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Dans cet article on établit des bornes inférieures et supérieures 
sur la densité d’états intégrée pour l’opérateur de Schrödinger 
L = −Δ +V , à l’aide d’une fonction comptant les minimas de 
la fonction paysage, la solution de Lu = 1 avec des conditions 
au bord adaptées. Dans le cas des potentiels désordonnés, on 
en déduit les meilleures estimations connues sur la densité 
d’états intégrée dans le modèle d’Anderson sur Rd.
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1. Introduction

The density of states of the Schrödinger operator −Δ + V is one of the main charac-
teristics defining the physical properties of the matter. At this point, most of the known 
estimates for the integrated density of states pertain to two asymptotic regimes, each 
carrying restrictions on the underlying potentials. The first one stems from the Weyl 
law and its improved version due to the Fefferman-Phong uncertainty principle [7]. It 
addresses the energies or eigenvalues λ → +∞ and deteriorates for the potentials oscil-
lating at a wide range of scales. The second one concentrates on the asymptotics as λ
tends to 0 for disordered potentials, the so-called Lifschitz tails, and takes advantage of 
probabilistic arguments and the random nature of the disordered potentials. The goal of 
the present paper is to establish new bounds on the integrated density of states via the 
counting function of the so-called localization landscape [9]. The main theorem can be 
viewed as a new version of the uncertainty principle, which, contrary to the above, ap-
plies uniformly across the entire spectrum and covers all potentials bounded from below 
irrespectively of their nature.

To set the stage, let us consider the spectrum of the Schrödinger operator L = −Δ +V

on a domain Ω ⊂ Rd. We shall assume for the time being that Ω is a cube in Rd of 
sidelength R0 ∈ N and make sure that the estimates that we seek do not depend on the 
size of the domain, so that we can pass to the limit of infinite domain whenever it is 
desired and appropriate.

Assume furthermore that V is a bounded non-negative function on Ω and L = −Δ +V

(once again, the boundedness assumption on V is, at this point, cosmetic: the resulting 
estimates do not depend on the maximum value and we can include more general poten-
tials into consideration). We denote by N the (normalized) integrated density of states 
of the operator L with periodic boundary conditions on ∂Ω, i.e.,

N(μ) := 1
|Ω| × {the number of eigenvalues λ such that λ ≤ μ} . (1.1)

As usual, eigenvalues are counted with multiplicity. It is known that the operator L

above, with periodic boundary conditions on ∂Ω, has a discrete spectrum consisting of 
positive eigenvalues and hence, the definition is coherent.

In 1911, Hermann Weyl proposed what became later known as the Weyl law for the 
asymptotics of N(μ), as μ → +∞, for the Laplace-Beltrami operator with the Dirichlet 
boundary conditions in a bounded domain. In his setting, the law gives an asymptotic of 
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a multiple of μd/2 as μ → +∞. Perhaps much more importantly than the result itself, it 
gave a general approach to the asymptotics of the density of states of an elliptic operator, 
and in particular, the rule of thumb traditionally used in physics is

N(μ) ∼ 1
(2π)d|Ω|

¨

|ξ|2+V (x)<μ

dxdξ, as μ → ∞. (1.2)

It is simultaneously impossible to list all the directions in which the Weyl law has been 
extended over the years and to give a sharp class of V to which it applies, with nice control 
of the asymptotic errors.1 However, the oscillations of V at the scales smaller than μ−1/2

can easily destroy the validity of the volume-counting (1.2) for the corresponding μ. In 
fact, the Weyl law prediction (1.2) fails even for systems as simple as two uncoupled 
harmonic oscillators, that is, the potential V (x1, x2) = x2

1 + εx2
2 with a small ε (see, e.g., 

[7], p. 143).
An obvious shortcoming of the “classical” Weyl law is the emphasis on the volume 

counting itself, as an eigenfunction cannot occupy an arbitrarily shaped volume in the 
phase space. This issue has been alleviated with the celebrated Uncertainty Principle of 
Fefferman and Phong ultimately reaching out to the problem of stability of matter [7]. 
Instead of the volume-counting of (1.2), Fefferman and Phong suggested to estimate the 

number of disjoint cubes with sidelength μ−1/2 and such that 
(ffl

Q
|V |p dx

)1/p

≤ C μ, 
smoothing the oscillations of V at the correct scales. The resulting bounds on N(μ)
were proved when V is a polynomial and p = ∞ in [7] and for V ≥ 0 in a suitable 
reverse Hölder case by Shen [23,24], and were also extended to estimates on a number 
of negative eigenvalues for general V ≤ 0. Overall, these ideas have brought a number of 
fascinating results – their goals and achievements, stemming from a new diagonalization 
of pseudodifferential operators, are beyond the scope of our review. But in the particular 
context of interest in this paper, they also fall short in some respects. First, searching 
for the aforementioned collection of optimal cubes for every μ can be computationally 
very challenging. Secondly, and this is exactly the reason for the restrictions on the 
potential and/or asymptotic nature of the results, the sharp estimates from above and 
below for positive potentials are only available when V behaves not too violently at the 
corresponding scales. This rends them formally inapplicable for the Anderson or other 
disordered potentials, and more generally whenever V is very different from its average 
on a cube. The Landscape Law proposed in this paper addresses both of these issues. The 
landscape “determines” the correct cubes and exhibits precisely the correct oscillation, in 
some sense creating a perfect effective potential for the Fefferman-Phong-type counting 
from any initial V . One can even be more precise and say that in the context of the 
disordered potentials some similar ideas have been used at the bottom of the spectrum, 
but much as in the Fefferman-Phong set-up, proving an estimate from above which 

1 The estimate from above is due to Cwickel, Lieb and Rosenblum [25].
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would be desirably close to the estimate from below is challenging and requires different 
techniques.

The recent few years have brought a new tool, the so-called localization landscape, 
which yielded astonishingly precise non-asymptotic estimates on the density of states 
for both periodic and certain Anderson-type potentials throughout multiple numerical 
and physical experiments [9,2,3]. However, so far no rigorous mathematical results have 
supported these findings and, in particular, it was not clear what are the exact bounds, 
what is the range of potentials to which the theory could be applied, whether the results 
are generic or governed by the particular choice of examples, whether one can truly 
furnish localization landscape theory in the context of Anderson localization. In the 
present paper we prove that a counting function arising from the landscape provides 
sharp estimates from above and below on the density of states for any non-negative 
potential in the Schrödinger operator. As a by-product, we derive new estimates on the 
integrated density of states for the Anderson-type potentials. However, the latter is only 
a particular instance of our theory – our main results are deterministic.

The concept of localization landscape was pioneered by the second and third authors 
of the present paper in [9]. The landscape is the solution to (−Δ + V ) u = 1, with 
the same boundary conditions as the original operator in question. When applied to 
the Laplacian rather than the Schrödinger operator and equipped with the Dirichlet 
boundary conditions, the landscape is nothing else than the classical torsion function, 
however, its role in our theory and its character in the presence of a potential are very 
different, and we will continue using the landscape terminology which seems to be more 
illustrative under the circumstances.

First numerical [3] and then rigorous mathematical results [1] have demonstrated 
the relationship between the landscape and the location and shape of localized eigen-
functions, including the pattern of their exponential decay. One of the key observations 
underpinning these works is that the operator L = −Δ + V has exactly the same spec-
trum as a conjugated operator

− 1
u2 div u2 ∇ + 1

u

which brings up 1/u as an effective potential. This is a consequence of the identity

ˆ
|∇f |2 + V f2 dx =

ˆ
u2
∣∣∣∣∇(f

u

)∣∣∣∣2 + 1
u

f2 dx, (1.3)

valid for all f in the corresponding Sobolev space W 1,2(Ω) and proved in [1]. However, 
not only 1/u plays the role of a potential, but it exhibits decisively better properties than 
the original V . The reduced kinetic energy, which is the first term on the right-hand side 
of (1.3), is small in many typical examples, at least at the bottom of the spectrum, 
and hence 1/u “absorbs” the information about both kinetic and potential energy of the 
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Fig. 1. [2] The IDOS N (in black), the original Weyl law approximation NV from the right-hand side of (1.2)
(in green), and the approximation using the landscape function, NW , W = 1/u, from the right-hand side of 
(1.5) (in red) for a random uniform potential in one dimension on an interval of length 512. The quantities 
are not normalized by volume. (For interpretation of the colors in the figure, the reader is referred to the 
web version of this article.)

original system, in some sense, yielding a stronger form of the Uncertainty Principle than 
those discussed above.

Motivated by these considerations, we were led to investigate the information about 
the spectrum of L encoded in 1/u, and the numerical experiments brought surprising 
results, in fact, exceeding original expectations [3,2]. In generic samples of Anderson-type 
potentials in finite one- and two-dimensional domains one could observe two strongly 
emerging patterns. First, the eigenvalues at the bottom of the spectrum are essentially 
dimensional multiples of local minima of 1/u. That is, independently of the potential, 
we observe an almost equality (

1 + d

4

)(
min 1

u

)
j

∼ λj (1.4)

where the eigenvalues and minima are indexed in nondecreasing order. Secondly, a version 
of the Weyl law governed by the potential 1/u

N(μ) ∼ 1
(2π)d |Ω|

¨

|ξ|2+ 1
u(x) <μ

dxdξ (1.5)

yields, contrary to (1.2), an approximation of the density of states throughout the spec-
trum, for all values of μ, albeit working a little worse than minima (1.4) at the very 
bottom. Fig. 1, taken from [2], shows the advantage of using the landscape rather than 
the original V in the predictor (1.5).

Both observations have been immediately adopted by physicists, for Schrödinger and 
Poisson-Schrödinger (Hartree-Fock) systems [10,21,4,27], and for Dirac equation [18]; 
however, even rigorous mathematical conjectures remained beyond reach, particularly if 
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aiming for non-asymptotic statements. Indeed, one can rather easily construct counterex-
amples about taking (1.4) or (1.5) as near identities [5,8], and the numerical evidence was 
initially restricted to dimensions 1 and 2, either Anderson-type or periodic potentials, 
and reasonably small domains, especially in dimension 2. The latter point, in particular, 
could raise doubts on the applicability of these approximations in the limit of infinite 
domain.

