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Uncertainty-based exploration in deep reinforcement learning (RL) and deep multi-agent reinforcement learn-
ing (MARL) plays a key role in improving sample efficiency and boosting total reward. Uncertainty-based
exploration methods often measure the uncertainty (variance) of the value function; However, existing ex-
ploration strategies either only consider the local uncertainty of the next immediate reward or estimate the
uncertainty by propagating the uncertainty for all the remaining steps in an episode. Neither approach can
explicitly control the bias-variance trade-off of the value function. In this paper, we propose Farsighter, an
explicit multi-step uncertainty exploration framework. Specifically, Farsighter considers the uncertainty of
exact k future steps and it can adaptively adjust k. In practice, we learn Bayesian posterior over Q-function
in discrete cases and over action in continuous cases to approximate uncertainty in each step and recursively
deploy Thompson sampling on the learned posterior distribution with TD(k) update. Our method can work on
general tasks with high/low-dimensional states, discrete/continuous actions, and sparse/dense rewards. Empir-
ical evaluations show that Farsighter outperforms SOTA explorations on a wide range of Atari games, robotic

manipulation tasks, and general RL tasks.

1 INTRODUCTION

While deep reinforcement learning (DRL) and deep
multi-agent reinforcement learning (MARL) have
shown great performance in tackling tasks such as
robots (Schulman et al., 2015; Yang and Gu, 2004),
Atari games (Mnih et al., 2015), and AlphaGo (Silver
et al., 2016), sample inefficiency remains to be a sig-
nificant barrier to applying DRL and MARL in real-
world applications. One bottleneck is the exploration
problem, which can be even more challenging in com-
plex environments with sparse rewards, noisy distrac-
tions, long horizons, and nonstationary co-learners.
Recently, the uncertainty-based exploration strate-
gies (Yang et al., 2021) are proposed in DRL to tackle
the above problems. Such strategies estimate the un-
certainty (variance) of Q values via Bayesian pos-
terior and incentivizes actions based on its uncer-
tainty. Those approaches can be directly extended to
the multi-agent problem as well (Zhu et al., 2020).
However, the majority of existing approaches (Os-
band et al., 2016; Janz et al., 2019) easily under-
estimate the uncertainty by only considering the lo-
cal uncertainty of next step’s immediate reward (e.g.
BDQN (Azizzadenesheli et al., 2018)) and thus re-
main inadequate. First, none of them works very
well on the tasks with sparse rewards, e.g. Skiing.
Futhermore, these methods introduce a new uncer-
tainty vanishing issue (Ecoffet et al., 2019): as an

agent explores the environment and becomes famil-
iar with a local area after a number of steps, the un-
certainty of the area diminishes, thus the agent loses
its exploration ability and may get stuck in a local
area. Because of those problems, the agent usually
cannot explore the environment enough which causes
the Q-value estimation to be biased. To address the
problems, UBE (O’Donoghue et al., 2018),0B2I (Bai
et al., 2021), WQL (Metelli et al., 2019) argue that,
to achieve effective exploration, it is necessary that
the uncertainty about each Q value, quantified by
its variance, is equal to the uncertainty about the
next step’s immediate reward and the next state’s Q
value. Thus, the new family of algorithms prop-
agate the uncertainty in a long-term manner: they
accumulate uncertainties for all the remaining steps
in an episode. However, because the environments
usually contain thousands of steps, this approach
tends to have too large uncertainty (variance), e.g.,
the OB2I estimation in Atari games. Both the lo-
cal uncertainty and uncertainty propagation methods
lack the ability to explicitly adjust the number of fu-
ture uncertainty steps to be considered and thus it is
difficult to use them to explicitly control the bias-
variance(uncertainty) trade-off of the Q function.

To address this challenge, in this paper, we pro-
pose Farsighter, an explicit multi-step uncertainty ex-
ploration framework in DRL, to balance the bias-
variance of Q estimation. Farsighter considers the



uncertainty for k future steps, whose value can be
explicitly adjusted to balance the bias-variance trade-
off of Q estimation. Compared to the “one-step” lo-
cal uncertainty methods, it is beneficial in cases with
long-term sparse rewards. The agent learns the impact
of the current action on future k-step rewards even if
no immediate reward is given. Moreover, consider-
ing k-step future uncertainties helps escape the local
familiar areas, thus alleviating the uncertainty vanish-
ing issue. Compared to the uncertainty propagation
methods, Farsighter is capable to rightly estimate the
uncertainty with an suitable k, since the value of steps
is adjustable.

Specifically, Farsighter first learns Bayesian pos-
terior over Q-function/action to approximate uncer-
tainty in both discrete and continuous action tasks.
For discrete action tasks, we deploy the value-based
DDOQN (Van Hasselt et al., 2016) and use Bayesian
linear regression for the last layer of the Q-network to
approximate the Bayesian posterior over Q-function.
For continuous action tasks, we build on NAF (Gu
et al., 2016), and use the Bayesian Neural network
to approximate the Bayesian posterior over actions of
the Q-function. This allows us to directly incorporate
the uncertainty over the Q-function in each step. To
estimate the “k-step” uncertainty in practice without
exponential computational complexity, we formulate
the problem as a recursive Gaussian process and per-
form TD(k) update instead of TD(0), in which we re-
cursively deploy Thompson sampling on the learned
posterior distributions for k steps.

In summary, we make the following contributions:

* We propose Farsighter that allows explicit k-step
uncertainty exploration to balance the bias and
variance trade-off of Q values. Moreover, we also
develop an adaptive Farsighter to further improve
the exploration performance.

