

1 The phase of sensorimotor mu and beta oscillations has the opposite effect on  
2 corticospinal excitability

3

4 Miles Wischnewski<sup>1</sup>, Zachary J. Haigh<sup>1</sup>, Sina Shirinpour<sup>1</sup>, Ivan Alekseichuk<sup>1</sup>, Alexander Opitz<sup>1</sup>

5

6 <sup>1</sup>Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of  
7 America

8

9 **Corresponding authors:**

Alexander Opitz, PhD

Miles Wischnewski, PhD

University of Minnesota

University of Minnesota

Department of Biomedical Engineering

Department of Biomedical Engineering

E-mail: [aopitz@umn.edu](mailto:aopitz@umn.edu)

E-mail: [mwischne@umn.edu](mailto:mwischne@umn.edu)

10

11 Total number of words: 4147

12 Figures: 5

13 Supplementary materials: yes

14

15 **Keywords**

16 Transcranial magnetic stimulation; Electroencephalography; Neural oscillation phase; Real-time  
17 neuromodulation; Mu oscillations; Beta oscillations; Primary motor cortex

18    **Abstract**

19    Background: Neural oscillations in the primary motor cortex (M1) shape corticospinal  
20    excitability. Power and phase of ongoing mu (8-13 Hz) and beta (14-30 Hz) activity may mediate  
21    motor cortical output. However, the functional dynamics of both mu and beta phase and power  
22    relationships and their interaction, are largely unknown.

23    Objective: Here, we employ recently developed real-time targeting of the mu and beta rhythm, to  
24    apply phase-specific brain stimulation and probe motor corticospinal excitability non-invasively.

25    For this, we used instantaneous read-out and analysis of ongoing oscillations, targeting four  
26    different phases ( $0^\circ$ ,  $90^\circ$ ,  $180^\circ$ , and  $270^\circ$ ) of mu and beta rhythms with suprathreshold single-  
27    pulse transcranial magnetic stimulation (TMS) to M1. Ensuing motor evoked potentials (MEPs)  
28    in the right first dorsal interossei muscle were recorded. Twenty healthy adults took part in this  
29    double-blind randomized crossover study.

30    Results: Mixed model regression analyses showed significant phase-dependent modulation of  
31    corticospinal output by both mu and beta rhythm. Strikingly, these modulations exhibit a double  
32    dissociation. MEPs are larger at the mu trough and rising phase and smaller at the peak and  
33    falling phase. For the beta rhythm we found the opposite behavior. Also, mu power, but not beta  
34    power, was positively correlated with corticospinal output. Power and phase effects did not  
35    interact for either rhythm, suggesting independence between these aspects of oscillations.

36    Conclusion: Our results provide insights into real-time motor cortical oscillation dynamics,  
37    which offers the opportunity to improve the effectiveness of TMS by specifically targeting  
38    different frequency bands.

39

40

41     **Introduction**

42           Neocortical activity in the motor cortex is characterized by neural oscillations, foremost  
43        in the mu (8-13 Hz) and beta (14-30 Hz) rhythms. On the one hand, changes in their power  
44        correlate with motor functions such as preparation and execution of voluntary movement [1–7].  
45        On the other hand, motor cortical output correlates with the phase of mu and beta oscillations [8–  
46        13]. This phase-dependency may result from synchronization of neural spiking activity and is  
47        thus phase-specifically coupled to the oscillatory envelope [14–18].

48           Although the coupling between cortical oscillation phase and spiking activity is well-  
49        established. However, the relationship between functional cortical excitability and phase of mu  
50        and particularly beta oscillations in the motor cortex remains to be fully understood. To provide  
51        causal evidence for a relation between oscillatory phase and cortical excitability, one needs to  
52        synchronize the electrocortical read-outs and causal probing of excitability with millisecond  
53        precision. Recent advances in real-time tracking of cortical oscillations and non-invasive  
54        modulation of motor cortex activity in healthy human participants have provided new insights  
55        [19–29]. Such real-time systems, combining electroencephalography (EEG) and transcranial  
56        magnetic stimulation (TMS), have provided evidence for a modulation of corticospinal  
57        excitability by motor cortical oscillatory phase and power [19,20,24,27].

58           Reports in non-human primates and patients with neurosurgical implants suggest that  
59        motor functioning is phase-dependent on oscillations in the motor cortical mu rhythm [13,15]  
60        Based on this, first pursuits on real-time detection of motor oscillation phase relationships in  
61        healthy volunteers have focused on the mu rhythm [19,20,22,23,27]. Various studies suggest that  
62        motor evoked potential (MEP) amplitude is larger at the trough of the mu rhythm and smaller at  
63        the peak [19,22,23,27,30]. However, others have provided evidence that ongoing mu phase does

64 not significantly predict corticospinal excitation [20,24]. Rather, pre-stimulation mu power is  
65 suggested to determine MEP amplitude [19,20,24,31].

66 Whereas findings on associations between corticospinal excitability and mu phase are  
67 mixed, to the best of our knowledge, no result on real-time non-invasive neuromodulation of the  
68 beta rhythm has been published. Despite superficial similarities between mu and beta oscillations  
69 they reflect distinct functional sensorimotor networks and may have different anatomical origins  
70 [32–37]. As such, it is likely that phase-modulation of cortical excitability would reflect distinct  
71 patterns for mu and beta rhythms. Human and non-human primate studies have suggested a  
72 potential coupling of motor responses and motor cortical beta-phase [10,18,38,39].

73 Electrocorticography (ECoG) has shown phase-dependency of motor network beta-rhythm  
74 activity in Parkinson's disease patients [10,11,40,41]. Furthermore, beta phase-dependent  
75 stimulation in these patients has been shown to ameliorate motor deficits [42–44].

76 The absence of real-time TMS-EEG studies on beta rhythm may stem from the  
77 intrinsically lower signal-to-noise ratio, faster pace, and broader frequency band compared to mu  
78 oscillations. Additionally, it has been proposed that motor cortical beta oscillations partially  
79 reflect a harmonic of the mu rhythm (mu-beta), as it follows an arch-shape, rather than being  
80 sinusoidal [45,46]. To reliably target the beta phase in real-time, we optimized a cutting-edge  
81 real-time algorithm - Educated Temporal Prediction (ETP) - to perform accurate forward  
82 predictions during real-time phase targeting [25]. Due to its robustness to noise and fast  
83 processing time, ETP can accurately track and stimulate both mu and beta oscillations. Using our  
84 approach, we targeted mu and beta phase in the motor cortex in real-time. Our results show a  
85 double dissociation in the relationship between mu and beta phase on corticospinal excitability.  
86 That is, phases of mu oscillation that resulted in larger than average motor cortex output generate

87 smaller than average motor cortex output for the same phases of beta, and vice versa. Our data  
88 provide the first evidence for distinct phase-dependency of mu- and beta-mediated functional  
89 sensorimotor networks that modulate corticospinal excitability. Optimizing TMS-targeting to mu  
90 or beta phase can increase robustness of TMS with clear implications for improving the efficacy  
91 of TMS in clinical use.

92

### 93 **Methods**

#### 94 ***Participants***

95 We recruited 20 healthy volunteers (11 female, mean  $\pm$  std age: 22.7 y  $\pm$  2.9) in this  
96 double-blinded randomized crossover study. Each participant visited for two sessions (targeting  
97 mu and beta oscillations). Participants were right-handed, between 18 and 45 years of age,  
98 without a history of neurological or psychiatric disorders, head injuries, or metal or electric  
99 implants in the head, neck, or chest area. Participants were not pre-selected on the basis of  
100 electrophysiological characteristics, such as motor threshold or sensorimotor oscillatory power.  
101 The study was approved by the institutional review board of the University of Minnesota and all  
102 volunteers gave written informed consent prior to participation.