The present paper is the first mathematical treatment of a rigorous connection be-
tween the landscape function and the eigenvalues of L in the entire range of λ. We 
show that a counting function of the minima of 1/u yields sharp deterministic estimates 
from above and below on the integrated density of states, without restrictions on the 
underlying potential.

Passing to the statements of the results, recall that Ω is a cube in Rd of sidelength 
R0 ∈ N. For any r > 0 such that R0 is an integer multiple of r, we denote by {Q}r

a disjoint collection of cubes of sidelength r, such that every Qr is contained in Ω and ⋃
Q∈{Q}r

Q̄ = Ω̄. Our cubes are always open unless stated otherwise. We shall work 
with functions satisfying periodic boundary conditions on ∂Ω and, slightly abusing the 
notation, will often identify Ω with the torus (R/R0 Z)d. As in the beginning of the 
introduction, V is a bounded nonegative function on Ω, L = −Δ + V is the Schrödinger 
operator on Ω, which we take with the periodic boundary conditions, and the integrated 
density of states is defined by (1.1). Going further, let u be the solution to Lu = 1 on Ω, 
also with periodic boundary conditions. Then it is known (and easy to prove) that u is 
positive and bounded, and we define

Nu(μ) := 1
|Ω| ×

{
the number of cubes Q ∈ {Q}κ μ−1/2 such that min

Q

1
u

≤ μ

}
, (1.6)

where by convention 1 ≤ κ < 2 (depending on μ) is the smallest number such that R0 is 
an integer multiple of κμ−1/2.

Theorem 1.7 (The Landscape law). Retain the definitions above. There exist constants 
Ci, i = 1, ..., 4, depending on the dimension only, such that

C1αdNu(C2αd+2μ) − C3Nu(C2αd+4μ) ≤ N(μ) ≤ Nu(C4μ) (1.8)

for every α < 2−4 and every μ > 0.

The strength of Theorem 1.7 lies in its generality compared to all previously available 
results:

• Theorem 1.7 is not asymptotic, the estimate (1.8) is valid throughout the spectrum, 
with constants independent of μ.

• The constants in (1.8) do not depend on smoothness or oscillations of V , nor on the 
possible probability law beyond its construction (or lack of thereof), nor, in fact, on 



G. David et al. / Advances in Mathematics 390 (2021) 107946 7
the L∞ norm of V or the size of the domain R0. If one allows the dependence on 
‖V ‖L∞(Ω), the situation for large μ is of course rather trivial (both the density of 
states and Nu(μ) roughly behave as those of the Laplacian), and similarly the scales 
bigger than R0 would be easy to handle. We emphasize the lack of dependence on 
any of these parameters, which makes it possible to apply the theorem to the limit 
of an infinite potential or an infinite domain.

Looking at (1.8), one obviously faces the question of the polynomial correction in the 
estimate from below. And indeed, in applications (1.8) often transforms into the even 
stronger estimate

Nu(C ′
2 μ) ≤ N(μ) ≤ Nu(C4 μ)

by taking α small. There are (at least) two mechanisms to achieve this, which are for-
tunately roughly complementary. The first one is to prove a doubling condition for the 
landscape u.

Theorem 1.9 (The doubling case). Retain the definitions above. If, in addition, u2 is a 
doubling weight at relatively small scales, specifically, if there is a constant CD ≥ 1 such 
that

ˆ

Q2s

u2 dx ≤ CD

⎛⎝ˆ
Qs

u2 dx + sd+4

⎞⎠ (1.10)

for every cube Qs of sidelength s > 0 then

Nu(C ′
2 μ) ≤ N(μ) ≤ Nu(C4 μ) for every μ > 0, (1.11)

where C4 is as in Theorem 1.7 and C ′
2 depends only on CD and the dimension.

In the doubling condition and everywhere below, we interpret u as a function on the 
torus, that is, if the cubes intersect the boundary, it is understood that one uses the 
periodic extension of u.

There is a certain dichotomy between the range of applicability of Theorem 1.9 and its 
complement, in particular, disordered systems. Notice that (1.8) transforms into (1.11)
if Nu(μ) decays sufficiently fast as μ tends to 0. This would not be the case, e.g., in the 
realm of periodic potentials, when one expects that both the integrated density of states 
and Nu(μ) behave as μd/2. Fortunately, in this case u2 is a doubling weight, (1.10) is 
satisfied, and hence we can directly apply Theorem 1.9.

A similar situation occurs when V is sufficiently well-behaved. For instance, for d ≥ 3, 
if V satisfies the Kato condition
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sup
z∈Rd, r>0

ˆ

Br(z)∩Ω

V (x)
|x − z|d−2 dx =: K < ∞, (1.12)

then (1.10) is verified and hence, the integrated density of states satisfies (1.11) directly. 
This can be seen as a combination of results from Theorem 1.3 in [16], which guarantee 
that for non-negative supersolutions to (−Δ +V )u ≥ 0 there exists δ > 0 such that uδ is 
doubling, and classical Moser inequalities for subsolutions to −Δu ≤ 1, which allow one 

to bound supQs
u by 

(ffl
Qs

u2 dx
)1/2

+ r2 (cf. [12], Theorem 4.14). We observe that this 
includes, on finite domains, even singular potentials weaker than 1/|x|2, but as usual, 
one has to pay attention to emerging constants: if (1.12) is used, the resulting constant in 
(1.11) may depend on K, which might or might not be suitable for the problem at hand. 
In fact, if V is regular itself, (1.10) could be easier to check directly, without involving 
(1.12), but for now let us move to the case when (1.10) can fail.

The Anderson model pertains to disordered potentials when V is, for instance, a linear 
combination of bumps with random amplitudes taking values between 0 and 1 according 
to some probability law. We shall give a detailed definition and some related history 
of the subject below, but for now let us just say that it is a setting of the Anderson 
localization – a famous phenomenon when such a system, in the limit of an infinite 
domain, could display pure point spectrum and exponentially decaying eigenfunctions. 
A certain pre-runner of Anderson localization (in fact, a simpler phenomenon of rare 
big regions) manifests itself through the so-called Lifschitz or Urbach tails: as μ → 0, 
N(μ) behaves roughly as e−cμ−d/2 contrary to the more usual behavior μd/2 observed in 
non-disordered systems (compare to the Weyl law above). We underline that this, once 
again, is an asymptotic result, now at the edge μ → 0, with a limited understanding of 
errors and the range where the asymptotic is precise.

A typical example of potential that destroys (1.10) is any of the Anderson-type po-
tentials. The latter is a subclass of disordered potentials where V is, for instance, a 
linear combination of bumps with random amplitudes taking values between 0 and 1 
according to some probability law. It is a setting of the Anderson localization – a famous 
phenomenon when such a system, in the limit of an infinite domain, could display pure 
point spectrum and exponentially decaying eigenfunctions. We shall see that in this case, 
although (1.10) fails, fortunately Nu(μ) has exponential growth as μ → 0, and hence (1.8)
implies (1.11) because the exponential behavior suppresses polynomial corrections. In the 
terminology of [20], such is the situation near fluctuation boundaries generally exhibited 
by Schrödinger operators with random (disordered) potentials. Hence, any fluctuating 
boundary would yield (1.11). Here we just isolate one result.

Theorem 1.13. Retain the definitions of Ω and L from Section 1.
Let ϕ ∈ C∞

0 (B1/10(0)) be a nontrivial bump function supported in the ball centered at 
0 of radius 1/10, with 0 ≤ ϕ ≤ 1, and set
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V = Vω(x) =
∑

j∈Zd

ωjϕ(x − j) for x ∈ Ω,

where the ωj are i.i.d. variables taking values in [0, 1], whose probability distribution

F (δ) = P{ω ≤ δ}, 0 ≤ δ ≤ 1,

is not trivial, i.e., not concentrated at one point, and such that 0 is the infimum of its 
support. Denote by NE

u (μ) = E Nu(μ) the expectation of the counting function of minima 
of 1/u, as defined in (1.6) and by NE(μ) = E N(μ) the expectation of the density of 
states, as defined in (1.1).

Then there exist constants C5, C6 > 0 depending on the dimension and the expectation 
of the random variables ωj only, and a constant C4 > 0, depending on the dimension 
only, such that

C5NE
u (C6 μ) ≤ NE(μ) ≤ NE

u (C4 μ), (1.14)

for every μ > 0.

Since 0 is the infimum of the support of F , we have F (δ) > 0 for δ > 0; also, the 
measure is not a Dirac mass at the origin, so limδ→0 F (δ) < 1. This implies that the 
common expectation E(ω) of the ωj lies in (0, 1), and we claim that d and E(ω) alone 
control our constants. We will see in Theorems 3.1 and 3.5 that both numbers NE(μ) and 
NE

u (μ) are related to the behavior of the distribution function F (δ), and in particular 
its asymptotics when δ tends to 0, which may be complicated; here we say that the 
constants in these relations depend only on d and E(ω).

We underline – yet again – that Theorem 1.13 is not an asymptotic result, and mul-
tiple numerical experiments [2] show the strength of this estimate in the intermediate 
regime where μ is neither large nor small, as well as its applicability to the potentials 
where V is disordered but unbounded and thus, no other results for large μ are readily 
available. Moreover, even in the asymptotic regimes, (1.14) offers more precision than 
the traditional Lifschitz tail estimates, in particular, encompassing faithfully the differ-
ences between individual choices of the disordered potentials; this will be discussed more 
thoroughly in Section 3; also see [6] for a detailed numerical study of the Landscape Law 
and its comparison to the available results in the presence of disorder. In conclusion, we 
would like to zoom back out from the specific applications and to reiterate that the Main 
Theorem should be viewed as a form of the Uncertainty Principle whose generality is 
not inhibited by properties of the potential or range of the energies, a “black box” which 
gives good bounds on the density of states irrespectively of the physical nature of the 
initial system.
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2. Main estimates: doubling and non-doubling scenario

We start with the Proof of Theorems 1.7 and 1.9.
Step I: the upper bound. We start with the upper bound on N(μ). The estimate N(μ) ≤
N is valid if we can find HN , a codimension N subspace of H (where H is the space of 
periodic functions in W 1,2(Ω)), such that

〈Lv, v〉
‖v‖2

L2(Ω)
:=

´
Ω |∇v|2 + V v2 dx´

Ω v2 dx
> μ for all v ∈ HN .

