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Abstract

Background: Neural oscillations in the primary motor cortex (M1) shape corticospinal
excitability. Power and phase of ongoing mu (8-13 Hz) and beta (14-30 Hz) activity may mediate
motor cortical output. However, the functional dynamics of both mu and beta phase and power
relationships and their interaction, are largely unknown.

Objective: Here, we employ recently developed real-time targeting of the mu and beta rhythm, to
apply phase-specific brain stimulation and probe motor corticospinal excitability non-invasively.
For this, we used instantaneous read-out and analysis of ongoing oscillations, targeting four
different phases (0°, 90°, 180°, and 270°) of mu and beta rhythms with suprathreshold single-
pulse transcranial magnetic stimulation (TMS) to M1. Ensuing motor evoked potentials (MEPs)
in the right first dorsal interossei muscle were recorded. Twenty healthy adults took part in this
double-blind randomized crossover study.

Results: Mixed model regression analyses showed significant phase-dependent modulation of
corticospinal output by both mu and beta rhythm. Strikingly, these modulations exhibit a double
dissociation. MEPs are larger at the mu trough and rising phase and smaller at the peak and
falling phase. For the beta rhythm we found the opposite behavior. Also, mu power, but not beta
power, was positively correlated with corticospinal output. Power and phase effects did not
interact for either rhythm, suggesting independence between these aspects of oscillations.
Conclusion: Our results provide insights into real-time motor cortical oscillation dynamics,
which offers the opportunity to improve the effectiveness of TMS by specifically targeting

different frequency bands.
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Introduction

Neocortical activity in the motor cortex is characterized by neural oscillations, foremost
in the mu (8-13 Hz) and beta (14-30 Hz) rhythms. On the one hand, changes in their power
correlate with motor functions such as preparation and execution of voluntary movement [1-7].
On the other hand, motor cortical output correlates with the phase of mu and beta oscillations [8—
13]. This phase-dependency may result from synchronization of neural spiking activity and is
thus phase-specifically coupled to the oscillatory envelope [14-18].

Although the coupling between cortical oscillation phase and spiking activity is well-
established. However, the relationship between functional cortical excitability and phase of mu
and particularly beta oscillations in the motor cortex remains to be fully understood. To provide
causal evidence for a relation between oscillatory phase and cortical excitability, one needs to
synchronize the electrocortical read-outs and causal probing of excitability with millisecond
precision. Recent advances in real-time tracking of cortical oscillations and non-invasive
modulation of motor cortex activity in healthy human participants have provided new insights
[19-29]. Such real-time systems, combining electroencephalography (EEG) and transcranial
magnetic stimulation (TMS), have provided evidence for a modulation of corticospinal
excitability by motor cortical oscillatory phase and power [19,20,24,27].

Reports in non-human primates and patients with neurosurgical implants suggest that
motor functioning is phase-dependent on oscillations in the motor cortical mu rhythm [13,15]
Based on this, first pursuits on real-time detection of motor oscillation phase relationships in
healthy volunteers have focused on the mu rhythm [19,20,22,23,27], Various studies suggest that
motor evoked potential (MEP) amplitude is larger at the trough of the mu rhythm and smaller at

the peak [19,22,23,27,30]. However, others have provided evidence that ongoing mu phase does
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not significantly predict corticospinal excitation [20,24]. Rather, pre-stimulation mu power is
suggested to determine MEP amplitude [19,20,24,31].

Whereas findings on associations between corticospinal excitability and mu phase are
mixed, to the best of our knowledge, no result on real-time non-invasive neuromodulation of the
beta rhythm has been published. Despite superficial similarities between mu and beta oscillations
they reflect distinct functional sensorimotor networks and may have different anatomical origins
[32-37]. As such, it is likely that phase-modulation of cortical excitability would reflect distinct
patterns for mu and beta rhythms. Human and non-human primate studies have suggested a
potential coupling of motor responses and motor cortical beta-phase [10,18,38,39].
Electrocorticography (ECoG) has shown phase-dependency of motor network beta-rhythm
activity in Parkinson’s disease patients [10,11,40,41]. Furthermore, beta phase-dependent
stimulation in these patients has been shown to ameliorate motor deficits [42—44].