103

#### 104 ***Transcranial magnetic stimulation***

105 We applied single-pulse biphasic TMS using the Magstim Rapid<sup>2</sup> with a figure-of-eight  
106 shaped D70<sup>2</sup> coil (Magstim Inc., Plymouth, MN, USA). The coil was placed over the left motor  
107 cortex, corresponding to the hotspot of the right first dorsal interosseus (FDI) muscle, and oriented  
108 approximately at a 45° angle relative to the midline. Electromyography (EMG) was used to  
109 record motor-evoked potentials (MEP) from the FDI using self-adhesive, disposable electrodes.

110 EMG sampling rate was set to 10 kHz using a BIOPAC ERS100C amplifier (BIOPAC systems,  
111 Inc., Goleta, CA, USA). Initially, the motor hotspot, i.e. the location and orientation that leads to  
112 the largest MEP, was determined. Hotspot coordinates were stored and coil location and  
113 orientation in reference to the hotspot were continuously tracked using a Brainsight  
114 neuronavigation system (Rogue Research Inc., Montreal, Canada). At the hotspot, the resting  
115 motor threshold (RMT) was determined using an adaptive threshold-hunting algorithm [47]. The  
116 test intensity during the experimental session was set to 120% of RMT.

117



118

119 Figure 1. Overview of the educated temporal prediction (ETP) algorithm. Left: The algorithm is first trained using  
120 the resting state data from the sensorimotor cortex. Signals at sensorimotor cortex channel C3 are re-referenced  
121 using a center-surround Laplacian montage using 8 channels (Fc1, Fc3, Fc5, C1, C5, Cp1, Cp3, and Cp5).  
122 Depending on the experimental condition, we stimulated while tracking the phase of mu (8-13 Hz, blue) or beta (14-  
123 30 Hz, orange) range. From the resting-state data, the typical cycle length is extracted and used during the real-time  
124 stimulation. Right: During real-time application, EEG preprocessing follows the same pipeline as the training step.  
125 TMS is triggered at four different phases, namely peak ( $0^\circ$ ), rising phase ( $90^\circ$ ), trough ( $180^\circ$ ), or falling phase  
126 ( $270^\circ$ ). For each phase and oscillatory rhythm, we recorded MEPs from the FDI muscle.

127

128 ***EEG processing for real-time TMS triggering***

129 Throughout the experiment, EEG was recorded using a 10-20 system, 64 active channel,  
130 TMS-compatible EEG system (actiCAP slim EEG cap, actiCHamp amplifier; Brain Products  
131 GmbH, Gilching, Germany). EEG data was streamed using Lab Streaming Layer (LSL) software  
132 to Matlab 2020b, where we used custom scripts to apply the ETP algorithm (Shirinpour et al.,  
133 2020). A sampling rate of 10 kHz with a 24-bits resolution per channel was used, and  
134 impedances were kept below  $20\text{ k}\Omega$ . Data was downsampled to 1 kHz. The electrode of interest  
135 for this experiment was C3, located over the hand knob of the left sensorimotor area. To extract  
136 mu and beta oscillations unique to the electrode of interest, a Laplacian reference method was  
137 used, where the mean of the 8 surrounding electrodes was subtracted from the signal measured at  
138 C3 (Figure 1). This Laplacian C3 signal was used for real-time stimulation, as well as for offline  
139 analysis of mu and beta power.

140 The EEG-TMS setup for real-time stimulation used here follows our previously validated  
141 implementation [25]. In short, the ETP algorithm uses resting-state data from a training step  
142 before the real-time application, which provides an initial estimate of individual temporal  
143 dynamics of cortical oscillations. For this, we record resting-state data for three minutes perform  
144 a C3 Laplacian spatial filtering, and clean the signal using a zero-phase FIR (Finite Impulse

145 Response) filter in the mu (8–13 Hz) or beta (14–30 Hz) range, as implemented in the Fieldtrip  
146 toolbox [48]. To obtain an undistorted ground truth, phase was based on the whole resting-state  
147 data (3 min). During the training, 500 ms sliding windows of the recorded data are used and  
148 signal edges after bandpass filtering (brick-wall filter) are removed. In doing so, we avoid ripples  
149 that can distort the data during filtering. Then, the algorithm estimates the typical cycle length  
150 (peak to peak interval) and validates its accuracy by simulating the accuracy of peak projection  
151 using the training data (Figure 1).

152 During real-time estimation, the calculated cycle length is adjusted to inform the  
153 forecasting algorithm that predicts upcoming peak, falling phase, trough, or rising phase  
154 (throughout this paper phase angles will be expressed in relation to a cosine, e.g. 0° is peak) of  
155 oscillation of interest and triggers TMS at the correct time. The EEG preprocessing pipeline  
156 during real-time measurements was the same as during the validation phase. Accuracy of ETP in  
157 targeting peak, falling, trough and rising phases for mu and beta is shown in Supplementary  
158 Figure 1. Overall processing delay of our system, i.e. the time between sending trigger and actual  
159 pulse delivery was accounted for in our algorithm to accurately deliver the TMS at the desired  
160 phases [25]. Real-time TMS-EEG was performed in four blocks of 150 pulses. Within each  
161 block, phases were applied pseudorandomly. The experimenter and the participant were blinded  
162 to the phase order. A jittered interval between 2 and 3 seconds between consecutive triggers was  
163 introduced to minimize the direct effects of previous trials. After this interval our algorithm  
164 targets the subsequent phase. Time between pulses was generally below 5 seconds  
165 (Supplementary Figure 2). Mu and beta oscillations were targeted in two different sessions,  
166 which were separated by at least 48 hours. The order of sessions was randomized. The sessions  
167 were performed at the same time of the day.

168

169 ***Data processing and analysis***

170 *MEP analysis*

171 We calculated peak-to-peak MEP amplitude using a custom Matlab script. MEPs were  
172 identified in a window between 20 and 60 ms after the TMS pulse. Noise in the pre-TMS EMG  
173 can influence MEP amplitude and thus we excluded MEPs if average absolute EMG activity in a  
174 window from -100 to 0 ms before the TMS pulse was above 0.02 mV and larger than absolute  
175 average EMG activity + 2.5 times standard deviation of the resting state. For this resting state we  
176 used a window of -500 to -400 ms before the TMS pulse and at least 1500 ms after the previous  
177 pulse, which is most likely captures a state of rest with no effects of the previous pulse [49]. All  
178 MEPs were visually inspected. Altogether, 3.3% of trials were removed (3.5% for targeting mu  
179 phases and 3.0% for targeting beta phases). For analysis, a participant's individual MEPs were  
180 normalized to the overall average of that participant. .

181

182 *Offline EEG analysis*

183 Pre-TMS power was analyzed offline for inclusion in the main analysis. Raw EEG data  
184 were re-referenced to the Laplacian C3 montage as was used for online analyses (Figure 1). Data  
185 were epoched in a window between -1000 and 0 milliseconds with respect to TMS trigger and a  
186 bandpass filter (2-50 Hz) was applied. Pre-TMS power was calculated by applying a fast Fourier  
187 transform with Hanning taper at a resolution of 1 Hz Furthermore, periodic and aperiodic signals  
188 were separated by using an Irregular Resampling Auto-Spectral Analysis (IRASA) [50] as  
189 implemented in FieldTrip [48]. Subsequently, we averaged power values between 8 and 13 Hz

