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1. Introduction

The density of states of the Schrédinger operator —A + V' is one of the main charac-
teristics defining the physical properties of the matter. At this point, most of the known
estimates for the integrated density of states pertain to two asymptotic regimes, each
carrying restrictions on the underlying potentials. The first one stems from the Weyl
law and its improved version due to the Fefferman-Phong uncertainty principle [7]. It
addresses the energies or eigenvalues A — 400 and deteriorates for the potentials oscil-
lating at a wide range of scales. The second one concentrates on the asymptotics as A
tends to 0 for disordered potentials, the so-called Lifschitz tails, and takes advantage of
probabilistic arguments and the random nature of the disordered potentials. The goal of
the present paper is to establish new bounds on the integrated density of states via the
counting function of the so-called localization landscape [9]. The main theorem can be
viewed as a new version of the uncertainty principle, which, contrary to the above, ap-
plies uniformly across the entire spectrum and covers all potentials bounded from below
irrespectively of their nature.

To set the stage, let us consider the spectrum of the Schrédinger operator L = —A+V
on a domain 2 C RY. We shall assume for the time being that 2 is a cube in R? of
sidelength Ry € N and make sure that the estimates that we seek do not depend on the
size of the domain, so that we can pass to the limit of infinite domain whenever it is
desired and appropriate.

Assume furthermore that V' is a bounded non-negative function on Q and L = —A+V
(once again, the boundedness assumption on V' is, at this point, cosmetic: the resulting
estimates do not depend on the maximum value and we can include more general poten-
tials into consideration). We denote by N the (normalized) integrated density of states
of the operator L with periodic boundary conditions on 0, i.e.,

N(p) = x {the number of eigenvalues A such that A < u}. (1.1)

1
€2
As usual, eigenvalues are counted with multiplicity. It is known that the operator L
above, with periodic boundary conditions on 92, has a discrete spectrum consisting of
positive eigenvalues and hence, the definition is coherent.

In 1911, Hermann Weyl proposed what became later known as the Weyl law for the
asymptotics of N(u), as p — +oo, for the Laplace-Beltrami operator with the Dirichlet
boundary conditions in a bounded domain. In his setting, the law gives an asymptotic of
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a multiple of p4/2

as pi — +00. Perhaps much more importantly than the result itself, it
gave a general approach to the asymptotics of the density of states of an elliptic operator,

and in particular, the rule of thumb traditionally used in physics is

N() ~ \QI // dude,  as j— oo, (1.2)

€12+ V (z)<p

It is simultaneously impossible to list all the directions in which the Weyl law has been
extended over the years and to give a sharp class of V' to which it applies, with nice control
of the asymptotic errors.! However, the oscillations of V at the scales smaller than p~1/2
can easily destroy the validity of the volume-counting (1.2) for the corresponding x. In
fact, the Weyl law prediction (1.2) fails even for systems as simple as two uncoupled
harmonic oscillators, that is, the potential V(x1, x5) = 22 +ex2 with a small € (see, e.g.,
[7], p. 143).

An obvious shortcoming of the “classical” Weyl law is the emphasis on the volume
counting itself, as an eigenfunction cannot occupy an arbitrarily shaped volume in the
phase space. This issue has been alleviated with the celebrated Uncertainty Principle of
Fefferman and Phong ultimately reaching out to the problem of stability of matter [7].
Instead of the volume-counting of (1.2), Fefferman and Phong suggested to estimate the
number of disjoint cubes with sidelength '/ and such that (fQ VP dw) e < Cu,
smoothing the oscillations of V' at the correct scales. The resulting bounds on N(u)
were proved when V' is a polynomial and p = oo in [7] and for V' > 0 in a suitable
reverse Holder case by Shen [23,24], and were also extended to estimates on a number
of negative eigenvalues for general V' < 0. Overall, these ideas have brought a number of
fascinating results — their goals and achievements, stemming from a new diagonalization
of pseudodifferential operators, are beyond the scope of our review. But in the particular
context of interest in this paper, they also fall short in some respects. First, searching
for the aforementioned collection of optimal cubes for every p can be computationally
very challenging. Secondly, and this is exactly the reason for the restrictions on the
potential and/or asymptotic nature of the results, the sharp estimates from above and
below for positive potentials are only available when V' behaves not too violently at the
corresponding scales. This rends them formally inapplicable for the Anderson or other
disordered potentials, and more generally whenever V is very different from its average
on a cube. The Landscape Law proposed in this paper addresses both of these issues. The
landscape “determines” the correct cubes and exhibits precisely the correct oscillation, in
some sense creating a perfect effective potential for the Fefferman-Phong-type counting
from any initial V. One can even be more precise and say that in the context of the
disordered potentials some similar ideas have been used at the bottom of the spectrum,
but much as in the Fefferman-Phong set-up, proving an estimate from above which

! The estimate from above is due to Cwickel, Lieb and Rosenblum [25].
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would be desirably close to the estimate from below is challenging and requires different
techniques.

The recent few years have brought a new tool, the so-called localization landscape,
which yielded astonishingly precise non-asymptotic estimates on the density of states
for both periodic and certain Anderson-type potentials throughout multiple numerical
and physical experiments [9,2,3]. However, so far no rigorous mathematical results have
supported these findings and, in particular, it was not clear what are the exact bounds,
what is the range of potentials to which the theory could be applied, whether the results
are generic or governed by the particular choice of examples, whether one can truly
furnish localization landscape theory in the context of Anderson localization. In the
present paper we prove that a counting function arising from the landscape provides
sharp estimates from above and below on the density of states for any non-negative
potential in the Schrédinger operator. As a by-product, we derive new estimates on the
integrated density of states for the Anderson-type potentials. However, the latter is only
a particular instance of our theory — our main results are deterministic.

The concept of localization landscape was pioneered by the second and third authors
of the present paper in [9]. The landscape is the solution to (—A + V)u = 1, with
the same boundary conditions as the original operator in question. When applied to
the Laplacian rather than the Schrodinger operator and equipped with the Dirichlet
boundary conditions, the landscape is nothing else than the classical torsion function,
however, its role in our theory and its character in the presence of a potential are very
different, and we will continue using the landscape terminology which seems to be more
illustrative under the circumstances.

First numerical [3] and then rigorous mathematical results [1] have demonstrated
the relationship between the landscape and the location and shape of localized eigen-
functions, including the pattern of their exponential decay. One of the key observations
underpinning these works is that the operator L = —A 4+ V has exactly the same spec-
trum as a conjugated operator

1 1
——div u?V + —
U U
which brings up 1/u as an effective potential. This is a consequence of the identity

/|Vf\2+Vf2dx=/u2 v(g)

valid for all f in the corresponding Sobolev space W12(Q2) and proved in [1]. However,

S|

not only 1/u plays the role of a potential, but it exhibits decisively better properties than
the original V. The reduced kinetic energy, which is the first term on the right-hand side
of (1.3), is small in many typical examples, at least at the bottom of the spectrum,
and hence 1/u “absorbs” the information about both kinetic and potential energy of the
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Fig. 1. [2] The IDOS N (in black), the original Weyl law approximation Ny from the right-hand side of (1.2)
(in green), and the approximation using the landscape function, Ny, W = 1/u, from the right-hand side of
(1.5) (in red) for a random uniform potential in one dimension on an interval of length 512. The quantities
are not normalized by volume. (For interpretation of the colors in the figure, the reader is referred to the
web version of this article.)

original system, in some sense, yielding a stronger form of the Uncertainty Principle than
those discussed above.

Motivated by these considerations, we were led to investigate the information about
the spectrum of L encoded in 1/u, and the numerical experiments brought surprising
results, in fact, exceeding original expectations [3,2]. In generic samples of Anderson-type
potentials in finite one- and two-dimensional domains one could observe two strongly
emerging patterns. First, the eigenvalues at the bottom of the spectrum are essentially
dimensional multiples of local minima of 1/u. That is, independently of the potential,

we observe an almost equality
d !
(1 + Z) (rmn a)j ~ Aj (1.4)

where the eigenvalues and minima are indexed in nondecreasing order. Secondly, a version
of the Weyl law governed by the potential 1/u

N(u)mm // dadg (1.5)

€12+ ooy <m

u(x)

yields, contrary to (1.2), an approximation of the density of states throughout the spec-
trum, for all values of u, albeit working a little worse than minima (1.4) at the very
bottom. Fig. 1, taken from [2], shows the advantage of using the landscape rather than
the original V' in the predictor (1.5).