The absence of real-time TMS-EEG studies on beta rhythm may stem from the
intrinsically lower signal-to-noise ratio, faster pace, and broader frequency band compared to mu
oscillations. Additionally, it has been proposed that motor cortical beta oscillations partially
reflect a harmonic of the mu rhythm (mu-beta), as it follows an arch-shape, rather than being
sinusoidal [45,46]. To reliably target the beta phase in real-time, we optimized a cutting-edge
real-time algorithm - Educated Temporal Prediction (ETP) - to perform accurate forward
predictions during real-time phase targeting [25]. Due to its robustness to noise and fast
processing time, ETP can accurately track and stimulate both mu and beta oscillations. Using our
approach, we targeted mu and beta phase in the motor cortex in real-time. Our results show a
double dissociation in the relationship between mu and beta phase on corticospinal excitability.

That is, phases of mu oscillation that resulted in larger than average motor cortex output generate
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smaller than average motor cortex output for the same phases of beta, and vice versa. Our data
provide the first evidence for distinct phase-dependency of mu- and beta-mediated functional
sensorimotor networks that modulate corticospinal excitability. Optimizing TMS-targeting to mu
or beta phase can increase robustness of TMS with clear implications for improving the efficacy

of TMS in clinical use.

Methods
Participants

We recruited 20 healthy volunteers (11 female, mean + std age: 22.7 y £ 2.9) in this
double-blinded randomized crossover study. Each participant visited for two sessions (targeting
mu and beta oscillations). Participants were right-handed, between 18 and 45 years of age,
without a history of neurological or psychiatric disorders, head injuries, or metal or electric
implants in the head, neck, or chest area. Participants were not pre-selected on the basis of
electrophysiological characteristics, such as motor threshold or sensorimotor oscillatory power.
The study was approved by the institutional review board of the University of Minnesota and all

volunteers gave written informed consent prior to participation.

Transcranial magnetic stimulation

We applied single-pulse biphasic TMS using the Magstim Rapid? with a figure-of-eight
shaped D707 coil (Magstim Inc., Plymouth, MN, USA). The coil was placed over the left motor
cortex, corresponding to the hotspot of the right first dorsal interossei (FDI) muscle, and oriented
approximately at a 45° angle relative to the midline. Electromyography (EMG) was used to

record motor-evoked potentials (MEP) from the FDI using self-adhesive, disposable electrodes.
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EMG sampling rate was set to 10 kHz using a BIOPAC ERS100C amplifier (BIOPAC systems,
Inc., Goleta, CA, USA). Initially, the motor hotspot, i.e. the location and orientation that leads to
the largest MEP, was determined. Hotspot coordinates were stored and coil location and
orientation in reference to the hotspot were continuously tracked using a Brainsight
neuronavigation system (Rogue Research Inc., Montreal, Canada). At the hotspot, the resting
motor threshold (RMT) was determined using an adaptive threshold-hunting algorithm [47]. The

test intensity during the experimental session was set to 120% of RMT.
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Figure 1. Overview of the educated temporal prediction (ETP) algorithm. Left: The algorithm is first trained using
the resting state data from the sensorimotor cortex. Signals at sensorimotor cortex channel C3 are re-referenced
using a center-surround Laplacian montage using 8 channels (Fcl, Fc3, Fc5, C1, C5, Cpl, Cp3, and Cp5).
Depending on the experimental condition, we stimulated while tracking the phase of mu (8-13 Hz, blue) or beta (14-
30 Hz, orange) range. From the resting-state data, the typical cycle length is extracted and used during the real-time
stimulation. Right: During real-time application, EEG preprocessing follows the same pipeline as the training step.
TMS is triggered at four different phases, namely peak (0°), rising phase (90°), trough (180°), or falling phase
(270°). For each phase and oscillatory rhythm, we recorded MEPs from the FDI muscle.