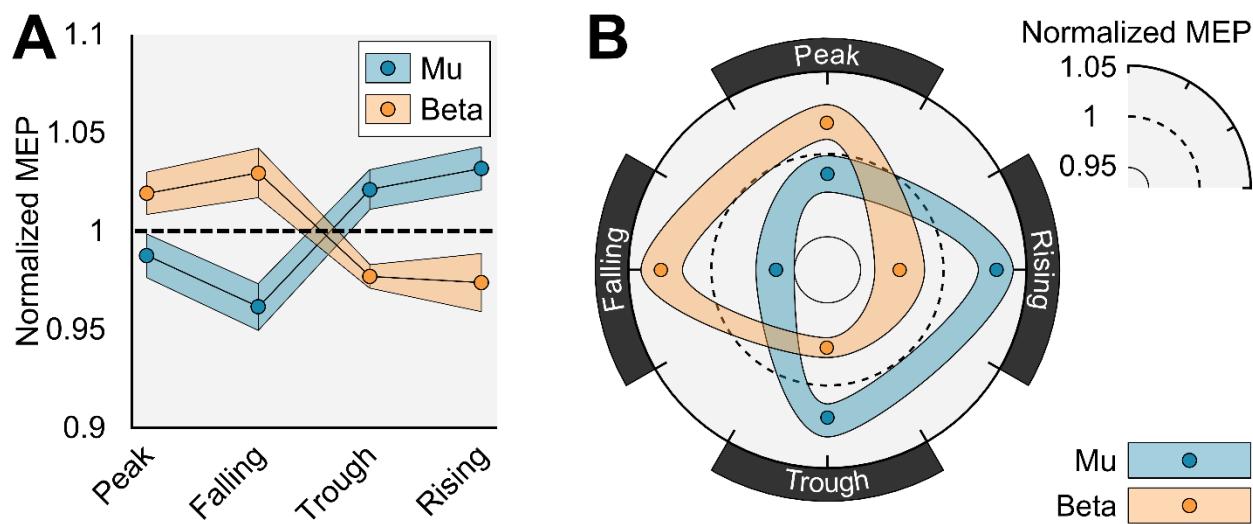
190 (mu power, periodic), 14 and 30 Hz (beta power, periodic), and broadband aperiodic signals (2-  
191 50 Hz) at the single-trial level.

192 To investigate potential differences in mu and beta oscillation topography, sensor-level  
193 distributions were examined. Resting-state EEG data were re-referenced to a common average  
194 and filtered in the mu (8-13 Hz) and beta (14-30 Hz) bands, respectively. We estimated the  
195 pairwise correlations between the electrode of interest C3 to all other electrodes. Topographic  
196 plots were used to depict the spatial distribution of the correlations for mu and beta separately, as  
197 well as the difference between both conditions.

198 Since the mu-rhythm has been shown to follow an arch shape rather than a sinusoidal  
199 shape, power in the beta range may partially reflect harmonic activity of the mu rhythm [45,46].  
200 Importantly, a priori our real-time algorithm is agnostic to whether activity in the beta frequency  
201 range results from a mu harmonic or from independent beta oscillations. To test for harmonicity,  
202 we calculated the ratio between the periods of bandpassed mu and beta oscillations.

203

#### 204 *Statistical analysis*


205 In a trial level analysis, a general linear mixed-effects model (GLMM) was used on trial  
206 data with target phase (peak, falling, trough, rising) and target rhythm (mu, beta) as fixed effects  
207 variable and participant number as random effects variable. MEP amplitude was the dependent  
208 variable. Independently, after averaging MEPs per phase for each participant, Rayleigh's z-test  
209 of non-uniformity was performed for phase modulation at mu and beta oscillations.

210 As a follow up, to test the effects of pre-TMS power, two additional GLMMs were run on  
211 mu and beta conditions separately with pre-TMS power and phase as fixed effects variables.  
212 These analyses were followed up by post hoc subject-level simple linear regression models.

213 Additionally, we performed a group-level repeated-measures ANOVA on phase and target  
214 rhythm, followed by paired-samples t-tests. Subsequently, Spearman rank correlation between  
215 pre-TMS power and MEP amplitude for each subject and session were calculated.

216 Finally, a linear correlation was performed on the topographic distribution of mu and beta  
217 oscillations. This was followed by one-sample t-tests (test value = 0) on the Fisher z-transformed  
218 correlation data to test if the average deviates significantly from zero. For all analyses,  
219 significance level was set at  $\alpha = 0.05$ .

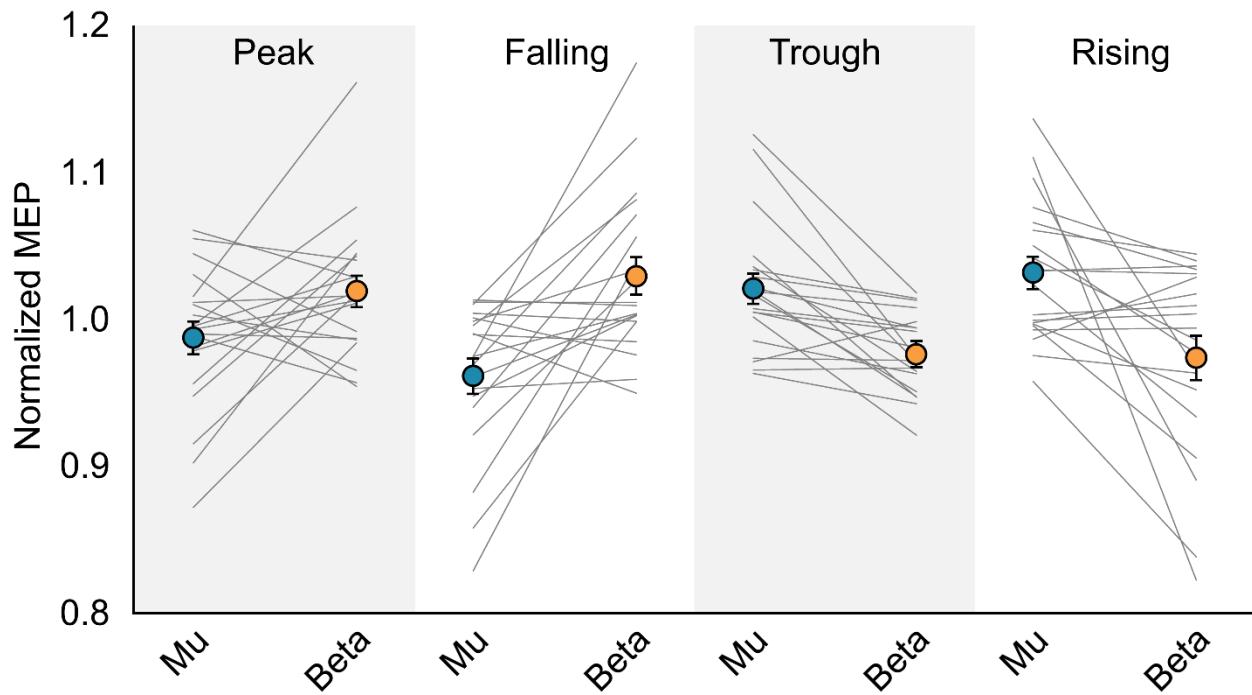
220



221  
222 Figure 2. A) Group average ( $n = 20$ )  $\pm$  standard error of mean of normalized MEPs for targeted phases in the mu and  
223 beta frequency. B) Circular representation of the data with smooth interpolation between conditions.

224

## 225 Results


226 Real-time TMS of ongoing cortical oscillations resulted in a double dissociation of phase  
227 relationships for mu and beta oscillations (Figure 2A). Accordingly, GLMM regression showed a  
228 significant interaction between target phase and target rhythm on MEP amplitude ( $F = 16.42$ ,  $p <$   
229 0.001). Distinct phase relation patterns were confirmed by Rayleigh's test for non-uniformity of  
230 circular group level data. Normalized MEP amplitudes at phases of the mu rhythm were non-

231 uniformly distributed ( $Z = 3.02$ ,  $p = 0.048$ ), with a mean direction of the circular distribution of  $\theta$   
232 =  $225.00^\circ$  and circular dispersion of  $\kappa = 29.27^\circ$ . Thus, MEP amplitudes were maximal when mu  
233 oscillations are at trough and rising phase (Figure 2B) and lower than average at the opposing  
234 phases. Normalized MEP amplitudes at phases of the beta rhythm were also non-uniformly  
235 distributed ( $Z = 3.27$ ,  $p = 0.037$ ), with circular mean of  $\theta = 29.05^\circ$  and dispersion of  $\kappa = 30.53^\circ$ .  
236 This means that MEP amplitudes were maximal when beta oscillations are at peak or falling  
237 phase (Figure 2B) and again lower than average at the opposing phases.