* We develop Farsighter implementations in both
discrete and continuous action tasks. It can also
apply on a wide range of RL tasks with high/low-
dimensional states and sparse/dense rewards.

* Empirical results show that Farsighter outper-
forms SOTA in high-dimensional Atari games and
continuous control robotic tasks.

2 RELATED WORK

Uncertainty-based methods usually model the uncer-
tainty of the Q function via the Bayesian posterior.
The agent is encouraged to explore the unknown en-
vironment with high uncertainty.

The majority of existing exploration approaches

consider the local uncertainty of next immediate
reward. RLSVI (Osband et al., 2016) performs
Bayesian regression in linear MDPs so that it can
sample the value function through Thompson Sam-
pling. BDQN (Azizzadenesheli et al., 2018) performs
Bayesian Linear Regression (BLR) in the last layer of
the Q-network. It approximately considers the last-
layer Q-network as a linear MDP problem. Successor
Uncertainty (Janz et al., 2019) approximates the pos-
terior through successor features which are linear to
the Q value of the corresponding state-action pairs.

The above methods only consider the local un-
certainty in next one-step.  Nevertheless, some
other methods propagate the uncertainty with all
the remaining steps in an episode. For example,
UBE (O’Donoghue et al., 2018) proposes to learn
the uncertainty with Uncertainty Bellman Equation.
WQL (Metelli et al., 2019) approximates the para-
metric posterior distribution based on Wasserstein
barycenters. OB2I (Bai et al., 2021) performs back-
ward induction of bootstrapped-based uncertainty
to capture the long-term uncertainty in an whole
episode. Although those methods also propagate the
uncertainty in a multi-step manner, which can alle-
viate the uncertainty vanishing issue as well, they
usually overestimate the uncertainty in long-horizon
cases (e.g. Atari Games). Thus we propose Farsighter
in the next sections, which can explicitly balance the
bias-variance of the Q-estimation.

3 PRELIMINARIES

3.1 Markov Decision Process (MDP)

A MDP is represented by the tuple (S,A,R, P,Y) (Sut-
ton and Barto, 2018), where S is the set of states; A
is the set of actions; R is the reward function; P is
the transition probability function and 7 is the reward
discount factor. The objective of an MDP is to learn
a policy 7 to maximize the discounted cumulative re-
ward. Given a state s and action a, the Q function
is

O(s,a) = EINH[ZYR(%“:,S:HNSO =s,a0 = al.
1=0

Following the Bellman optimality in MDPs, we
have the optimal Q-function

Q(S,,a,) = R?[t"'
Y Z P?;A‘Hl Z Tc(atﬂ|Sl+1)Q(5t+laat+1)~ (1)
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3.2 Double Deep Q Networks (DDQN)

For discrete action tasks, we build our algorithm on
the value-based DDQN (Van Hasselt et al., 2016) ,
which is an extension of DQN (Mnih et al., 2015).
DDQN uses two identical neural network models.
One learns during the experience replay, just like
DQN, and the other one, called target network Q'#"8¢,
is a copy of the last episode of the first model. The
core of DDQN is to learn the Q-function through min-
imizing a surrogate to Bellman residual (Lagoudakis
and Parr, 2003; Antos et al., 2008) using temporal dif-
ference (TD) update (Tesauro et al., 1995).

Given a consecutive experience tuple (s,a,r,s’),
the target value is

y=r+7vQ(s',argmax Q(s',a’,8),6"¢").  (2)
a/

DDOQN learns the Q function by approaching the
empirical estimates of the following regression loss:

L(Q,Q*") =E[(Q(s.a) =yl ()

Moreover, the parameters of the target network

Q'8 are updated frequently by copying the param-
eters of the learning network Q.

3.3 Normalized Advantage Function
(NAF)

Value-Based methods, like DDQN, suit problems
with discrete action spaces. NAF is designed for con-
tinuous action-space tasks. The idea behind NAF is to
let the maximization of the Q function be determined
during the Q-learning update. Specifically, instead of
having one output stream from the Q-network, NAF
has three streams. One stream estimates the value
function V (s|6") (parameterized by 6"), and another
estimates the Advantage A(s,a|@") (parameterized by
04), which is further parameterized as a quadratic
function based on action u(s|8%) (parameterized by
0%) and matrix P. Combined together, we estimate
Q-Values as:

O(s,a) :A(s,a\GA) + V(s|9v),

As,al6*) =~ (a— u(s16)" P(s/6) (@~ u(s16)).
(G))

P(s|0”) is a state-dependent, positive-definite
square matrix, which is parametrized by P(s|6") =
L(s|6")L(s|6")T. L is a lower-triangular matrix,
where the diagonal terms are exponentiated. Since
the Q-function is quadratic in action a, the action
that maximizes the Q-function is always given by
u(s|6%). NAF updates the parameter based on the rule
of DDQN (Eq. 3). The different between those two
methods is how to select action in each step.

4 FARSIGHTER: MULTI-STEP
EXPLORATION

In this section, we introduce Farsighter that performs
exploration by considering the uncertainty of the next
“k-step”. In Sec. 4.1, we formulate the multi-step un-
certainty estimation problem. In Sec. 4.2 and 4.3, we
present how to estimate uncertainty with discrete ac-
tions and continuous actions in each step. In Sec. 4.4,
we introduce how to perform multi-step exploration.
Last, in Sec. 4.5, we show how to adaptive choose the
number of k.