EEG processing for real-time TMS triggering

Throughout the experiment, EEG was recorded using a 10-20 system, 64 active channel,
TMS-compatible EEG system (actiCAP slim EEG cap, actiCHamp amplifier; Brain Products
GmbH, Gilching, Germany). EEG data was streamed using Lab Streaming Layer (LSL) software
to Matlab 2020b, where we used custom scripts to apply the ETP algorithm (Shirinpour et al.,
2020). A sampling rate of 10 kHz with a 24-bits resolution per channel was used, and
impedances were kept below 20 kQ. Data was downsampled to 1 kHz. The electrode of interest
for this experiment was C3, located over the hand knob of the left sensorimotor area. To extract
mu and beta oscillations unique to the electrode of interest, a Laplacian reference method was
used, where the mean of the 8 surrounding electrodes was subtracted from the signal measured at
C3 (Figure 1). This Laplacian C3 signal was used for real-time stimulation, as well as for offline
analysis of mu and beta power.

The EEG-TMS setup for real-time stimulation used here follows our previously validated
implementation [25]. In short, the ETP algorithm uses resting-state data from a training step
before the real-time application, which provides an initial estimate of individual temporal
dynamics of cortical oscillations. For this, we record resting-state data for three minutes perform

a C3 Laplacian spatial filtering, and clean the signal using a zero-phase FIR (Finite Impulse



145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

Response) filter in the mu (8—13 Hz) or beta (14-30 Hz) range, as implemented in the Fieldtrip
toolbox [48]. To obtain an undistorted ground truth, phase was based on the whole resting-state
data (3 min). During the training, 500 ms sliding windows of the recorded data are used and
signal edges after bandpass filtering (brick-wall filter) are removed. In doing so, we avoid ripples
that can distort the data during filtering. Then, the algorithm estimates the typical cycle length
(peak to peak interval) and validates its accuracy by simulating the accuracy of peak projection
using the training data (Figure 1).

During real-time estimation, the calculated cycle length is adjusted to inform the
forecasting algorithm that predicts upcoming peak, falling phase, trough, or rising phase
(throughout this paper phase angles will be expressed in relation to a cosine, e.g. 0° is peak) of
oscillation of interest and triggers TMS at the correct time. The EEG preprocessing pipeline
during real-time measurements was the same as during the validation phase. Accuracy of ETP in
targeting peak, falling, trough and rising phases for mu and beta is shown in Supplementary
Figure 1. Overall processing delay of our system, i.e. the time between sending trigger and actual
pulse delivery was accounted for in our algorithm to accurately deliver the TMS at the desired
phases [25]. Real-time TMS-EEG was performed in four blocks of 150 pulses. Within each
block, phases were applied pseudorandomly. The experimenter and the participant were blinded
to the phase order. A jittered interval between 2 and 3 seconds between consecutive triggers was
introduced to minimize the direct effects of previous trials. After this interval our algorithm
targets the subsequent phase. Time between pulses was generally below 5 seconds
(Supplementary Figure 2). Mu and beta oscillations were targeted in two different sessions,
which were separated by at least 48 hours. The order of sessions was randomized. The sessions

were performed at the same time of the day.
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Data processing and analysis
MEP analysis

We calculated peak-to-peak MEP amplitude using a custom Matlab script. MEPs were
identified in a window between 20 and 60 ms after the TMS pulse. Noise in the pre-TMS EMG
can influence MEP amplitude and thus we excluded MEPs if average absolute EMG activity in a
window from -100 to 0 ms before the TMS pulse was above 0.02 mV and larger than absolute
average EMG activity + 2.5 times standard deviation of the resting state. For this resting state we
used awindow of -500 to -400 ms before the TMS pulse and at least 1500 ms after the previous
pulse, which is most likely captures a state of rest with no effects of the previous pulse [49]. All
MEPs were visually inspected. Altogether, 3.3% of trials were removed (3.5% for targeting mu
phases and 3.0% for targeting beta phases). For analysis, a participant’s individual MEPs were

normalized to the overall average of that participant. .

