple” we mean multiplication by a numerical constant, which

is allowed to depend on dimension only.

Thus, we can follow the construction of the closed set � ∈ R
n through Sections

4–8. According to Lemma 4.8, if ε0 (and hence, ε1) is small enough, there exists a closed

set � ∈ R
n and g : Rn → R

n, mapping R
d to �, bilipschitz, with Lipschitz constants

depending on n,d,C0, δ0. Hidden in this statement is the dependence on choices of

M0 and M as well (as the choice of ε0 ultimately depends on them) but all this is

harmless. We remark that since g is bilipschitz, � is d-Ahlfors regular, with constants

depending on the same parameters as the bilipschitz constant for g. Furthermore, by
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Proposition 6.4, the matrix J = DgQ has the a form (6.5), where A1 is bounded and

invertible by comment before the proof of Lemma 6.36.

Recalling that the Rk(t)(x) are isometries, it follows that

A(x, t) = |det(J(x, t))|(J(x, t)−1)TJ(x, t)−1 (9.8)

has the same structure as J (with the same control of the Carleson and L∞ norms of its

components), due to Lemma 6.36. That is,

A(x, t) =
(

A
1(x, t) C

2(x, t)

C
3(x, t) In−d + C

4(x, t)

)
, (9.9)

where C
2, C3, and C

4 are bounded (with an L∞ constant, which goes to 0 as ε0 → 0) and

satisfy Carleson measure conditions (with a constant, which goes to 0 as δ0 → 0). Also,

if δ0, ε0 are small enough (depending on n,d,C0,M0,M only), then A
1 and A are bounded

and invertible, with uniform bounds.

At this point, we introduce the d-dimensional Ahlfors regular measure σ on �,

with a uniform control on the AR constant and good approximation properties, which

has been constructed in Section 8 (see (8.38)), and use it to define the two matrices

Aσ (x, t) :=
( |t|
Dσ (g(x, t))

)n−d−1

A(x, t) and Â :=
( |t|
D̂(g(x, t)

)n−d−1

A(x, t), (9.10)

defined for (x, t) ∈ R
n. These define degenerate elliptic operators on R

n \ R
d, and we

want to show that they satisfy the conditions imposed in Theorem 2.15.

First, we observe that |t|
Dσ (g(x,t)) and |t|

D̂(g(x,t)
are both bounded from above and

below on R
n \ Rd and, hence, A and Â are bounded and elliptic. Next, let us write

Aσ (x, t) =
( |t|
Dσ (g(x, t)

)n−d−1

A(x, t)

=
( |t|
Dσ (g(x, t)

)n−d−1
(

A
1(x, t) 0

0 In−d

)
+

( |t|
Dσ (g(x, t)

)n−d−1
(

0 C
2(x, t)

C
3(x, t) C

4(x, t)

)
.

(9.11)

The 2nd term satisfies the same Carleson measure conditions as the original C
js,

j = 2, 3, 4, since the multiplicative factor is bounded from above and below. The

multiple of A1 is harmless and anyway we did not impose any specific conditions on A1.
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It remains to analyze
( |t|
Dσ (g(x,t)

)n−d−1
In−d. Turning to this task, we recall that according

to Proposition 7.45

∣∣∣Dσ (g(y, t))

|t| − Cαλσ (f (y), |t|)−1/α
∣∣∣ (9.12)

satisfies a Carleson condition onR
n\Rd. Since both Dσ (g(y,t))

|t| and λσ (f (y), |t|) are bounded
from above and below, applying the fundamental theorem of calculus to s �→ s−(n−d−1),

we deduce that

∣∣∣ ( |t|
Dσ (g(y, t))

)n−d−1

− C′
αλσ (f (y), |t|) n−d−1

α

∣∣∣ (9.13)

satisfies a Carleson condition on R
n \ R

d. Thus, a multiple of In−d by the expression in

(9.13) can be absorbed into C4 and we are left with

C′
αλσ (f (y), |t|) n−d−1

α =: b.

Since λ is bounded from above and below, the condition (2.17) is verified. On the other

hand, (2.18) follows immediately from (7.4), and this finishes the argument for Lσ .

At this point, we can apply Theorem 2.15 to the operator Lσ associated to Aσ ,

and get that its harmonic measure is A∞ with respect to the Lebesgue measure on R
d.

But this operator is conjugated to Lσ by the bilipschitz mapping g (see for instance

[13, Lemma 6.17]), so the A∞ result for Lσ follows.

For L̂, we proceed similarly with Â, write |t|
D̂

= Dσ

D̂
|t|
Dσ

and use an argument

analogous to (11)–(9.12) along with Proposition 8.3 to conclude. �

9.2 Further geometric constructions: replacement sets, sawtooth domains, and projections

To set up the extrapolation procedure, we rest on the strategy pioneered by [20].

However, a large portion of our work happens on replacement sets rather than saw-

tooth domains, and the resulting geometric set up is necessarily different.

Let us start recalling (and adapting to our scenario) the definitions of the dyadic

saw-tooth domains from [20] and [27]. These are morally similar to the domains defined

in (8.1), but a more precise geometric structure will be helpful below. Since � = R
n \ E

is an open set, it has a Whitney decomposition—see [30, Theorem 1 on p. 167]. We will

perform the same argument as in [30], using powers of 10 instead of powers of 2, and

then subpartition emerging cubes further into subcubes of sidelength 103 times smaller.
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Harmonic Measure on Low-Dimensional UR Sets 77

As a result, we get a collection of closed “Whitney” boxes in �, denoted by W = W(�),

which form a covering of � with pairwise non-overlapping interiors and satisfy

9 · 102 diam I ≤ dist (102I, ∂�) ≤ dist (I, ∂�) ≤ 21 · 103 diam I, ∀ I ∈ W, (9.14)

and

1

20
diam I1 ≤ diam I2 ≤ 20diam I1 (9.15)

whenever I1 and I2 in W touch. Let XI denote the center of I and �(I) the side length of I;

then diam I ∼ �(I).

Let D be a collection of dyadic cubes for the Ahlfors regular set E, as in (2.1)–(2.3).

Pick two parameters η � 1 and K � 1, and for any cube Q ∈ D define

W0
Q := {I ∈ W : η

1
4 �(Q) ≤ �(I) ≤ K

1
2 �(Q), dist (I,Q) ≤ K

1
2 �(Q)}. (9.16)

Recall from Definition 2.4 that AQ denotes a corkscrew point for the surface ball

�(xQ,C
−1rk(Q)), with the constant C from (2.2). We can guarantee that we can choose

AQ = XI for some I ∈ W0
Q provided that we choose η small enough and K large enough.

We will further augment our collection to include pertinent Harnack chains. To

this end, recall the following definition.

Definition 9.17. We say that an open domain � satisfies the Harnack Chain condition

if there is a uniform constant C such that for every ρ > 0, � ≥ 1, and every pair of

points X,X ′ ∈ � with δ(X), δ(X ′) ≥ ρ, and |X − X ′| < �ρ, there is a chain of open balls

B1, . . . ,BN ⊂ �, N ≤ C(�), with X ∈ B1, X
′ ∈ BN , Bk ∩ Bk+1 �= ø and C−1diam(Bk) ≤

dist (Bk, ∂�) ≤ Cdiam(Bk). Here C(�) does not depend on �, ρ, x, or y. The chain of balls

is called a “Harnack Chain”.

The boundary of the domain in the definition above is not presumed to exhibit

any particular dimension, but we recall that for � = R
n \ E for some Ahlfors regular set

E of dimension d < n − 1, the Harnack chain condition, and even something stronger,

holds.

Lemma 9.18 (Lemma 2.1 of [11]). Let E be a d-Ahlfors regular set in R
n with d < n − 1

and � = R
n \ E. Then there exists a constant c ∈ (0, 1), that depends only on d,n,C0,

such that for � ≥ 1 and X1,X2 ∈ � such that δ(Xi) ≥ s and |X1 − X2| ≤ �s, we can find

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac109/6585084 by U

niversity of M
innesota - Tw

in C
ities user on 31 January 2023



78 G. David and S. Mayboroda

two points Yi ∈ B(Xi, s/2) such that dist ([Y1,Y2],E) ≥ c�−d/(n−1−d)s. That is, there is a

thick tube in � that connects the balls B(Xi, s/2).

This a stronger property because it ensures that two points are connected by

a thick tube rather than just a chain, but we did verify that it formally implies the

Harnack chain condition from Definition 9.17, with the constants depending on the ADR

constants of E and the dimension only—see [27, Remark 2.2]. We review some of this for

the convenience of the reader.

Remark 9.19. Note that in the situation above,

|Y1 − Y2| ≤ |Y1 − X1| + |X1 − X2| + |X2 + Y2| < 2�s. (9.20)

Let τ = c�−d/(n−1−d)s and Z1 = Y1. For 2 ≤ j ≤ N, let Zj be consecutive points on the line

segment [Y1,Y2] such that |Zj − Zj−1| = τ/3. Then

(N − 1)
τ

3
≤ |Y1 − Y2| < N

τ

3
.