Both observations have been immediately adopted by physicists, for Schrodinger and
Poisson-Schrodinger (Hartree-Fock) systems [10,21,4,27], and for Dirac equation [18];
however, even rigorous mathematical conjectures remained beyond reach, particularly if
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aiming for non-asymptotic statements. Indeed, one can rather easily construct counterex-
amples about taking (1.4) or (1.5) as near identities [5,8], and the numerical evidence was
initially restricted to dimensions 1 and 2, either Anderson-type or periodic potentials,
and reasonably small domains, especially in dimension 2. The latter point, in particular,
could raise doubts on the applicability of these approximations in the limit of infinite
domain.

The present paper is the first mathematical treatment of a rigorous connection be-
tween the landscape function and the eigenvalues of L in the entire range of A. We
show that a counting function of the minima of 1/u yields sharp deterministic estimates
from above and below on the integrated density of states, without restrictions on the
underlying potential.

Passing to the statements of the results, recall that Q is a cube in R¢ of sidelength
Ry € N. For any r > 0 such that Ry is an integer multiple of r, we denote by {Q},
a disjoint collection of cubes of sidelength r, such that every @, is contained in 2 and
UQG{Q}T Q = Q. Our cubes are always open unless stated otherwise. We shall work
with functions satisfying periodic boundary conditions on 02 and, slightly abusing the
notation, will often identify Q with the torus (R/RyZ)?. As in the beginning of the
introduction, V' is a bounded nonegative function on Q}, L = —A + V is the Schrédinger
operator on 2, which we take with the periodic boundary conditions, and the integrated
density of states is defined by (1.1). Going further, let u be the solution to Lu =1 on €,
also with periodic boundary conditions. Then it is known (and easy to prove) that u is
positive and bounded, and we define

1 1
Ny(p) = 9] X {the number of cubes @ € {Q},,,-1/2 such that mén " < u} , (1.6)

where by convention 1 < k < 2 (depending on ) is the smallest number such that Ry is

an integer multiple of kpu~1/2.

Theorem 1.7 (The Landscape law). Retain the definitions above. There exist constants
C;,i=1,...,4, depending on the dimension only, such that

C1a? N, (Coa2p) — C3N, (Coa®™ ) < N(p) < Ny(Cyp) (1.8)
for every o < 27% and every pu > 0.

The strength of Theorem 1.7 lies in its generality compared to all previously available
results:

e Theorem 1.7 is not asymptotic, the estimate (1.8) is valid throughout the spectrum,
with constants independent of .

e The constants in (1.8) do not depend on smoothness or oscillations of V', nor on the
possible probability law beyond its construction (or lack of thereof), nor, in fact, on



G. David et al. / Advances in Mathematics 390 (2021) 107946 7

the L*° norm of V or the size of the domain Ry. If one allows the dependence on
IVl (), the situation for large u is of course rather trivial (both the density of
states and N, () roughly behave as those of the Laplacian), and similarly the scales
bigger than Ry would be easy to handle. We emphasize the lack of dependence on
any of these parameters, which makes it possible to apply the theorem to the limit
of an infinite potential or an infinite domain.

Looking at (1.8), one obviously faces the question of the polynomial correction in the
estimate from below. And indeed, in applications (1.8) often transforms into the even
stronger estimate

Nu(Cyp) < N(p) < Nu(Capr)

by taking « small. There are (at least) two mechanisms to achieve this, which are for-
tunately roughly complementary. The first one is to prove a doubling condition for the
landscape u.

Theorem 1.9 (The doubling case). Retain the definitions above. If, in addition, u? is a
doubling weight at relatively small scales, specifically, if there is a constant Cp > 1 such

that
/ u?*dr < Cp (Q/ u? dx + s (1.10)

Qa2s

for every cube Qs of sidelength s > 0 then
N.(Chu) < N(u) < Ny(Cyp) for every p >0, (1.11)
where Cy is as in Theorem 1.7 and C} depends only on Cp and the dimension.

In the doubling condition and everywhere below, we interpret u as a function on the
torus, that is, if the cubes intersect the boundary, it is understood that one uses the
periodic extension of u.

There is a certain dichotomy between the range of applicability of Theorem 1.9 and its
complement, in particular, disordered systems. Notice that (1.8) transforms into (1.11)
if Ny (u) decays sufficiently fast as o tends to 0. This would not be the case, e.g., in the
realm of periodic potentials, when one expects that both the integrated density of states
and N, (u) behave as p/? 2
satisfied, and hence we can directly apply Theorem 1.9.

. Fortunately, in this case u® is a doubling weight, (1.10) is

A similar situation occurs when V' is sufficiently well-behaved. For instance, for d > 3,
if V satisfies the Kato condition
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sup / V@) dr =: K < oo, (1.12)
z€R4, r>0
B, (2)NQ

then (1.10) is verified and hence, the integrated density of states satisfies (1.11) directly.
This can be seen as a combination of results from Theorem 1.3 in [16], which guarantee
that for non-negative supersolutions to (—A +V)u > 0 there exists § > 0 such that u° is
doubling, and classical Moser inequalities for subsolutions to —Aw < 1, which allow one

1/2
to bound supg u by (JEQ u? dx) + 72 (cf. [12], Theorem 4.14). We observe that this

includes, on finite domains, even singular potentials weaker than 1/|z|?, but as usual,
one has to pay attention to emerging constants: if (1.12) is used, the resulting constant in
(1.11) may depend on K, which might or might not be suitable for the problem at hand.
In fact, if V' is regular itself, (1.10) could be easier to check directly, without involving
(1.12), but for now let us move to the case when (1.10) can fail.

The Anderson model pertains to disordered potentials when V is, for instance, a linear
combination of bumps with random amplitudes taking values between 0 and 1 according
to some probability law. We shall give a detailed definition and some related history
of the subject below, but for now let us just say that it is a setting of the Anderson
localization — a famous phenomenon when such a system, in the limit of an infinite
domain, could display pure point spectrum and exponentially decaying eigenfunctions.
A certain pre-runner of Anderson localization (in fact, a simpler phenomenon of rare
big regions) manifests itself through the so-called Lifschitz or Urbach tails: as u — 0,

4/2 ghserved in

N (u) behaves roughly as e—en™? contrary to the more usual behavior u
non-disordered systems (compare to the Weyl law above). We underline that this, once
again, is an asymptotic result, now at the edge u — 0, with a limited understanding of
errors and the range where the asymptotic is precise.

A typical example of potential that destroys (1.10) is any of the Anderson-type po-
tentials. The latter is a subclass of disordered potentials where V is, for instance, a
linear combination of bumps with random amplitudes taking values between 0 and 1
according to some probability law. It is a setting of the Anderson localization — a famous
phenomenon when such a system, in the limit of an infinite domain, could display pure
point spectrum and exponentially decaying eigenfunctions. We shall see that in this case,
although (1.10) fails, fortunately N, (1) has exponential growth as 4 — 0, and hence (1.8)
implies (1.11) because the exponential behavior suppresses polynomial corrections. In the
terminology of [20], such is the situation near fluctuation boundaries generally exhibited
by Schrodinger operators with random (disordered) potentials. Hence, any fluctuating
boundary would yield (1.11). Here we just isolate one result.

Theorem 1.13. Retain the definitions of  and L from Section 1.
Let ¢ € C§°(B1/10(0)) be a nontrivial bump function supported in the ball centered at
0 of radius 1/10, with 0 < ¢ <1, and set
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V=V,(z)= Z wip(x —j) forxeQ,
JEZ?

where the w; are i.i.d. variables taking values in [0, 1], whose probability distribution
F(§)=P{w<d}, 0<5<1,

is mot trivial, i.e., not concentrated at one point, and such that 0 is the infimum of its
support. Denote by NE(u) = E N, (1) the expectation of the counting function of minima
of 1/u, as defined in (1.6) and by N¥(u) = E N(u) the expectation of the density of
states, as defined in (1.1).

Then there exist constants Cy, Cg > 0 depending on the dimension and the expectation
of the random variables w; only, and a constant Cy > 0, depending on the dimension
only, such that

CsNy (Cop) < NP(n) < NJ(Cyp), (1.14)
for every u > 0.