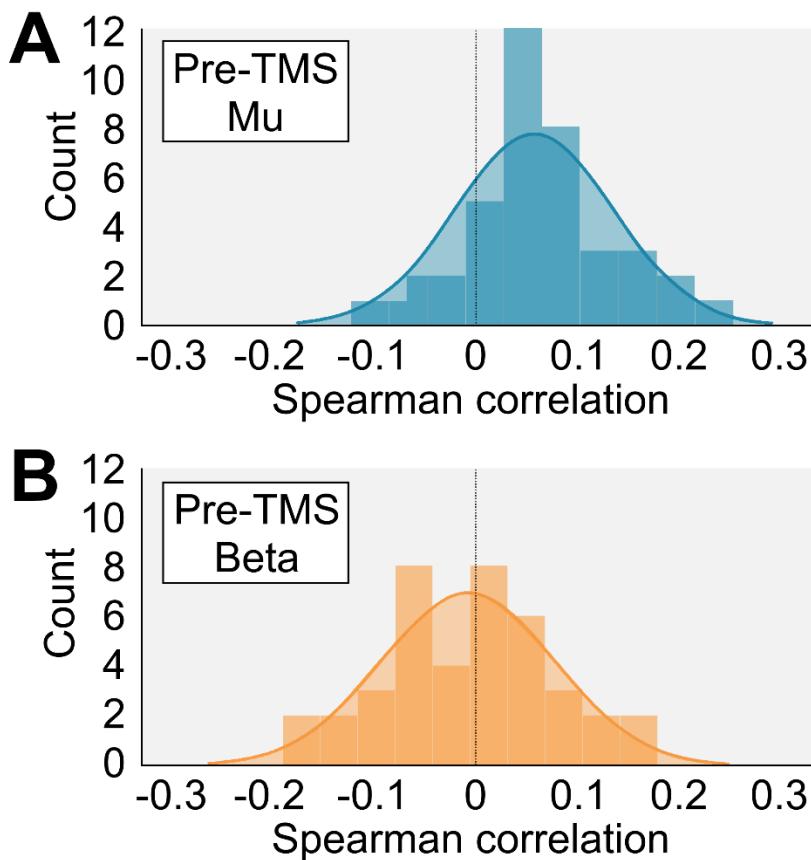
238 The results of phase on MEPs were confirmed on the group level. A repeated-measures  
239 ANOVA showed a significant phase\*target rhythm interaction ( $F = 11.24$ ,  $p < 0.001$ ), with no  
240 main effects for phase ( $F = 0.16$ ,  $p = 0.923$ ), or target rhythm ( $F = 0.62$ ,  $p = 0.440$ ). Post hoc t-  
241 tests showed differences between mu and beta peak falling phase ( $t = 3.96$ ,  $p < 0.001$ ), trough ( $t$   
242 =  $4.37$ ,  $p < 0.001$ ), and rising phase ( $t = 3.10$ ,  $p = 0.006$ ). The difference between mu and beta  
243 peak showed a non-significant trend ( $t = 2.09$ ,  $p = 0.051$ ).

244 The results are largely consistent at the individual level. The observed pattern of larger  
245 MEP amplitudes at the beta peak compared to the mu peak were observed in 13 out of 20  
246 participants. Larger MEP amplitudes at beta falling compared to mu falling were observed in 14  
247 out of 20 participants. Larger MEP amplitudes at mu trough compared to beta trough were  
248 observed in 18 out of 20 participants. Larger MEP amplitudes at mu rising compared to beta  
249 rising were observed in 14 out of 20 participants (Figure 3). Phase responses for both mu and  
250 beta per participant are shown in Supplementary Figure 3.

251



252


253 Figure 3. Individual phase-dependent modulation of MEP amplitude for mu and beta oscillations. Error bars  
 254 represent standard error of mean.

255

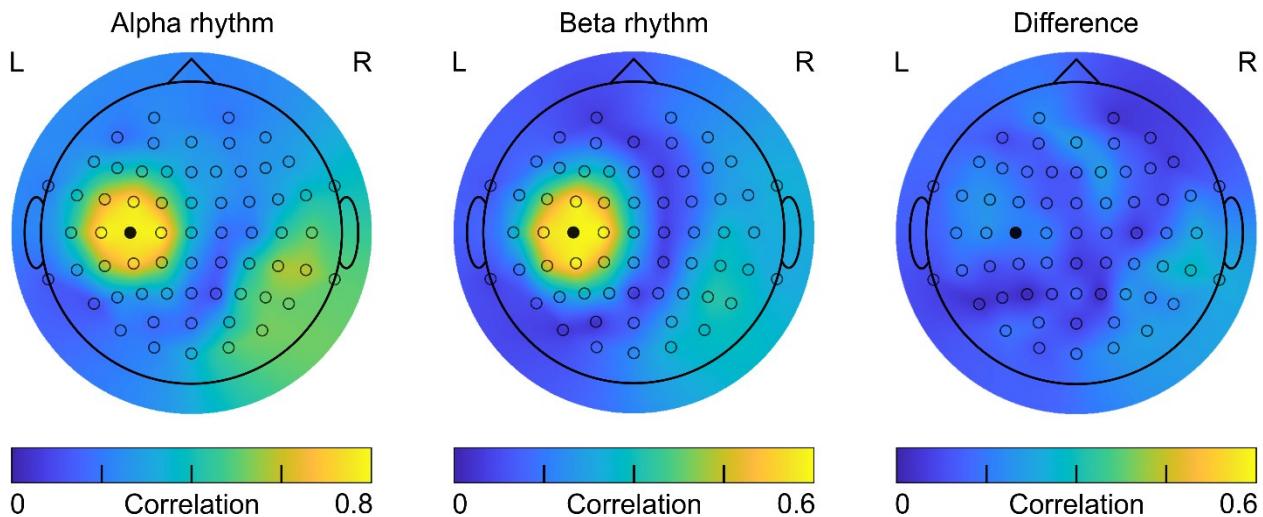
256 In analyses of each target rhythm condition separately, we added pre-TMS power of the  
 257 targeted rhythm and the aperiodic component. MEP amplitude during targeting of the mu rhythm  
 258 was affected by both target phase ( $F = 3.75, p = 0.011$ ) and pre-TMS periodic mu power ( $F =$   
 259  $15.30, p < 0.001$ ). Crucially, however, no significant phase\*power interaction was observed ( $F =$   
 260  $1.77, p = 0.151$ ), suggesting that both power and phase affect MEP amplitude independently. At  
 261 an individual level, correlation between mu power and MEP amplitude ranged between  $\rho = -$   
 262  $0.102$  and  $\rho = 0.250$  (median  $\rho = 0.055$ ). A one-sample t-test on the Fisher z-transformed  
 263 correlation values confirmed that on average pre-TMS mu power shows a significant positive  
 264 relationship with MEP amplitude ( $t = 4.74, p < 0.001$ ). A significant positive relationship was  
 265 observed in 15 out of 40 sessions, whereas a significant negative relationship was observed in 1  
 266 session (Figure 4A). MEP amplitude while targeting beta rhythm was affected by target phase

267 alone ( $F = 4.26, p = 0.005$ ). No effect of pre-TMS periodic beta power ( $F = 0.24, p = 0.622$ ), nor  
268 a phase\*power interaction ( $F = 2.50, p = 0.058$ ) was observed on MEP amplitude. At an  
269 individual level, correlation between beta power and MEP amplitude ranged between  $\rho = -0.168$   
270 and  $\rho = 0.151$  (median  $\rho = -0.008$ ). A one-sample t-test on the Fisher z-transformed correlation  
271 values confirmed that on average pre-TMS beta power does not significantly relate to MEP  
272 amplitude ( $t = 0.90, p = 0.375$ ). A significant positive relationship was observed in 12 out of 40  
273 sessions, whereas a significant negative relationship was observed in 4 out of 40 sessions (Figure  
274 4B). Finally, MEP amplitude was not significantly affected by the aperiodic component of the  
275 power signal ( $F = 0.05, p = 0.821$ ), nor a phase\*power interaction ( $F = 0.02, p = 0.996$ )

276



277


278 Figure 4. Histogram of individual Spearman correlations between MEP amplitude and A) pre-TMS mu power, and  
279 B) pre-TMS beta power after extracting the periodic components of each frequency band.