4.1 Problem formulation

Assume the ground truth of a Q-value is Q,. we define
the Bayesian posterior of a Q-estimation as A (Q,,¢€),
where Q, is the mean value and € is the variance of
the Q-estimation. We call the distance of |Q, — Q.| as
the bias of the Q-estimation and € is the uncertainty.

The uncertainty of Q-estimation € follows
the uncertainty Bellman equation (Theorem 1 of
UBE (O’Donoghue et al., 2018)):

e(sr,ar) = 84+
v Y Pe Y maals)e(s,an), ©)

Si+1€8 a1 €A
for all (s,a) and t = 1,...,T, where ¢/*! = 0 and
where we call &' the local uncertainty at (s;,a).

In “one-step” uncertainty estimation methods (e.g.
BDQN), the uncertainty of the Q estimation only con-
tains the local uncertainty, thus &(s;,a;) = 6§'. Em-
pirically, the local “one-step” uncertainty is usually
small and it is easy to be vanished, which leads the
agent cannot explore the environment enough. Not
exploring enough results the Q-estimation usually has
high bias. On the other hand, in uncertainty propa-
gation methods (e.g. OB2I), which propagate all the
remaining uncertainty in an episode (Eq. 5 can be un-
folded to T steps), the variance € is usually very large.
Hence, the Q estimation exhibits high uncertainty and
the agent can explore more in the environment. In
such cases, the Q-estimation is usually less biased,
however, large variance is at the risk of too much un-
necessary exploration and thus slow down the learn-
ing convergence. Thus we need a method that explic-
itly adjust the uncertainty exploration steps k that bal-
ance the bias-variance trade-off. The uncertainty we
use in Farsighter is:

S(S,,a,) = 8?; + ...+
Y Z L Z T(Artk| ek )E( Stk Ark) ©)
Si+kES a; (€A

where k=1,...,T. In Sec. 5.1, we empirically demon-
strate the benefits of Farsighter.



4.2 [Estimating Bayesian Uncertainty
with Discrete Actions

For discrete action cases, we build our algorithm on
the DDQN (Van Hasselt et al., 2016) and estimate
the uncertainty of the Q-function. DDQN architecture
consists of a deep neural network where the last layer
is usually a linear MLP function of the state represen-
tation and action. Thus, given any state s and action a,
Q(s,a) = 0g(s)" @,, where ¢g(s) € RY parameterized
by 6 represents state s and @, € R? is the parameter
of the last linear MLP layer on action a.

To estimate the uncertainty, we build Farsighter
over DDQN with Bayesian framework, BDQN (Az-
izzadenesheli et al., 2018). In the last layer of Q-
network Q(s,a), instead of using the linear MLP re-
gression, Farsighter deploys the Gaussian Bayesian
linear regression (BLR) ((Rasmussen, 2003)), which
results in an approximated Bayesian posterior on the
@, and consequently on the Q-function. The Bayesian
posterior ®, is modeled as Gaussian with {®,,Cov, },
where @, is the posterior mean and Cov, is the pos-
terior covariance. Moreover, we leverage the re-
parameterization trick to write

O(s,a) = g (s) 0y = Po(s)" (@ + 1/Covaz), (7)

where z is a random variable z ~ A((0,7). Through
BLR, the agent efficiently approximates the distribu-
tion over the Q-values and captures the uncertainty
over the Q estimates. In the parameter updating pro-
cess, the BLR-based Q-function updates parameters 0
and ®,,Cov, separately. The process is shown in the
Algorithm 1.

Update ¢g(s): we update ¢g(s) as the standard
DDQN (Eq. 3). We keep the m, as the mean value of
the posterior @, and update 0 using the following loss
function:

(Q(S7a797d)a) —r—=

,YQ(S/7 arg max Q(S/, Cl/7 97 (I)a)yetarget’ GJZarget))Z. (8)

a/

Update ®,,Cov,: we update ®, and Cov, with fixed
0o (s). Given a dataset D = {s;,a;,y;}2 |, where y; are
target values, we construct |4| disjoint datasets for
each action, D = U,c4D,, where D, is a set of tu-
ples (s;,a;,y;) with the action a; = a. Let us construct
a matrix ®, € R4*Pa_ 3 concatenation of feature col-
umn vectors {(s;)}2¢;, and y, € RP¢, a concatena-
tion of target values in set 2,. We then approximate
the posterior distribution of ®, as follows

1 1+ 1\
o, = ECOVaCDaya, Cov, = <G%C1>a<l>a + (521> ,

) ©)

where I € R is an identity matrix. This is the deriva-
tion of the BLR, with zero mean prior and as ¢ and Gg
as the variance of prior and likelihood respectively.

4.3 Estimating Bayesian Uncertainty
with Continuous actions

Value-Based methods, like DDQN, suit problems
with discrete action spaces. For continuous ac-
tion cases, we build our algorithm on the NAF (Gu
et al,, 2016) and estimate the uncertainty on ac-
tions. NAF architecture consists three output streams
u(s|6%),L(s|8), and V(s|8"), as shown in Eq. 4.
Usually, the three sub-networks are functions of a
shared state representation network ¢g(s). Thus, we
have u(s|0%) = u(¢(s)|6%), where 6 is the parameter
of layers taking state representation ¢(s) as input and
output action a. The network architecture is shown in
the Appendix.