Combined with (9.20), we get a bound for the length of the chain, namely

N ∼ |Y1 − Y2|
τ/3

� �
n−1

n−1−d . (9.21)

Let B0 = B(X1, s/2),Bj = B(Zj, τ/4) for 1 ≤ j ≤ N and BN+1 = B(X2, s/2). Clearly,

Bj ∩ Bj+1 �= ø for all 0 ≤ j ≤ N. Moreover, dist (B0,E), dist (BN+1,E) ≥ s/2 and for

1 ≤ j ≤ N,

dist (Bj,E) ≥ 3

4
τ = 3

4
c�− d

n−1−d s, (9.22)

and

dist (Bj,E) ≤ min{δ(X1), δ(X2)} + s

2
+ |Y1 − Y2| < min{δ(X1), δ(X2)} + 3�s. (9.23)

For each I ∈ W0
Q, by Lemma 9.18 and the discussions after that, there is a

Harnack chain connecting its center XI to the corkscrew point AQ; we call it HI . By

the definition of W0
Q, we may construct this Harnack chain so that it consists of a

bounded number of balls (depending on the values of η,K) and stays a distance at least
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Harmonic Measure on Low-Dimensional UR Sets 79

cη
n−1

4(n−1−d) �(Q) away from ∂� (see (9.22)). We let WQ denote the set of all J ∈ W, which

meet at least one of the Harnack chains HI , with I ∈ W0
Q, that is,

WQ := {J ∈ W : there exists I ∈ W0
Q for which HI ∩ J �= ø}. (9.24)

Clearly, W0
Q ⊂ WQ. Besides, it follows from the construction of the augmented

collections WQ and the properties of the Harnack chains (in particular (9.22) and (9.23))

that there are uniform constants c and C such that

cη
n−1

4(n−1−d) �(Q) ≤ �(I) ≤ CK
1
2 �(Q), dist (I,Q) ≤ CK

1
2 �(Q) (9.25)

for any I ∈ WQ. In particular, once η,K are fixed, for any Q ∈ D the cardinality of WQ is

uniformly bounded, by an integer which we denote by N0.

Next we choose a small parameter θ ∈ (0, 1) so that for any I ∈ W, the concentric

dilation I∗ = (1 + θ)I still satisfies the Whitney property

diam I ∼ diam I∗ ∼ dist (I∗, ∂�) ∼ dist (I, ∂�). (9.26)

Moreover by taking θ small enough we can guarantee that dist (I∗, J∗) ∼ dist (I, J) for

every I, J ∈ W, that I∗ meets J∗ if and only if ∂I meets ∂J, and that 1
2J ∩ I∗ = ø for

any distinct I, J ∈ W. In what follows, we will need to work with further dilations

I∗∗ = (1 + 2θ)I or I∗∗∗ = (1 + 4θ)I, etc. (We may need to take θ even smaller to make

sure the above properties also hold for I∗∗, I∗∗∗, etc.) Given an arbitrary Q ∈ D, we define

associated Whitney regions UQ, U
∗
Q by

UQ :=
⋃

I∈WQ

I∗, U∗
Q :=

⋃
I∈WQ

I∗∗. (9.27)

Let DQ = {Q′ ∈ D : Q′ ⊂ Q}. For any Q ∈ D and any family F = {Qj} of disjoint
cubes in DQ \ {Q}, we define the local and global discretized sawtooth regions relative

to F by

DF ,Q := DQ \
⋃

Qj∈F
DQj

, DF := D \
⋃

Qj∈F
DQj

. (9.28)
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80 G. David and S. Mayboroda

We also define the local sawtooth domain relative to F by

�F ,Q := int
( ⋃

Q′∈DF ,Q

UQ′

)
, �∗

F ,Q := int
( ⋃

Q′∈DF ,Q

U∗
Q′

)
. (9.29)

For convenience, we set

WF ,Q :=
⋃

Q′∈DF ,Q

WQ′ , (9.30)

so that in particular, we may write

�F ,Q = int
( ⋃

I∈WF ,Q

I∗
)
, �∗

F ,Q = int
( ⋃

I∈WF ,Q

I∗∗
)
. (9.31)

We will need further fattened sawtooth domain �∗∗
F ,Q, etc. whose definitions follow the

same lines as above. We remark that by (9.25), there is a constant C3 depending on K, θ

such that

�F ,Q ⊂ B(xQ,C3�(Q)) ∩ � (9.32)

for any Q ∈ D and collection of maximal cubes F , where xQ is the “center” of Q as

in (2.2).

The global versions �F ,�∗
F ,WF are defined analogously using DF in place

of DF ,Q.

The sawtooth domains thus defined, of course, have boundaries with portions

of different dimension: parts of their boundary are given by the intersection with the

original d-dimensional set E, and other parts are composed of the (n − 1)-dimensional

faces of Whitney cubes in �. Yet, they are amenable to the analysis in [14]. In particular,

�F itself satisfies corkscrew and Harnack chain conditions and ∂�F can be equipped

with a doubling measure μ∗ defined as follows. For each Borel set E ⊂ ∂�F , let

μ∗(E) = Hd|�(E ∩ �) +
∫
E\�

dist (X,�)d+1−n dHn−1|∂�F\�(X). (9.33)

It has been demonstrated in [26] that μ∗ is doubling, and moreover, the domain �F
equipped with the measure m(A) = ∫∫

A dist (x,E)−n+d+1 dX and the boundary measure

μ∗, satisfies the conditions (H1)–(H6) from [14] (see [26, Theorem 4.2]). In particular, the

harmonic measure corresponding to the operator L is well defined on ∂�F , and we will
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Harmonic Measure on Low-Dimensional UR Sets 81

denote the latter by ω∗. It satisfies the usual properties of an elliptic measure: doubling,

comparison principle, and change-of-pole inequalities—we send the reader to [14] for

details. We point out that the dyadic cubes in [26] have been built in powers of 2, while

ours are built in powers of 10, but otherwise the construction is identical and we will

freely use the results from [26].

As long as η and θ are chosen small enough and K large enough depending on the

dimension and the AR constants of E only, all the properties listed above are satisfied

with constants depending on the dimension and the AR constants of E only, uniformly

for all F (in particular, because for a d-dimensional E, d < n−1, its own corkscrew and

Harnack chain properties are satisfied with the constants depending on the dimension

and the AR constants of E only). We might adjust the choice of η, θ , and K as we go along

but we will always make sure that it depends on the dimension and the AR constants of

E only.

At this point, we want to compare the two domains �F and �� that were

constructed above in (9.29) and (8.1). Retain the notation from Definition 9.3, where we

are given a top cube Q0 and a stopping time region � ⊂ D(Q0). Then we consider the

now very specific class F = {Qj}j of maximal cubes Q ⊂ Q0 that are not contained in �

(we may call them the stopped cubes). Then DF consists of all the cubes of � (those that

were used to construct �� in (8.1)) and also the cubes Q that are not contained in Q0. In

other words,

DF ,Q0
= �, and, respectively, DF = (D \ D(Q0)) ∪ �. (9.34)

Ultimately, we will be choosing η, θ , and K first and then M0 large enough,

depending on η, θ , and K so that U∗(Q) ⊂ W(Q) and hence

�F ,Q0
⊂ �∗

F ,Q0
⊂ ��. (9.35)

More generally, the geometric statements in the remainder of this subsection

implicitly assume that we are allowed to adjust our choices, while keeping their order

intact, that is, if η, θ are small enough and K is large enough depending on d,n, and

AR constants of E; M0 is large enough depending on all these parameters; M is large

enough depending on d,n, and AR constants of E and our choice of η, θ ,K,M0; and ε0, δ0
are small enough depending on all of the above, then the statements are valid. Since

all of these ultimately depend on d,n, and AR constants of E, we shall suppress this

in many statements. We will need to define a “projection” of cubes Qj ∈ F on � and a
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82 G. David and S. Mayboroda

projection of Qj on ∂�F . To this end, recall the collection R defined in (8.13)–(8.18). We

recall that by (8.18) E \ F = ⋃
Rk∈R Rk and, hence, by (8.22),

E \
⋃

Rk∈R
Rk = F ⊂ E ∩ � ∩ Q0, (9.36)

that is, E coincides with � on the complement of ∪Rk∈RRk.

Furthermore, we claim that every Rk ∈ R is contained in some Qj ∈ F . Indeed,

if Rk is not contained in any Qj ∈ F then Rk ∈ D(Q0) \ ⋃
Qj∈F DQj

. Then d�(xRk
) ≤ l(Rk)

by definition. However, by (8.16), we have d�(xRk
) ≥ (2τ)−1l(Rk) ≥ 50 l(Rk), which is a

contradiction.

Having this and (9.36) in mind, we can write any Qj ∈ F as

Qj =
( ⋃

Rk⊆Qj

Rk

) ⋃ (
Qj \

⋃
Rk⊆Qj

Rk

)
with Qj \

⋃
Rk⊆Qj

Rk ⊂ E ∩ �, (9.37)

and then let

π(Qj) :=
( ⋃

Rk⊆Qj

�(k)

) ⋃ (
Qj \

⋃
Rk⊆Qj

Rk

)
⊂ �, (9.38)

denote a “projection” of Qj on �. Here, �(k) is defined in (8.27). The definition of π(Q)

depends on the choice of the numerical constant τ in the definition of Rk and, hence, of

�(k), but this is, as usual, harmless, as long as τ is small enough for our considerations

from previous chapters to apply.

In order to define the projection of Qj on ∂�F , we recall the following result

from [26].

Proposition 9.39. Fix a disjoint family of cubes F ⊂ D. Then for each Qj ∈ F , there is

an (n − 1)-dimensional cube Pj ⊂ ∂�F , which is contained in a face of I∗ some I ∈ W,

and which satisfies

�(Pj) ≈ dist (Pj,Qj) ≈ dist (Pj, ∂�) ≈ �(I) ≈ �(Qj), (9.40)

with uniform constants.
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Harmonic Measure on Low-Dimensional UR Sets 83

Then we let

π∗(Qj) := Pj (9.41)

denote our “projection” of Qj ∈ F on ∂�F . We first point out the following.