Offline EEG analysis

Pre-TMS power was analyzed offline for inclusion in the main analysis. Raw EEG data
were re-referenced to the Laplacian C3 montage as was used for online analyses (Figure 1). Data
were epoched in a window between -1000 and 0 milliseconds with respect to TMS trigger and a
bandpass filter (2-50 Hz) was applied. Pre-TMS power was calculated by applying a fast Fourier
transform with Hanning taper at a resolution of 1 Hz Furthermore, periodic and aperiodic signals
were separated by using an Irregular Resampling Auto-Spectral Analysis (IRASA) [50] as

implemented in FieldTrip [48]. Subsequently, we averaged power values between 8 and 13 Hz



190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

(mu power, periodic), 14 and 30 Hz (beta power, periodic), and broadband aperiodic signals (2-
50 Hz) at the single-trial level.

To investigate potential differences in mu and beta oscillation topography, sensor-level
distributions were examined. Resting-state EEG data were re-referenced to a common average
and filtered in the mu (8-13 Hz) and beta (14-30 Hz) bands, respectively. We estimated the
pairwise correlations between the electrode of interest C3 to all other electrodes. Topographic
plots were used to depict the spatial distribution of the correlations for mu and beta separately, as
well as the difference between both conditions.

Since the mu-rhythm has been shown to follow an arch shape rather than a sinusoidal
shape, power in the beta range may partially reflect harmonic activity of the mu rhythm [45,46].
Importantly, a priori our real-time algorithm is agnostic to whether activity in the beta frequency
range results from a mu harmonic or from independent beta oscillations. To test for harmonicity,

we calculated the ratio between the periods of bandpassed mu and beta oscillations.

Statistical analysis

In a trial level analysis, a general linear mixed-effects model (GLMM) was used on trial
data with target phase (peak, falling, trough, rising) and target rhythm (mu, beta) as fixed effects
variable and participant number as random effects variable. MEP amplitude was the dependent
variable. Independently, after averaging MEPs per phase for each participant, Rayleigh’s z-test
of non-uniformity was performed for phase modulation at mu and beta oscillations.

As a follow up, to test the effects of pre-TMS power, two additional GLMMs were run on
mu and beta conditions separately with pre-TMS power and phase as fixed effects variables.

These analyses were followed up by post hoc subject-level simple linear regression models.
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Additionally, we performed a group-level repeated-measures ANOVA on phase and target
rhythm, followed by paired-samples t-tests. Subsequently, Spearman rank correlation between
pre-TMS power and MEP amplitude for each subject and session were calculated.

Finally, a linear correlation was performed on the topographic distribution of mu and beta
oscillations. This was followed by one-sample t-tests (test value = 0) on the Fisher z-transformed
correlation data to test if the average deviates significantly from zero. For all analyses,

significance level was set at a = 0.05.
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Figure 2. A) Group average (n = 20) + standard error of mean of normalized MEPs for targeted phases in the mu and
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beta frequency. B) Circular representation of the data with smooth interpolation between conditions.

Results

Real-time TMS of ongoing cortical oscillations resulted in a double dissociation of phase
relationships for mu and beta oscillations (Figure 2A). Accordingly, GLMM regression showed a
significant interaction between target phase and target thythm on MEP amplitude (F =16.42, p <
0.001). Distinct phase relation patterns were confirmed by Rayleigh’s test for non-uniformity of

circular group level data. Normalized MEP amplitudes at phases of the mu rhythm were non-
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uniformly distributed (Z = 3.02, p = 0.048), with a mean direction of the circular distribution of
=225.00° and circular dispersion of ¥ =29.27°. Thus, MEP amplitudes were maximal when mu
oscillations are at trough and rising phase (Figure 2B) and lower than average at the opposing
phases. Normalized MEP amplitudes at phases of the beta rhythm were also non-uniformly
distributed (Z = 3.27, p = 0.037), with circular mean of § = 29.05° and dispersion of x = 30.53°.
This means that MEP amplitudes were maximal when beta oscillations are at peak or falling
phase (Figure 2B) and again lower than average at the opposing phases.