280

281 One possible confound could arise where channels in the Laplacian reference montage  
282 contribute differently to the target electrode between conditions. Therefore, we performed a  
283 sensor-level analysis of mu and beta distributions, by looking at the channel-to-channel  
284 correlations. Resulting topographic plots showed highly similar distributions for both mu and  
285 beta rhythms at sensor level (Figure 5). Distributions were highly correlated ( $\rho = 0.92$ ,  $p <$   
286 0.001), suggesting that our main results cannot be explained by differences in mu and beta signal  
287 arrangement.

288 Finally, the typical arch-shape of the mu signal results in harmonics in the beta frequency  
289 range (referred to as mu-beta). To test whether our algorithm picked up a mu-harmonic or  
290 independent beta activity, we made a strict mathematical estimation of harmonicity between the  
291 signals and inspected individual power spectra (Supplementary Figure 4). By definition, the  
292 harmonic signals should have a period ratio that is an integer number. However, no integer  
293 values were observed with an average ratio of 2.148 and values for all participants and sessions  
294 ranging between 2.051 and 2.248. As such, we observed no indication for beta signals resulting  
295 from a mu harmonic. Furthermore, the phase relationship between mu and beta rhythms was  
296 generally weak, suggesting little dependence between phases of both signals (Supplementary  
297 Figure 5).

298



299     Figure 5. Spatial topographies for the recorded mu rhythm, beta rhythm, and the difference between both. Color map  
 300    represents correlational values of electrode pairings between target electrode C3 and all other electrodes. The black  
 301    electrode corresponds to C3.  
 302

303

304    **Discussion**

305        In this study, we demonstrate for the first time that mu and beta oscillation phase  
 306    differentially modulate MEP amplitude. In summary, we found that I) phase of mu and beta  
 307    oscillations picked up at sensorimotor channels modulate corticospinal excitation; II) this phase-  
 308    dependent MEP modulation follows an opposing pattern for mu and beta; III) mu power, but not  
 309    beta power, significantly modulates MEP amplitude; IV) modulation of MEP amplitudes by  
 310    phase and power do not interact.

311        To our knowledge, we provide the first direct evidence for MEP amplitude modulation by  
 312    beta phase, in addition to mu phase, measured with real-time TMS-EEG. Beta-phase dependency  
 313    has been hinted at by previous offline TMS studies using post-hoc analyses [51–56]. Also,  
 314    human subdural electrocorticographic (ECoG) recordings have shown that motor cortical beta  
 315    activity is phase-locked to neural population activity during movement [10,41,43]. Furthermore,  
 316    motor cortical spiking activity has been shown to be dependent on local field potential beta-

317 phase in non-human primates [38,57]. Sensorimotor beta oscillations have been suggested to  
318 arise from alternating de- and hyper-polarization of layer V pyramidal cells, mediated by phase-  
319 locked gamma-aminobutyric acid (GABA) mediated interneuron inputs [1,58–60]. Here we  
320 show that beta phase-dependency can be probed non-invasively in real-time. Our data showed  
321 largest MEP amplitudes during beta peak and falling phase (Figure 2). Salimpour et al. [44]  
322 applied real-time electrical motor cortex stimulation in Parkinson’s disease patients during  
323 surgery. Although direct comparison of results from electrical stimulation and ECoG data to ours  
324 may be challenging, it is interesting to point out that phase-dependency was similar, with beta  
325 peak and falling phase leading to the largest motor output.

326 We found no dependency of beta power on MEP amplitude, nor was there an interaction  
327 between beta phase and power, in line with previous findings [51,54,61–63]. This should not  
328 imply that beta oscillations are not related to motor output and evidence from previous research  
329 suggests that the relationship between beta oscillations and motor activation is complex. Pre-  
330 movement reduction of beta power has been associated with faster voluntary movement [64].  
331 Chronic elevation of beta power, observed in Parkinson’s disease has been related to difficulty  
332 initiating and controlling movements [65–67]. Furthermore, in addition to low-amplitude  
333 ongoing beta activity, high-amplitude beta bursts are suggested to be positively correlated to  
334 movement control [11,38,68–70]. Although these behavioral studies imply that beta power and  
335 beta bursts are crucial for endogenous control of voluntary movement, our and previous studies  
336 suggest that they are not related to exogenously probed cortico-spinal excitability [51,62,63].  
337 Furthermore, Peters and colleagues [63] found that pre-TMS resting beta power does not affect  
338 the propagation of TMS excitations throughout the cortical-subcortical motor network.

339 Therefore, it seems that beta power may be a predictor for corticospinal activation during  
340 voluntary or task-related motor control, but not during resting-state motor excitability per se.

341 Additionally, we found that corticospinal excitation was modulated by the mu rhythm  
342 with an opposite phase relationship compared to beta oscillations. Various studies previously  
343 indicated mu phase-dependent modulation of MEP amplitudes, with larger responses at the mu  
344 trough compared to mu peak [19,22,23,27,30]. Our results confirm these findings on mu peak  
345 and trough, but the phase effects extended towards the subsequent falling and rising phase  
346 respectively. That is, we show that trough and rising phase yield largest corticospinal excitation,  
347 whereas mu peak and falling yield the smallest motor cortex activation (Figure 2).

348 Pre-stimulus mu power was a significant predictor for corticospinal excitability, but did  
349 not interact with mu phase, suggesting independence between mu power and phase. Subject-level  
350 positive correlations were observed in majority of subjects. Although the observed relationship  
351 was relatively weak - correlations varying between -0.1 and 0.25 - it is in line with previous  
352 observations [19,24,31,54]. However, others have found no relationship between mu power and  
353 MEP amplitude [8,27], or even a negative association [20,71,72]. At a first glance, a positive  
354 relationship between mu power and corticospinal activity seems counterintuitive since  
355 sensorimotor mu oscillations are related to GABAa-mediated inhibitory activity [19]. Also,  
356 higher mu power has been shown to reduce TMS-induced blood oxygenation level-dependent  
357 (BOLD) responses throughout the cortical-subcortical motor network [63]. However, mu  
358 oscillations are thought to predominantly originate from the somatosensory cortex [32–37].  
359 Interconnections between somatosensory and primary motor cortex comprise of an intricate  
360 network of excitatory and inhibitory reciprocal connections. Increased mu power may reflect  
361 feedforward inhibition to primary motor cortex resulting in local disinhibition, which could

362 explain a positive relationship between mu power and MEP amplitudes. Although our findings  
363 do agree with previous reports [19,24,31,54]. One important aspect may be to extract the  
364 periodic components of the power spectra [50,73], which may explain why this positive  
365 relationship was not found by others.

366 Sensorimotor mu and beta oscillations have been suggested to stem from distinct neural  
367 origins [32–37]. Specifically, mu oscillations are proposed to originate pre-dominantly from the  
368 post-central gyrus [36,37], although pre-central origins of mu have been reported as well  
369 [35,74,75]. In contrast, beta oscillations are thought to stem from pre-central primary motor  
370 cortex [4,36,37,76], but are also observed in post-central somatosensory cortex [4,75,77].  
371 Although our study cannot make inferences on the source of mu and beta oscillations, sensor-  
372 level signal distributions were highly similar (Figure 5). Similar scalp-level topographies suggest  
373 that potential differences in neural origin did not influence phase detection during real-time  
374 stimulation. A potential explanation for the opposing phase-relationship we observed results  
375 from differences in axonal orientation within mu and beta sources. This possibility could be  
376 investigated in future studies.