To this end, denote

F :=
{

Q ∈ {Q}κ (C4μ)−1/2 such that min
Q

1
u

≤ C4μ

}
,

with C4 to be defined below, and 1 ≤ κ < 2 (depending on μ) is the smallest number 
such that R0 is an integer multiple of κμ−1/2. Then let HN be the space of v ∈ H such 
that 

´
Q

v dx = 0 for every Q ∈ F . Since the cubes Q ∈ F are disjoint, it is evident that 
HN has co-dimension N = Card F , simply taking the bumps on Q’s as an orthogonal 
complement of HN .

We recall from [1], Lemma 4.1, that
ˆ

Ω

|∇v|2 + V v2 dx ≥
ˆ

Ω

1
u

v2 dx for all v ∈ H

and hence,

2
ˆ

Ω

|∇v|2 + V v2 dx ≥
ˆ

Ω

|∇v|2 + 1
u

v2 dx for all v ∈ H.

Thus, it is enough to prove that
ˆ

|∇v|2 + 1
u

v2 dx > 2μ

ˆ
v2 dx for all v ∈ HN \ {0}. (2.1)
Ω Ω



G. David et al. / Advances in Mathematics 390 (2021) 107946 11
On the part of Ω corresponding to any Q ∈ {Q}κ (C4μ)−1/2 such that Q /∈ F the bound 
(2.1) is valid provided that C4 > 2 because minQ

1
u ≥ C4μ on such cubes. For Q ∈ F , 

we use the Poincaré inequality to write
ˆ

Q

|∇v|2 dx ≥ CP C4μ

ˆ

Q

|v − vQ|2 dx = CP C4μ

ˆ

Q

v2 dx,

where C4μ comes from the size of Q and we used the fact that vQ =
´

Q
v dx = 0 by the 

definition of HN . Here CP is the Poincaré constant and depends on the dimension only. 
Choosing C4 so large that CP C4 > 2, we arrive at the desired estimate.
Step II: the lower bound in the doubling case. In this direction, in order to prove that 
M ≤ N(μ), we need to find HM , a subspace of H of dimension M , such that

〈Lv, v〉
‖v‖2

L2(Ω)
:=

´
Ω |∇v|2 + V v2 dx´

Ω v2 dx
≤ μ for all v ∈ HM . (2.2)

To this end, let

F ′ :=
{

Q ∈ {Q}κ (C2μ)−1/2 such that min
Q

1
u

≤ C2μ

}
, (2.3)

where C2 will be chosen below. Let HM be the linear span of the functions uχQ, Q ∈ F ′, 
picked such that χQ ∈ C∞

0 (Q), χQ = 1 on Q/2, 0 ≤ χ ≤ 1 on Q, and |∇χQ| ≤ 4l(Q)−1.
Since −Δu ≤ 1, the Moser-Harnack inequality ([12], Theorem 4.14) yields

sup
Q

u ≤ CH

⎛⎝ 1
|Q|

ˆ

2Q

u2

⎞⎠1/2

+ CH l(Q)2, (2.4)

where CH depends on the dimension only. In particular, using also the doubling condition 
three times,

sup
Q

u ≤ CHC
3/2
D sup

Q/4
u + C ′l(Q)2, (2.5)

where C ′ = C ′(CD, CH) is a constant depending on CD, CH , and the dimension only.
We use (1.3), the definition of χQ, (2.4) for Q/4, and (2.5)

〈L(uχQ), uχQ〉
‖uχQ‖2

L2(Ω)
=

´
u2|∇χQ|2 + uχ2

Q dx´
(uχQ)2 dx

≤
16 l(Q)−2 ´

Q
u2 dx +

´
Q

u dx´
Q/2 u2 dx

≤
16 l(Q)−2 supQ u2 + supQ u

4−d
(

1
CH

supQ/4 u − 1
16 l(Q)2

)2 ≤
4d+2 l(Q)−2 supQ u2 + 4d supQ u(
1

C2
H C

3/2
D

supQ u −
( 1

16 + C′

C2
H C

3/2
D

)
l(Q)2

)2 . (2.6)
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We temporarily choose κ small enough in terms of CD and CH so that

1
2C2

HC
3/2
D

sup
Q

u ≥
(

1
16 + C ′

C2
HC

3/2
D

)
l(Q)2,

and then, for some constants C ′
d,5, C ′′

d,5, Cd,5 depending on the dimension, CD, and CH

we have

〈L(uχQ), uχQ〉
‖uχQ‖2

L2(Ω)
≤ C ′

d,5 l(Q)−2 + C ′′
d,5

1
supQ u

≤ Cd,5C2μ, (2.7)

where the last inequality comes from the definition (2.3) of F ′. Having fixed κ as above, 
we now choose C2 such that Cd,5C2 = 1 and arrive at the desired estimate. To be 
precise, we only showed the desired inequality on the elements of the basis of HM but 
since the cubes Q are disjoint, we immediately get it for any element of HM as well. The 
only difference with what we want is that the estimate we achieved is in terms of the 
cardinality of a set F ′ defined with an artificially small κ.

However, if we increase the κ to our usual fork 1 ≤ κ < 2, the cardinality of the 
resulting set F becomes even smaller, and our basis HM has less elements than expected, 
as desired.
Step III: the lower bound in the non-doubling case. Our goal, once again, is to establish 
(2.2) for some subspace HM of dimension M . This time, we pick any α ∈ (0, 1/16] and 
consider cubes of sidelength R = κ (C∗αd+4μ)−1/2. For Q ∈ {Q}R, denote by Q̌ = Qr

the cube concentric with Q but with the smaller sidelength r = αR = κ (C∗αd+2μ)−1/2. 
Now take

F ′ :=
{

Q ∈ {Q}R such that min
Q̌

1
u

≤ C∗αd+2μ and min
Q

1
u

≥ C∗αd+4μ

}
, (2.8)

and let HM be the linear span of the functions uχQ, Q ∈ F ′, where we pick χQ ∈ C∞
0 (Q), 

0 ≤ χQ ≤ 1, such that χQ = 1 on 2Q̌ and |∇χQ| ≤ CR−1. As before, we want to estimate

〈L(uχQ), uχQ〉
‖uχQ‖2

L2(Ω)
=

´
u2|∇χQ|2 + uχ2

Q dx´
(uχQ)2 dx

(2.9)

(by (1.3)). By definition of F ′, u ≤ (C∗αd+4μ)−1 on Q, so the numerator is at most 
C2R−2 ´

Q
u2 +

´
Q

u ≤ (C∗αd+4μ)−1|Q|
(
C2κ−2 + 1

)
. For the denominator D, we first 

apply the Moser-Harnack inequality (2.4) to Q̌, then the definition of F ′, to get that

D ≥
ˆ

2Q̌

u2 ≥ |Q̌|
[
C−1

H sup
Q̌

u − 
(Q̌)2]2 = αd|Q|
[
C−1

H sup
Q̌

u − α2R2]2
≥ αd|Q|

[
C−1

H (C∗αd+2μ)−1 − κ2α2(C∗αd+4μ)−1]2 = αd|Q|(C∗αd+2μ)−2[C−1
H − κ2]2.
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We chose κ2 ≤ 1
2CH

; then the first term dominates the second one and the expression in 
(2.9) is bounded by

Cd,6 (C∗αd+4μ)−1

Cd,7αd(C∗αd+2μ)−2 ≤ Cd,8C∗μ = μ, (2.10)

provided that we choose C∗ = C−1
d,8 . Then, using the orthogonality of the χQ, we get 

that

N(μ) ≥ Card
{

Q ∈ {Q}R ; min
Q̌

1
u

≤ C∗αd+2μ and min
Q

1
u

≥ C∗αd+4μ
}

≥ N1 − N2,

where

N1 = Card
{

Q ∈ {Q}R ; min
Q̌

1
u

≤ C∗αd+2μ
}

,

N2 = Card
{

Q ∈ {Q}R ; min
Q

1
u

≤ C∗αd+4μ
}

.

Notice that the cubes Q̌ = Qr in this argument are smaller and do not cover Ω, so N1 is 
probably not as large as N ′

1 = Card
{

R ∈ {Q}r ; minR
1
u ≤ C∗αd+2μ

}
. However, keeping 

in mind that we can treat Ω as a torus, we can do the estimate above for a collection of 
translations of our cubes Q by a collection of at most Cα−d small vectors ej , j ∈ J , so 
that when we take the cubes Q = QR as above, the smaller cubes Q̌+ ej , Q ∈ {Q}R and 
j ∈ J , cover Ω. This implies that the sum of the corresponding numbers N1 is at least 
C−1Nu(C∗αd+2μ), where Nu is defined in (1.6) and C accounts for a slight difference 
between r and the official radius κ(C∗αd+2μ)−1/2 associated to C∗αd+2μ. Let us pick a 
nearly optimal translation ej , so that N1 ≥ C−1αdNu(C∗αd+2μ).

Similarly, N2 ≤ CNu(C∗αd+4μ), and thus by the estimate above

N(μ) ≥ C−1αdNu(C∗αd+2μ) − CNu(C∗αd+4μ).