Since 0 is the infimum of the support of F, we have F(§) > 0 for § > 0; also, the
measure is not a Dirac mass at the origin, so lims_,o F'(§) < 1. This implies that the
common expectation E(w) of the w; lies in (0, 1), and we claim that d and E(w) alone
control our constants. We will see in Theorems 3.1 and 3.5 that both numbers N (1) and
NE(p) are related to the behavior of the distribution function F(§), and in particular
its asymptotics when 0 tends to 0, which may be complicated; here we say that the
constants in these relations depend only on d and E(w).

We underline — yet again — that Theorem 1.13 is not an asymptotic result, and mul-
tiple numerical experiments [2] show the strength of this estimate in the intermediate
regime where g is neither large nor small, as well as its applicability to the potentials
where V is disordered but unbounded and thus, no other results for large u are readily
available. Moreover, even in the asymptotic regimes, (1.14) offers more precision than
the traditional Lifschitz tail estimates, in particular, encompassing faithfully the differ-
ences between individual choices of the disordered potentials; this will be discussed more
thoroughly in Section 3; also see [6] for a detailed numerical study of the Landscape Law
and its comparison to the available results in the presence of disorder. In conclusion, we
would like to zoom back out from the specific applications and to reiterate that the Main
Theorem should be viewed as a form of the Uncertainty Principle whose generality is
not inhibited by properties of the potential or range of the energies, a “black box” which
gives good bounds on the density of states irrespectively of the physical nature of the
initial system.

Acknowledgments. We thank Douglas Arnold and David Jerison for uncountable inspir-
ing conversations on the subject and the joint work [3,2] which lies at the foundation
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2. Main estimates: doubling and non-doubling scenario

We start with the Proof of Theorems 1.7 and 1.9.
Step I: the upper bound. We start with the upper bound on N(p). The estimate N (u) <
N is valid if we can find Hy, a codimension N subspace of H (where H is the space of
periodic functions in W12(Q)), such that

(Lv,v) [ |Vol> +Vo?de

||’UH%2(Q) o Jov?dx

>y forallve Hy.
To this end, denote

1
F = {Q € {Q}H(C4u)—1/2 such that Hgna < C4/L},

with Cy4 to be defined below, and 1 < k < 2 (depending on ) is the smallest number
such that Ry is an integer multiple of k.~ /2. Then let Hy be the space of v € H such
that fQ vdx = 0 for every Q € F. Since the cubes (Q € F are disjoint, it is evident that
Hp has co-dimension N = Card F, simply taking the bumps on @’s as an orthogonal
complement of Hy.

We recall from [1], Lemma 4.1, that

/|Vv|2+Vv2dx2/lv2dm forallve H
u
Q Q

and hence,

1
2/|Vv|2 +Votde > /|VU|2 + —v*dr forallve H.
U
Q Q
Thus, it is enough to prove that

1
/\VU\2+av2dx>2,u/v2da: for all v € Hy \ {0}. (2.1)
Q Q
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On the part of (2 corresponding to any Q € {Q}, (¢,,)-1/2 such that @ ¢ F the bound
(2.1) is valid provided that Cy > 2 because ming % > Cyp on such cubes. For QQ € F,
we use the Poincaré inequality to write

/|V1}|2 dx > Cp C4,u/|v —’UQ|2d.7: =Cp C'4u/v2 dx,
Q Q Q

where Cypt comes from the size of () and we used the fact that vg = fQ vdzr = 0 by the
definition of Hpy. Here Cp is the Poincaré constant and depends on the dimension only.
Choosing Cy so large that Cp C4 > 2, we arrive at the desired estimate.

Step II: the lower bound in the doubling case. In this direction, in order to prove that
M < N(u), we need to find Hys, a subspace of H of dimension M, such that

(Lv,v)  [o Vo +Vo?de

Hv||2L2(Q) ' Jqv?dx

<u forallve Hy. (2.2)
To this end, let

1
f’ = {Q € {Q}n (Cop)—1/2 such that Hléna S CQ[L}, (23)

where Cy will be chosen below. Let Hj; be the linear span of the functions uyg, @ € F,
picked such that xg € C§°(Q), xo =1 0on Q/2,0 < x <1on @, and |Vxg| < 4(Q)~"
Since —Awu < 1, the Moser-Harnack inequality ([12], Theorem 4.14) yields
1/2
1
supu < Cp | = /u2 + Cyl(Q)?, (2.4)
Q Q|
2Q

where Cy depends on the dimension only. In particular, using also the doubling condition
three times,

supu < C'HC%/2 supu + C'1(Q)?, (2.5)
Q Q/4

where ¢/ = C'(Cp,Cq) is a constant depending on Cp, Cy, and the dimension only.
We use (1.3), the definition of xq, (2.4) for Q/4, and (2.5)

(L(uxo),uxg) [ lVxol +uxbde  161(Q)7% [yudr + [yuda
||UXQ||2L2(Q) f(U,XQ)Q dx - fQ/2 w2 dx

42 1(Q) 2 supg u? + 4% supg u

2
1 1 c’
<C§,c3D/_2 supg u — (15 + cg,c%—/a)l(QV)

161(Q) ™2 supg u® + supg u

< (2.6)
4-d (é SUPQ /4 U — 11—6l(Q)2)

7 <
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We temporarily choose x small enough in terms of C'p and Cpg so that

1 N 1 n c’ l(Q)2
—————=supu > | —= + ——=75 )
202,CY% 16 c2c3?

and then, for some constants 0&75, 0515, Cy,5 depending on the dimension, Cp, and Cy
we have

L : . 1
“WQ—W <ChsUQ) 2+ Cfy —— < Cq5Cap, (2.7)
||UXQ||L2(Q) Subq

where the last inequality comes from the definition (2.3) of F’. Having fixed  as above,
we now choose Cy such that Cy5Cy = 1 and arrive at the desired estimate. To be
precise, we only showed the desired inequality on the elements of the basis of Hpy; but
since the cubes @ are disjoint, we immediately get it for any element of Hj; as well. The
only difference with what we want is that the estimate we achieved is in terms of the
cardinality of a set F’ defined with an artificially small .

However, if we increase the s to our usual fork 1 < x < 2, the cardinality of the

resulting set F becomes even smaller, and our basis H; has less elements than expected,
as desired.
Step III: the lower bound in the non-doubling case. Our goal, once again, is to establish
(2.2) for some subspace Hjs of dimension M. This time, we pick any « € (0,1/16] and
consider cubes of sidelength R = « (C*a4t4)~1/2. For Q € {Q}r, denote by Q = Q.
the cube concentric with @ but with the smaller sidelength r = aR = x (C*adt2u)~1/2.
Now take

1 1
F = {Q € {Q} r such that mén " < C*a®*?u and Hgn - > C’*ozd+4,u} , (2.8)

and let Hps be the linear span of the functions uxg, @ € F’, where we pick xo € C5°(Q),
0 < xg < 1, such that xo = 1 on 2Q and |Vyg| < CR™'. As before, we want to estimate

(L(uxQ), uxq) _ J w2 Vxql* + uxg de
luxell?, o [ (uxq)? dx

(2.9)

(by (1.3)). By definition of ', u < (C*ad**u)~! on Q, so the numerator is at most
C?’R™2 [Lu? + [yu < (C*a™™u)71Q|(C?*k™2 + 1). For the denominator D, we first
apply the Moser-Harnack inequality (2.4) to @, then the definition of F, to get that

D> /u2 > Q) [Cy'supu — €(Q)2]2 =a|Q|[Cy' supu — a2R2]2
: Q Q
2Q

2 ad|Q| [C;Il(c*ad+2u)_1 _ R2a2(C*ad+4ﬂ)_1]2

= a1QI(C" ™) 2y — P
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We chose 2 < ﬁ; then the first term dominates the second one and the expression in
(2.9) is bounded by

Cd,ﬁ (C*Oéd+4u)_1
C’djozd(C’*ozd*Q,u)*

5 < CagC=p, (2.10)

provided that we choose C* = C;;. Then, using the orthogonality of the xg, we get
that

1 1
N(u) > Card{Q €{Q}r; min— < C*a®™?; and min — > C’*ad+4u} > Ny — No,
o u Q u
where
: 1 * d+2
N = Card{Q € {Q}r; min — < C*a u},
Q U
Ny = Card{Q € {Q}r; min 1 C*ad+4u}.
) Q U —_

Notice that the cubes Q = @, in this argument are smaller and do not cover 2, so Ny is
probably not as large as N{ = Card { R € {Q}, ; ming % < C*a®2u}. However, keeping
in mind that we can treat () as a torus, we can do the estimate above for a collection of
translations of our cubes @ by a collection of at most Ca~? small vectors ej, j€J,so
that when we take the cubes Q = Qr as above, the smaller cubes Q +e;,Q € {Q}r and
j € J, cover €. This implies that the sum of the corresponding numbers NV is at least
C~IN,(C*a%*?y), where N, is defined in (1.6) and C accounts for a slight difference
between r and the official radius x(C*a®2)~1/2 associated to C*a®+ 2. Let us pick a
nearly optimal translation e;, so that Ny > C~1adN, (C*ad*t2p).
Similarly, No < ON,(C*a® ), and thus by the estimate above

N(p) > C LaldN, (C*adT2u) — CN,(C* a4 ).