377 The sensorimotor mu-signal tends to resemble an arch-shape, rather than a sinusoid  
378 [36,45,46,78]. As a result of this higher-frequency harmonics can be observed in the frequency  
379 spectra. Particularly first-order harmonics would appear in the beta frequency range (referred to  
380 as mu-beta). It is worth noting that our ETP algorithm used here is agnostic to the origin of beta  
381 oscillations. However, the opposing results in MEP amplitudes between mu and beta phase  
382 would be unexpected since mu harmonics reflect similar functional properties [78]. Additionally,  
383 we formally tested for harmonicity and found no evidence for it (Supplementary Figure 4 and 5).  
384 Thus, we believe that the modulation of MEPs when targeting at frequencies between 14 and 30

385 Hz results from independent beta oscillations. A further limitation of this study is that phase  
386 accuracy was only established in the beginning of a session. Although we previously have shown  
387 that phase targeting with ETP is stable on average of a single session [25], individual fluctuations  
388 in oscillatory activity over time may affect targeting accuracy.

389 Our findings are crucial for the improvement of TMS effectiveness for treatment of  
390 neurological and psychiatric disorders. Targeting optimal rhythms with repetitive TMS could  
391 decrease variability of TMS outcomes [27,79]. For instance, targeting optimal oscillation phase  
392 could improve efficacy of TMS in the recovery of stroke [80] and treatment of major depressive  
393 disorder [28]. In this study, to our knowledge, we were able to non-invasively target the beta  
394 rhythm in real-time reliably for the first time. In future work it will be crucial to further optimize  
395 real-time and closed-loop systems, in order to target different oscillatory rhythms, and different  
396 spatial locations [81–83]. Eventually, this will allow for adaptive non-invasive neuromodulation  
397 that can provide personalized decoding of on-going brain states. This individualization can  
398 greatly benefit clinical application of TMS, by reducing variability between and within patients.

399

400 **Conflict of interest**

401 Authors declare no conflict of interest.

402

403 **References**

404 [1] Baker SN. Oscillatory interactions between sensorimotor cortex and the periphery. *Curr*  
405 *Opin Neurobiol* 2007;17:649–55. <https://doi.org/10.1016/j.conb.2008.01.007>.

406 [2] Baker SN, Pinches EM, Lemon RN. Synchronization in monkey motor cortex during a  
407 precision grip task. II. effect of oscillatory activity on corticospinal output. *J Neurophysiol*  
408 2003;89:1941–53. <https://doi.org/10.1152/jn.00832.2002>.

409 [3] Jenkinson N, Brown P. New insights into the relationship between dopamine, beta  
410 oscillations and motor function. *Trends Neurosci* 2011;34:611–8.  
411 <https://doi.org/10.1016/j.tins.2011.09.003>.

412 [4] Jurkiewicz MT, Gaetz WC, Bostan AC, Cheyne D. Post-movement beta rebound is  
413 generated in motor cortex: Evidence from neuromagnetic recordings. *NeuroImage*  
414 2006;32:1281–9. <https://doi.org/10.1016/j.neuroimage.2006.06.005>.

415 [5] Pfurtscheller G, Stancák A, Neuper C. Post-movement beta synchronization. A correlate of  
416 an idling motor area? *Electroencephalogr Clin Neurophysiol* 1996;98:281–93.  
417 [https://doi.org/10.1016/0013-4694\(95\)00258-8](https://doi.org/10.1016/0013-4694(95)00258-8).

418 [6] Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and  
419 desynchronization: basic principles. *Clin Neurophysiol* 1999;110:1842–57.  
420 [https://doi.org/10.1016/S1388-2457\(99\)00141-8](https://doi.org/10.1016/S1388-2457(99)00141-8).

421 [7] Saleh M, Reimer J, Penn R, Ojakangas CL, Hatsopoulos NG. Fast and slow oscillations in  
422 human primary motor cortex predict oncoming behaviorally relevant cues. *Neuron*  
423 2010;65:461–71. <https://doi.org/10.1016/j.neuron.2010.02.001>.

424 [8] Berger B, Minarik T, Liuzzi G, Hummel FC, Sauseng P. EEG oscillatory phase-dependent  
425 markers of corticospinal excitability in the resting brain. *BioMed Res Int*  
426 2014;2014:e936096. <https://doi.org/10.1155/2014/936096>.

427 [9] Combrisson E, Perrone-Bertolotti M, Soto JL, Alamian G, Kahane P, Lachaux J-P, et al.  
428 From intentions to actions: Neural oscillations encode motor processes through phase,

429 amplitude and phase-amplitude coupling. *NeuroImage* 2017;147:473–87.

430 <https://doi.org/10.1016/j.neuroimage.2016.11.042>.

431 [10] Miller KJ, Hermes D, Honey CJ, Hebb AO, Ramsey NF, Knight RT, et al. Human motor  
432 cortical activity is selectively phase-entrained on underlying rhythms. *PLoS Comput Biol*  
433 2012;8:e1002655. <https://doi.org/10.1371/journal.pcbi.1002655>.

434 [11] O’Keeffe AB, Malekmohammadi M, Sparks H, Pouratian N. Synchrony drives motor  
435 cortex beta bursting, waveform dynamics, and phase-amplitude coupling in Parkinson’s  
436 disease. *J Neurosci* 2020;40:5833–46. <https://doi.org/10.1523/JNEUROSCI.1996-19.2020>.

437 [12] Takahashi K, Kim S, Coleman TP, Brown KA, Suminski AJ, Best MD, et al. Large-scale  
438 spatiotemporal spike patterning consistent with wave propagation in motor cortex. *Nat  
439 Commun* 2015;6:7169. <https://doi.org/10.1038/ncomms8169>.

440 [13] Yanagisawa T, Yamashita O, Hirata M, Kishima H, Saitoh Y, Goto T, et al. Regulation of  
441 motor representation by phase–amplitude coupling in the sensorimotor cortex. *J Neurosci*  
442 2012;32:15467–75. <https://doi.org/10.1523/JNEUROSCI.2929-12.2012>.

443 [14] Fetz EE, Chen D, Murthy VN, Matsumura M. Synaptic interactions mediating synchrony  
444 and oscillations in primate sensorimotor cortex. *J Physiol-Paris* 2000;94:323–31.  
445 [https://doi.org/10.1016/S0928-4257\(00\)01089-5](https://doi.org/10.1016/S0928-4257(00)01089-5).

446 [15] Haegens S, Nácher V, Luna R, Romo R, Jensen O.  $\alpha$ -Oscillations in the monkey  
447 sensorimotor network influence discrimination performance by rhythmical inhibition of  
448 neuronal spiking. *Proc Natl Acad Sci* 2011;108:19377–82.  
449 <https://doi.org/10.1073/pnas.1117190108>.

450 [16] Johnson L, Alekseichuk I, Krieg J, Doyle A, Yu Y, Vitek J, et al. Dose-dependent effects of  
451 transcranial alternating current stimulation on spike timing in awake nonhuman primates.  
452 *Sci Adv* 2020;9.

453 [17] Murthy VN, Fetz EE. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of  
454 awake behaving monkeys. *Proc Natl Acad Sci* 1992;89:5670–4.  
455 <https://doi.org/10.1073/pnas.89.12.5670>.

456 [18] Murthy VN, Fetz EE. Synchronization of neurons during local field potential oscillations in  
457 sensorimotor cortex of awake monkeys. *J Neurophysiol* 1996;76:3968–82.  
458 <https://doi.org/10.1152/jn.1996.76.6.3968>.

459 [19] Bergmann TO, Lieb A, Zrenner C, Ziemann U. Pulsed facilitation of corticospinal  
460 excitability by the sensorimotor  $\mu$ -alpha rhythm. *J Neurosci* 2019;39:10034–43.  
461 <https://doi.org/10.1523/JNEUROSCI.1730-19.2019>.