This is precisely the bound (1.8). �
It is important to point out that Theorem 1.7 does not rely on the condition V ∈

L∞(Ω) and there is no dependence in constants on ‖V ‖L∞(Ω) or on the size of the domain 
R0. This is one of the main features of our estimates. If instead one allows our estimates 
to depend on ‖V ‖L∞(Ω), the situation for large μ is of course rather trivial, as both the 
density of states and Nu(μ) roughly behave as those for the Laplacian. In particular, 
there exist constants C5, C2, C4 depending on the dimension only, such that (1.11) is 
valid for all μ > C5‖V ‖L∞(Ω). We will use an enhanced version of this statement in the 
next section.
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3. Anderson-type potential

We start this section with estimates on the expectation of the counting function Nu(μ)
associated to the landscape as in (1.6).

Theorem 3.1. Let Ω and L = −Δ + V be as in Theorem 1.13. In particular, let ϕ ∈
C∞

0 (B1/10(0)) be such that 0 ≤ ϕ ≤ 1, and set

V = Vω(x) =
∑

j∈Zd

ωj ϕ(x − j), x ∈ Ω, (3.2)

where the ωj are i.i.d. variables taking values ωj ∈ [0, 1], with a probability distribution

F (δ) = P{ω ≤ δ}, 0 ≤ δ ≤ 1, (3.3)

which is not concentrated at one point, and such that 0 is the infimum of its support. 
Denote by NE

u (μ) = E Nu(μ) the expectation of the counting function of the minima 
of 1/u, as defined in (1.6). Then there exist constants μ∗, cP , γ1, γ2, depending on the 
dimension and the common expectation of the random variables ωj only, and constants 
m, ̃cP , γ3, γ4, depending on the dimension only, such that

γ3 μd/2F (c̃P μ)γ4μ−d/2 ≤ NE
u (μ) ≤ γ1 μd/2F (cP μ)γ2μ−d/2

, (3.4)

whenever μ < μ∗ and R0 > (μm)−1/2.

Let us put this Theorem into the context of known results for the Lifschitz tails. On 
the way to our ultimate goals, we will show the following by-product of Theorem 1.13.

Theorem 3.5. Retain the notation and assumptions of Theorem 1.13. Then there exist 
constants μ∗, m, cP , γ1, γ2, depending on the dimension and the expectation of the random 
variable only, and constants c̃P , γ3, γ4 depending on the dimension only, such that

γ3 μd/2F (c̃P μ)γ4μ−d/2 ≤ NE
u (μ) ≤ γ1 μd/2F (cP μ)γ2μ−d/2

, (3.6)

γ3 μd/2F (c̃P μ)γ4μ−d/2 ≤ NE(μ) ≤ γ1 μd/2F (cP μ)γ2μ−d/2
(3.7)

whenever μ < μ∗ and R0 > (μm)−1/2.

This result, and in particular the traditionally sought-after estimate (3.7), is in itself 
stronger than formally known asymptotics of the density of states, particularly for the 
continuous model, although it is fair to say that (3.7) would be expected by specialists 
in the subject and perhaps could even be addressed by other methods than those in the 
present paper. Let us explain the situation in the currently available literature.
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The literature devoted to Lifschitz tails is extensive, particularly if one includes Pois-
son and other models, and we do not thrive here to give a comprehensive list of references 
or methodology – see, e.g., [14,15,20] for surveys of related results. Here we just provide 
some pointers which will highlight the novelties of (3.7) (silently passing to the limit of 
infinite domain and removing the superscript E).

The early literature, by now considered classical, and many modern textbooks treat 
the case when F (δ) ≥ Cδβ for some C, β > 0, and provide the asymptotics

lim
μ→0

log | log N(μ)|
log μ

= −d

2 , (3.8)

see, for instance, [13,26]. The quantity

L := lim
μ→0

log | log N(μ)|
− log μ

is generally known as a Lifschitz exponent, and, in addition to the results above, it is 
proved in [20] that

lim
μ→0

log(− log F (μ))
− log μ

= a > 0 =⇒ L = d/2 + a.

Theorems 1.13 and 3.5 ascertain that for any non-trivial F such that F (δ) > δ for 
δ > 0, we can recover the Lifschitz exponent from the behavior of the landscape counting 
function

L ≡ Lu, where Lu := lim
μ→0

log | log Nu(μ)|
− log μ

(3.9)

(assuming for simplicity that the limit exists) and in particular,

L = d

2 + lim
μ→0

log(− log F (μ))
− log μ

, (3.10)

without any a priori restrictions on F . This formally recovers and generalizes the results 
mentioned above. In the context of our methods, however, such statements lose much of 
the precision exhibited in (1.14), (3.6), (3.7).

Indeed, the problem of (3.8) is not only, or not so much, the restricted class of the 
potentials to which it applies, but rather the notorious imprecision of double-logarithmic 
asymptotics. The underlying method of proof in [13,26] factually gives

γ3 μd/2F (c̃P μ)γ4μ−d/2 ≤ NE(μ) ≤ e−γ′μ−d/2
.

In general, the upper bound is larger than the lower bound and does not give sufficient 
precision to improve the double logarithm – see the discussion and the related conjectures 
in [13].
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This is a well-known problem. The subtle difference between refined asymptotics 
roughly speaking asserting that N(μ) ∼ e−cμ−d/2 and those with the logarithmic correc-
tion N(μ) ∼ ecμ−d/2 log μ has not been overlooked in the literature. However, the refined 
estimates turned out to be much more challenging. At this point they are only available 
in Zd rather than Rd and under various additional constraints on the probability dis-
tribution – see [15] and [19].2 The proofs pass through the parabolic Anderson model – 
an approach not yet developed, to the best of our knowledge, in the context of the alloy 
Anderson model on Rd considered in the present paper. And, even in Zd, the situation 
has been far from well-understood. Both the conditions on the potential and the results 
in [15] and [19] are quite technical, so we will not provide the detailed statements. Let 
us just mention that they appeal to various cases according to the behavior of the scale 
function

S(λ, t) = (λt)−1G(λt) − t−1G(t), where G(t) = logE(exp(−tV (0)),

(whether S ∼ C(λρ − 1)tρ with C, ρ positive or negative, or S ∼ C log λ, or S ∼
−C(λt)−1 log t) and draw the asymptotics in terms of I(μ) = supt>0(μt − G(t)). Such 
is the presentation in [19], and [15] gives somewhat different statements, also with a 
dependence on the features of a certain implicitly defined scale function. The strength of 
these results compared to Theorem 3.5 is that, at least in some cases, they provide actual 
asymptotics rather than the estimates from above and below and feature a number of 
cases that we did not explicitly consider, such as unbounded potentials. The weakness 
is that their coverage does not encompass all potentials, even among the bounded ones, 
and at this point is completely restricted to Zd.

By contrast, Theorem 3.5 provides a simple and universal law, covering all bounded 
potentials at once, clearly identifying the source of the logarithmic correction, the “Pastur 
tails” (3.10), the exact transition from the classical to quantum regime. Below are just 
a few examples of applications of (3.7):

(1) V is a Bernoulli potential: ω takes values 0 or 1 with probability 1/2. Then

γ3 μd/2e−γ4μ−d/2 ≤ NE(μ) ≤ γ1 μd/2e−γ2μ−d/2
.

(2) V is given by a uniform distribution on [0, 1] or any other F such that F (δ) is 
bounded from above and below by some positive power of δ. This leads to logarithmic 
correctors predicted in the physics literature [17,22]

γ3 μd/2e−γ4 μ−d/2 log μ ≤ NE(μ) ≤ γ1 μd/2e−γ2 μ−d/2 log μ.

2 We are using here the review of these results from [14]. Unfortunately, the dissertation [19] has never 
been published and so we cannot attest to the validity of the proofs or to exact statements beyond what 
has been quoted [14].
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(3) V is given by the probability distribution with F (δ) ∼ e−Cδ−a , a > 0. Then

γ3 μd/2eγ4 μ−d/2−a ≤ NE(μ) ≤ γ1 μd/2eγ2 μ−d/2−a

.

This is an example of (3.10).

With this, we return to the proof of Theorem 3.1. Our initial lemma is purely deter-
ministic.

Lemma 3.11. Let Ω and L be as in Section 1, with V defined as follows. Let ϕ ∈
C∞

0 (B1/10(0)) be such that 0 ≤ ϕ ≤ 1, and set

V = Vω(x) =
∑

j∈Zd

ωj ϕ(x − j), x ∈ Ω,

where the sequence ω = {ωj}j∈Zd takes values in [0, 1]. For r ∈ [
√

d, R0], where we recall 
that R0 is the scale of Ω, let us denote by Q = Qr the maximal cube consisting of unit 
cubes centered on Zd (and with edges parallel to the axes) which is contained in Br/2(0). 
Since r ≥

√
d, Qr contains at least one unit cube.

Assume that r ∈ [3
√

d, R0] is such that

Card
{

j ∈ Qr ∩ Zd : ωj ≥ cP r−2} ≥ λ |Qr|, (3.12)

for some cP , λ > 0.
If cP is large enough, depending on λ and the dimension only, then there exist ε =

ε(λ, d) > 0 (small) and M = M(ε, λ, d) > 0 (large) such that if ξ0 ∈ Br/3(0) is such that

u(ξ0) ≥ Mr2 (3.13)

then

u(ξ) ≥ (1 + ε) u(ξ0) for some point ξ ∈ B√
1+ε r(ξ0). (3.14)

Again this is a deterministic statement, for which we do not care where the ωj are 
coming from and probabilistic considerations are irrelevant. That is, at this point V could 
be any realization, even extremely unlikely, of the construction described in Theorem 3.1, 
even if we intend to show later that our assumption (3.12) is quite probable in some 
circumstances.