This is precisely the bound (1.8). O

It is important to point out that Theorem 1.7 does not rely on the condition V €
L>(€2) and there is no dependence in constants on ||V ||z (q) or on the size of the domain
Ry. This is one of the main features of our estimates. If instead one allows our estimates
to depend on ||V|| L (q), the situation for large p is of course rather trivial, as both the
density of states and N, (u) roughly behave as those for the Laplacian. In particular,
there exist constants Cj,Cy, Cy depending on the dimension only, such that (1.11) is
valid for all 1 > C5||V|| oo (). We will use an enhanced version of this statement in the
next section.
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3. Anderson-type potential

We start this section with estimates on the expectation of the counting function N, ()
associated to the landscape as in (1.6).

Theorem 3.1. Let Q2 and L = —A +V be as in Theorem 1.15. In particular, let ¢ €
C5°(B1/10(0)) be such that 0 < ¢ <1, and set

V=V,(z)= ijga(x—j), x € Q, (3.2)
JEZ?

where the w; are i.i.d. variables taking values w; € [0,1], with a probability distribution
F(0)=Pfw<d}, 0<0<1, (3.3)

which is not concentrated at one point, and such that 0 is the infimum of its support.
Denote by NE(u) = E N, (1) the expectation of the counting function of the minima
of 1/u, as defined in (1.6). Then there exist constants u*,cp,v1,%v2, depending on the
dimension and the common expectation of the random variables w; only, and constants
m,cp,7s, V4, depending on the dimension only, such that

d/ d/2
K

s pY2F @pp) " < NP (1) <y p??F(cpp) (3.4)

whenever u < p* and Ry > (pm)~1/2.
Let us put this Theorem into the context of known results for the Lifschitz tails. On
the way to our ultimate goals, we will show the following by-product of Theorem 1.13.

Theorem 3.5. Retain the notation and assumptions of Theorem 1.15. Then there exist
constants W, m,cp, 1,72, depending on the dimension and the expectation of the random
variable only, and constants cp,v3,v4 depending on the dimension only, such that

d/ d/2

TS NP(p) < o pPF(cpp) (3.6)
"< NE(u) < PR (eppyer

3w F(Cpp)

~ —d/
s w2 F(pp)

whenever u < p* and Ry > (um)~1/2.

This result, and in particular the traditionally sought-after estimate (3.7), is in itself
stronger than formally known asymptotics of the density of states, particularly for the
continuous model, although it is fair to say that (3.7) would be expected by specialists
in the subject and perhaps could even be addressed by other methods than those in the
present paper. Let us explain the situation in the currently available literature.
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The literature devoted to Lifschitz tails is extensive, particularly if one includes Pois-
son and other models, and we do not thrive here to give a comprehensive list of references
or methodology — see, e.g., [14,15,20] for surveys of related results. Here we just provide
some pointers which will highlight the novelties of (3.7) (silently passing to the limit of
infinite domain and removing the superscript F).

The early literature, by now considered classical, and many modern textbooks treat
the case when F(&) > C4” for some C, 3 > 0, and provide the asymptotics

iy 08 [log N (u)| d

== 3.8
e 5 (3.8)

see, for instance, [13,26]. The quantity
1
I qi (8108 N ()|
pu—0 —log p

is generally known as a Lifschitz exponent, and, in addition to the results above, it is
proved in [20] that

iy 108(=log F(1))

=a>0 = L=d/2+a.
=0 —logu

Theorems 1.13 and 3.5 ascertain that for any non-trivial F' such that F'(§) > d for
0 > 0, we can recover the Lifschitz exponent from the behavior of the landscape counting
function

log | log N, (1]

L=L,, where L,:=1lim (3.9)
=0 —log p
(assuming for simplicity that the limit exists) and in particular,
log(— log F'
L= iy e(zloe Fw) (3.10)
2 p—0 —logu

without any a priori restrictions on F'. This formally recovers and generalizes the results
mentioned above. In the context of our methods, however, such statements lose much of
the precision exhibited in (1.14), (3.6), (3.7).

Indeed, the problem of (3.8) is not only, or not so much, the restricted class of the
potentials to which it applies, but rather the notorious imprecision of double-logarithmic
asymptotics. The underlying method of proof in [13,26] factually gives

d/ d/2

s p 2P @pp) T < NP () < e
In general, the upper bound is larger than the lower bound and does not give sufficient
precision to improve the double logarithm — see the discussion and the related conjectures
in [13].
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This is a well-known problem. The subtle difference between refined asymptotics
roughly speaking asserting that N (u) ~ e=en""” and those with the logarithmic correc-
tion N(u) ~ eeh”"? 108 1 hag not been overlooked in the literature. However, the refined
estimates turned out to be much more challenging. At this point they are only available
in Z? rather than R¢ and under various additional constraints on the probability dis-
tribution — see [15] and [19].? The proofs pass through the parabolic Anderson model —
an approach not yet developed, to the best of our knowledge, in the context of the alloy
Anderson model on R? considered in the present paper. And, even in Z?, the situation
has been far from well-understood. Both the conditions on the potential and the results
in [15] and [19] are quite technical, so we will not provide the detailed statements. Let
us just mention that they appeal to various cases according to the behavior of the scale
function

S\ t) = (M)TEG(M) —t7IG(t), where G(t) = log E(exp(—tV(0)),

(whether S ~ C(N\ — 1)t* with C,p positive or negative, or S ~ Clog), or S ~
—C(M\t)71 logt) and draw the asymptotics in terms of I(u) = sup,q(ut — G(t)). Such
is the presentation in [19], and [15] gives somewhat different statements, also with a
dependence on the features of a certain implicitly defined scale function. The strength of
these results compared to Theorem 3.5 is that, at least in some cases, they provide actual
asymptotics rather than the estimates from above and below and feature a number of
cases that we did not explicitly consider, such as unbounded potentials. The weakness
is that their coverage does not encompass all potentials, even among the bounded ones,
and at this point is completely restricted to Z?.

By contrast, Theorem 3.5 provides a simple and universal law, covering all bounded
potentials at once, clearly identifying the source of the logarithmic correction, the “Pastur
tails” (3.10), the exact transition from the classical to quantum regime. Below are just
a few examples of applications of (3.7):

(1) V is a Bernoulli potential: w takes values 0 or 1 with probability 1/2. Then

d/ da/2

s e < NE () < oy pt/ e
(2) V is given by a uniform distribution on [0,1] or any other F such that F(J) is
bounded from above and below by some positive power of §. This leads to logarithmic

correctors predicted in the physics literature [17,22]

2 —yy 21 E 2 —yyn~ 21
W’Slld/ e YAk er < NE (1) S%ﬂd/ e~z og

2 We are using here the review of these results from [14]. Unfortunately, the dissertation [19] has never
been published and so we cannot attest to the validity of the proofs or to exact statements beyond what
has been quoted [14].
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3) V is given by the probability distribution with F(8) ~e~¢% ", a > 0. Then
(3) g y the p y

d/2— —d/2—a

v pt/ e T < NF () < yq pd ez m

This is an example of (3.10).

With this, we return to the proof of Theorem 3.1. Our initial lemma is purely deter-
ministic.

Lemma 3.11. Let Q and L be as in Section 1, with V defined as follows. Let ¢ €
C§°(B1/10(0)) be such that 0 < ¢ < 1, and set

V=Vo@)= > wie-j), zeQ,
jEZA

where the sequence w = {w;}jeza takes values in [0,1]. Forr € [V/d, Ro), where we recall
that Ry is the scale of ), let us denote by Q = @, the maximal cube consisting of unit
cubes centered on 2% (and with edges parallel to the azes) which is contained in B, 3(0).
Since r > \/3, Q. contains at least one unit cube.