462 [20] Madsen KH, Karabanov AN, Krohne LG, Safeldt MG, Tomasevic L, Siebner HR. No trace  
463 of phase: Corticomotor excitability is not tuned by phase of pericentral mu-rhythm. *Brain*  
464 *Stimulat* 2019;12:1261–70. <https://doi.org/10.1016/j.brs.2019.05.005>.

465 [21] Sasaki K, Fujishige Y, Kikuchi Y, Odagaki M. A transcranial magnetic stimulation trigger  
466 system for suppressing motor-evoked potential fluctuation using electroencephalogram  
467 coherence analysis: algorithm development and validation study. *JMIR Biomed Eng*  
468 2021;6:e28902. <https://doi.org/10.2196/28902>.

469 [22] Schaworonkow N, Caldana Gordon P, Belardinelli P, Ziemann U, Bergmann TO, Zrenner  
470 C. M-rhythm extracted with personalized EEG filters correlates with corticospinal  
471 excitability in real-time phase-triggered EEG-TMS. *Front Neurosci* 2018;12.

472 [23] Schaworonkow N, Triesch J, Ziemann U, Zrenner C. EEG-triggered TMS reveals stronger  
473 brain state-dependent modulation of motor evoked potentials at weaker stimulation  
474 intensities. *Brain Stimulat* 2019;12:110–8. <https://doi.org/10.1016/j.brs.2018.09.009>.

475 [24] Karabanov AN, Madsen KH, Krohne LG, Siebner HR. Does pericentral mu-rhythm  
476 “power” corticomotor excitability? – A matter of EEG perspective. *Brain Stimulat*  
477 2021;14:713–22. <https://doi.org/10.1016/j.brs.2021.03.017>.

478 [25] Shirinpour S, Alekseichuk I, Mantell K, Opitz A. Experimental evaluation of methods for  
479 real-time EEG phase-specific transcranial magnetic stimulation. *J Neural Eng*  
480 2020;17:046002. <https://doi.org/10.1088/1741-2552/ab9dba>.

481 [26] Zrenner C, Belardinelli P, Müller-Dahlhaus F, Ziemann U. Closed-loop neuroscience and  
482 non-invasive brain stimulation: a tale of two loops. *Front Cell Neurosci* 2016;10.

483 [27] Zrenner C, Desideri D, Belardinelli P, Ziemann U. Real-time EEG-defined excitability  
484 states determine efficacy of TMS-induced plasticity in human motor cortex. *Brain Stimulat*  
485 2018;11:374–89. <https://doi.org/10.1016/j.brs.2017.11.016>.

486 [28] Zrenner B, Zrenner C, Gordon PC, Belardinelli P, McDermott EJ, Soekadar SR, et al. Brain  
487 oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression  
488 using real-time EEG-triggered TMS. *Brain Stimulat* 2020;13:197–205.  
489 <https://doi.org/10.1016/j.brs.2019.10.007>.

490 [29] Hussain SJ, Vollmer MK, Stimely J, Norato G, Zrenner C, Ziemann U, et al. Phase-  
491 dependent offline enhancement of human motor memory. *Brain Stimulat* 2021;14:873–83.  
492 <https://doi.org/10.1016/j.brs.2021.05.009>.

493 [30] Desideri D, Zrenner C, Ziemann U, Belardinelli P. Phase of sensorimotor  $\mu$ -oscillation  
494 modulates cortical responses to transcranial magnetic stimulation of the human motor  
495 cortex. *J Physiol* 2019;597:5671–86. <https://doi.org/10.1113/JP278638>.

496 [31] Thies M, Zrenner C, Ziemann U, Bergmann TO. Sensorimotor mu-alpha power is  
497 positively related to corticospinal excitability. *Brain Stimulat* 2018;11:1119–22.  
498 <https://doi.org/10.1016/j.brs.2018.06.006>.

499 [32] Gaetz W, Cheyne D. Localization of sensorimotor cortical rhythms induced by tactile  
500 stimulation using spatially filtered MEG. *NeuroImage* 2006;30:899–908.  
501 <https://doi.org/10.1016/j.neuroimage.2005.10.009>.

502 [33] Jones SR, Pritchett DL, Sikora MA, Stufflebeam SM, Hämäläinen M, Moore CI.  
503 Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm:  
504 Rhythmogenesis and modulation of sensory-evoked responses. *J Neurophysiol*  
505 2009;102:3554–72. <https://doi.org/10.1152/jn.00535.2009>.

506 [34] Premoli I, Bergmann TO, Fecchio M, Rosanova M, Biondi A, Belardinelli P, et al. The  
507 impact of GABAergic drugs on TMS-induced brain oscillations in human motor cortex.  
508 *NeuroImage* 2017;163:1–12. <https://doi.org/10.1016/j.neuroimage.2017.09.023>.

509 [35] Ronnqvist K, McAllister C, Woodhall G, Stanford I, Hall S. A multimodal perspective on  
510 the composition of cortical oscillations. *Front Hum Neurosci* 2013;7.

511 [36] Salmelin R, Hari R. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms  
512 related to thumb movement. *Neuroscience* 1994;60:537–50. [https://doi.org/10.1016/0306-4522\(94\)90263-1](https://doi.org/10.1016/0306-4522(94)90263-1).

514 [37] Salmelin R, Hámáaláinen M, Kajola M, Hari R. Functional segregation of movement-  
515 related rhythmic activity in the human brain. *NeuroImage* 1995;2:237–43.  
516 <https://doi.org/10.1006/nimg.1995.1031>.

517 [38] Reimer J, Hatsopoulos NG. Periodicity and evoked responses in motor cortex. *J Neurosci*  
518 2010;30:11506–15. <https://doi.org/10.1523/JNEUROSCI.5947-09.2010>.

519 [39] Peles O, Werner-Reiss U, Bergman H, Israel Z, Vaadia E. Phase-specific microstimulation  
520 differentially modulates beta oscillations and affects behavior. *Cell Rep* 2020;30:2555–  
521 2566.e3. <https://doi.org/10.1016/j.celrep.2020.02.005>.

522 [40] Bouthour W, Mégevand P, Donoghue J, Lüscher C, Birbaumer N, Krack P. Biomarkers for  
523 closed-loop deep brain stimulation in Parkinson disease and beyond. *Nat Rev Neurol*  
524 2019;15:343–52. <https://doi.org/10.1038/s41582-019-0166-4>.

525 [41] de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, et al.  
526 Exaggerated phase–amplitude coupling in the primary motor cortex in Parkinson disease.  
527 *Proc Natl Acad Sci* 2013;110:4780–5. <https://doi.org/10.1073/pnas.1214546110>.

528 [42] Cagnan H, Pedrosa D, Little S, Pogosyan A, Cheeran B, Aziz T, et al. Stimulating at the  
529 right time: phase-specific deep brain stimulation. *Brain* 2017;140:132–45.  
530 <https://doi.org/10.1093/brain/aww286>.

531 [43] Holt AB, Kormann E, Gulberti A, Pötter-Nerger M, McNamara CG, Cagnan H, et al.  
532 Phase-dependent suppression of beta oscillations in Parkinson’s disease patients. *J Neurosci*  
533 2019;39:1119–34. <https://doi.org/10.1523/JNEUROSCI.1913-18.2018>.

534 [44] Salimpour Y, Mills KA, Hwang BY, Anderson WS. Phase- targeted stimulation modulates  
535 phase-amplitude coupling in the motor cortex of the human brain. *Brain Stimulat*  
536 2022;15:152–63. <https://doi.org/10.1016/j.brs.2021.11.019>.

537 [45] Cole SR, Voytek B. Brain oscillations and the importance of waveform shape. *Trends Cogn  
538 Sci* 2017;21:137–49. <https://doi.org/10.1016/j.tics.2016.12.008>.