Here we gave a statement for a point ξ0 ∈ Br/3(0) so that we can take Qr centered at 
the origin, but a similar statement for any ξ0 ∈ Ω would be easy to obtain, because we 
could use the translation invariance of our problem by Zd to apply the result to ξ0 − ξ0, 
where ξ0 ∈ Zd is such that ξ0 − ξ0 ∈ Br/3(0); we assumed r ≥ 3

√
d only to guarantee 

that we can find ξ0. We will use this comment about other centers ξ0 later in the proof.
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Proof. Because of the periodic nature of Ω and L, we may assume that Ω is centered at 
the origin; we do not assume that ξ0 = 0 because Zd plays a special role in the definition 
of V .

Step I. Let ξ0 ∈ Ω be given, set Bρ = Bρ(ξ0) (for computations on u, we like to think 
that ξ0 is the origin) and denote by m(ρ) = m(ξ0, ρ) the average of u on the sphere 
centered at ξ0 with radius ρ. That is, when d ≥ 2 we set

m(ρ) =
 

∂Bρ

u dσ, ρ > 0,

where dσ is the (d − 1) dimensional surface measure on ∂Br, and when d = 1

m(ρ) = u(ξ0 + ρ) + u(ξ0 − ρ)
2 , ρ > 0.

For brevity, we set m(0) = u(ξ0); this makes sense because u is continuous on Ω. We 
claim that

m(ρ) ≤ m(r) + r2 − ρ2 for 0 ≤ ρ < r < dist (ξ0, ∂Ω), (3.15)

and in particular,

m(r) ≥ m(0) − r2. (3.16)

This can be seen, for instance, by comparison with harmonic functions. Let v be a solution 
to −Δv = 0 in Br that coincides with u on ∂Br and set w(y) := v(y) + r2 − |y − ξ0|2 for 
y ∈ Br. Then −Δw = 2d ≥ 1 ≥ −Δu in Br (because Lu = −Δu + V u = 1 and V ≥ 0) 
and w = v = u on ∂Br. Hence, w ≥ u by the maximum principle, so that

m(ρ) =
 

∂Bρ

u dσ ≤
 

∂Bρ

w dσ =
 

∂Bρ

v dσ + r2 − ρ2 = m(r) + r2 − ρ2,

where we used the mean value property for harmonic functions in the last equality. The 
estimates (3.15)–(3.16) follow.

Furthermore, when d ≥ 2, the Poisson formula for a harmonic function v in Br yields

v(y) = r2 − |y − ξ0|2
dαdr

ˆ

∂Br

v(z)
|z − y|d dσz ,

where αd is the volume of a unit ball in Rd. Hence there exists a dimensional constant 
c1 such that v(y) ≤ c1m(r) for all y ∈ B2r/3. The same is of course true when d = 1, 
because harmonic functions on R are affine. Moreover, since
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u(y) ≤ w(y) = v(y) + r2 − |y − ξ0|2,

we get that

u(y) ≤ c1m(r) + r2 for y ∈ B2r/3. (3.17)

Notice that c1 can be taken equal to 1 when y = x, according to (3.16).

Step II. Now we want to use the size of V . Integrating by parts against the Green function 
in a ball, we get for d ≥ 3

m(r) = m(0) + c2

ˆ

Br

Δu(y)
(
|y − ξ0|2−d − r2−d

)
dy

= m(0) + c2

ˆ

Br

(V u − 1)
(
|y − ξ0|2−d − r2−d

)
dy (3.18)

for some dimensional constant c2 > 0 and as usual assuming Br ⊂ Ω.
Now assume that 0 ≤ r ≤ R and BR ⊂ Ω, and subtract (3.18) for R from this; we get 

that

m(R) − m(r) = c2

ˆ

BR\Br

(V u − 1)
(
|y − ξ0|2−d − R2−d

)
dy

+ c2

ˆ

Br

(V u − 1)
(
r2−d − R2−d

)
dy (3.19)

Recall that we are interested in ξ0 ∈ Br/3(0), so that since Qr ⊂ Br/2(0), it is contained 
in Br = Br(ξ0). We will only keep the contribution of V on Qr (because we want to use 
its simpler structure), and since
ˆ

BR\Br

(
|y − ξ0|2−d − R2−d

)
dy+

ˆ

Br

(
r2−d − R2−d

)
dy ≤ CRd(r2−d−R2−d) ≤ C(R2−r2)

(3.19) yields

m(R) − m(r) ≥ −c3(R2 − r2) + c2
(
r2−d − R2−d

) ˆ
Qr

V u dy. (3.20)

In dimension d = 2 one has

m(r) = m(0) + c2

ˆ
(V u − 1) log r

|y − ξ0| dy (3.21)

Br
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in place of (3.18), and since
ˆ

BR\Br

log r

|y − ξ0|dy +
ˆ

Br

log R

r
dy ≤ C(R2 − r2) + Cr2 log R

r
≤ C(R2 − r2),

we obtain

m(R) − m(r) ≥ −c3(R2 − r2) + c2 log R

r

ˆ

Qr

V u dy (3.22)

in place of (3.20). In dimension d = 1, (3.18) becomes

m(r) = m(0)+c2

ˆ

Br

u′′(y) (r −|y −ξ0|) dy = m(0)+c2

ˆ

Br

(V u−1) (r −|y −ξ0|) dy (3.23)

and hence we have

m(R) − m(r) ≥ −c3(R2 − r2) + c2 (R − r)
ˆ

Qr

V u dy (3.24)

in place of (3.20).

Step III. Write Qr =
⋃

j∈J Rj , where Rj is the cube of unit sidelength centered at 
j ∈ Zd, and J = Zd ∩ Qr precisely corresponds to the cubes Rj that are contained in 
Qr. Then set

JV :=
{

j ∈ J : ωj ≥ cP r−2}. (3.25)

Observe that since V (x) =
∑

ωj ϕ(x − j), with ϕ ∈ C∞
0 (B1/10(0)), we have that ffl

Rj
V = ωj

ffl
R0

ϕ, where R0 (exceptionally) denotes the unit cube centered at 0. Thus

JV :=
{

j ∈ J :
 

Rj

V ≥ c′
P r−2}, (3.26)

with c′
P = cP

ffl
R0

ϕ.
Denote by mr the average of u on the ball Br(ξ0) (notice the difference with m(r)

which is an average on the sphere) and let uj := infRj
u. Now pick some η > 0 (a 

dimensional constant to be chosen below) and let

Jη = {j ∈ JV : uj < η mr}. (3.27)

Step IV. We start with the case when

Card Jη ≥ λ |Qr|.
2
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By Harnack’s inequality at scale 1 (see, [11], Theorem 8.18),
 

Rj

u dx ≤ 2d

 

2Rj

u dx ≤ C

(
inf
Rj

u + 1
)

.

Since, in addition, u ≥ 1 on Ω (recall that 0 ≤ V ≤ 1 here, and see [1], Proposition 3.2), 
we have

 

Rj

u dx ≤ C ′
H inf

Rj

u,

for some constant C ′
H depending on the dimension only. Therefore,
ˆ

Rj

u dx =
 

Rj

u dx ≤ C ′
Hηmr for any j ∈ Jη.

Then
ˆ

Br\
⋃

j∈Jη
Rj

u dx ≥ |Br|mr − C ′
Hηmr Card Jη

and
 

Br\
⋃

j∈Jη
Rj

u dx ≥ |Br| − C ′
Hη Card Jη

|Br| − Card Jη
mr =

(
1+ (1 − C ′

Hη) Card Jη

|Br| − Card Jη

)
mr ≥ (1+c3λ) mr,

for η = (2 C ′
H)−1 and a suitable dimensional constant c3. We conclude that there exists 

a point ξ ∈ Br such that

u(ξ) ≥ (1 + c3λ) mr ≥ (1 + c3λ)(m(0) − r2)

≥ m(0) + c3λm(0) − m(0) (1 + c3λ)/M (3.28)

where we integrated (3.16) for the second inequality and used the fact that m(0) =
u(ξ0) ≥ Mr2 by (3.13) in the third one. If we fix

M ≥ c4

λ
(3.29)

then there exists a point ξ ∈ Br such that

u(ξ) ≥ (1 + c5λ) m(0), (3.30)

where as usual all ci depend on the dimension only. Hence, choosing
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ε < c5λ, (3.31)

we arrive at (3.14).

Step V. Assume now that, on the contrary,

Card Jη ≤ λ

2 |Qr|.

Let R =
√

1 + ε r, ε < 1/2. First assume that d ≥ 3; then by (3.20),

m(R) − m(r) ≥ −c3(R2 − r2) + c2
(
r2−d − R2−d

) ˆ
Qr

V u dy

≥ −c3(R2 − r2) + c2
(
r2−d − R2−d

) ∑
j∈JV \Jη

ˆ

Rj

V u dy.

But for such j, 
´

Rj
V u dy ≥ uj

´
Rj

V dy ≥ ηmr

´
Rj

V = ηmr

ffl
Rj

V ≥ ηmrc′
P r−2 by 

various definitions including (3.26) and (3.27). Thus, since R =
√

1 + ε r,

m(R) − m(r) ≥ −c3(R2 − r2) + c2
(
r2−d − R2−d

)
c′

P r−2ηmr (Card JV − Card Jη)

≥ −c3εr2 + c6εc′
P mr λ.

When d = 1, 2, we use (3.22) and (3.24) instead of (3.20), and get the same final estimate, 
namely

m(R) − m(r) ≥ −c3εr2 + c6εc′
P mr λ

(possibly further adjusting c3 and c6 still depending on dimension only). Using (3.16)
and its integrated version for mr, and then the fact that m(0) ≥ Mr2 by (3.13), we 
obtain that

m(R) ≥ m(0) − r2 − c3εr2 + c6εc′
P λ
(
m(0) − r2)

≥ m(0)
(

1 + c6εc′
P λ
(
1 − 1

M

)
− 1 + c3ε

M

)
.