Assume that v € [3v/d, Ro) is such that

Card{j € Q- NZ*: w; > cpr 2} > N|Q,], (3.12)

for some cp, A > 0.
If cp is large enough, depending on A and the dimension only, then there exist € =
e(A\,d) >0 (small) and M = M (e, \,d) > 0 (large) such that if & € B, /3(0) is such that

u(&o) = Mr? (3.13)
then

u(§) > (1+¢e)u(éo) for some point & € B 1z,.(&o)- (3.14)

Again this is a deterministic statement, for which we do not care where the w; are
coming from and probabilistic considerations are irrelevant. That is, at this point V could
be any realization, even extremely unlikely, of the construction described in Theorem 3.1,
even if we intend to show later that our assumption (3.12) is quite probable in some
circumstances.

Here we gave a statement for a point & € B, /3(0) so that we can take @, centered at
the origin, but a similar statement for any &, € €2 would be easy to obtain, because we
could use the translation invariance of our problem by Z% to apply the result to & — &,
where £, € Z¢ is such that & — &, € B,/3(0); we assumed r > 3v/d only to guarantee
that we can find £,. We will use this comment about other centers &y later in the proof.
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Proof. Because of the periodic nature of €2 and L, we may assume that €2 is centered at

the origin; we do not assume that & = 0 because Z¢ plays a special role in the definition
of V.

Step I. Let & € (2 be given, set B, = B,(&) (for computations on u, we like to think
that &y is the origin) and denote by m(p) = m(&y, p) the average of u on the sphere
centered at £ with radius p. That is, when d > 2 we set

m(p) = ][ uwdo, p>0,
aB,

where do is the (d — 1) dimensional surface measure on 9B,., and when d = 1

For brevity, we set m(0) = u(&p); this makes sense because u is continuous on 2. We
claim that

m(p) <m(r) +r*>—p® for 0<p<r< dist(&,00), (3.15)
and in particular,

m(r) > m(0) —r?. (3.16)

This can be seen, for instance, by comparison with harmonic functions. Let v be a solution
to —Av = 0 in B, that coincides with u on 8B, and set w(y) := v(y) + 1% — |y — &|? for
y € B,. Then —Aw =2d > 1> —Au in B, (because Lu = —Au+Vu=1and V > 0)
and w = v = u on 0B,. Hence, w > u by the maximum principle, so that

m(p) = ][Udaﬁ fwda: ][vda+7’2—P2:m(r)+r2—p2,
0B, 0B, dB,

where we used the mean value property for harmonic functions in the last equality. The
estimates (3.15)—(3.16) follow.
Furthermore, when d > 2, the Poisson formula for a harmonic function v in B, yields

=y =&
vly) = dagr / \z—

where agq is the volume of a unit ball in R?. Hence there exists a dimensional constant

c1 such that v(y) < cym(r) for all y € By, /3. The same is of course true when d = 1,
because harmonic functions on R are affine. Moreover, since
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u(y) < wly) =v(y) +r* |y — &%
we get that
u(y) < exm(r) +1*  for y € By, . (3.17)

Notice that ¢; can be taken equal to 1 when y = x, according to (3.16).

Step II. Now we want to use the size of V. Integrating by parts against the Green function
in a ball, we get for d > 3

m(r) = m(0) + CQ/Au(y) (|y — & - Tzfd) dy
B,

=m(0) + co /(Vu D (ly— &4 —r*%) dy (3.18)
B,

for some dimensional constant ¢ > 0 and as usual assuming B, c Q.
Now assume that 0 < r < R and Br C ©, and subtract (3.18) for R from this; we get
that

mR) = mi) = e [ Vu=1) (- &P = B dy

Br\B;,

+ ¢ /(Vu 1) (r* "= R*% dy (3.19)

Recall that we are interested in &, € Fr/;; (0), so that since Q, C B, /5(0), it is contained
in B, = B,(&). We will only keep the contribution of V" on @, (because we want to use
its simpler structure), and since

/ (Iy = &P~ = B*) dy+ / (279 — R1) dy < CRUr - R*) < O(R2—?)

BR\BT B;.

(3.19) yields

m(R) —m(r) > —c3(R? —r?) + ¢ (r* ¢ — R*79) /Vu dy. (3.20)
Qn

In dimension d = 2 one has

m(r) = m(0) + C2B/(Vu —1)log gl dy (3.21)
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in place of (3.18), and since

/ log Ldy + /1og Edy < C(R* -7+ Cr?log R < C(R% —1?),
ly — &ol T r
Br\B- B,
we obtain
2 2 R
m(R) —m(r) > —es(R° — %) 4+ c2 log = /Vu dy (3.22)

Qr

in place of (3.20). In dimension d = 1, (3.18) becomes

7n@):ﬂﬂ®+f;/U"@)U-ﬁy—®Ddy:ﬂﬂm+%a/kVu—1ﬂr—w—fdﬁw (3.23)
B,

B, .
and hence we have
m(R) —m(r) > —c3(R?* —r%) +ca (R — 1) / Vudy (3.24)
Qr
in place of (3.20).

Step IIL. Write Q. = U;c;
j € Z and J = Z% N Q, precisely corresponds to the cubes R; that are contained in
Q.. Then set

R;, where R; is the cube of unit sidelength centered at

Jvi={j€eJ:w >cpr?} (3.25)
Observe that since V(z) = > w; oz — j), with ¢ € C§°(By,10(0)), we have that
fR‘ V =w; fRo o, where Ry (exceptionally) denotes the unit cube centered at 0. Thus
Jv={jeJ: ][VEC’PT*Q}, (3.26)
R;
with ¢p = cp f ¢
Denote by m, the average of u on the ball B, (&) (notice the difference with m(r)

which is an average on the sphere) and let u; := infg, u. Now pick some 7 > 0 (a
dimensional constant to be chosen below) and let

Jy={jeJv:u; <nm.}. (3.27)
Step IV. We start with the case when

A
Card J, > 5 Q|-
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By Harnack’s inequality at scale 1 (see, [11], Theorem 8.18),
][udx < 24 ][ udr < C <i}z1fu—|—1> .
R; 2R; ’

Since, in addition, u > 1 on € (recall that 0 < V' <1 here, and see [1], Proposition 3.2),
we have

][udx < Cl inf u,
R;
R;

for some constant C; depending on the dimension only. Therefore,
/udac = ][udx < Cynm,.  for any j € J,.

Then

/ wdz > |By|m, — Cynm, Card J,,

B'r'\Uje JIn R;

and

dr >
wor = |By| — Card J,
BT‘\UjeJn Rj

|By| — Cyn Card J,, _ (1—|- (1 — Cyn) Card J,

B, — Card J, Jme = (esdym,.
T n

for n = (2C%)~! and a suitable dimensional constant c3. We conclude that there exists
a point £ € B, such that

u(€) = (L+esA)my = (1+ e3\)(m(0) — %)
> m(0) 4+ c3Am(0) — m(0) (1 + c3\)/M (3.28)

where we integrated (3.16) for the second inequality and used the fact that m(0) =
u(€o) > Mr? by (3.13) in the third one. If we fix

M= (3.29)
A
then there exists a point ¢ € B,. such that

u(€) > (1 + es\) m(0), (3.30)

where as usual all ¢; depend on the dimension only. Hence, choosing
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e < s, (3.31)

we arrive at (3.14).

Step V. Assume now that, on the contrary,
A
Card J, < 5 Q|-

Let R=+/1+¢er, e < 1/2. First assume that d > 3; then by (3.20),

m(R) —m(r) > —c3(R* — 1) + ¢5 (=4 — R*77) /Vu dy
Qr

> 703(R2 — T2) + co (rQid — RQid) Z /Vu dy.
J€IvA\InR,

But for such j, ij Vudy > uj ij Vdy > nm, ij V = nm, ij V > nm,cpr=2 by
various definitions including (3.26) and (3.27). Thus, since R = v/1+ ¢,
m(R) —m(r) > —c3(R? — 1) + co (r*~* = R*~%) cpr2nm,. (Card Jy — Card Jy,)

> —czer? 4 cgecpm, A

When d = 1, 2, we use (3.22) and (3.24) instead of (3.20), and get the same final estimate,
namely

m(R) — m(r) > —czer® + ceecpm, A

(possibly further adjusting c¢3 and cg still depending on dimension only). Using (3.16)
and its integrated version for m,, and then the fact that m(0) > Mr? by (3.13), we
obtain that

m(R) > m(0) — r® — czer? + cgecp A(m(0) — r?)