Lemma 9.42. Retain the definitions above. Then

(1) for any Qj ∈ F the set π(Qj) is contained in some surface ball �(̂xQj
, r̂Qj

)

where x̂Qj
∈ �, r̂Qj

= C l(Qj) for some constant C depending on our choice of

τ only;

(2) for any Qj ∈ F the set π(Qj) contains some surface ball �(̂x′
Qj
, r̂′

Qj
), where

x̂′
Qj

∈ π(Qj), r̂
′
Qj

= c l(Qj) for some numerical constant c depending on the AR

constant of μ, d, and on the choice of τ ;

(3) the π(Qj), Qj ∈ F , have bounded overlap and for any Qj ∈ F we have

σ(π(Qj)) ≈ μ(Qj), with all implicit constants depending on the dimension,

AR constant of μ, and our choice of τ only.

Similar statements are valid for π∗ in place of π , μ∗ in place of σ , and ∂�F in place of

�. The relevant constants then depend on our choice of η, θ ,K and, hence, ultimately, on

the dimension and AR constant of E only.

Proof. We start from the statement that

the π(Qj) have bounded overlap and σ(π(Qj)) ≈ μ(Qj). (9.43)

The fact that the π(Qj) have bounded overlap is a direct consequence of (8.33) and of the

fact that the Qj ∈ F are disjoint. The equivalence of sizes will follow from statements

(1) and (2) of the Lemma. Next,

every π(Qj) is contained in some surface ball �(̂xQj
, r̂Qj

), (9.44)

where x̂Qj
∈ �, r̂Qj

= C l(Qj) for some constant C depending on our choice of τ only.

This follows from the observation that for every Rk ⊂ Qj we have l(Rk) ≤ l(Qj) and from

definition (8.27) upon recalling that M2 = 10−1τ−1 and τ ∈ (0, 10−2). Thirdly,

every π(Qj) contains some surface ball �(̂x′
Qj
, r̂′

Qj
), (9.45)
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84 G. David and S. Mayboroda

where x̂′
Qj

∈ π(Qj) and r̂′
Qj

= c l(Qj) for some numerical constant c depending on the AR

constant of μ, d, and on the choice of τ . First, we show that

every decomposition in (9.37) contains at least one Rk with l(Rk) ≈ l(Qj). (9.46)

Indeed, Qj contains a surface ball E ∩ B(xQ,C
−1l(Qj)) by (2.2). Here, C is the constant

denoted by C in (2.2). Using now the 2nd inclusion in (2.2) we deduce that there

is a dyadic cube Q′ contained in E ∩ B(xQ,C
−1l(Qj)/2) with the sidelength l(Q′) =

c1(C,d)l(Qj) for a sufficiently small c1(C,d) depending on C and d only. For any

point z ∈ Q′

d�(z) = inf
Q∈�

dist (z,Q) + l(Q)

≥ min
{

inf
Q∈�:Qj⊂Q

(dist (z,Q) + l(Q)), inf
Q∈�:Qj∩Q=ø

(dist (z,Q) + l(Q))
}

≥ min
{
l(Qj), C

−1l(Qj)/2
}

= C−1l(Qj)/2.

Now, if C−1/2 ≥ 1/τ then C−1l(Qj)/2 ≥ C−1l(Q′)/2 ≥ l(Q′)/τ , and so Q′ is a subset

of some Rk by definition (8.15). And recalling that any Rk intersecting Qj has to

be contained in Qj, we have l(Rk) ≈ l(Qj) with the implicit constant depending on

C and d only. If, on the other hand, C−1/2 ≤ 1/τ then we can keep subdividing

Q′ (the number of times only depending on τ , C−1, and d), until we reach a cube

Q′′ ⊂ Q′ such that C−1l(Qj)/2 ≥ l(Q′′)/τ . Then, similarly to above, there must be an

Rk containing Q′′ with l(Q′′) ≤ l(Rk) ≤ l(Qj) and therefore l(Rk) depending on τ , C−1, and

d only.

Finally, once we know that there exists an Rk ⊂ Qj with l(Rk) ≈ l(Qj), it follows

from the definition of �(k) in (8.27) that (possibly slightly enlarging M2) �(k) contains

a surface ball of radius ≈ l(Rk), and this surface ball will be used as �(̂x′
Qj
, r̂′

Qj
). This

finishes the proof of (9.45).

Proving analogous statements for the projection on ∂�F is actually much easier:

(1) and (2) follow directly from the fact that Pj is a cube, (3) is due to the fact that Pjs

have a bounded overlap and the definition of μ∗ (the reader can consult [26] for more

general upper and lower estimates on μ∗, but in fact, in this case it is perhaps easier to

see the desired bound directly from definitions). �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac109/6585084 by U

niversity of M
innesota - Tw

in C
ities user on 31 January 2023



Harmonic Measure on Low-Dimensional UR Sets 85

Next, for any Q ∈ D(Q0) \ ∪Qj∈FD(Qj), we let

π(Q) : =
( ⋃
Qj∈F ,Qj⊂Q

π(Qj)
)⋃ (

Q \
⋃

Qj∈F ,Qj⊂Q

Qj

)
(9.47)

=
( ⋃
Rk∈R:Rk⊂Q

�(k)
) ⋃ (

Q \
⋃

Rk∈R:Rk⊂Q

Rk

)
⊂ �,

and

π∗(Q) :=
( ⋃
Qj∈F ,Qj⊂Q

π∗(Qj)
)⋃ (

Q \
⋃

Qj∈F ,Qj⊂Q

Qj

)
⊂ ∂�F . (9.48)

Lemma 9.49. Retain the definitions above. Then

(1) for any Q ∈ D(Q0)\∪Qj∈FD(Qj) the set π(Q) is contained in some surface ball

�(̂xQ, r̂Q) where x̂Q ∈ �, r̂Q = C l(Q) for some constant C depending on our

choice of τ only;

(2) for any Q ∈ D(Q0) \ ∪Qj∈FD(Qj) the ball �(̂xQ, 2 r̂Q) above is contained

in �(̂xQ0
, 4 r̂Q0

); for any Qj ∈ F the ball �(̂xQj
, 2 r̂Qj

) from Lemma 9.42 is

contained in �(̂xQ0
, 4 r̂Q0

);

(3) for any Q ∈ D(Q0) \ ∪Qj∈FD(Qj) the corkscrew point of Q with respect to

E, AQ, is a corkscrew point for B(̂xQ, 4 r̂Q) ∩ � on � with implicit constants

depending on the AR constant of μ, on our resulting choice ofM0, and on the

choice of τ ;

(4) for any Q ∈ D(Q0) \ ∪Qj∈FD(Qj) the set π(Q) contains some surface ball

�(̂x′
Q, r̂

′
Q) where x̂′

Q ∈ π(Q), r̂′
Q = c l(Q) for some numerical constant c

depending on the AR constant of μ, d, and on the choice of τ ;

(5) for any Q ∈ D(Q0) \ ∪Qj∈FD(Qj) we have σ(π(Q)) ≈ μ(Q), with all implicit

constants depending on the dimension, AR constant of μ, d, and our choice

of τ only.

The analogues of statements (1)–(3) and (5) are valid for π∗ in place of π , μ∗ in place of σ ,

and ∂�F in place of �. The relevant constants then depend on our choice of η, θ ,K, and,

hence, ultimately, on the dimension and AR constant of E only. The statement (4) for π∗
should be substituted by the following property.
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86 G. David and S. Mayboroda

For Qj ∈ F , let B(x∗
j , r

∗
j ) be a ball, centered on π∗(Qj) = Pj, and such that r∗

j ≈ l(Qj)

and

⋃
Q∈DQj

UQ ⊂ B(x∗
j , r

∗
j ).

Then for each Q ∈ D(Q0) \ ∪Qj∈FD(Qj), there is a surface ball �′(x∗
Q, r

∗
Q) where x∗

Q ∈ ∂�F ,

r∗
Q ≈ l(Q), and such that

�′(x∗
Q, r

∗
Q) ⊂

(
Q ∩ ∂�F

)
∪

(
∪Qj∈F :Qj⊂Q B(x∗

j , r
∗
j ) ∩ ∂�F

)
, (9.50)

withdist (Q,�′(x∗
Q, r

∗
Q)) � �(Q).

Proof. The fact that

every π(Q) is contained in some surface ball �(̂xQ, r̂Q), (9.51)

follows from the definition of π(Q): we recall that the surface ball �(xQ, l(Q)) contains Q

by (2.2) and then observe that all �(k) such that Rk ⊂ Q are contained �(xQ, (1+M2)l(Q)).

Taking r̂Q = 2(1 + M2)l(Q)) and any x̂Q ∈ π(Q) we then have (9.51).

We note that the construction above and a virtually identical construction in the

proof of (1) in Lemma 9.42 ensure that (2) in the statement of the Lemma is satisfied.

Moreover, for any Q ∈ D(Q0) \ ∪Qj∈FD(Qj), AQ ∈ B(xQ,C
−1l(Q)) ⊂ B(̂xQ, 4 r̂Q) and

dist (AQ,E) ≥ τ0C
−1l(Q) by definition. It follows that having chosen M0 large enough

depending on the AR constant only, AQ ∈ ��, and, hence, by (8.12),

dist (AQ,�) ≥ (1 − CM0ε)τ0C
−1l(Q).

Assuming, as usual, that ε is small depending onM0 and other parameters depending on

the AR constant, we have dist (AQ,�) ≥ τ0(2C)−1l(Q). It follows that AQ is a corkscrew

point for B(̂xQ, 4 r̂Q) ∩ � with implicit constants depending on the AR constant of μ and

our resulting choices of M0 and smallness of ε, as well as on τ .