Choosing cP so large that

c′
P ≥ 4

c6λ
(3.32)

(recall Step III) and M such that

M > c7 max
{

1,
1

,
1
}

(3.33)

ε λ
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(the third part takes care of (3.29)) we ensure that the second term in the parentheses 
above is larger than 2ε and the third term smaller than ε, so that

m(R) ≥ m(0) (1 + ε)

and hence, (3.14) holds for some ξ ∈ ∂BR, as needed for (3.14). �
Lemma 3.34. Let Ω and L = −Δ + V be as in Theorems 1.13 and 3.1. In particular 
V is a random potential governed by a probability measure, as in (3.2) and (3.3). Fix 
0 < λ < 1. Then choose cP = cP (λ, d) large enough, ε = ε(λ, d) > 0 small enough, and 
M = M(ε, λ, d) > 0 large enough, as in Lemma 3.11.

Recall that Ω = Rd/R0 Zd and, for r ∈ [3
√

d, R0], let Qr denote as before the maximal 
cube consisting of unit cubes centered on Zd which is contained in Br/2(0). Then let

Pr := P
({

Card {j ∈ Qr ∩ Zd : ωj ≤ cP r−2} ≥ (1 − λ) |Qr|
})

. (3.35)

Also define a similar quantity for the whole domain, i.e.,

PΩ = P
({

Card {j ∈ Ω ∩ Zd : ωj ≤ cP R−2
0 } ≥

(
1 − λ

)
|Ω|
})

. (3.36)

Finally, for 3
√

d ≤ r < R0, set rk = (1 + ε)k/2 r for 0 ≤ k ≤ kmax, where kmax is the 
largest integer such that rk < R0. Then

P
({

sup
ξ∈Br/3(0)

u(ξ) ≥ Mr2
})

≤ PΩ + Cε−d
∑

0≤k≤kmax

Prk
, (3.37)

where C depends only on the dimension.

Here we shall not even need our assumption that the probability distribution F of 
(3.3) is not concentrated at one point and F (δ) > 0 for δ > 0; we will evaluate the 
probabilities later.

We wrote our estimates with all the cubes Qρ, and our test ball Br/3(0), all centered 
at 0, but since the ωj are i.i.d. variables and our problem is invariant under translations 
by Zd, the various probabilities mentioned in the statement would be the same with 
all the cubes (and the test ball) centered anywhere else on Zd. We will also use this 
invariance during the proof.

Proof. The idea is to repeatedly use Lemma 3.11 and stop when the resulting ball exceeds 
the size of Ω.

Let r be given, suppose that supξ∈Br/3(0) u(ξ) ≥ Mr2; we pick ξ0 ∈ Br/3(0) such that 
u(ξ0) ≥ Mr2, and try to use Lemma 3.11 repeatedly to find points ξj with u(ξj) always 
larger. Set (for later coherence of notation) Q0 = Qr. One possibility is that (3.12) fails 
(with this choice of Qr); we call this event A0. But suppose not; then Lemma 3.11 gives 
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a point ξ1 ∈ Br1(ξ0), with r1 = (1 + ε)1/2r as above, such that u(ξ1) ≥ (1 + ε)u(ξ0), as 
in (3.14).

Notice that u(ξ1) ≥ Mr2
1, so we can try to apply Lemma 3.11 again. This time, it 

could be that ξ1 /∈ Br1/3(0), so we choose ξ1 ∈ Zd such that ξ1 − ξ1 ∈ Br1/3(0), and 
apply the lemma after translating by ξ1. We will need to be more specific later about 
how we choose ξ1, but for the moment let us not bother. This means that the role of 
Qr is now played by Q1 = ξ1 + Qr1 . One possibility is that (3.12) fails for Q1; we call 
this event A1. But we assume not for the moment, and the lemma gives a new point 
ξ2 ∈ Br2(ξ1) such that u(ξ2) ≥ (1 + ε)u(ξ1), as in (3.14). Then u(ξ2) ≥ Mr2

2 and we can 
try to apply Lemma 3.11 again.

We continue as long as we do not encounter an event Ak where (3.12) fails for Qk, 
and then we end with a last application for kmax, which gives a point ξkmax+1 such that 
u(ξkmax+1) ≥ Mr2

kmax+1 ≥ MR2
0. Let ξ∞ ∈ Ω be such that u(ξ∞) = ||u||∞, and notice 

that u(ξ∞) ≥ MR2
0. We now try to apply Lemma 3.11 one last time, to the point ξ∞, 

but for this it will be convenient to enlarge our domain.
Suppose for definiteness that our fundamental domain Ω (we abuse notation a little, 

and give it the same name as Rd/R0Zd) is the cube of sidelength R0 centered at the 
origin; we know that, due to our periodic conditions, other choices would be equivalent, 
but with this choice we were able to state and prove Lemma 3.11 without crossing the 
boundary. Pick an odd integer N larger than 4

√
d, and denote by Ω̃ the cube centered 

at the origin and with sidelength NR0; thus Ω̃ is composed of Ω, plus a certain number 
of translated copies. Extend V and u to be R0Zd-periodic. Then the extension of u still 
satisfies Lu = 1 on Ω̃, and by uniqueness it is the landscape function associated to Ω̃
and periodic boundary conditions. We apply Lemma 3.11 with this new, larger domain, 
and the radius r = 2

√
dR0, so that the corresponding cube Qr is precisely Ω. Our choice 

of N is large enough for this to be possible, and also we may assume, since our problem 
is invariant by translations from Zd, that ξ∞ ∈ Br/3(0). Our last bad event Akmax+1 is 
when (3.12) fails for Qr = Ω, and if this does not happen, we get a new point ξ ∈ Ω̃
such that u(ξ) ≥ (1 + ε)u(ξ∞). This is impossible, because u(ξ∞) = ||u||∞ and u takes 
the same values on Ω̃ as on Ω.

At this point we proved that if the event of the left-hand side of (3.37) occurs (i.e., we 
can find ξ0 as above, with u(ξ0) ≥ Mr2), then one of the bad events Ak occurs. What 
we just need to do now is check that the probability of each event Ak is at most the 
corresponding term of the right-hand side of (3.37). In particular, we do not need to 
check anything about the independence of these events, we just add their probability.

In our last case we made sure that Qr = Ω precisely, and so this is almost the definition 
(compare (3.36) with (3.12)); there is a small discrepancy, due to the fact that since 
r = 2

√
dR0 here, we should have said ωj ≤ CP (2

√
dR0)−2 rather than ωj ≤ CP R−2

0 , but 
the difference only amounts to making CP a little larger, which is not a problem, and 
we prefer the less sharp, but simpler form in (3.36).

For 0 ≤ k ≤ kmax, we need to evaluate the probability of the event Ak, but we have 
to be a little careful, because we only know that (3.12) fails for the translated cube 
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Qk = ξk + Qrk
, but a priori we do not know which cube this is. Given the position of 

ξ0 ∈ B(r/3)(0), and the fact that for 0 ≤ m < k, |ξm+1 − ξm| ≤ rm+1, we see that 
|ξk| ≤

∑k
m=1 rm ≤ Cε−1rk. We need to find ξk ∈ Zd such that |ξk − ξk| ≤ rk/3, so 

we can choose ξk in some set Ξk, known in advance, with less than Cε−d elements. Our 
event Ak can only happen if (3.12) fails for one of the cubes ξ+Qrk

, ξ ∈ Ξk, and the total 
probability that this happens is at most Cε−dPrk

(all the smaller events associated to a 
single ξ ∈ Ξk have the same probability Prk

, because our ωj are i.i.d.). This completes 
the proof of Lemma 3.34. �
Lemma 3.38. Let Q be some cube in Rd and assume that the ωj, j ∈ Zd ∩ Q, are i.i.d. 
variables taking values 0 ≤ ωj ≤ 1, with a probability distribution

F (δ) = P{ω ≤ δ}, 0 ≤ δ ≤ 1,

which is not trivial, i.e., not concentrated at one point, and such that 0 is the infimum 
of the support.

Fix 0 < μ < 1, c∗
P > 0, and consider r > 0 such that μ − F (c∗

P r−2) > 0. Then such 
that

P
({

Card
{

j ∈ Q ∩ Zd : ωj ≤ c∗
P r−2} ≥ μ Card {Q ∩ Zd}

})
≤
(
H(μ)F (c∗

P r−2)μ
)Card {Q∩Zd} (3.39)

with H(μ) =
(
μμ(1 − μ)1−μ

)−1.

While we intend to use the Lemma for Pr and PΩ from Lemma 3.34, we chose to state 
it in full generality to emphasize explicit dependence on the constants which could be 
useful in other contexts. Also, observe that

lim
μ→1

H(μ) = 1; (3.40)

we will be able to choose μ so close to 1, depending on E(ω) and the dimension only, 
that H(μ)F (c∗

P r−2)μ < F (c∗
P r−2)1/2, at least for r sufficiently large, also depending on 

E(ω) and the dimension only.

Proof. Let P denote the left-hand side of (3.39), and define the random variables ζj equal 
to 1 when ωj ≤ c∗

P r−2 and 0 otherwise. By our assumptions the ζj are independent and 
identically distributed. Furthermore,

P = P
({ ∑

j∈Q∩Zd

ζj ≥ μ Card {Q ∩ Zd}
})

,

hence for any t > 0,
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P = P
({

et
∑

j∈Q∩Zd ζj ≥ etμ Card {Q∩Zd}
})

≤ e−tμ Card {Q∩Zd}A (3.41)

by Chebyshev’s inequality, and where A is the expectation of the product of indepen-
dent identically distributed variables etζj , hence A = A

Card {Q∩Zd}
0 , where A0 is the 

expectation of any of the etζj . That is,

A0 = etP ({ωj ≤ c∗
P r−2}) + P ({ωj > c∗

P r−2}) = etF (c∗
P r−2) + 1 − F (c∗

P r−2)

and, by (3.41),

P ≤ exp
(
−Card {Q ∩ Zd}

(
tμ − log A0

))
for every t > 0. We now want to optimize in t, but let us introduce notation before we 
compute. Set N = Card {Q ∩ Zd}, F = F (c∗

P r−2) (two constants) and, for t > 0,

f(t) := tμ − log A0 = tμ − log(etF + 1 − F ).