The results of phase on MEPs were confirmed on the group level. A repeated-measures
ANOVA showed a significant phase*target rhythm interaction (F = 11.24, p <0.001), with no
main effects for phase (F =0.16, p = 0.923), or target rhythm (F = 0.62, p = 0.440). Post hoc t-
tests showed differences between mu and beta peak falling phase (t = 3.96, p <0.001), trough (t
=4.37,p <0.001), and rising phase (t = 3.10, p = 0.006). The difference between mu and beta
peak showed a non-significant trend (t = 2.09, p = 0.051).

The results are largely consistent at the individual level. The observed pattern of larger
MEP amplitudes at the beta peak compared to the mu peak were observed in 13 out of 20
participants. Larger MEP amplitudes at beta falling compared to mu falling were observed in 14
out of 20 participants. Larger MEP amplitudes at mu trough compared to beta trough were
observed in 18 out of 20 participants. Larger MEP amplitudes at mu rising compared to beta
rising were observed in 14 out of 20 participants (Figure 3). Phase responses for both mu and

beta per participant are shown in Supplementary Figure 3.
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Figure 3. Individual phase-dependent modulation of MEP amplitude for mu and beta oscillations. Error bars

represent standard error of mean.

In analyses of each target rhythm condition separately, we added pre-TMS power of the
targeted rhythm and the aperiodic component. MEP amplitude during targeting of the mu rhythm
was affected by both target phase (F =3.75, p = 0.011) and pre-TMS periodic mu power (F =
15.30, p <0.001). Crucially, however, no significant phase*power interaction was observed (F =
1.77, p = 0.151), suggesting that both power and phase affect MEP amplitude independently. At
an individual level, correlation between mu power and MEP amplitude ranged between p = -
0.102 and p = 0.250 (median p = 0.055). A one-sample t-test on the Fisher z-transformed
correlation values confirmed that on average pre-TMS mu power shows a significant positive
relationship with MEP amplitude (t =4.74, p <0.001). A significant positive relationship was
observed in 15 out of 40 sessions, whereas a significant negative relationship was observed in 1

session (Figure 4A). MEP amplitude while targeting beta rhythm was affected by target phase
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alone (F =4.26, p = 0.005). No effect of pre-TMS periodic beta power (F = 0.24, p = 0.622), nor
a phase*power interaction (F = 2.50, p = 0.058) was observed on MEP amplitude. At an
individual level, correlation between beta power and MEP amplitude ranged between p = -0.168
and p =0.151 (median p =-0.008). A one-sample t-test on the Fisher z-transformed correlation
values confirmed that on average pre-TMS beta power does not significantly relate to MEP
amplitude (t = 0.90, p = 0.375). A significant positive relationship was observed in 12 out of 40
sessions, whereas a significant negative relationship was observed in 4 out of 40 sessions (Figure
4B). Finally, MEP amplitude was not significantly affected by the aperiodic component of the

power signal (F =0.05, p = 0.821), nor a phase*power interaction (F = 0.02, p = 0.996)
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Figure 4. Histogram of individual Spearman correlations between MEP amplitude and A) pre-TMS mu power, and

B) pre-TMS beta power after extracting the periodic components of each frequency band.

One possible confound could arise where channels in the Laplacian reference montage
contribute differently to the target electrode between conditions. Therefore, we performed a
sensor-level analysis of mu and beta distributions, by looking at the channel-to-channel
correlations. Resulting topographic plots showed highly similar distributions for both mu and
beta rhythms at sensor level (Figure 5). Distributions were highly correlated (p = 0.92, p <
0.001), suggesting that our main results cannot be explained by differences in mu and beta signal
arrangement.