> m(O)(l + ceecp A(1 — %) ! -11-\403€>.
Choosing cp so large that
cp > c(;i)\ (3.32)
(recall Step III) and M such that
M>C7max{l,17l} (3.33)
e A
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(the third part takes care of (3.29)) we ensure that the second term in the parentheses
above is larger than 2e and the third term smaller than €, so that

m(R) > m(0) (1+¢)
and hence, (3.14) holds for some § € 9Bg, as needed for (3.14). O

Lemma 3.34. Let Q and L = —A +V be as in Theorems 1.13 and 5.1. In particular
V' is a random potential governed by a probability measure, as in (3.2) and (3.3). Fiz
0 < A < 1. Then choose cp = cp(A,d) large enough, € = e(\,d) > 0 small enough, and
M = M (e, A\, d) > 0 large enough, as in Lemma 3.11.

Recall that @ = R4/ Ry Z¢ and, for r € [3v/d, Ry], let Q, denote as before the mazimal

cube consisting of unit cubes centered on Z% which is contained in B, 5(0). Then let
P, =P ({Card{j € Q, NZ* : w; <cpr 2} > (1-N)|Q,|}). (3.35)
Also define a similar quantity for the whole domain, i.e.,
Po =P ({Card{j € 2NZ" : w; < epR3%} > (1-2) [91}). (3.36)

Finally, for 3v/d < r < Ry, set 1y = (1+ E)k/zr for 0 < k < kpaw, where kpmae is the
largest integer such that vy, < Ry. Then

P ~ Mr? Po 4+ Ce¢ P, . 3.37
({Eeggi(o)u(oz ?}) < Po+Ce nggm " (3.37)

where C' depends only on the dimension.

Here we shall not even need our assumption that the probability distribution F' of
(3.3) is not concentrated at one point and F(§) > 0 for 6 > 0; we will evaluate the
probabilities later.

We wrote our estimates with all the cubes @),, and our test ball B, /3(0), all centered
at 0, but since the w; are i.i.d. variables and our problem is invariant under translations
by Z?, the various probabilities mentioned in the statement would be the same with
all the cubes (and the test ball) centered anywhere else on Z?. We will also use this
invariance during the proof.

Proof. The idea is to repeatedly use Lemma 3.11 and stop when the resulting ball exceeds
the size of Q.

Let r be given, suppose that SUD¢eB, /4 (0) u(€) > Mr?; we pick & € E,./g(O) such that
u(€o) > Mr?, and try to use Lemma 3.11 repeatedly to find points &; with u(¢;) always
larger. Set (for later coherence of notation) Qg = @,-. One possibility is that (3.12) fails
(with this choice of @, ); we call this event 2. But suppose not; then Lemma 3.11 gives
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a point &; € B, (&), with 71 = (1 +¢)/?r as above, such that u(¢;) > (1 + €)u(&), as
in (3.14).

Notice that u(£1) > Mr?, so we can try to apply Lemma 3.11 again. This time, it
could be that & ¢ Eﬁ/g(O), so we choose &; € Z? such that & — &, € §,>1/3(0), and
apply the lemma after translating by &,. We will need to be more specific later about
how we choose &,, but for the moment let us not bother. This means that the role of
Q, is now played by Q1 = &; + Q,,. One possibility is that (3.12) fails for Q1; we call
this event 2(;. But we assume not for the moment, and the lemma gives a new point
& € B,,(&1) such that u(&) > (1+¢)u(éy), as in (3.14). Then u(&) > Mr3 and we can
try to apply Lemma 3.11 again.

We continue as long as we do not encounter an event 2(, where (3.12) fails for Qy,
and then we end with a last application for k,qs, which gives a point &, . +1 such that
(koo +1) = Mry 1 > MRS, Let £ € Q be such that u(€) = ||ul|o, and notice
that u(és) > MR2. We now try to apply Lemma 3.11 one last time, to the point &,
but for this it will be convenient to enlarge our domain.

Suppose for definiteness that our fundamental domain Q (we abuse notation a little,
and give it the same name as RY/RyZ%) is the cube of sidelength Ry centered at the
origin; we know that, due to our periodic conditions, other choices would be equivalent,
but with this choice we were able to state and prove Lemma 3.11 without crossing the
boundary. Pick an odd integer N larger than 4v/d, and denote by Q the cube centered
at the origin and with sidelength N Ry; thus Q is composed of €2, plus a certain number
of translated copies. Extend V and u to be RyZ%periodic. Then the extension of u still
satisfies Lu = 1 on (2, and by uniqueness it is the landscape function associated to O
and periodic boundary conditions. We apply Lemma 3.11 with this new, larger domain,
and the radius 7 = 2v/dRy, so that the corresponding cube Q, is precisely Q. Our choice
of N is large enough for this to be possible, and also we may assume, since our problem
is invariant by translations from Z9, that ¢, € ET/g(O). Our last bad event Ay, 11 is
when (3.12) fails for @, = 2, and if this does not happen, we get a new point £ € Q
such that u(§) > (1 + e)u(x). This is impossible, because u({x) = ||u||co and u takes
the same values on € as on Q.

At this point we proved that if the event of the left-hand side of (3.37) occurs (i.e., we
can find &, as above, with u(&) > Mr?), then one of the bad events 2, occurs. What
we just need to do now is check that the probability of each event 2l is at most the
corresponding term of the right-hand side of (3.37). In particular, we do not need to
check anything about the independence of these events, we just add their probability.

In our last case we made sure that @, = () precisely, and so this is almost the definition
(compare (3.36) with (3.12)); there is a small discrepancy, due to the fact that since
r = 2v/dRy here, we should have said w; < Cp(2vdRy)~2 rather than w; < CpRy?, but
the difference only amounts to making Cp a little larger, which is not a problem, and
we prefer the less sharp, but simpler form in (3.36).

For 0 < k < kg, we need to evaluate the probability of the event 2, but we have
to be a little careful, because we only know that (3.12) fails for the translated cube
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Qr = &, + Q,,, but a priori we do not know which cube this is. Given the position of
& € B(r/3)(0), and the fact that for 0 < m < k, &40 — Em| < Tma1, we see that
€k < an:l Tm < Ce™lrp. We need to find &, € Z¢ such that |& — &, < 74/3, so
we can choose £, in some set Zj, known in advance, with less than Ce~? elements. Our
event 2y can only happen if (3.12) fails for one of the cubes £+ Q. , € € =, and the total
probability that this happens is at most Cs*d]P’Tk (all the smaller events associated to a
single £ € Z; have the same probability P,,, because our w; are i.i.d.). This completes
the proof of Lemma 3.34. O

Lemma 3.38. Let Q be some cube in R? and assume that the wj, J € 7N Q, are i.i.d.
variables taking values 0 < w; < 1, with a probability distribution

F(6)=P{w<d}, 0<d5<I,

which is not trivial, i.e., not concentrated at one point, and such that 0 is the infimum
of the support.

Fiz 0 < p <1, ¢ > 0, and consider r > 0 such that u — F(cpr=2) > 0. Then such
that

P ({Card {j € QNZ: w; < C*PT_2} > uCard{QﬂZd}})

. Card {QNZ?
< (H(p)F(cpr2)y) 00

(3.39)

with H(p) = (u(1— p)'=#) .

While we intend to use the Lemma for P, and P from Lemma 3.34, we chose to state
it in full generality to emphasize explicit dependence on the constants which could be
useful in other contexts. Also, observe that

lim H(p) = 1; 4

Tim H(p) =1; (3.40)
we will be able to choose i so close to 1, depending on E(w) and the dimension only,
that H(u)F(chr=2)* < F(cpr2)Y2, at least for r sufficiently large, also depending on
E(w) and the dimension only.