The Original NAF cannot estimate the uncer-
tainty for actions. Therefore, in our work, we first
propose to estimate the exploration uncertainty for
continuous actions using a Bayesian neural network
(BNN) (Kononenko, 1989) for the action sub-network
u(0(s)|6%). BNN treats the model weights and output
action as variables. Instead of finding a set of optimal
estimates, BNN fits the Bayesian posterior distribu-
tions for them. Every weight in 6% is modeled as a
Gaussian distribution with a mean and variance. It di-
rectly learns the uncertainties of the actions given a
state representation ¢(s). To get action, we can sam-
ple one set of weights from the distribution. To update
the parameters, we update parameters of 8" ,0",0 and
0¢ separately.

Update 6" ,6",0: we update 8",0%, 0 with a fixed
0%, which is mean value from the Bayesian poste-
rior. The update rule is same as Eq. 8, replacing
argmax Q(s',a’, 0, @, ) with u(¢(s")[67).

a

Update 6“: to learn the posterior distribution
u(89](0(s),a)), we fix the parameters of (8",67 0)
and update the parameters of 0¢ with the Evi-
dence Lower Bound(ELBO) loss (Kononenko, 1989).
Specifically, we approximate the posterior distribu-
tion u(8?|(¢(s),a)) with another distribution f(6%),
which is called a variational distribution. We fur-
ther minimize the KL divergence between them
Dk (0(6%)]|u(6%(¢(s),a))). Based on the variational
inference theory (Blei et al., 2017), we get the ELBO
loss:

D (2(6%)]|u(8)) —Egap[logu(als,8*)]  (10)
Note that we use BNN for continuous action tasks

and BLR for discrete ones. BNN has better perfor-
mance but at the cost of higher computation com-



plexity. Because the dimension of state representa-
tion is typically low for continuous action tasks, e.g.
robotic manipulation tasks, we consider it computa-
tionally acceptable. In comparison, as discussed in
the appendix, BLR does not increase the computation
complexity compared to MLP. It is suitable when the
dimension of state representation is high, and thus we
choose it for discrete action tasks.

4.4 Exploration with Multi-step
Uncertainty

In Sec. 4.2 and 4.3, we show how to estimate the un-
certainty. Each step is a Gaussian process with a pos-
terior on Q-function/actions. For example, in discrete
cases, the GP posterior applies on the ®w,(Eq. 7) and
consequently on the Q-function. In each step, we can
sample an instance from the posterior. Since each step
has different GP posteriors based on different states
and actions, these nested expectations are analytically
intractable; we cannot directly calculate the “k-step”
uncertainty distribution. Moreover, the number of in-
stances in the recursive Gaussian process grows expo-
nentially in the horizon k. Therefore, considering all
the possible roll-outs in k steps is computationally dif-
ficult. To address, we formulate the “k-step” process
as a recursive Gaussian process and perform TD(k)
update instead of TD(0). More specifically, we recur-
sively deploy Thompson sampling on the learned pos-
terior distributions for k steps to approximate the k-
step uncertainty (Eq. 6), which means the Q-function
becomes

Q(Staat) :]E‘CNTE[R(Shatast+l) JFYR(SHI y Ar+-1 ;St+2)
+ ... +'Yk maé(A Q)'< (SH-k? ClH_k) ‘S[,(l[]

Ai+k

For discrete action cases, we sample a random
variable z for Eq. 7 in each step and obtain a determin-
istic Q-function. Given the deterministic Q-function,
we can decide which action maximizes the Q val-
ues. For continuous action cases, we sample a set
of weights from the BNN posterior 8% in each step
and then directly get maximal action from the sam-
pled weights. After taking the action, we go to the
next state from the environment. As shown in Algo-
rithm 2, we recursively deploy the process for k steps
and get the last state 5,1 and the discounted sum of
k-step rewards rX, where the k-step uncertainties in-
formation is stored.

The pseudocode of the whole learning process
for discrete action cases is shown in Algorithm 1.
Instead of saving the one-step state and action tu-
ple, we get k-step state s, and reward r* from Al-
gorithm 2. For continuous action cases, the work-

Algorithm 1 Farsigher: Multi-step Exploration

Initialize 0, 6478, k, Q-variance target €, and
Va,®,,Covy, d; 5 ; Replay buffer RB = {}

1: for t=0, k, 2k, 3k... do

2. {r* siix} = K-STEP(s;,0,®,,/Cov,, Y, ¥ =
0,itr =0)

3. Store {s,a;,7*,s; 1} into replay buffer RB

4:  Sample a mini-batch {s;,a;,7*,s; 1} from the
latest N steps to alleviate off-policyness bias

5:  Update the parameters of 0 with Eq. 8, where
r=r* s’ = s, and keep @, Cov, fixed

6: Every M steps: Update the GP posterior
{®,,Cov,} for all actions

7: if Q-variance < & k+=I1; else if Q-
variance > €: k-=1; Empty Replay buffer.

8:  Every N steps: reset 0% =0, @,"*" = @,

9: end for

Algorithm 2 K-STEP( s;,0, ®,,/Covg, Y, ¥, itr)

Input: s, it the current state; 0, ®, and Cov, are
parameters of Q-function, 7y is the discounted factor;
r* is the discounted sum of k-step rewards; itr is the
number of steps in the k loop.

Output: the discounted sum of k-step rewards % and
the last state after k steps.

1: if itr=k: return rk,s,+1
2: Sample z; ~ N(0,7) and then get a deterministic
O(s,a) with Eq. 7
3: Take action a, = argmax dg(s;)7 (@, +/Covaz;)
a

4: Get next state s, and reward r; by interacting
with the environment.