As a result, x̂Q ∈ � and r̂Q = C l(Q) for some constant C depending on our choice

of τ only.
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The opposite inclusion, while less straightforward, is also true: for any

Q ∈ D(Q0) \ ∪Qj∈FD(Qj)

π(Q) contains some surface ball �(̂x′
Q, r̂

′
Q), (9.52)

where x̂′
Q ∈ π(Q), r̂′

Q = c l(Q) for some numerical constant c depending on the AR

constant of μ, d, and on the choice of τ . Let us prove this. Fix some Q ∈ D(Q0) \
∪Qj∈FD(Qj). Recall (8.18) which, in particular, means that

Q ∩ F = Q ∩ (Q \ [(E \ F) ∩ Q]) = Q ∩
(
Q \

⋃
Rk∈R:Rk⊂Q

Rk

)
⊂ π(Q).

Now, by (2.2), there exists a constant C1 such that E ∩ B(xQ,C
−1
1 l(Q)) ⊂ Q. Fix

κ = C−1
1 /4 ≤ 1/4. If B(xQ, κl(Q)) ∩ � ⊂ Q ∩ F ⊂ π(Q) then we can assign �(̂x′

Q, r̂
′
Q) :=

B(xQ, κl(Q)) ∩ � and finish the argument.

If, on the other hand, there exists a x̂Q ∈ B(xQ, κl(Q))∩� such that x̂Q ∈ � \F, we

choose �(̂x′
Q, r̂

′
Q) = �̂ := B(̂xQ, κl(Q)) ∩ �. Let us show that B(̂xQ, κl(Q)) ∩ � ⊂ π(Q).

Assume, on the contrary, that there exists ξ ∈ �̂ such that ξ �∈ π(Q). First of all,

�̂ ⊂ B(xQ, 2κl(Q)) (since |̂xQ−xQ| ≤ κl(Q)) and, hence, �̂∩F ⊂ B(xQ,C
−1
1 l(Q))∩F ⊂ Q∩F ⊂

π(Q) for our choice of κ. Therefore, ξ ∈ (̂B ∩ �) \ F and the discussion near (8.39)–(8.40)

applies. In particular, there exists a k0 such that ξ ∈ �(k0) and there exists x ∈ Rk0 such

that |x − ξ | ≤ Cεd�(ξ). However,

d�(ξ) = inf
Q′∈�

(l(Q′) + dist (ξ ,Q′)) ≤ l(Q) + |ξ − xQ| ≤ (1 + 2κ)l(Q).

Therefore,

|x − xQ| ≤ |x − ξ | + |ξ − xQ| ≤ Cε(1 + 2κ)l(Q) + 2κl(Q) < 2Cεl(Q) + 2κl(Q).

Assuming that Cε ≤ C−1
1 /4 (which is always safe because C1 depends only on the AR

constant of μ) and recalling that κ = C−1
1 /4 (which is our choice), we conclude that

x ∈ E ∩ B(xQ,C
−1
1 l(Q)) ⊂ Q. Therefore, Rk0 meets Q. Then Rk0 is necessarily a subcube

of Q and, therefore, ξ ∈ �(Rk0) ⊂ π(Q), which is a contradiction. We have finished the

proof of (9.52).

The last statement of the Lemma follows from (1), (4), and the Ahlfors regularity

of �.
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88 G. David and S. Mayboroda

Let us turn to the analogous statements for the projection on the saw-tooth. (1)

remains true since π∗(Qj) is at a distance proportional to �(Qj) ≤ �(Q) from Q. (2) is

proved exactly as it is for π . (3) is due to the fact that Q /∈ F and, hence, AQ belongs

to some Whitney region associated to Q whose interior (and even its enlargement) is a

subset of �F .

Therefore, AQ is also a corkscrew point for a corresponding surface ball on ∂�F
with the corkscrew constants depending on η and θ in the definition of ∂�F . As for (5),

μ∗(π∗(Q)) = μ

(
Q \

⋃
Qj∈F ,Qj⊂Q

Qj

)
+ μ∗

( ⋃
Qj∈F ,Qj⊂Q

π∗(Qj)

)

≈ μ

(
Q \

⋃
Qj∈F ,Qj⊂Q

Qj

)
+

∑
Qj∈F ,Qj⊂Q

μ∗
(
π∗(Qj)

)
≈ μ

(
Q \

⋃
Qj∈F ,Qj⊂Q

Qj

)
+

∑
Qj∈F ,Qj⊂Q

μ(Qj) = μ(Q) (9.53)

where the 1st equality is due to the fact that the corresponding regions are disjoint, the

2nd one uses the finite overlap property of Pj, the third one follows from (3) of Lemma

9.42. Finally, (9.50) is proved in [26]. �

9.3 Projections and the harmonic measure(s)

With this setup, we are ready for the following results. The proofs of the two lemmas

below follow closely those of [20, Lemma B.2 and Lemma B.6] where analogous results

have been established for projections of the harmonic measure on a saw-tooth region

starting for an (n − 1) dimensional set E. Our geometric set-up is, however, different

not only because of mixed dimension but also because we need to tie in ω̂, the harmonic

measure on � rather than E.

Lemma 9.54. Let E be a d-dimensional Ahlfors regular set in R
n and μ an Ahlfors

regular measure on E and let F = {Qj}j be the collection of disjoint cubes in D(Q0)

associated to our stopping time region � as above. Then the following two statements

are valid.

(1) Assume that ω̂ is a doubling measure on �. Then the projection of ω̂ on F
within Q0 ∈ D(E) defined as

PF ω̂(A) := ω̂

(
A \ ( ⋃

Qj∈F
Qj

)) +
∑
Qj∈F

μ(A ∩ Qj)

μ(Qj)
ω̂(π(Qj)), A ⊂ Q0, (9.55)
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is dyadically doubling on Q0. In particular, the conclusion of this lemma

holds for the elliptic measure ω̂ = ω̂AQ0 , associated to the operator L̂ on

R
n \ �.

(2) Assume that ω∗ is a doubling measure on �F . Then the projection of ω∗ on

F within Q0 ∈ D(E) defined by

PF ω∗(A) := ω∗
(
A \ ( ⋃

Qj∈F
Qj

)) +
∑
Qj∈F

μ(A ∩ Qj)

μ(Qj)
ω∗(π∗(Qj)), A ⊂ Q0, (9.56)

is dyadically doubling on Q0. In particular, the conclusion of this lemma

holds for the elliptic measure ω∗ = ω
AQ0∗ associated to the operator L on �F .

Proof. Let Q ∈ D(Q0) and Q′ ⊂ Q be a dyadic child of Q. There are three possible cases:

Q (and hence Q′) is contained in one of the Qj ∈ F ; Q′ coincides with one of the Qk ⊂ F
and, hence, Q is not contained in any Qj ∈ F ; Q′ (and hence, Q) is not contained in any

Qj ∈ F .

If Q (and hence Q′) is contained in one of the Qj ∈ F , then

PF ω̂(Q) = μ(Q ∩ Qj)

μ(Qj)
ω̂(π(Qj)), PF ω̂(Q′) = μ(Q′ ∩ Qj)

μ(Qj)
ω̂(π(Qj)),

and the desired result follows from the doubling property of μ.

The 2nd case is when Q′ coincides with one of the Qk ∈ F and, hence, Q is not

contained in any of Qj ⊂ F . Notice that Q contains any cube Qj ∈ F such that Q∩Qj �= ø.

Since in addition the π(Qj) have finite overlap and are disjoint from Q \ ( ⋃
Qj∈F Qj

)
,

PF ω̂(Q) = ω̂

(
Q \ ( ⋃

Qj∈F
Qj

)) +
∑

Qj∈F :Q∩Qj �=ø

μ(Q ∩ Qj)

μ(Qj)
ω̂(π(Qj)) (9.57)

= ω̂

(
Q \ ( ⋃

Qj∈F
Qj

)) +
∑

Qj∈F :Q∩Qj �=ø

μ(Qj)

μ(Qj)
ω̂(π(Qj))

= ω̂

(
Q \ ( ⋃

Qj∈F
Qj

)) +
∑

Qj∈F :Q∩Qj �=ø

ω̂(π(Qj)) � ω̂(π(Q)).

We claim that there exists x̂Q′ ∈ π(Q′) and c′,C′ > 0 such that

�(̂xQ′ , cl(Q′)) ⊂ π(Q′), π(Q) ⊂ �(̂xQ′ ,Cl(Q′)). (9.58)
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90 G. David and S. Mayboroda

The 1st statement follows from (9.45). The 2nd one follows from (9.51) harmlessly

enlarging C so that the ball in (9.51) is contained in �(̂xQ′ ,Cl(Q′)) for any x̂Q′ ∈ π(Q′).
Now, recalling that ω̂ is doubling (here, we have to use (2) and (3) of Lemma 9.49 to

ensure that the pole is properly placed), we have

PF ω̂(Q) � ω̂(π(Q)) ≤ ω̂(�(̂xQ′ ,Cl(Q′))) � ω̂(�(̂xQ′ , cl(Q′))) � ω̂(π(Q′)). (9.59)

Since we are in the case whenQ′ coincides with one of theQk ∈ F , we have, in particular,

PF ω̂(Q′) = ω̂(π(Qk)) = ω̂(π(Q′)), so that the right-hand side of (9.59) is equal to

PF ω̂(Q′).
Finally, we consider the third case when Q′ (and hence, Q) is not contained in

any Qk ∈ F . The very same argument as above, using (9.52) in place of (9.45), yields

PF ω̂(Q) � ω̂(π(Q′)). (9.60)

However, much as in (57),

PF ω̂(Q′) = ω̂

(
Q′ \ (

⋃
Qj∈F

Qj)

)
+

∑
Qj∈F :Q′∩Qj �=ø

ω̂(π(Qj)) � ω̂(π(Q′)), (9.61)

as desired.