Proof. Let P denote the left-hand side of (3.39), and define the random variables ¢; equal
to 1 when w; < cpr~2 and 0 otherwise. By our assumptions the ¢; are independent and
identically distributed. Furthermore,

P:P({ > Cjzucard{QmZd}}),

JEQNZA

hence for any ¢t > 0,
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P=P ({etzjeQmZd ¢ > etuCard{QﬁZd}}) < e—tuCard{QﬁZd}A (341)

by Chebyshev’s inequality, and where A is the expectation of the product of indepen-
d

dent identically distributed variables e/, hence A = Ag ard {QNZ }, where Ag is the

expectation of any of the e'¢i. That is,

Ag = e'P({w; < cpr 2} + P({w; > cpr2}) = e'F(cpr™2) +1— F(cpr?)
and, by (3.41),
P <exp (—Card {Q N Zd}(tﬂ —log Ap))

for every t > 0. We now want to optimize in ¢, but let us introduce notation before we
compute. Set N = Card {Q NZ%}, F = F(chr~?) (two constants) and, for ¢ > 0,

f(t) ==ty —log Ay = tu —log(e' F + 1 — F).

-N : _ _ e'F
Thus P < e N/® | and we study f. First, f(0) = 0, and f'(t) = p — spri—p- Thus
F(0)=p—F =p— F(cpr=2) > 0 by our assumptions, and hence f is increasing near

0. In fact, f’ only vanishes at the point ¢* such that

- uw 1—F

©C T1-4 F

(notice that this last value is > 1 since g > F). Since we strongly expect f(t) to be
minimal for ¢ = t*, we decide to take t = t* in the inequality above. This yields

P < e NFE) eth*p+Nlog(e"*F+1fF))

= exp (—Nulog (ﬁ %) + N log (et*F—i— 1-—- F))

1-F 1-F
= exp <—Nulog (ﬁ T) + Nlog (ﬁ>>

— exp (—Nlog (%)) - (%)N (3.42)

We may drop (1 — F)!=# < 1, and now this is the same thing as (3.39); Lemma 3.38
follows. O

Corollary 3.43. Let Q, L, and V be as in Theorem 3.1. There exist constants R*,cp, M,
Y1,72, depending only on the dimension and the common expectation of the random
variables wj, such that
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P {u(&) > Mr?} <y F(cpr2)»" (3.44)
for any & € 2 and any r € (R*, Ry).

Proof. This will follow from a combination of Lemmas 3.34 and 3.38. First recall our
assumption that the measure associated to F' (call it v) is nontrivial. Let E(w) denote
the expectation of our random variables; then

0<E(w) <1, (3.45)

where the first inequality holds because v is not a Dirac mass at the origin, and second
one holds because the support of v touches 0 and is contained in [0, 1].

Furthermore notice that E(w fo 1) 0dv(8) = fo 4)0dv(6) <1 —v({0}) by Cheby-
shev’s inequality, so F'(0) = 1/({0}) <1-E(w)<1. Clearly, F(cpr™2) decays as r grows.
We choose a value of F(c,r~2) that we don’t want to exceed, half of the way between

1-E(w) and 1, i.e., Fy = % < 1, choose (we shall see why soon) a = ZLE]%“ZL) € (0,1),

and check now that

2 —E(w)

F(CL)SFOZ 9

(3.46)

Indeed E(w) = fo 1 mdu( ) < av(]0,a])+v((a,1] = aF(a)+1—F(a), hence F(a)(1—a) <
1 —E(w) and since 1 —a = 22 %EI:E(( )), we get (3.46).
Now let pu € (3/4, 1) be given, to be chosen soon in terms of Fy, very close to 1.

Also set A = 1 — p (small), and with this A, define cp = ¢p(A,d) large enough, as in
Lemma 3.11, and choose € = £(\,d) > 0 small enough, and M = M (e, \, d) large enough,
again as in Lemma 3.11. Those choices also work for Lemma 3.34, so we will be able to
apply these two lemmas with these constants.

We choose R* so large that cp(R*)™? < a; R* depends on A and pu, but soon we will
be able to choose p (and hence, A), that depends only on E(w) and the dimension, so
eventually R* will depend only on E(w) and the dimension as well. With this choice of
R*, and since we shall always restrict to radii » > R*, we will get that

2 —E(w)

Fepr™?) < F(ep(R")7%) < Fla) < Fo = =——

(3.47)

The whole point of Lemma 3.38 was to give a bound on the probability P, of (3.35),
and this bound is

P, < (H(p)F(cpr=2))", (3.48)
with N = Card {Q N Z4}. Notice that we can take ¢} = cp, and the assumption that

F(epr=2) < u is satisfied by (3.47) if we take p > Fy. We also take p > 3/4, so that
F(epr=2)r=1/2 < FF=Y2 < F3/* and use (3.40) to finally choose 1 so close to 1 that
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H(,u)Fol/4 < 1. This way (3.48) implies that P, < F(cpr—2)N/2, which will be good
enough for us.

Now let r > R* be given, and let us evaluate the probability (call it P) of (3.44).
Notice that P is smaller than the probability of having u(¢) > Mr? for some point of
a cube S of size roughly (10\/&)*17“, say, that contains &y. This probability does not
depend on S (by invariance), and can be estimated as in Lemma 3.34. Thus we get that

P<Po+Ce® Y P,
nggknlaz

with 7, = (1 + €)¥/2r. We use (the consequence of) (3.48) to estimate P,,, noticing
that F(cpry?) < F(cpr™2) and each set Q,, NZ? has at least one more point than the
previous one. That is, N = Card{Q,, NZ%} is at least N +k, where N = Card{Q,NZ%}.
Then P, < F(cpr,?)Ne/2 < F(cpr=2)(N+R/2 < FE2F(epr=2)N/2,

We have a similar estimate for Pq (which is of the same type as P, , with 7, ~ Ry).
So we can sum the geometric series, and get the more precise estimate

P <y F(cpr=2)Card{@n2/2 < o p(epr=2)r (3.49)

with constants v and 75 that depend on d and E(w) (through our choice of Fy, a, u,
and then the various constants that ensue, including ¢). As was said earlier, we can then
compute R*, depending on these constants. Corollary 3.43 follows. O

Corollary 3.50. Let Q, L, and V be as in Theorem 3.1, in particular V is a random poten-
tial governed by i.i.d. random variables w;. Then there exist constants pu*, M, cp,¥3,7Va,
depending only on the dimension and the expectation of the wj,

d/2
3

NE (1) <y F(Mep p) (3.51)

whenever i < p* and Ry > (uM)~1/2.

Proof. Recall from (1.6) and the statement of Theorem 1.13 that

1 1
NE(u) = 9] x E {the number of cubes @ € {Q},; ,-1/2 such that ngn " < u} ,

where 1 < £ < 2 (depending on p) is the smallest number such that Ry is an integer

1/2

multiple of ku~"/%. The expectation of the number of cubes is less than the sum of

expectations (by the triangle inequality), so

TS |
NE(u) < = —0_ sup P{min— SH}~
€2 (Hu_l/Q)d Qe{@Q}, ,—1/2 Q u
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We want to apply our estimate in (3.49), coming from Lemma 3.34. This one gives the
probability that the infimum of 1 on B, 3(0) is at most (Mr?)~!, so we should take
r such that (Mr?)~! = pu. Notice that r < Ry by our condition on Ry. We get equal
probabilities for integer translations of that ball, as usual, by the translation invariance
of our setting. Now each cube @ € {Q}, ,-1/2 can be covered by less than C integer
translations of B, 3(0) (taken from a fixed subgrid), and for each one the probability
that - < y somewhere on the ball is estimated as in (3.49). Therefore

NE() < Clep= )~ F(epr=2)2" < yap2F(Meppy ™",

u

as announced. O
We now give a lower bound for N (u).

Lemma 3.52. Let 2, L, and V' be as in Theorem 3.1 and in the previous lemmas. There
exist constants m,cp,vs, Ve, depending on the dimension only, such that

d/2

NF (1) = 75 n? F(@p p) 7o+ (3.53)

whenever u < 1 and Ry > (um) /2.