50 rk =9 xr,

6: return K-STEP( s,41,0,®,,/Covg,Y,r*,itr+1)

flow is similar to discrete action cases; we pro-
vide the pseudocode in the Appendix. For multi-
step updates, we keep the update rule same as one-
step updates as mentioned in Sec. 4.2 and 4.3. We
only change the way to calculate the target value,
y= r+'y"Q(s’,argmaxQ(s’,a’, 67 (ba); etarget’ G)Zarget)’
a
where r is the discounted sum of k-step rewards r*and
s" is the last state after k steps s,.. Thus, our multi-
step uncertainty estimation would not increase the
computation and the memory complexity. Moreover,
to alleviate the bias introduced by off-policyness in
multi-step learning, the network is trained using the
latest N-step samples, where N is the target network
update period, as suggested in (Mnih et al., 2016).
In addition, since the k-step reward and state are ob-
tained from recursive Thompson sampling and they
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Figure 1: Validation of the effectiveness of multi-step uncertainty.

contain the uncertainty information of the future k
steps, the learned Q function also contains the uncer-
tainty information, which is represented on the vari-
ance of the posterior. The variance helps us quantify
the uncertain impact of the next k-step in turn.

4.5 Adaptive k

Empirically, to learn a good policy as soon as pos-
sible, it is desirable to have more exploration at the
beginning stage and then gradually decrease explo-
ration to increase exploitation. As shown above, the
amount of uncertainty is represented by the variance
of the Bayesian posterior (Eq. 6). In principle, we can
set a large initial k to enlarge the exploration at the
beginning stage and then set posterior variance tar-
get to mantain a certain level of exploration. Based
on this intuition, we have developed an adaptive Far-
sighter. In the adaptive Farsighter, we initial k to be
a large number and set a target to the variance. If the
variance is smaller than the target, we increase k, oth-
erwise, we decrease it. In this manner, the agent can
keep exploring the environment. The pseudocode for
discrete action cases is shown in the Algorithm 1. We
show the affects of different k in Sec. 5.3.

S EXPERIMENTS

In this section, we investigate the following properties
of Farsighter: 1) We illustrate the insight of multi-step
uncertainty exploration using a toy example, 2) We
compare the performance of Farsighter with SOTA,
on a large range of RL tasks, including Atari games
and continuous control tasks, and 3) We investigate
the effect of a different number of future steps.

5.1 K-step Uncertainty Intuition

To illustrate the intuition of multi-step uncertainty, we
design a toy maze task as shown in Fig. 1a. The agent
(car) starts from the bottom left corner. In each step,
the car can go either up, down, left, or right. The car
wants to get the apple (top right corner) and it cannot

pass the black wall area. The bridge is the only way
that connects the left and right sides. The reward is
100 if the car reaches the apple, and -1 otherwise each
step.

We further compare the local uncertainty explo-
ration (e.g., BDQN), uncertainty propagation (e.g.,
OB2I) and k-step uncertainty exploration(Farsighter)
under same interaction steps, 40k, where all algo-
rithms have converged, as shown in Fig 1b. The op-
timal Q-value Q, for the car from the bottom left
corner is 75. From Fig. lc, we can see that the Q-
estimation of BDQN is highly biased, as we discussed
in Sec. 4.1: the mean is around 62 which is far from
the optimal 75 and the variance is low. On the other
hand, the OB2I Q-estimation is less biased, but the
variance of OB2I Q-estimation is very large. In com-
parison, the bias of Farsighter is the smallest and the
variance is lower than OB2L.

In addition, we show the heatmap of the number of
state visited times during learning process for BDQN
(Fig. 1d), OB2I(Fig. le), and Farsighter (Fig. 1f) . For
BDQN, fewer visits occur on the right side of the map
and most of the interactions remain on the left side be-
cause the car does not cross the bridge often enough
and repeatedly explore the left familiar side (uncer-
tainty vanishing). On the other hand, it is easier for
the car to cross the bridge with OB2I and Farsighter.
More visits occur on the right, which enhances the
car reaching to the apple more frequently. However,
OB2I performs too much exploration, which can be
observed from the action selection process where ac-
tion varies in the same state, e.g., all the episode traces
are different even with same Bayesian Q function.
The visited times for both sides are similar. In com-
parison, Farsighter visits more on the right and fre-
quently reaches the apple, since in the later learning
phase the policy has converged and the agent leans
to access the right side. Intuitively, multi-step un-
certainty explorations (Farsighter and OB2I) consider
more exploration for further locations. When the car
is at the bridge, it is easier to find the new locations on
the right, which encourages the car to explore more
on the right side. In comparison, the one-step agent
(BDQN) takes the left as the local optima area and
sticks to it more often. Thus the Q-estimation is bi-
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Figure 2: The game score for Atari Games.

ased since the agent cannot explore the environment
enough. However, the OB2I performs too much ex-
ploration, since the variance is high, which leads to
slow converge speed. Farsighter balances the bias-
variance trade-off by explicitly choosing an appropri-
ate k.

Moreover, we also study the changes of posterior
variance among these exploration methods in Fig. 1g.
In the beginning, variances are low because the net-
works are randomly initialized. When the learning
starts, the variances increase rapidly to award explo-
ration. After that, the posterior variance in BDQN
gradually decreases because as the agent gathers more
samples, the uncertainty is vanishing. In compari-
son, in the Farsighter, even the posterior variance de-
creases as well earlier, it becomes larger later on (be-
cause the agent accesses more states on the right side)
and then decreases finally when the learning is con-
verged. The results show that Farsighter alleviates
the uncertainty vanishing problem because Farsighter
learns high uncertainties on the right side by consid-
ering future steps. The OB2I can also help to alleviate
the uncertainty vanishing. But it is hard to converge,
since the variance is high.