Passing to the projection of ω∗, we remark that the treatment of the 1st two

cases is literally the same. The only significant difference is the argument for the

third case when Q′ (and hence, Q) is not contained in any Qk ∈ F . Much as for ω̂

we have

PFω∗(Q) � ω∗(π∗(Q)) � ω∗(�(x∗
Q, r

∗
Q)),

where the 1st inequality follows from the argument analogous to (57) and the 2nd

one is due to Lemma 9.49, a version of (1) for ∂�F , and the surface ball �(x∗
Q, r

∗
Q),

x∗
Q ∈ ∂�F , r∗

Q ≈ l(Q), is the one containing π∗(Q). Using the doubling property of ω∗,
we have

ω∗(�(x∗
Q, r

∗
Q)) � ω∗(�′(x∗

Q′ , r∗
Q′)),
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where �′(x∗
Q′ , r∗

Q′) is the surface ball from (9.50) for the cube Q′. Now, by (9.50) and the

doubling property of ω∗,

ω∗(�′(x∗
Q′ , r∗

Q′)) ≤ ω∗
(
Q′ ∩ ∂�F

) +
∑

Qj∈F :Qj⊂Q′
ω∗

(
B(x∗

j , r
∗
j ) ∩ ∂�F

)
� ω∗

(
Q′ ∩ ∂�F

) +
∑

Qj∈F :Qj⊂Q′
ω∗

(
π∗(Qj)

)
� ω∗(π∗(Q′)). (9.62)

Then, analogously to (9.61), we can finish the argument.

We remark that the elliptic measure of L on ∂�F fits the hypothesis and, in

particular, is doubling by [14, 26]. �

Lemma 9.63. Let E be a d-dimensional Ahlfors regular set in R
n and μ be an Ahlfors

regular measure on E. Under the conditions of Theorem 9.6, the projection of the

harmonic measure of L̂ on F within Q0 ∈ D(E) defined by (9.55) with ω̂ = ω̂AQ0 is A∞
D

(Q0)

with respect to μ.

Proof. As per Remark 2.28, we aim to show (2.24) for some δ, ε ∈ (0, 1).

For brevity, we will write ω̂ = ω̂AQ0 throughout the proof. We fix 0 < η < 1/2 and

A ⊂ Q ∈ D(Q0) with μ(A) ≥ (1 − η)μ(Q).

If Q ⊆ Qj for some Qj ⊂ F , then

PF ω̂(A)

PF ω̂(Q)
= μ(A ∩ Qj)

μ(Qj)
ω̂AQ0 (π(Qj))

(
μ(Q ∩ Qj)

μ(Qj)
ω̂AQ0 (π(Qj))

)−1

= μ(A)

μ(Q)
≥ (1 − η),

as desired.

If Q is not contained in any cube of F , then it belongs to D(Q0) \ ∪Qj∈FD(Qj). It

might or might not intersect with the cubes of F and we let

FG = {Qj ∈ F : μ(A ∩ Qj) ≥ (1 − 2η)μ(Qj)},

and

E0 := Q \
⋃

Qj∈F
Qj, G :=

⋃
Qj∈FG

Qj, B :=
⋃

Qj∈F\FG

Qj.
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92 G. David and S. Mayboroda

Then simply dropping the cubes of F \ FG in the sum,

PF ω̂(A) ≥ ω(A ∩ E0) +
∑

Qj∈FG

μ(A ∩ Qj)

μ(Qj)
ω̂(π(Qj)) (9.64)

≥ ω(A ∩ E0) + (1 − 2η)
∑

Qj∈FG

ω̂(π(Qj)) ≥ (1 − 2η) ω̂((A ∩ E0) ∪ π(G)),

where we set

π(G) :=
⋃

Qj∈FG

π(Qj),

and used the fact that π(Qj) and E0 are disjoint. Recall now (47)–(9.51). Using the

property that ω̂ is A∞ with respect to σ by Theorem 9.6, we have

ω̂((A ∩ E0) ∪ π(G))

ω̂(�(̂xQ, r̂Q))
�

(
σ((A ∩ E0) ∪ π(G))

σ (�(̂xQ, r̂Q))

)θ

. (9.65)

Here again we have to use (2) and (3) of Lemma 9.49 to ensure that the pole is properly

placed.

Now, from (9.43) and the fact that the Qj are disjoint we conclude that σ(π(G)) ≈
μ(G) and since furthermore A ∩ E0 and π(G) as well as A ∩ E0 and G are disjoint,

σ((A ∩ E0) ∪ π(G)) ≈ μ((A ∩ E0) ∪ G). (9.66)

Also,

μ(A ∩ B) ≤ (1 − 2η)
∑

Qj∈F\FG

μ(Qj) ≤ (1 − 2η)μ(Q),

and, hence,

(1 − η)μ(Q) ≤ μ(A) ≤ μ((A ∩ E0) ∪ G) + μ(A ∩ B) ≤ μ((A ∩ E0) ∪ G) + (1 − 2η)μ(Q),

so that

μ((A ∩ E0) ∪ G) ≥ η μ(Q). (9.67)
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Since by Ahlfors regularity of σ

σ(B(̂xQ, r̂Q)) ≈ r̂dQ ≈ μ(Q),

invoking (9.66) and (9.67) we see that the right-hand side of (9.65) is bounded from below

by ηθ , modulo a multiplicative constant.

Coming back to (64), this yields

PF ω̂(A) � (1 − 2η)ηθ ω̂(�(̂xQ, r̂Q)).

Finally, we recall that the ball �(̂xQ, r̂Q) contains π(Q) by (47)–(9.51) and the sets π(Qj)

have have finite overlap and are disjoint from Q ∩ E0. Therefore,

ω̂(�(̂xQ, r̂Q)) ≥ ω̂(π(Q)) � ω̂(Q ∩ E0) +
∑
Qj∈F

ω̂(π(Qj)) = PF ω̂(Q),

as desired. �

Theorem 9.68. Let E be a d-dimensional Ahlfors regular set and μ be an Ahlfors

regular measure on E. Let ω be the harmonic measure associated to the operator

L = −divD−(n−d−1)
μ ∇ in R

n \ E, with

Dμ(X) =
{ ∫

E
|X − y|−d−α dμ(y)

}−1/α

, α > 0. (9.69)

Then let Q0 ∈ D(E) be given, construct � = �ε0,δ0(Q0) and the complementary collection

F as in Definition 9.3, assume that � �= ø, and define the projection of ω = ωAQ0 on F
within Q0 by

PF ω(A) := ω

(
A \ (

⋃
Qj∈F

Qj)

)
+

∑
Qj∈F

μ(A ∩ Qj)

μ(Qj)
ω(Qj), A ⊂ Q0. (9.70)

If our various constants are chosen correctly (see below this statement), PFω lies in the

class A∞
D

(Q0) with respect to μ, with A∞ constants that depend only on n,d,C0, and α.

To be precise, if η (see above (9.16))and θ (near (9.26)) are small enough and K

(above (9.16)) is large enough, depending on n,d,C0; M0 > 1 is large enough depending

on n,d,C0 and η, θ ,K; M > 1 large enough depending on n,d,C0,M0, and ε0, δ0 > 0 small
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94 G. David and S. Mayboroda

enough depending on n,d,C0,M0,M, then PFω lies in the class A∞
D

(Q0) with respect to

μ, with A∞ constants that depend only on n,d,C0, and α.

As usual, the uniform rectifiability is not needed at this stage.

Proof. The plan of the proof is to show that PF ω
AQ0∗ (where ω∗ is the elliptic measure

associated to the operator L on �F ) is A∞
D

(Q0) with respect to PF ω̂AQ0 (associated to

the operator L̂ on the domain R
n \ �) and PF ω

AQ0∗ is A∞
D

(Q0) with respect to PF ωAQ0 , so

that PF ωAQ0 is A∞
D

(Q0) with respect to PF ω̂AQ0 (in the notation of Lemma 9.63) at which

point we can use Lemma 9.63 to achieve the desired result. This 2nd part is easier and is

closely related to the main lemma for sawtooth projections in [9], its version in [20], and

similar results. However, working with a “replacement boundary” � and the associated

harmonic measure is new, and the 1st part, requiring both a change of the domain and

a change of the operator, is more intricate.

We remark that formally speaking, we only defined A∞ and A∞
D

properties with

respect to the Ahlfors regular measure on the boundary, but the same Definitions (2.22),

(2.25) apply to any doubling measure μ together with the equivalent reformulations, in

particular, in Remark 2.28.

We start with the proof of the simpler statement that PF ω
AQ0∗ is A∞

D
(Q0) with

respect to PF ωAQ0 .

As usual, we will simplify the notation by writing ω = ωAQ0 , ω∗ = ω
AQ0∗ , and

ω̂ = ω̂AQ0 throughout the proof. Recall from Remark 2.28 that A∞
D

is an equivalence

relationship, and let us concentrate on showing that there is a constant C > 0 such that

for every Q ∈ D(Q0) and every Borel set A ⊂ Q,

PFω∗(A)

PFω∗(Q)
≤ C

PFω(A)

PFω(Q)
. (9.71)

The simplest case is when Q ⊆ Qj for some Qj ∈ F . Then, by definition,

PFω(A)

PFω(Q)
= PFω∗(A)

PFω∗(Q)
= μ(A ∩ Qj)

μ(Q ∩ Qj)
.