Thus P ≤ e−Nf(t), and we study f . First, f(0) = 0, and f ′(t) = μ − etF
etF +1−F . Thus 

f ′(0) = μ − F = μ − F (c∗
P r−2) > 0 by our assumptions, and hence f is increasing near 

0. In fact, f ′ only vanishes at the point t∗ such that

et∗
= μ

1 − μ

1 − F

F

(notice that this last value is > 1 since μ > F ). Since we strongly expect f(t) to be 
minimal for t = t∗, we decide to take t = t∗ in the inequality above. This yields

P ≤ e−Nf(t∗) = e−Nt∗μ+N log(et∗
F +1−F ))

= exp
(

−Nμ log
( μ

1 − μ

1 − F

F

)
+ N log

(
et∗

F + 1 − F
))

= exp
(

−Nμ log
( μ

1 − μ

1 − F

F

)
+ N log

(1 − F

1 − μ

))
= exp

(
−N log

( μμ(1 − μ)1−μ

F μ (1 − F )1−μ

))
=
(F μ (1 − F )1−μ

μμ(1 − μ)1−μ

)N

. (3.42)

We may drop (1 − F )1−μ ≤ 1, and now this is the same thing as (3.39); Lemma 3.38
follows. �
Corollary 3.43. Let Ω, L, and V be as in Theorem 3.1. There exist constants R∗, cP , M,

γ1, γ2, depending only on the dimension and the common expectation of the random 
variables ωj, such that
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P
{

u(ξ0) ≥ Mr2} ≤ γ1F (cP r−2) γ2 rd

(3.44)

for any ξ0 ∈ Ω and any r ∈ (R∗, R0].

Proof. This will follow from a combination of Lemmas 3.34 and 3.38. First recall our 
assumption that the measure associated to F (call it ν) is nontrivial. Let E(ω) denote 
the expectation of our random variables; then

0 < E(ω) < 1, (3.45)

where the first inequality holds because ν is not a Dirac mass at the origin, and second 
one holds because the support of ν touches 0 and is contained in [0, 1].

Furthermore notice that E(ω) =
´

[0,1] δdν(δ) =
´

(0,1] δdν(δ) ≤ 1 − ν({0}) by Cheby-
shev’s inequality, so F (0) = ν({0}) ≤ 1 −E(ω) < 1. Clearly, F (cpr−2) decays as r grows. 
We choose a value of F (cpr−2) that we don’t want to exceed, half of the way between 
1 −E(ω) and 1, i.e., F0 = 2−E(ω)

2 < 1, choose (we shall see why soon) a = E(ω)
2−E(ω) ∈ (0, 1), 

and check now that

F (a) ≤ F0 = 2 − E(ω)
2 . (3.46)

Indeed E(ω) =
´

[0,1] xdν(x) ≤ aν([0, a]) +ν((a, 1] = aF (a) +1 −F (a), hence F (a)(1 −a) ≤
1 − E(ω) and since 1 − a = 2−2E(ω)

2−E(ω) , we get (3.46).
Now let μ ∈ (3/4, 1) be given, to be chosen soon in terms of F0, very close to 1. 

Also set λ = 1 − μ (small), and with this λ, define cP = cP (λ, d) large enough, as in 
Lemma 3.11, and choose ε = ε(λ, d) > 0 small enough, and M = M(ε, λ, d) large enough, 
again as in Lemma 3.11. Those choices also work for Lemma 3.34, so we will be able to 
apply these two lemmas with these constants.

We choose R∗ so large that cP (R∗)−2 ≤ a; R∗ depends on λ and μ, but soon we will 
be able to choose μ (and hence, λ), that depends only on E(ω) and the dimension, so 
eventually R∗ will depend only on E(ω) and the dimension as well. With this choice of 
R∗, and since we shall always restrict to radii r ≥ R∗, we will get that

F (cP r−2) ≤ F (cP (R∗)−2) ≤ F (a) ≤ F0 := 2 − E(ω)
2 . (3.47)

The whole point of Lemma 3.38 was to give a bound on the probability Pr of (3.35), 
and this bound is

Pr ≤
(
H(μ)F (cP r−2)μ

)N
, (3.48)

with N = Card {Q ∩ Zd}. Notice that we can take c∗
P = cP , and the assumption that 

F (cP r−2) < μ is satisfied by (3.47) if we take μ > F0. We also take μ > 3/4, so that 
F (cP r−2)μ−1/2 ≤ F

μ−1/2
0 ≤ F

1/4
0 and use (3.40) to finally choose μ so close to 1 that 
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H(μ)F 1/4
0 < 1. This way (3.48) implies that Pr ≤ F (cP r−2)N/2, which will be good 

enough for us.
Now let r ≥ R∗ be given, and let us evaluate the probability (call it P ) of (3.44). 

Notice that P is smaller than the probability of having u(ξ) ≥ Mr2 for some point of 
a cube S of size roughly (10

√
d)−1r, say, that contains ξ0. This probability does not 

depend on S (by invariance), and can be estimated as in Lemma 3.34. Thus we get that

P ≤ PΩ + Cε−d
∑

0≤k≤kmax

Prk
,

with rk = (1 + ε)k/2r. We use (the consequence of) (3.48) to estimate Prk
, noticing 

that F (cP r−2
k ) ≤ F (cP r−2) and each set Qrk

∩ Zd has at least one more point than the 
previous one. That is, Nk = Card{Qrk

∩Zd} is at least N +k, where N = Card{Qr ∩Zd}. 
Then Prk

≤ F (cP r−2
k )Nk/2 ≤ F (cP r−2)(N+k)/2 ≤ F

k/2
0 F (cP r−2)N/2.

We have a similar estimate for PΩ (which is of the same type as Prk
, with rk ∼ R0). 

So we can sum the geometric series, and get the more precise estimate

P ≤ γ1F (cP r−2)Card{Qr∩Zd}/2 ≤ γ1F (cP r−2)γ2rd

(3.49)

with constants γ1 and γ2 that depend on d and E(ω) (through our choice of F0, a, μ, 
and then the various constants that ensue, including ε). As was said earlier, we can then 
compute R∗, depending on these constants. Corollary 3.43 follows. �
Corollary 3.50. Let Ω, L, and V be as in Theorem 3.1, in particular V is a random poten-
tial governed by i.i.d. random variables ωj. Then there exist constants μ∗, M, cP , γ3, γ4, 
depending only on the dimension and the expectation of the ωj,

NE
u (μ) ≤ γ3μd/2 F (McP μ) γ4 μ−d/2

, (3.51)

whenever μ < μ∗ and R0 > (μM)−1/2.

Proof. Recall from (1.6) and the statement of Theorem 1.13 that

NE
u (μ) = 1

|Ω| × E

{
the number of cubes Q ∈ {Q}κ μ−1/2 such that min

Q

1
u

≤ μ

}
,

where 1 ≤ κ < 2 (depending on μ) is the smallest number such that R0 is an integer 
multiple of κμ−1/2. The expectation of the number of cubes is less than the sum of 
expectations (by the triangle inequality), so

NE
u (μ) ≤ 1

|Ω|
|Ω|

(κμ−1/2)d
sup

Q∈{Q} −1/2

P

{
min

Q

1
u

≤ μ

}
.

κ μ
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We want to apply our estimate in (3.49), coming from Lemma 3.34. This one gives the 
probability that the infimum of 1

u on Br/3(0) is at most (Mr2)−1, so we should take 
r such that (Mr2)−1 = μ. Notice that r ≤ R0 by our condition on R0. We get equal 
probabilities for integer translations of that ball, as usual, by the translation invariance 
of our setting. Now each cube Q ∈ {Q}κ μ−1/2 can be covered by less than C integer 
translations of Br/3(0) (taken from a fixed subgrid), and for each one the probability 
that 1

u ≤ μ somewhere on the ball is estimated as in (3.49). Therefore

NE
u (μ) ≤ C(κμ−1/2)−dγ1F (cP r−2)γ2rd ≤ γ3μd/2F (McP μ)γ4μ−d/2

,

as announced. �
We now give a lower bound for NE

u (μ).

Lemma 3.52. Let Ω, L, and V be as in Theorem 3.1 and in the previous lemmas. There 
exist constants m, ̃cP , γ5, γ6, depending on the dimension only, such that

NE
u (μ) ≥ γ5 μd/2 F (c̃P μ) γ6 μ−d/2

, (3.53)

whenever μ ≤ 1 and R0 > (μm)−1/2.

Proof. Much as above, we start observing that

NE
u (μ) = 1

|Ω| × E

{
the number of cubes Q ∈ {Q}κ μ−1/2 such that min

Q

1
u

≤ μ

}
(3.54)

≥ 1
|Ω| ×

∑
Q∈{Q}

κ μ−1/2

P

{
min

Q

1
u

≤ μ

}
. (3.55)

Now we recall again from [1], Lemma 4.1 (or (1.3)), that
ˆ

Ω

|∇f |2 + V f2 dx ≥
ˆ

Ω

1
u

f2 dx,

for all f in the space of periodic functions in W 1,2(Ω), and in particular for f ∈ C∞
0 (Ω). 

We will choose f to be a standard cut-off on 4C1Q, C1 ≥ 1; that is, f ∈ C∞
0 (4C1Q), 

f = 1 on C1Q and |∇f | ≤ (C1l(Q))−1. We will need that 4C1Q ⊂ Ω, i.e., Ω should be 
large enough to accommodate this. This is ensured by the condition R0 > (μm)−1/2 if 
m is small enough. It follows that

min
C1Q

1
u

≤ 1
|C1Q|

⎛⎝ ˆ 1
u

f2

⎞⎠ ≤ 1
|C1Q|

⎛⎝ˆ |∇f |2 + V f2

⎞⎠

C1Q Ω
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≤ 1
|C1Q|

⎛⎝ ˆ

4C1Q

(C1l(Q))−2 + V

⎞⎠ ≤ 4d
(

(C1l(Q))−2 +
 

4C1Q

V
)

.