5.2 Exploration Performance

Environments: Farsighter can work on a wide range
of RL tasks with high/low-dimensional states, dis-
crete/continuous actions, and sparse/dense rewards.
We empirically study Farsighter on a variety of
Atari games in the Arcade Learning Environment
(ALE) (Bellemare et al., 2013) and robotic control
tasks using MuJoCo physics engine (Todorov et al.,
2012). The states in ALE are high-dimensional im-
ages and the action space is discrete. In comparison,
the robotic control tasks are in low-dimension but the
action space is continuous. We evaluate Farsighter
on 49 Atari suite of games including hard-explored
games (Bellemare et al., 2016; Ostrovski et al., 2017)

with sparse rewards (e.g., Montezuma’s Revenge,
Gravitar, and Venture) and games with dense rewards
(e.g., Beam Rider, Atlantis, and Freeway); two chal-
lenging robot control tasks (FetchPickAndPlace and
HandManipulateBlock) with sparse rewards and a
control task (Walker2D) with dense rewards.

Baselines: We compare Farsighter to four base-
lines in discrete action environments: DDQN with &-
greedy exploration and BDQN, a parametric posterior
based exploration, which only considers one-step un-
certainty. Moreover, to study the effects of multi-step
learning, we also compare Farsighter with ‘k-DDQN’
which uses €-greedy exploration in each step but con-
siders k steps. We also compare with OB2I, which
is the SOTA uncertainty propagation method that use
non-parametric posterior based exploration. Simi-
larly, for continuous control tasks, we select three
baselines: standard one-step NAF with random ex-
ploration, multi-step NAF with random exploration,
one-step NAF with Bayesian uncertainty exploration.
To be fair, we keep the shared parts of the methods to
be the same for different exploration methods, e.g. the
state representation layers, and the hyper-parameters.

Performance: Farsighter outperforms DDQN,
BDON and OB2I in 36 out of 49 Atari games. We
show parts of the evaluation results in Fig. 2 and
Fig. 3. More detailed results (e.g. game scores for
49 Atari games) are available in the appendix. We run
each experiment 10 times with different random seeds
and show the average performance. The shaded area
is the standard deviation in the Figures.

Figure 2 compares the game scores with the
four baselines in Atari Games. We can see Far-
sighter achieves higher scores substantially. In the
notoriously hard exploration game Montezuma’s Re-
venge, Farsighter achieve positive results, while oth-
ers achieve zero score. The reason is that we ini-
tial k=150, which accumulates the uncertainty over k
timesteps before performing an update. A higher ini-
tial k leads to the agent to explore more in the game
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and encounter informative state faster. On the other
hand, other methods (e.g. BDQN, DDQN) cannot ex-
plore enough in the game and most of the reward feed-
back is zero, thus it is hard to get positive score. On
the contrary, OB2I performs prodigious exploration
because the uncertainty is very large in Atari Games
with thousands of steps, which results in the agent
almost taking random actions and hard to get posi-
tive rewards. In Gravitar and Beam Rider, DDQN
and BDQN show comparable performance. BDQN
performs a little better since the agent can explore
with one-step uncertainty and k-DDQN cannot im-
prove the performance compared with DDQN, which
means k-step learning without uncertainty cannot im-
prove the exploration either. Interestingly, the OB2I
increases faster at early and then degenerates. This
is because OB2I performs unnecessary exploration
which may guide a direction that is unrelated to the
environment reward. In comparison, Farsighter per-
forms enough exploration and exploit it efficiently.

Figure 3 shows the performance comparison for
continuous robotic tasks. The results show that the
multi-step uncertainty exploration also outperforms
one-step uncertainty exploration and random explo-
ration in continuous action tasks. In the Fetch-
PickAndPlace task, Farsighter achieves almost 100%
success rate and it only takes around 100 million
steps. The success rate in HandManipulateBlock is
also the best and it takes the least samples for the sam-
ple success rate.

Overall, we can conclude that Farsighter is an ef-
fective exploration method by considering multi-step
uncertainty and it works on general RL tasks. More-
over, as we discussed in Sec 4.4, multi-step uncer-
tainty estimation would not increase the computation
and memory complexity compared to one-step uncer-
tainty estimation. More complexity analyses are pro-
vided in the appendix.

5.3 The impact of k

Figure 4 shows the impact of k on the performance in
Montezuma’s Revenge. We can see the performance
increases with k initially and then drops, with £ = 150
achieving the best score. This trend exists for other
environments although the optimal step size varies.
An interesting observation is that the increased ve-
locity of the scores at the earlier stage is positively
proportional to the number of uncertainty steps. This
illustrates the importance, in particular in the early
stages, of multi-step exploration. The number of un-
certainty steps, k, is a trade-off between exploitation
and exploration. When k is large, (e.g., k=500), the
agent takes more cumulative uncertainty into account,
and large uncertainty forces the agent to explore more
about the environment, which could be desirable in
the early stages, but at the risk of too much explo-
ration and thus difficulties in convergence. This might
explain why uncertainty propagation methods (e.g.
OB2I, WQL) which accumulate uncertainties for all
the remaining steps in an episode are outperformed
by our method. On the contrary, when k is small
(e.g. k=10), the agent only considers the uncertainty
of the next few steps. The uncertainty is easy to van-
ish and the agent tends to exploit, which is more de-
sirable in later stages. Thus, Farsighter can explicitly
balance the bias-variance trade-off by adjusting the
number of k. As discussed in Sec. 4.5, we can use
an adaptive k. From Fig. 4, we can see the adaptive
Farsighter achieves the best result, where the score
increases quickly initially and also finishes with the
highest value.