Finally, the typical arch-shape of the mu signal results in harmonics in the beta frequency
range (referred to as mu-beta). To test whether our algorithm picked up a mu-harmonic or
independent beta activity, we made a strict mathematical estimation of harmonicity between the
signals and inspected individual power spectra (Supplementary Figure 4). By definition, the
harmonic signals should have a period ratio that is an integer number. However, no integer
values were observed with an average ratio of 2.148 and values for all participants and sessions
ranging between 2.051 and 2.248. As such, we observed no indication for beta signals resulting
from a mu harmonic. Furthermore, the phase relationship between mu and beta rhythms was
generally weak, suggesting little dependence between phases of both signals (Supplementary

Figure 5).
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Figure 5. Spatial topographies for the recorded mu rhythm, beta rhythm, and the difference between both. Color map
represents correlational values of electrode pairings between target electrode C3 and all other electrodes. The black

electrode corresponds to C3.

Discussion

In this study, we demonstrate for the first time that mu and beta oscillation phase
differentially modulate MEP amplitude. In summary, we found that I) phase of mu and beta
oscillations picked up at sensorimotor channels modulate corticospinal excitation; II) this phase-
dependent MEP modulation follows an opposing pattern for mu and beta; III) mu power, but not
beta power, significantly modulates MEP amplitude; IV) modulation of MEP amplitudes by
phase and power do not interact.

To our knowledge, we provide the first direct evidence for MEP amplitude modulation by
beta phase, in addition to mu phase, measured with real-time TMS-EEG. Beta-phase dependency
has been hinted at by previous offline TMS studies using post-hoc analyses [51-56]. Also,
human subdural electrocorticographic (ECoQG) recordings have shown that motor cortical beta
activity is phase-locked to neural population activity during movement [10,41,43]. Furthermore,

motor cortical spiking activity has been shown to be dependent on local field potential beta-



317  phase in non-human primates [38,57]. Sensorimotor beta oscillations have been suggested to
318  arise from alternating de- and hyper-polarization of layer V pyramidal cells, mediated by phase-
319  locked gamma-aminobutyric acid (GABA) mediated interneuron inputs [1,58—60]. Here we

320  show that beta phase-dependency can be probed non-invasively in real-time. Our data showed
321  largest MEP amplitudes during beta peak and falling phase (Figure 2). Salimpour et al. [44]

322 applied real-time electrical motor cortex stimulation in Parkinson’s disease patients during

323 surgery. Although direct comparison of results from electrical stimulation and ECoG data to ours
324  may be challenging, it is interesting to point out that phase-dependency was similar, with beta
325  peak and falling phase leading to the largest motor output.

326 We found no dependency of beta power on MEP amplitude, nor was there an interaction
327  between beta phase and power, in line with previous findings [51,54,61-63]. This should not
328  imply that beta oscillations are not related to motor output and evidence from previous research
329 suggests that the relationship between beta oscillations and motor activation is complex. Pre-
330  movement reduction of beta power has been associated with faster voluntary movement [64].
331  Chronic elevation of beta power, observed in Parkinson’s disease has been related to difficulty
332 initiating and controlling movements [65—67]. Furthermore, in addition to low-amplitude

333 ongoing beta activity, high-amplitude beta bursts are suggested to be positively correlated to
334  movement control [11,38,68—70]. Although these behavioral studies imply that beta power and
335  beta bursts are crucial for endogenous control of voluntary movement, our and previous studies
336 suggest that they are not related to exogenously probed cortico-spinal excitability [51,62,63].
337  Furthermore, Peters and colleagues [63] found that pre-TMS resting beta power does not affect

338 the propagation of TMS excitations throughout the cortical-subcortical motor network.
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Therefore, it seems that beta power may be a predictor for corticospinal activation during
voluntary or task-related motor control, but not during resting-state motor excitability per se.

Additionally, we found that corticospinal excitation was modulated by the mu rhythm
with an opposite phase relationship compared to beta oscillations. Various studies previously
indicated mu phase-dependent modulation of MEP amplitudes, with larger responses at the mu
trough compared to mu peak [19,22,23,27,30]. Our results confirm these findings on mu peak
and trough, but the phase effects extended towards the subsequent falling and rising phase
respectively. That is, we show that trough and rising phase yield largest corticospinal excitation,
whereas mu peak and falling yield the smallest motor cortex activation (Figure 2).