Let us assume now that Q is not contained in any Qj ∈ F . In this case, similarly

to (9.61) and (62)

PFω∗(Q) � ω∗(π(Q)) ≥ ω∗(�′(x∗
Q, r

∗
Q)), (9.72)

where �′(x∗
Q, r

∗
Q) is the surface ball from (9.50).
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Therefore, with the notation E0 = Q0 \ (⋃
Qj∈F Qj

)
,

PFω∗(A)

PFω∗(Q)
� ω∗(A ∩ E0)

ω∗(�′(x∗
Q, r

∗
Q))

+
∑

Qj∈F :Qj⊂Q

μ(A ∩ Qj)

μ(Qj)

ω∗(π∗(Qj))

ω∗(�′(x∗
Q, r

∗
Q))

. (9.73)

Using the change of pole formula for ω∗ in [14] and, if necessary, Harnack’s inequality

to slightly adjust the corkscrew point, we can write the above as

PFω∗(A)

PFω∗(Q)
� ωAQ∗ (A ∩ E0) +

∑
Qj∈F :Qj⊂Q

μ(A ∩ Qj)

μ(Qj)
ωAQ∗ (π∗(Qj)). (9.74)

By the maximum principle and the fact that ωX(Qj) ≈ 1 for X ∈ π∗(Qj), we have

ωAQ∗ (A ∩ E0) � ωAQ(A ∩ E0) and ωAQ∗ (π∗(Qj)) � ωAQ(Qj).

Then

PFω∗(A)

PFω∗(Q)
� ωAQ(A ∩ E0) +

∑
Qj∈F :Qj⊂Q

μ(A ∩ Qj)

μ(Qj)
ωAQ(Qj) �

PFω(A)

PFω(Q)
, (9.75)

as desired.

Now let us turn to the proof that PF ω
AQ0∗ (where ω∗ is the elliptic measure

associated to the operator L on �F ) is A∞
D

(Q0) with respect to PF ω̂AQ0 (associated to

the operator L̂ on the domain R
n \ �). The challenge is to change the operator and the

domain on which the harmonic measure is evaluated simultaneously.

To this end, we recall that by Remark 2.28 (which as we mentioned, applies

to general doubling measures) in order to show that a doubling measure ω is A∞
D

(Q0)

with respect to another doubling measure ν, it is sufficient to show that there exists

0 < ε, δ < 1 such that for every Q ∈ D(Q0) and every Borel set F ⊂ Q,

ω(F)

ω(Q)
< δ ⇒ ν(F)

ν(Q)
< ε. (9.76)

We claim that it is moreover sufficient to show an even weaker property, where

we only check something like (9.76) in the middle of Q (but in a uniform way). First, we
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96 G. David and S. Mayboroda

claim that if we choose the constant M ′ large enough, then for each Q ∈ D(Q0), we can

find a dyadic subcube Q′ ⊂ Q such that

1

10M ′ �(Q) ≤ �(Q′) ≤ 1

M ′ �(Q), and dist (Q′,E \ Q) ≥ M ′

2
�(Q′). (9.77)

Indeed, (2.2) gives a “center” xQ for Q such that dist (xQ),E \ Q) ≥ C−1�(Q), and if M ′ is
large enough, any cube Q′ such that 1

10M ′ �(Q) ≤ �(Q′) ≤ 1
M ′ �(Q) (this covers a generation

of cubes) and that contains xQ will satisfy the 2nd part of (9.77) automatically.

Now pick any M ′ as above, and for each Q ∈ D(Q0) a cube Q′ = Q′(Q) ⊂ Q

such that (9.77) holds; we claim that in order to show that a doubling measure ω is

A∞
D

(Q0) with respect to another doubling measure ν it is enough to prove that there

exists 0 < ε′, δ′ < 1 such that for every Q ∈ D(Q0) and every Borel set F ⊂ Q′,

ω(F)

ω(Q′)
< δ′ ⇒ ν(F)

ν(Q′)
< ε′. (9.78)

Now assume that (9.79) holds for every F ⊂ Q′ ⊂ Q as stated and that for some

F ⊂ Q we have ν(F)
ν(Q)

> ε, with ε ∈ (0, 1) to be defined shortly. Obviously,

ν(Q \ Q′) + ν(F ∩ Q′) = ν(F) > εν(Q).

Since ν is doubling, there exists a small constant cν depending on the doubling

constants of ν, the dimension, and M ′, such that ν(Q) ≤ 1
cν

ν(Q′). Hence,

ν(F ∩ Q′)
ν(Q′)

>
εν(Q′) − ν(Q \ Q′)

ν(Q′)
= 1 − (1 − ε)

ν(Q)

ν(Q′)
≥ 1 − (1 − ε)

1

cν

.

Choosing 0 < ε < 1 so that cν(1 − ε′) = 1 − ε (which is always possible, for any given

0 < ε′ < 1), we get ν(F∩Q′)
ν(Q′) > ε′. Then, by (9.79), ω(F∩Q′)

ω(Q′) ≥ δ′. Therefore,

ω(F)

ω(Q)
≥ cω

ω(F ∩ Q′)
ω(Q′)

≥ cωδ′ =: δ,

where cω is a constant depending on the doubling constants of ω, the dimension, andM ′

only. We arrive at (9.76).
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Harmonic Measure on Low-Dimensional UR Sets 97

Hence, in application to our situation, it is enough to show that there exists

0 < ε, δ < 1 such that for every Q ∈ D(Q0) and every Borel set F ⊂ Q′,

PF ω
AQ0∗ (F)

PF ω
AQ0∗ (Q′)

> ε ⇒ PF ω̂AQ0 (F)

PF ω̂AQ0 (Q′)
> δ (9.79)

where the large constant M ′ will be chosen below and Q′ is a descendent of Q chosen as

above.

If Q′ is a subcube of some Qj ∈ F , there is nothing to prove, for

PF ω̂AQ0 (F)

PF ω̂AQ0 (Q′)
= PFω

AQ0∗ (F)

PFω
AQ0∗ (Q′)

= μ(F ∩ Qj)

μ(Q ∩ Qj)
.

Therefore, we concentrate on the case when Q′ and, hence, Q, belongs to DF . Since

PF ω̂AQ0 (Q′) � ω̂AQ0 (π(Q′))

(see (57), (9.60)), the usual change of pole considerations yield

PF ω̂AQ0 (F)

PF ω̂AQ0 (Q′)
� ω̂AQ′

(
F \ ( ⋃

Qj∈F
Qj

)) +
∑
Qj∈F

μ(F ∩ Qj)

μ(Qj)
ω̂AQ′ (π(Qj))

� ω̂AQ′
(
F \ ( ⋃

Qj∈F
Qj

)) +
∑

Qj∈F :
μ(F∩Qj)

μ(Qj)
>η

μ(F ∩ Qj)

μ(Qj)
ω̂AQ′ (π(Qj))

� ω̂AQ′
(
F \ ( ⋃

Qj∈F
Qj

)) + η
∑

Qj∈F :
μ(F∩Qj)

μ(Qj)
>η

ω̂AQ′ (π(Qj))

� η ω̂AQ′
((
F \ ( ⋃

Qj∈F
Qj

))⋃ ( ⋃
Qj∈FG

π(Qj)
))
.

Here 0 < η < 1 is a parameter to be chosen below, and FG is the collection of cubes in

F such that
μ(F∩Qj)

μ(Qj)
> η. Let Z = (

F \ (⋃
Qj∈F Qj

))⋃ ( ⋃
Qj∈FG

π(Qj)
)
be the set from the

last line. By the maximum principle and the fact that L = L̂ in �F ∩ ��, ω̂AQ′ (Z) is larger

than the solution to Lu = 0 on �F ∩ �� with the data given by the restriction of 1Z to

the boundary of �F ∩ ��, evaluated at AQ′ .

We claim that for some constants C,α > 0 depending on the usual geometric

parameters only, the latter is larger than ω
AQ′
∗ (Z) − C (M ′)−d+1−α. In order to prove this,
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98 G. David and S. Mayboroda

by the maximum principle, we only need to show that

ωX∗
(
π(Q′)

) ≤ C(M ′)−d+1−α for X ∈ ∂(�F ∩ ��) \ ∂�F = �F ∩ ∂�� (9.80)

because Z ⊂ π(Q′) since F ⊂ Q′.
Let us postpone for now the proof of (9.80) and try to finish the argument. At

this point, collecting all of the above, we have

PF ω̂AQ0 (F)

PF ω̂AQ0 (Q′)
� η ω

AQ′
∗ (Z) − η (M ′)−d+1−α. (9.81)

However,

ω
AQ′
∗ (Z) � ω

AQ′
∗

(
F \ ( ⋃

Qj∈F
Qj

)) +
∑

Qj∈FG

ω
AQ′
∗ (π(Qj)) (9.82)

≥ ω
AQ′
∗

(
F \ ( ⋃

Qj∈F
Qj

)) +
∑

Qj∈FG

μ(F ∩ Qj)

μ(Qj)
ω
AQ′
∗ (π(Qj))

≥ ω
AQ′
∗

(
F \ ( ⋃

Qj∈F
Qj

)) +
∑
Qj∈F

μ(F ∩ Qj)

μ(Qj)
ω
AQ′
∗ (π(Qj)) − η

∑
Qj∈F\FG

ω
AQ′
∗ (π(Qj))

≥ PFω
AQ′
∗ (F) − η,

where the 1st inequality is due to the finite overlap property of π(Qj), the 2nd one is

simply due to the fact the density does not exceed 1, while in the 3rd one we have added

back and subtracted the cubes where
μ(F∩Qj)

μ(Qj)
≤ η, and the 4th one uses once again the

finite overlap property and the fact that

∑
Qj∈F\FG

ω
AQ′
∗ (π(Qj)) ≤ ω

AQ′
∗ (π(Q′)) ≤ 1.