6 Conclusion

In this paper, we propose Farsighter, to consider
the k-step uncertainty impact and we can explic-



itly adjust the number of future steps to balance
the Q-estimation bias-variance trade-off. Farsighter
helps to alleviate the sparse reward and uncertainty
vanishing problem. It outperforms SOTA on a
wide range of RL tasks with high/low-dimensional
states, discrete/continuous actions, and sparse/dense
rewards, including hard-to-explore problems such as
high-dimensional Atari games and continuous control
robotic manipulation tasks.
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APPENDIX

7 Empirical Results

As stated in the paper, Farsighter can work on a
wide range of RL tasks with high/low-dimensional
states, discrete/continuous actions, and sparse/dense
rewards. We show the performance for sparse reward
tasks in the main paper. In Table 2 and 3, we show
the performance for all the atari games and dense re-
ward continue task(Walker2D), where Farsighter out-
performs the SOTA.

8 Continuous Bayesian Uncertainty

8.1 Network Structure

We show the network structure for the continuous
Bayesian uncertainty exploration in Fig. 5, which is
based on NAF. The u(d(s)|67) layer is a BNN layer.

8.2 Pseudocode

The pseudocode for continuous one-step uncertainty
driven Q-Learning is shown in Alg. 3. To extend
the process to multi-step, we can recursively deploys
Thompson sampling on the BNN layer of u(¢(s)|6%)
to get multi-step samples, which is similar with Alg. 2
in the main paper.

9 Experiment Details

9.1 Network Architecture

9.1.1 Discrete action tasks

For discrete action tasks, the input observations are
raw images (e.g. Atari games). The input to the net-
work is 4 x 84 x 84 tensor with a re-scaled and aver-

Algorithm 3 Continuous one-step uncertainty driven
Q-Learning with NAF

Given NAF, we have

Q(s,al69) = Ags,a|9A) +V(s|8");

Als,al6") = — 1 (a—pu(s]6%)" P(s10") (@ — u(s]6"))
Randomly initialize normalized Q network
0O(s,a|69)

Initialize target network Q' with weight 02 «+ 02
Initialize replay buffer R

1: for episode=1, M do

2 Receive initial observation state s

3: fort=1,Tdo

4: Select action a; from BNN layer of

u(9(s)|6)

5: Execute a; and observe r; and ;1
6: Store transition (s;,da;,r;,s,+1) into R
7: for iteration=1,1 do
8: Sample a random minibatch of m transi-
tions from R
9: Update 6,08 ,08" by minimizing the loss:
L= Yi(yi— O((si,ai|62))>
10: Every M steps: Update the BNN layer
u(0(5)16%)
11: Every N steps: Update the target network:
02 «— 102 + (1 —1)6¢
12: end for
13:  end for
14: end for

aged over channels of the last four observations. The
first convolution layer has 32 filters of size 8 with a
stride of 4. The second convolution layer has 64 fil-
ters of size 4 with stride 2. The last convolution layer
has 64 filters of size 3 followed by a fully connected
layer of size 512. For DDQN, RND, TD(K)+DDQN,
TD(K)+RND, we use a linear MLP layer on top of it
for Q value prediction. For BDQN and Farsighter, we
use a BLR layer.

9.1.2 Continuous action tasks

For continuous action tasks, the input observations
are low dimensional sensor data (e.g. robotic con-
trol). The inputs are different from domain to do-
main. We use two fully connected layers with hid-
den size 64 and 32 for the representation layer, which
works in general for different continuous domains.
For V(s|6") and L(s|6"), we use a linear layer on
top of the representation layer. For u(s|6%), we use
a Bayesian neural network (BNN) layer.



Table 1: Hyperparameters

Hyperparameter Value
Number of Seeds 10
Optimizer RMSProp
Learning rate 0.0025
Momentum 0.95
Discount factor 0.99
Representation network update frequency 4 steps
Representation network update mini-batch 32 tuples
Target network update frequency (N) 10k steps(Atari Games); 1k (Robotic controls)
Posterior update frequency (M) 10*N;
Posterior update mini-batch 100k tuples(Atari Games); 1k tuples(Robotic controls)
BLR noise variance G¢ 1
BLR prior variance ¢ 0.1
Replay buffer size IM tuples

9.2 Hyper-parameters

In table 1, we show the hyper-parameters for the algo-
rithms to run. We randomly initialize the parameters
of the networks. To optimize for this set of hyper-
parameters we set up a simple, fast, and cheap hyper-
parameter tuning procedure. Since our methods are
based on DDQN (NAF), most hyper-parameters are
equivalent to ones in DDQN(NAF) setting. To find
the parameters that are particular for our work, we set
up a simple hyper-parameter search. For example, for
Atari Games, we used a pretrained DDQN model for
the game of Montezuma’s Revenge, and removed the
last fully connected layer in order to have access to
its already trained state representation. Then we tried
combination of M = {N,10«xN},6 = {1,0.1,0.001},
and og = {1,10} and test for 10000 episodes of the
game. The procedure is cheap and fast since it re-
quires only a few times of posterior update. We
set these parameters to their best M = 10« N,6 =
0.1,0. = 1.