Proof. Much as above, we start observing that

1 1
NE(u) = 1 x E {the number of cubes @ € {Q},;,-1/2 such that inn " < ,u} (3.54)

1 1
> 9] X Z P {Hgna < u}. (3.55)

QG{Q}Mﬁl/z

Now we recall again from [1], Lemma 4.1 (or (1.3)), that
2 2 L o
/\Vf| +Vf dxz/af dz,
Q Q

for all f in the space of periodic functions in W12(Q2), and in particular for f € C§°(Q2).
We will choose f to be a standard cut-off on 4C1Q, C; > 1; that is, f € C§°(4C1Q),
f=1on CiQ and |Vf| < (C11(Q))~!. We will need that 4C,Q C Q, i.e.,  should be
large enough to accommodate this. This is ensured by the condition Ry > (um)~'/? if
m is small enough. It follows that

1 1 1 1
min - < —— )< —— / VI?+Vf2
CiQu |01Q| (C/Q uf - ‘ClQ‘ J | f| f
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1
1C1Q)

<

[ ca@yz v <a(cu@y+ f v)

ClQ 4CIQ

We choose Cy such that 44C;2 < 1/2; then 44(C11(Q)) "2 < 1(Q)"%/2 = k' /2 < /2,
and now ming, ¢ % < u/2+49 f4le V. Therefore

1
P{min—gu}zﬂl’ 4 ][ Vde < p/2 E]P’{Z%aévgél_du/Q}.

CiQUu
4C1Q
Note that
Plmin L <l < > P {min L <
min — min — .
GiQu by= Q u a
Qe ClQﬂ{Q}mﬁl/z
Therefore,
Z ]P’{minl<,u}< Z Z ]P’{minl<,u}
ciQu - Q u
QE{R}, ,~1/2 QE{R}, ,~1/2 R €CIRM{RQ}, ,—1/2

SC{I Z P{mén%ﬁu}.

QG{Q}HH71/2

Combining all of the above and using the independence of the w;, we conclude that

1
Z P {Hgna gﬂ} >0 Z P{w; <47 %u/2Vjes501QNZ}
QG{Q}Mﬁuz QG{Q},”ﬁl/z
€
|(kp=1/2)4|

Card {5C1Q NZ%}

=Cr! F(47p/2) :

which yields the desired conclusion. O

We are now finished with the proof of Theorem 3.1, which is a combination of Corol-
lary 3.50 and Lemma 3.52. We just renamed the four 7;, and also renamed Mcp from
Lemma 3.52 as cp, but both of these constants depend only on d and the expectation of
the Wy.

‘We shall now see how Theorem 3.1 provides the desired estimates on the expectation
of the density of states.

Theorem 3.56. Let 2, L, and V be as in Theorems 1.13 and 5.1. Then there exist
constants Cs,Cs > 0, depending on the dimension and the expectation of the random
variables wj, only and a constant Cy > 0, depending on the dimension only, such that
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Cs5N,; (Cop) < NP(u) < N (Cap), (3.57)

for every p > 0.

In particular, there exist constants p*,my,cp,v1,%v2, depending on the dimension and
the expectation of the random variable only, and constants ¢p,v3,v4, depending on the
dimension only, such that

d/ d/2

3 2 @Epp) " < NP (1) <y p2F(cpp) (3.58)

whenever u < p* and Ry > (pmy)~ /2.

Notice that Theorem 3.56 is a combination of Theorem 1.13 and the statement (3.6)
in Theorem 3.5. Since the other part of Theorem 3.5, (3.7), was proved in Theorem 3.1,
both Theorems 1.13 and 3.5 will follow as soon as we prove Theorem 3.56.

Proof. The right-hand side inequality in (3.57) is the right-hand side inequality in (1.8),
hence it has been proved in Theorem 1.7. The proof of the left-hand side of (1.8) will be
split into two parts, where p > puf and p < pt for some suitable pf.

For the values of p > puf we are going to proceed as for the proof of (1.11) in Theo-
rem 1.7, and prove that for any given puy,

No () < N(C'p) for all g > po, (3.59)

where C’ = (d, o) depends only on g and the dimension. We will essentially use the
fact that the function u? is a doubling weight. Indeed, given that Vo) < 1, the
Harnack inequality (see, [11], Theorem 8.17 and 8.18) guarantees that

supu < C(s) (infu + 32) .
Q2s s

Here the constant C(s) depends on s; specifically, the examination of the proof shows
that C(s) < C§ for some dimensional constant Cy (see the comment right after the
statement of Theorem 8.20 in [11] to this effect or simply use the Harnack inequality at
scale 1 roughly s times to treat larger s). Hence, if s is bounded from above by some
constant depending on d and some g > 0, we have

supu < C(d, o) <infu + .92) .
Q2 Qs

Going further, we recall that v > 1 on Q (see [1], Proposition 3.2), so that possibly
further adjusting C(d, up) we have

supu < C(d, o) inf u,
Q2s Qs
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again assuming that s is bounded from above by some constant depending on d and
to- We now follow the argument in (2.2)—(2.7), except that this time we take Cy = 1.
Then the sidelength of the cube under consideration is ru~'/? < 2(ug)~'/?, and we
will be using doubling on cubes of the size at most 16 (ug)~'/? (in fact, we even use
smaller ). The argument follows the same path, only arriving at the bound by some
constant C’(d, p10) p in place of Cy 5Cops on the right-hand side of (2.7). Thus (3.59) holds:
Nu(p) < N(C'(d, po)p), for all u > pg. We can write an upper bound on C’(d, pg) <
eCra'’? explicitly, for a suitable dimensional constant C. Note that uoeé”g RIS
either as pug — 0 or as pug — oo. Therefore, we choose

it = min oo (3.60)

and choose iy to attain the minimum. In other words,
N (C'(d, po) ™" ) < N(p),

for all u > p = po C'(d, o).

Now recall the first inequality in (1.8) of Theorem 1.7 and fix the constants Cy, Ca, C3
(depending on dimension only) from this inequality. For the xf given as above, we claim
that for a suitable choice of o < 274, depending on dimension and the expectation of
the w;, and also depending on pf,

1
C3NE(Ca™p) < 5 C1aNE(Cya®™2p), (3.61)

whenever p < pf and Ry > (umy)~'/? (for some m; > 0, that depends on the dimension
and the expectation of the w; only). As we shall see, this is basically a consequence of
the fact that according to Theorem 3.1, NF (1) is exponentially small for small ju, far
beating the polynomial increase of a~%2. Indeed, Theorem 3.1 says that

N5(02ad+4'u) <7 (Cgozd+4,u)d/2F(cngozd+4,u)%(C2°‘d+4“)7d/27 (3.62)

provided that (Coa®u) < p* and Ry > (Coa@t*um)~1/2. These last conditions are
ensured if we take Coa®puf < p* and m; < Cya®*m. Theorem 3.1 also says that

d4+2, \—d/2

NEZ(Coa™ ) > 3 (Coa™ 2 ) Y2 F (pCoat2 )11 (@201 (3.63)
provided that (Coa®2u) < p* and Ry > (Coa®™2um)~1/2, which will hold if we take
Coa®2ut < p* and my < Cradt?m.

Set Fy = F(cpCea®™?u) and Fy = F(cpCoa®*p); if we want to prove our claim

(3.61), it is enough to prove that

dtd,)=d/2 2 )= d/2

Csm (C2ad+4ﬂ)d/2FZ2(cza

N

(3.64)

1 a
5Cratys (Coa2p) 2



G. David et al. / Advances in Mathematics 390 (2021) 107946 33

Take o so small that ¢pCoadt? < Engad+2; thus a depends also on the expectation
of w, through cp. Then Fy < F,. Also choose a so small that ¢pCoa®2uf < §y, with
0o = E(w)/2. This way, if v denotes the probability measure defined by F, E(w) =
Jio.1)0dv(6) < 6o + v((00,1]) = 0o + 1 = F(do), so F(d) < 1 —E(w)/2 < 1. Therefore
Fy < F, <1—E(w)/2 in the estimates above; now

d+4u)—d/2

FZZ(CZO‘ /2

a —d
—Gaargar < B (3.65)
F2

with @ = y2(Coa®*) =42 — ~,(Coadt?)=4/2 > %72(0204””4)*”1/2 if @ < (y4/72)'/2. Thus
the right-hand side of (3.65) is exponentially decreasing when « tends to 0. The powers
of p in (3.64) are the same, and the rest is polynomial in «; thus (3.64) holds for a small,
and (3.61) follows.

Now we average (1.8) and use (3.61); we get that

CLaINE(Caa™ ) < NP(n) < NE(Ca), (3.66)

which is the same as (3.57) (recall that we are allowed to let C5 and Cg depend on «,
which is now chosen depending on P(w) and d), except that we have to assume that
p < ptand Ry > (myp)~ Y2,

(T ( % )ﬁz(m)%
o = min y | = N . 3.67
(Cyﬂ) cpCapf Vo (3.67)

Taken along with Theorem 3.1, this also automatically gives (3.58). As usual, we

and

silently redefine the constants, still depending on the same parameters. O
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