Then (9.81) and (9.82) give

PF ω̂AQ0 (F)

PF ω̂AQ0 (Q′)
� η

(
PFω

AQ′
∗ (F) − η − (M ′)−d+1−α

)
. (9.83)

We started with the assumption that PF ω
AQ0∗ (F)

PF ω
AQ0∗ (Q′)

> ε as in (9.79). After the change

the poles (9.74) yields PFω
AQ′
∗ (F) ≥ C−1ε, where of course C does not depend on η.

Choosing η and M ′ so that (M ′)−d+1−α = C−1ε/4, η = C−1ε/4, we get (9.79) with δ ≈ ε2.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac109/6585084 by U

niversity of M
innesota - Tw

in C
ities user on 31 January 2023



Harmonic Measure on Low-Dimensional UR Sets 99

Note that ε ∈ (0, 1) does not have to be small. In fact, to be more accurate, there are

some a priori constraints on the choice on M ′ (depending on the allowable geometric

parameters only) so we will first choose M ′ and then ε and η accordingly (recall that all

of the above are in our disposal).

To finish the proof, it remains to show (9.80). This is essentially the comparison

principle once we observe that

dist (Q′,�F ∩ ∂��) ≥ CM ′�(Q′), (9.84)

where C depends on η, θ , and K, and the dimension and AR constants of E only. This

estimate was the entire reason for introducing M ′ into the argument. To this end, we

observe that by (9.35)

�F ∩ ∂�� ⊂ ∪Q̃∈D\D(Q0)
U ∗̃
Q
.

We split into two cases. Assume first that Q̃ ∈ D \ D(Q0) is such that �(Q̃) ≥
c0 �(Q0), with a small constant c0 to be determined below. Then

dist (U ∗̃
Q
,Q′) ≥ dist (U ∗̃

Q
,E) ≥ C(η, θ)�(Q̃) ≥ c0C(η, θ) �(Q0) ≥ c0C(η, θ)M ′ �(Q′), (9.85)

where we used (9.25) and (9.26) for the 3rd inequality above and (9.77) along with the

fact that �(Q0) ≥ �(Q) for the last one.

If, on the other hand, Q̃ ∈ D\D(Q0) is such that �(Q̃) ≤ c0 �(Q0), with c0 < 1, then

Q̃ ∩ Q0 = ø and

dist (U ∗̃
Q
,Q′) ≥ dist (Q̃,Q′) − dist (U ∗̃

Q
, Q̃) ≥ dist (Q′,E \ Q) − C(K, θ) �(Q̃)

≥ M ′

2
�(Q′) − C(K, θ) �(Q̃) ≥ M ′

2
�(Q′) − C(K, θ) c0 �(Q0) (9.86)

≥ M ′

2
�(Q′) − 10C(K, θ) c0M

′�(Q′),

where we used (9.25) for the 3rd and the 5th inequality and (9.77) for the 4th one. Now

choosing c0 so that 10C(K, θ) c0 = 1/4, and combining (85) and (9.86), we arrive at (9.84),

with a small constant C depending on η, θ ,K, the dimension, and the AR constant of

E only.
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100 G. David and S. Mayboroda

With (9.84) at hand, by [14, Lemma 15.28]

ωX∗ (π(Q′)) ≤ C
m(BQ′ ∩ �F )

l(Q′)2
g∗(X,AQ′

),

where g∗ is the Green function of L on �F , BQ′ is a ball of radius Cl(Q′) centered in

Q′, and the measure m is given by m(A) = ∫∫
A dist (X,E)−n+d+1 dX. Next, according to

[14, Lemma 14.83]

g∗(X,AQ′
) � �(Q′)α |X − AQ′ |2−α

m(B(X, |X − AQ′ |) � �(Q′)α (M ′�(Q′))2−α

m(B(AQ′ ,CM ′�(Q′)) ∩ �F )
.

Combining the two estimates above,

ωX∗ (π(Q′)) ≤ C
(M ′)2−α

m(B(AQ′ ,CM ′�(Q′)) ∩ �F )
m(BQ′ ∩ �F ) = C(M ′)−d+1−α,

as desired. �

10 Extrapolation

Let us start with the following definitions of dyadic Carleson measures.

Definition 10.1. Let E be a d-dimensional Ahlfors regular set, μ be an Ahlfors regular

measure on E, and D(E) be our usual collection of dyadic cubes on E (associated to μ).

Let {a(Q)}Q∈D(E) be a sequence of non-negative numbers indexed by Q ∈ D(E). For any

subcollection D
′ ⊂ D(E), Q0 ∈ D(E), we let

m(a,D′) :=
∑
Q∈D′

a(Q)2 μ(Q),

and

‖m(a)‖CMD
:= sup

Q∈D(E)

m(a,D(Q))

μ(Q)
, ‖m(a)‖CMD(Q0)

:= sup
Q∈D(Q0)

m(a,D(Q))

μ(Q)
,

and if the latter two quantities are finite, we say that m(a) ∈ CM
D
or m(a) ∈ CM

D(Q0)
,

respectively.

These definitions pertain to the measure (rather than to the sequence) and could

seem different in homogeneity from their continuous analogue in geometric saw-tooth

in Definition 2.13. To reconcile these differences we say, slightly abusing the notation,
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Harmonic Measure on Low-Dimensional UR Sets 101

that the sequence {a(Q)}Q∈D(E) ∈ CM
D
if the corresponding m(a) ∈ CM

D
and similarly

{a(Q)}Q∈D(Q0)
∈ CM

D(Q0)
if m(a) ∈ CM

D(Q0)
.

Furthermore, for any family of pairwise disjoint dyadic cubes F = ⋃
j Qj, we

define the restriction of m on the sawtooth by

mF (a,D′) =
∑

Q∈D′\⋃Qj∈F D(Qj)

a(Q)2 μ(Q),

and for any Q ∈ D(E)

D
short
Q := D(Q) \ {Q}.

As the reader may correctly guess, we aim to use the forthcoming lemmas for

Tolsa’s α-numbers in place of a(Q). At this point, however, we keep the statements in

full generality and note that throughout Section 10 {a(Q)}Q∈D(E) denotes any sequence

with non-negative entries.

Lemma 10.2. Let E be a d-dimensional Ahlfors regular set, μ be an Ahlfors regular

measure on E. Fix some Q0 ∈ D(E) and some sequence of non-negative numbers

{aQ}Q∈D(Q0)
such that the corresponding m(a) satisfies

m(D(Q0)) ≤ (a0 + b0) μ(Q0), for some a0 ≥ 0, b0 > 0. (10.3)

Fix some K ≥ 1 and construct a (maximal) family F of pairwise disjoint cubes obtained

by subdividing Q0 and stopping when

either a(Q)2 > 2b0 or Ja(Q) =
∑

k(Q0)≤k≤k(Q)

a(Rk(Q))2 ≥ 2Kb0, (10.4)

(at which point we assign Q ∈ F ). Then

‖mF‖CMD(Q0)
≤ 4Kb0, (10.5)

and

μ(B) ≤ a0 + b0
a0 + 2b0

μ(Q0), (10.6)

where B is the union of cubes Qj ∈ F such that m(a,Dshort
Qj

) > a0μ(Qj).
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102 G. David and S. Mayboroda

The lemma is analogous to [20, Lemma 7.2]. However, we have to slightly change

the stopping time region being constructed and carefully track emerging constants as

ultimately only for very special stopping time regions will we be able to use the results

of Sections 3-9.

Proof. If a(Q0)
2 ≥ 2b0, then the result is trivial for the following reason. We stop

immediately with Q0, so F = {Q0}, The left-hand side of (10.5) is simply equal to 0, and

m(a,Dshort
Q0

) = m(a,DQ0
) − a(Q0)

2μ(Q0) ≤ (a0 + b0)μ(Q0) − 2b0μ(Q0)

= (a0 − b0)μ(Q0) < a0μ(Q0),

so that B = ø.

Therefore, it is safe to assume from now on that a(Q0)
2 < 2b0 and so F �= {Q0}.

As usual, we write F = {Qj}j, where the Qj are thus disjoint (by maximality) cubes

Qj ∈ D(Q0). Then

∑
Qj∈F

(m(a,Dshort
Qj

) + Ja(Qj) μ(Qj))

=
∑
Qj∈F

m(a,DQj
) −

∑
Qj∈F

a(Qj)
2 μ(Qj) +

∑
Qj∈F

∑
k(Q0)≤k≤k(Qj)

a(Rk(Qj))
2μ(Qj)

=
∑
Qj∈F

m(a,DQj
) +

∑
Qj∈F

∑
R∈D(Q0):Qj⊂R,Qj �=R

a(R)2μ(Qj)

=
∑
Qj∈F

m(a,DQj
) +

∑
Q∈DQ0\⋃Qj∈F DQj

a(Q)2μ(Q)
∑

Qj∈F :Qj⊂Q,Qj �=R

μ(Qj)

μ(Q)

≤
∑
Qj∈F

m(a,DQj
) +

∑
Q∈DQ0\⋃Qj∈F DQj

a(Q)2μ(Q) ≤ m(a,DQ0
) (10.7)

where we used the fact that Qj are disjoint for the last line. Let FB := {Qj ∈ F :

m(a,Dshort
Qj

) > a0μ(Qj)}. Now,

(a0 + 2b0) μ(B) = (a0 + 2b0)
∑

Qj∈FB

μ(Qj) = a0

∑
Qj∈FB

μ(Qj) + 2b0
∑

Qj∈FB

μ(Qj)

<
∑

Qj∈FB

m(a,Dshort
Qj

) +
∑

Qj∈FB

Ja(Qj) μ(Qj), (10.8)
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Harmonic Measure on Low-Dimensional UR Sets 103

where we used the definition of FB and the fact that Qj is a stopping cube, hence, either

Ja(Qj) ≥ 2Kb0 ≥ 2b0 or Ja(Qj) ≥ a(Qj)
2 ≥ 2b0, so that in any case Ja(Qj) ≥ 2b0. Next,

using (10.7) and (10.3), the last expression in (10.8) is bounded from above by

∑
Qj∈FB

(
m(a,Dshort

Qj
) + Ja(Qj) μ(Qj)

)
≤ m(a,DQ0

) ≤ (a0 + b0) μ(Q0), (10.9)

and (10.8)–(10.9) yields (10.6).