Moreover, our experiments are supported by two
Intel(R) Xeon(R) Platinum 8168 processors and eight
GeForce RTX 2080 Ti GPUs. We run each experi-
ment 10 times with different random seeds and show
the average performance. The shaded area is the stan-
dard deviation in the Figures.

10 Complexity Analyses

Farsighter vs BDQN (One-step Bayesian NAF): As
mentioned Sec. 4.3, we did not change the update rule
for multi-step updates. We only change the data sam-
ples used to do the optimization. So Farsighter would
not change the computation cost compared to BDQN
(One-step Bayesian NAF). Moreover, multi-step up-

dates store the sum of discounted rewards and final
states after k steps to the replay buffer. The transmis-
sion tuples are in the same format with one-step up-
dates, thus Farsighter would not increase the memory
complexity either.

BDQN vs DDQN: For a given period of game
time, the number of the backward pass in both BDQN
and DQN are the same whereas for BDQN it is
cheaper since there is no backward pass for the final
layer. BDQN has more forward passes compared with
DDQN. To update the posterior distribution, BDQN
draws samples from the replay buffer and needs to
compute their feature vectors, as it is mentioned in
Sec. 4.1,The increased number is based on the update
frequency and posterior update batch size. One can
easily relax it by parallelizing this step along the main
body of BDQN or deploying online posterior update
methods.

One-step Bayesian NAF vs NAF: The update
of the BNN layer u(¢(s)|0%) is complex then a liner
layer. While for continuous action tasks the dimen-
sion of BNN layer is low thus it is easy to train. As
mentioned in the Sec. 9.2, the input dimension for the
BNN layer is 32. Empirically, we run experiences on
Fetch Pick And Place task. The running time is simi-
lar for both cases, which is around six hours.

In summary, we would not increase the computa-
tional and memory cost. Farsighter can work appro-
priately in complex real-world domains.



Table 2: Raw scores for Atari games. The performance of OB2I is from (Bai et al., 2021)

Farsighter DDQN BDQN OB21(20M)
Alien 3762.50 1620.00 3167.20 916.90
Amidar 1934.20 978.00 1815.30 94.00
Assault 7439.30 4280.40 5439.40 2996.20
Asterix 39556.40 4359.00 44438.30 2719.00
Asteroids 2603.70 1364.50 2363.20 959.90
Atlantis 3959257.80 | 279987.00 | 2823842.40 | 3146300.00
Bank Heist 983.70 455.00 834.50 378.60
Battle Zone 47936.70 29900.00 45348.40 13454.50
Beam Rider 19504.80 8627.50 9456.30 3736.70
Bowling 54.62 50.40 38.40 30.00
Boxing 91.77 88.00 79.30 75.10
Breakout 597.20 385.50 392.60 423.10
Centipede 5936.10 4657.70 7134.70 2661.80
Chopper Command 13940.60 6126.00 17363.60 1100.30
Crazy Climber 149507.70 | 110763.00 | 137693.80 53346.70
Demon Attack 32233.61 12149.40 23595.40 6794.60
Double Dunk 3.50 -6.60 -1.30 -18.20
Enduro 1604.70 729.00 1496.50 719.00
Fishing Derby 3.80 -4.90 27.30 -60.10
Freeway 48.02 30.80 30.10 32.10
Frostbite 1795.30 797.40 1643.60 1277.30
Gopher 19418.90 8777.40 13742.80 6359.50
Gravitar 1175.81 473.00 589.30 393.60
H.E.R.O. 22010.70 20437.80 21532.70 3302.50
Ice Hockey -0.70 -1.90 -2.70 -4.20
James Bond 1707.25 768.50 1593.70 434.30
Kangaroo 14651.80 7259.00 13596.30 2387.00
Krull 13263.91 8422.30 9643.60 45388.80
Kung-Fu Master 38734.99 26059.00 40563.70 16272.20
Montezumas Revenge 413.60 0.00 0.00 0.00
Ms. Pac-Man 3796.19 3085.60 3295.50 1794.90
Name This Game 12312.80 8207.80 10536.70 8576.80
Pong 20.25 19.50 19.80 18.70
Private Eye 494.50 146.70 149.70 1174.10
Q*Bert 20788.47 13117.30 19530.60 4275.00
River Raid 12597.50 7377.60 15830.70 2926.50
Road Runner 55823.20 39544.00 51062.70 21831.40
Robotank 66.61 63.90 60.70 13.50
Seaquest 6880.48 5860.60 7934.70 332.10
Space Invaders 5684.02 1692.30 7830.80 904.90
Star Gunner 96013.91 54282.00 79403.70 1290.20
Tennis 19.10 12.20 -1.00 -1.00
Time Pilot 6402.11 4870.00 7932.70 3404.50
Tutankham 201.70 68.10 230.60 297.00
Up and Down 17328.92 9989.90 23056.90 5100.80
Venture 951.36 163.00 693.80 16.10
Video Pinball 529524.60 | 196760.40 | 47246.80 80607.00
Wizard Of Wor 7429.40 2704.00 9450.80 480.70
Zaxxon 8934.95 5363.00 8394.70 2842.00

Table 3: The score for dense reward continue tasks (30k steps)

NAF

Multi-step NAF

Bayesian NAF

Farsighter

Walker2D

-75.8 £ 631.0

-68.2 £ 649.0

160.1 +493.0

230.2 + 566.8