Pre-stimulus mu power was a significant predictor for corticospinal excitability, but did
not interact with mu phase, suggesting independence between mu power and phase. Subject-level
positive correlations were observed in majority of subjects. Although the observed relationship
was relatively weak - correlations varying between -0.1 and 0.25 - it is in line with previous
observations [19,24,31,54]. However, others have found no relationship between mu power and
MEP amplitude [8,27], or even a negative association [20,71,72]. At a first glance, a positive
relationship between mu power and corticospinal activity seems counterintuitive since
sensorimotor mu oscillations are related to GABAa-mediated inhibitory activity [19]. Also,
higher mu power has been shown to reduce TMS-induced blood oxygenation level-dependent
(BOLD) responses throughout the cortical-subcortical motor network [63]. However, mu
oscillations are thought to predominantly originate from the somatosensory cortex [32-37].
Interconnections between somatosensory and primary motor cortex comprise of an intricate
network of excitatory and inhibitory reciprocal connections. Increased mu power may reflect

feedforward inhibition to primary motor cortex resulting in local disinhibition, which could
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explain a positive relationship between mu power and MEP amplitudes. Although our findings
do agree with previous reports [19,24,31,54]. One important aspect may be to extract the
periodic components of the power spectra [50,73], which may explain why this positive
relationship was not found by others.

Sensorimotor mu and beta oscillations have been suggested to stem from distinct neural
origins [32-37]. Specifically, mu oscillations are proposed to originate pre-dominantly from the
post-central gyrus [36,37], although pre-central origins of mu have been reported as well
[35,74,75]. In contrast, beta oscillations are thought to stem from pre-central primary motor
cortex [4,36,37,76], but are also observed in post-central somatosensory cortex [4,75,77].
Although our study cannot make inferences on the source of mu and beta oscillations, sensor-
level signal distributions were highly similar (Figure 5). Similar scalp-level topographies suggest
that potential differences in neural origin did not influence phase detection during real-time
stimulation. A potential explanation for the opposing phase-relationship we observed results
from differences in axonal orientation within mu and beta sources. This possibility could be
investigated in future studies.

The sensorimotor mu-signal tends to resemble an arch-shape, rather than a sinusoid
[36,45,46,78]. As a result of this higher-frequency harmonics can be observed in the frequency
spectra. Particularly first-order harmonics would appear in the beta frequency range (referred to
as mu-beta). It is worth nothing that our ETP algorithm used here is agnostic to the origin of beta
oscillations. However, the opposing results in MEP amplitudes between mu and beta phase
would be unexpected since mu harmonics reflect similar functional properties [78]. Additionally,
we formally tested for harmonicity and found no evidence for it (Supplementary Figure 4 and 5).

Thus, we believe that the modulation of MEPs when targeting at frequencies between 14 and 30
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Hz results from independent beta oscillations. A further limitation of this study is that phase
accuracy was only established in the beginning of a session. Although we previously have shown
that phase targeting with ETP is stable on average of a single session [25], individual fluctuations
in oscillatory activity over time may affect targeting accuracy.

Our findings are crucial for the improvement of TMS effectiveness for treatment of
neurological and psychiatric disorders. Targeting optimal rhythms with repetitive TMS could
decrease variability of TMS outcomes [27,79]. For instance, targeting optimal oscillation phase
could improve efficacy of TMS in the recovery of stroke [80] and treatment of major depressive
disorder [28]. In this study, to our knowledge, we were able to non-invasively target the beta
rhythm in real-time reliably for the first time. In future work it will be crucial to further optimize
real-time and closed-loop systems, in order to target different oscillatory rhythms, and different
spatial locations [8§1-83]. Eventually, this will allow for adaptive non-invasive neuromodulation
that can provide personalized decoding of on-going brain states. This individualization can

greatly benefit clinical application of TMS, by reducing variability between and within patients.
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