Turning to (10.5), we observe that the latter amounts to showing that for every

Q ∈ D(Q0),

∑
Q′∈D(Q)\⋃Qj∈F DQj

a(Q′)2 μ(Q′)
μ(Q)

≤ 4Kb0.

Having fixed any such Q, it is convenient to introduce, for any large integer N, the

collection FN of maximal cubes (by inclusion) of

F ∪ {Q′ ∈ D(Q0) : l(Q
′) ≤ 10−N−1}

and the corresponding smaller family of cubes

HQ = D(Q) \
⋃

Qk∈FN

DQk
=

{
Q′ ∈ D(Q) \

⋃
Qj∈F

DQj
: l(Q′) ≥ 10−N

}
.

Clearly, it is sufficient to prove that for every Q ∈ D(Q0)

∑
Q′∈HQ

a(Q′)2 μ(Q′) ≤ 4Kb0 μ(Q) (10.10)

uniformly in N. The main difference between F and FN is that the (disjoint by

construction) cubes of FN cover any Q ∈ D(Q0), which implies that

∑
Q′∈HQ

a(Q′)2 μ(Q′) =
∑

Q′∈HQ

∑
Qk∈FN :Qk∈D(Q′)

μ(Qk)

μ(Q′)
a(Q′)2 μ(Q′) (10.11)

=
∑

Qk∈FN :Qk∈D(Q)

μ(Qk)
∑

Q′∈D(Q):Qk⊂Q′,Qk �=Q′
a(Q′)2.
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104 G. David and S. Mayboroda

We separately consider the elements of FN which belong to F and those that do not.

First,

∑
Qk∈FN\F :Qk∈D(Q)

μ(Qk)
∑

Q′∈D(Q):Qk⊂Q′,Qk �=Q′
a(Q′)2 (10.12)

≤
∑

Qk∈FN\F :Qk∈D(Q)

μ(Qk)Ja(Qk) < 2Kb0
∑

Qk∈FN\F :Qk∈D(Q)

μ(Qk) ≤ 2Kb0 μ(Q).

Here in the next-to-the-last inequality we used the fact that by the stopping time

construction Ja(Qk) < 2Kb0 when Qk ∈ FN \ F , for otherwise it would belong to

F . Next consider Qk ∈ FN ∩ F , denote by Q̃k denotes the parent of Qk, observe that∑
Q′∈D(Q): Qk⊂Q′,Qk �=Q′ a(Q′)2 ≤ Ja(Q̃k) < 2Kb0 because otherwise Q̃k ∈ F and this would

contradict the maximality of Q. We are also using the fact that Qk �= Q0 here. Now

∑
Qk∈FN∩F :Qk∈D(Q)

μ(Qk)
∑

Q′∈D(Q):Qk⊂Q′,Qk �=Q′
a(Q′)2 (10.13)

≤
∑

Qk∈FN\F :Qk∈D(Q)

μ(Qk)Ja(Q̃k) < 2Kb0
∑

Qk∈FN\F :Qk∈D(Q)

μ(Qk) ≤ 2Kb0 μ(Q),

This finishes the proof of (10.5) and Lemma 10.2 follows. �

The next result is the main extrapolation step, analogous to [20, Lemma 8.5]. We

have to state it differently, however, because once again we can only afford to work with

very special stopping time regions.

Lemma 10.14. Let E be a d-dimensional Ahlfors regular set and μ be an Ahlfors

regular measure on E. Fix some Q0 ∈ D(E) and a dyadically doubling Borel measure

ω on Q0. Assume that there is some sequence of non-negative numbers {aQ}Q∈D(Q0)
such

that the corresponding m(a) satisfies

‖m(a)‖CMD(Q0)
≤ L0 (10.15)

for some L0 < ∞. Furthermore, assume that there exists b0 ≥ 0 such that for some K ≥ 1,

and any a0 ∈ [0,L0] the stopping time region from the statement of Lemma 10.2, built

according to (10.4), satisfies the property that the projection of ω onF withinQ0, defined

by (9.70), is A∞
D

(Q0) with respect to μ. Finally, assume that whenever m(a,D(Q)) = 0 we

have that ω is A∞
D

(Q) with respect to μ.
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Harmonic Measure on Low-Dimensional UR Sets 105

Then ω is A∞
D

(Q0) with respect to μ.

Proof. The proof can be carried out closely following that of [20, Lemma 8.5]. There

the authors have a seemingly stronger hypothesis that there exists γ ≥ 0 such that for

every Q ∈ D(Q0) and family of pairwise disjoint dyadic cubes F = {Qj}j ⊂ D(Q) such

that ‖mF‖CMQ
≤ γ , the projection of ω on F within Q0, defined by (9.70), is A∞

D
(Q0) with

respect to μ. The actual proof, however, relies only on the stopping time regions built in

their analogue of our Lemma 10.2.

In a few words, the proof proceeds by induction argument with a continuous

parameter, with the main hypothesis

∃ ηa ∈ (0, 1), ∃Ca < ∞ : ∀Q ∈ D(Q0) with m(a,DQ) ≤ aμ(Q) we have

A ⊂ Q,
μ(F)

μ(Q)
≥ 1 − ηa �⇒ ω(F)

ω(Q)
≥ 1

Ca
, (10.16)

referred to as H(a), a ≥ 0.

The induction proceeds in two steps. Step I is that H(0) holds. This is a

straightforward consequence of one of our assumptions as m(a,DQ) = 0 implies that

ω is A∞
D

(Q) with respect to μ.

Turning to the induction step, one aims to show that H(a) implies H(a + b0), for

all a ∈ [0,L0] so that the conclusion of the theorem can be reached in k steps where

k is such that kb0 ≥ L0. To this end, we fix 0 ≤ a := a0 ≤ L0 and Q ∈ D(Q0) such

that m(a,DQ) ≤ (a0 + b0)μ(Q). In the notation of [20], one would take γ = 4Kb0. Then,

using the results of Lemma 10.2, the proof of the induction step follows the lines of the

argument for Lemma 8.5 from [20], and we omit the details. �

11 Conclusion

At this point, we finally collect the results of Sections 3–10 towards the proof of the

Main Theorem.

Theorem 11.1. Let E be a d-dimensional uniformly rectifiable set in R
n, d ≤ n−2, and

μ be a uniformly rectifiable measure on E. Let ω be the harmonic measure associated to

the operator L = −divD−(n−d−1)
μ ∇ in R

n \ E, with

Dμ(X) =
{ ∫

E
|X − y|−d−α dμ(y)

}−1/α

, α > 0. (11.2)
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Then ω is A∞ with respect to μ in the sense of Definition 2.25.

Proof. Our 1st task is to show that for every fixed Q0 ∈ D(E) the harmonic measure

ω = ωAQ0 is A∞
D

(Q0) with respect to μ. Once this is established, we recover that by

Harnack inequality we also have ω = ωAQ0 is A∞
D

(Q′
0) with respect to μ for any Q′

0 with

l(Q′
0) = l(Q0) and dist (Q0,Q

′
0) ≤ Cl(Q0). And then, using the doubling property of ω and

Harnack inequality once again, we can show that ω is A∞ with respect to μ in the sense

of Definition 2.25 (not only dyadically).

Now, as before, we let {α(Q)}Q ∈ D(E) stand for the Tolsa α numbers and recall

that by Theorem 9.1 and our assumptions there exists L0 < ∞ such that

‖m(α)‖CMD(Q0)
≤ L0,

for any fixed Q0 ∈ D(E). We need to verify the rest of the assumptions of Lemma 10.14.

To this end, recall the statement of Theorem 9.68. Take, as in Theorem 9.68,

M0 > 1 large enough depending on n,d,C0, M > 1 large enough depending on

n,d,C0,M0, and ε0, δ0 > 0 small enough depending on n,d,C0,M0,M, for any Q0 ∈ D(E)

so that the conclusion of the Theorem is verified for � = �ε0,δ0(Q0) and the complemen-

tary collection F built in Definition 9.3.

We can safely assume that δ0 > ε20 because we decided to chose ε0 last. We choose

b0 = ε20/2 and K = δ0/ε
2
0 so that 2Kb0 = δ0. The stopping time region from Lemma 10.2 is

then the same as the stopping time region from Theorem 9.68 (provided that F �= {Q0})
and, hence, the desired property that the projection of ω on F within Q0, defined by

(9.70), is A∞
D

(Q0) with respect to μ, is verified.

If it happens that F = {Q0}, then by definition (9.70) PFω(A) = μ(A)
μ(Q)

ωAQ0 (Q0) ≈
μ(A), so that the hypothesis of Lemma 10.14 (PFω is A∞

D
(Q0) with respect to μ) is

trivially valid.

Finally, it remains to consider the case m(a,D(Q)) = 0, which we will reformulate

as m(a,D(Q0)) = 0. Then by definition α(Q) = 0 for all Q ∈ D(Q0) and, hence, Jα(Q) = 0

for all Q ∈ D(Q0). Therefore, for any ε0, δ0 > 0, we have F = ø so that PFω = ω and

Theorem 9.68 then gives the desired result. �
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