We choose C1 such that 4dC−2
1 ≤ 1/2; then 4d(C1l(Q))−2 ≤ l(Q)−2/2 = κ−1μ/2 ≤ μ/2, 

and now minC1Q
1
u ≤ μ/2 + 4d

ffl
4C1Q

V . Therefore

P

{
min
C1Q

1
u

≤ μ

}
≥ P

⎧⎨⎩4d

 

4C1Q

V dx ≤ μ/2

⎫⎬⎭ ≥ P

{
max
4C1Q

V ≤ 4−dμ/2
}

.

Note that

P

{
min
C1Q

1
u

≤ μ

}
≤

∑
Q′∈ C1Q

⋂
{Q}

κ μ−1/2

P

{
min
Q′

1
u

≤ μ

}
.

Therefore,

∑
Q∈{Q}

κ μ−1/2

P

{
min
C1Q

1
u

≤ μ

}
≤

∑
Q∈{Q}

κ μ−1/2

∑
Q′∈ C1Q

⋂
{Q}

κ μ−1/2

P

{
min
Q′

1
u

≤ μ

}

≤ Cd
1

∑
Q∈{Q}

κ μ−1/2

P

{
min

Q

1
u

≤ μ

}
.

Combining all of the above and using the independence of the ωj, we conclude that

∑
Q∈{Q}

κ μ−1/2

P

{
min

Q

1
u

≤ μ

}
≥ C−d

1

∑
Q∈{Q}

κ μ−1/2

P
{

ωj ≤ 4−dμ/2 ∀ j ∈ 5C1Q ∩ Zd
}

= C−d
1

|Ω|
|(κμ−1/2)d|F

(
4−dμ/2

)Card {5C1Q ∩Zd}
,

which yields the desired conclusion. �
We are now finished with the proof of Theorem 3.1, which is a combination of Corol-

lary 3.50 and Lemma 3.52. We just renamed the four γj , and also renamed McP from 
Lemma 3.52 as cP , but both of these constants depend only on d and the expectation of 
the ωj .

We shall now see how Theorem 3.1 provides the desired estimates on the expectation 
of the density of states.

Theorem 3.56. Let Ω, L, and V be as in Theorems 1.13 and 3.1. Then there exist 
constants C5, C6 > 0, depending on the dimension and the expectation of the random 
variables ωj, only and a constant C4 > 0, depending on the dimension only, such that
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C5NE
u (C6 μ) ≤ NE(μ) ≤ NE

u (C4μ), (3.57)

for every μ > 0.
In particular, there exist constants μ∗, m1, cP , γ1, γ2, depending on the dimension and 

the expectation of the random variable only, and constants c̃P , γ3, γ4, depending on the 
dimension only, such that

γ3 μd/2F (c̃P μ)γ4μ−d/2 ≤ NE(μ) ≤ γ1 μd/2F (cP μ)γ2μ−d/2
, (3.58)

whenever μ < μ∗ and R0 > (μm1)−1/2.

Notice that Theorem 3.56 is a combination of Theorem 1.13 and the statement (3.6)
in Theorem 3.5. Since the other part of Theorem 3.5, (3.7), was proved in Theorem 3.1, 
both Theorems 1.13 and 3.5 will follow as soon as we prove Theorem 3.56.

Proof. The right-hand side inequality in (3.57) is the right-hand side inequality in (1.8), 
hence it has been proved in Theorem 1.7. The proof of the left-hand side of (1.8) will be 
split into two parts, where μ > μ
 and μ ≤ μ
 for some suitable μ
.

For the values of μ > μ
 we are going to proceed as for the proof of (1.11) in Theo-
rem 1.7, and prove that for any given μ0,

Nu(μ) ≤ N(C ′μ) for all μ > μ0, (3.59)

where C ′ = (d, μ0) depends only on μ0 and the dimension. We will essentially use the 
fact that the function u2 is a doubling weight. Indeed, given that ‖V ‖L∞(Ω) ≤ 1, the 
Harnack inequality (see, [11], Theorem 8.17 and 8.18) guarantees that

sup
Q2s

u ≤ C(s)
(

inf
Qs

u + s2
)

.

Here the constant C(s) depends on s; specifically, the examination of the proof shows 
that C(s) ≤ Cs

0 for some dimensional constant C0 (see the comment right after the 
statement of Theorem 8.20 in [11] to this effect or simply use the Harnack inequality at 
scale 1 roughly s times to treat larger s). Hence, if s is bounded from above by some 
constant depending on d and some μ0 > 0, we have

sup
Q2s

u ≤ C(d, μ0)
(

inf
Qs

u + s2
)

.

Going further, we recall that u ≥ 1 on Ω (see [1], Proposition 3.2), so that possibly 
further adjusting C(d, μ0) we have

sup u ≤ C(d, μ0) inf
Q

u,

Q2s s
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again assuming that s is bounded from above by some constant depending on d and 
μ0. We now follow the argument in (2.2)–(2.7), except that this time we take C2 = 1. 
Then the sidelength of the cube under consideration is κμ−1/2 ≤ 2(μ0)−1/2, and we 
will be using doubling on cubes of the size at most 16 (μ0)−1/2 (in fact, we even use 
smaller κ). The argument follows the same path, only arriving at the bound by some 
constant C ′(d, μ0) μ in place of Cd,5C2μ on the right-hand side of (2.7). Thus (3.59) holds: 
Nu(μ) ≤ N(C ′(d, μ0)μ), for all μ > μ0. We can write an upper bound on C ′(d, μ0) ≤
eC̃μ

−1/2
0 explicitly, for a suitable dimensional constant C̃. Note that μ0eC̃μ

−1/2
0 → ∞

either as μ0 → 0 or as μ0 → ∞. Therefore, we choose

μ
 = min
μ0>0

μ0eC̃μ
−1/2
0 (3.60)

and choose μ0 to attain the minimum. In other words,

Nu(C ′(d, μ0)−1 μ) ≤ N(μ),

for all μ > μ
 = μ0 C ′(d, μ0).
Now recall the first inequality in (1.8) of Theorem 1.7 and fix the constants C1, C2, C3

(depending on dimension only) from this inequality. For the μ
 given as above, we claim 
that for a suitable choice of α < 2−4, depending on dimension and the expectation of 
the ωj , and also depending on μ
,

C3NE
u (C2αd+4μ) ≤ 1

2 C1αdNE
u (C2αd+2μ), (3.61)

whenever μ < μ
 and R0 > (μm1)−1/2 (for some m1 > 0, that depends on the dimension 
and the expectation of the ωj only). As we shall see, this is basically a consequence of 
the fact that according to Theorem 3.1, NE

u (μ) is exponentially small for small μ, far 
beating the polynomial increase of α−d/2. Indeed, Theorem 3.1 says that

NE
u (C2αd+4μ) ≤ γ1 (C2αd+4μ)d/2F (cP C2αd+4μ)γ2(C2αd+4μ)−d/2

, (3.62)

provided that (C2αd+4μ) < μ∗ and R0 > (C2αd+4μm)−1/2. These last conditions are 
ensured if we take C2αd+4μ
 ≤ μ∗ and m1 ≤ C2αd+4m. Theorem 3.1 also says that

NE
u (C2αd+2μ) ≥ γ3 (C2αd+2μ)d/2F (c̃P C2αd+2μ)γ4(C2αd+2μ)−d/2

(3.63)

provided that (C2αd+2μ) < μ∗ and R0 > (C2αd+2μm)−1/2, which will hold if we take 
C2αd+2μ
 ≤ μ∗ and m1 ≤ C2αd+2m.

Set F2 = F (c̃P C2αd+2μ) and F4 = F (cP C2αd+4μ); if we want to prove our claim 
(3.61), it is enough to prove that

C3γ1 (C2αd+4μ)d/2F
γ2(C2αd+4μ)−d/2

4 ≤ 1
C1αdγ3 (C2αd+2μ)d/2F

γ4(C2αd+2μ)−d/2

2 . (3.64)
2
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Take α so small that cP C2αd+4 < c̃P C2αd+2; thus α depends also on the expectation 
of ω, through cP . Then F4 ≤ F2. Also choose α so small that c̃P C2αd+2μ
 < δ0, with 
δ0 = E(ω)/2. This way, if ν denotes the probability measure defined by F , E(ω) =´

[0,1] δdν(δ) ≤ δ0 + ν((δ0, 1]) = δ0 + 1 − F (δ0), so F (δ0) ≤ 1 − E(ω)/2 < 1. Therefore 
F4 ≤ F2 ≤ 1 − E(ω)/2 in the estimates above; now

F
γ2(C2αd+4μ)−d/2

4

F
γ4(C2αd+2μ)−d/2

2

≤ F aμ−d/2

2 , (3.65)

with a = γ2(C2αd+4)−d/2 −γ4(C2αd+2)−d/2 ≥ 1
2γ2(C2αd+4)−d/2 if α ≤ (γ4/γ2)1/2. Thus 

the right-hand side of (3.65) is exponentially decreasing when α tends to 0. The powers 
of μ in (3.64) are the same, and the rest is polynomial in α; thus (3.64) holds for α small, 
and (3.61) follows.

Now we average (1.8) and use (3.61); we get that

C1

2 αdNE
u (C2αd+2μ) ≤ NE(μ) ≤ NE

u (C4μ), (3.66)

which is the same as (3.57) (recall that we are allowed to let C5 and C6 depend on α, 
which is now chosen depending on P (ω) and d), except that we have to assume that 
μ < μ
 and R0 > (m1μ)−1/2, and

α = min
{(

μ∗

C2μ


) 1
d+2

,

(
δ0

c̃P C2μ


) 1
d+2

,

(
γ4

γ2

) 1
2
}

. (3.67)

Taken along with Theorem 3.1, this also automatically gives (3.58). As usual, we 
silently redefine the constants, still depending on the same parameters. �
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