539 [46] Triggiani AI, Valenzano A, Del Percio C, Marzano N, Soricelli A, Petito A, et al. Resting  
540 state Rolandic mu rhythms are related to activity of sympathetic component of autonomic  
541 nervous system in healthy humans. *Int J Psychophysiol* 2016;103:79–87.  
542 <https://doi.org/10.1016/j.ijpsycho.2015.02.009>.

543 [47] Julkunen P. Mobile application for adaptive threshold hunting in transcranial magnetic  
544 stimulation. *IEEE Trans Neural Syst Rehabil Eng* 2019;27:1504–10.  
545 <https://doi.org/10.1109/TNSRE.2019.2925904>.

546 [48] Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: open source software for  
547 advanced analysis of meg, eeg, and invasive electrophysiological data. *Comput Intell  
548 Neurosci* 2010;2011:e156869. <https://doi.org/10.1155/2011/156869>.

549 [49] Wischnewski M, Kowalski GM, Rink F, Belagaje SR, Haut MW, Hobbs G, et al. Demand  
550 on skillfulness modulates interhemispheric inhibition of motor cortices. *J Neurophysiol*  
551 2016;115:2803–13. <https://doi.org/10.1152/jn.01076.2015>.

552 [50] Wen H, Liu Z. Separating fractal and oscillatory components in the power spectrum of  
553 neurophysiological signal. *Brain Topogr* 2016;29:13–26. [015-0448-0](https://doi.org/10.1007/s10548-<br/>554 015-0448-0).

555 [51] Hussain SJ, Claudino L, Bönstrup M, Norato G, Cruciani G, Thompson R, et al.  
556 Sensorimotor oscillatory phase–power interaction gates resting human corticospinal output.  
557 *Cereb Cortex* 2019;29:3766–77. <https://doi.org/10.1093/cercor/bhy255>.

558 [52] Keil J, Timm J, SanMiguel I, Schulz H, Obleser J, Schönwiesner M. Cortical brain states  
559 and corticospinal synchronization influence TMS-evoked motor potentials. *J Neurophysiol*  
560 2014;111:513–9. <https://doi.org/10.1152/jn.00387.2013>.

561 [53] Khademi F, Royter V, Gharabaghi A. Distinct beta-band oscillatory circuits underlie  
562 corticospinal gain modulation. *Cereb Cortex* 2018;28:1502–15.  
563 <https://doi.org/10.1093/cercor/bhy016>.

564 [54] Schilberg L, Oever ST, Schuhmann T, Sack AT. Phase and power modulations on the  
565 amplitude of TMS-induced motor evoked potentials. *PLOS ONE* 2021;16:e0255815.  
566 <https://doi.org/10.1371/journal.pone.0255815>.

567 [55] Torrecillos F, Falato E, Pogosyan A, West T, Di Lazzaro V, Brown P. Motor cortex inputs  
568 at the optimum phase of beta cortical oscillations undergo more rapid and less variable  
569 corticospinal propagation. *J Neurosci* 2020;40:369–81.  
570 <https://doi.org/10.1523/JNEUROSCI.1953-19.2019>.

571 [56] Van Elswijk G, Maij F, Schoffelen J-M, Overeem S, Stegeman DF, Fries P. Corticospinal  
572 beta-band synchronization entails rhythmic gain modulation. *J Neurosci* 2010;30:4481–8.  
573 <https://doi.org/10.1523/JNEUROSCI.2794-09.2010>.

574 [57] Witham CL, Wang M, Baker SN. Cells in somatosensory areas show synchrony with beta  
575 oscillations in monkey motor cortex. *Eur J Neurosci* 2007;26:2677–86.  
576 <https://doi.org/10.1111/j.1460-9568.2007.05890.x>.

577 [58] Bhatt MB, Bowen S, Rossiter HE, Dupont-Hadwen J, Moran RJ, Friston KJ, et al.  
578 Computational modelling of movement-related beta-oscillatory dynamics in human motor  
579 cortex. *NeuroImage* 2016;133:224–32. <https://doi.org/10.1016/j.neuroimage.2016.02.078>.

580 [59] Rossiter HE, Davis EM, Clark EV, Boudrias M-H, Ward NS. Beta oscillations reflect  
581 changes in motor cortex inhibition in healthy ageing. *NeuroImage* 2014;91:360–5.  
582 <https://doi.org/10.1016/j.neuroimage.2014.01.012>.

583 [60] Lacey MG, Gooding-Williams G, Prokic EJ, Yamawaki N, Hall SD, Stanford IM, et al.  
584 Spike firing and IPSPs in layer v pyramidal neurons during beta oscillations in rat primary  
585 motor cortex (M1) in vitro. *PLOS ONE* 2014;9:e85109.  
586 <https://doi.org/10.1371/journal.pone.0085109>.

587 [61] Mitchell WK, Baker MR, Baker SN. Muscle responses to transcranial stimulation in man  
588 depend on background oscillatory activity. *J Physiol* 2007;583:567–79.  
589 <https://doi.org/10.1113/jphysiol.2007.134031>.

590 [62] Ogata K, Nakazono H, Uehara T, Tobimatsu S. Prestimulus cortical EEG oscillations can  
591 predict the excitability of the primary motor cortex. *Brain Stimulat* 2019;12:1508–16.  
592 <https://doi.org/10.1016/j.brs.2019.06.013>.

593 [63] Peters JC, Reithler J, Graaf TA de, Schuhmann T, Goebel R, Sack AT. Concurrent human  
594 TMS-EEG-fMRI enables monitoring of oscillatory brain state-dependent gating of cortico-  
595 subcortical network activity. *Commun Biol* 2020;3:1–11. <https://doi.org/10.1038/s42003-020-0764-0>.

597 [64] Khanna P, Carmena JM. Beta band oscillations in motor cortex reflect neural population  
598 signals that delay movement onset. *ELife* 2017;6:e24573.  
599 <https://doi.org/10.7554/eLife.24573>.

600 [65] Brown P. Bad oscillations in Parkinson’s disease. In: Riederer P, Reichmann H, Youdim  
601 MBH, Gerlach M, editors. *Park. Dis. Relat. Disord.*, Vienna: Springer; 2006, p. 27–30.  
602 [https://doi.org/10.1007/978-3-211-45295-0\\_6](https://doi.org/10.1007/978-3-211-45295-0_6).

603 [66] Cannon J, McCarthy MM, Lee S, Lee J, Börgers C, Whittington MA, et al. *Neurosystems:*  
604        brain rhythms and cognitive processing. *Eur J Neurosci* 2014;39:705–19.  
605        <https://doi.org/10.1111/ejn.12453>.

606 [67] Kühn AA, Kupsch A, Schneider G-H, Brown P. Reduction in subthalamic 8–35 Hz  
607        oscillatory activity correlates with clinical improvement in Parkinson’s disease. *Eur J*  
608        *Neurosci* 2006;23:1956–60. <https://doi.org/10.1111/j.1460-9568.2006.04717.x>.

609 [68] Bonaiuto JJ, Little S, Neymotin SA, Jones SR, Barnes GR, Bestmann S. Laminar dynamics  
610        of high amplitude beta bursts in human motor cortex. *NeuroImage* 2021;242:118479.  
611        <https://doi.org/10.1016/j.neuroimage.2021.118479>.

612 [69] Chen D, Fetz EE. Characteristic membrane potential trajectories in primate sensorimotor  
613        cortex neurons recorded in vivo. *J Neurophysiol* 2005;94:2713–25.  
614        <https://doi.org/10.1152/jn.00024.2005>.

615 [70] Feingold J, Gibson DJ, DePasquale B, Graybiel AM. Bursts of beta oscillation differentiate  
616        postperformance activity in the striatum and motor cortex of monkeys performing  
617        movement tasks. *Proc Natl Acad Sci* 2015;112:13687–92.  
618        <https://doi.org/10.1073/pnas.1517629112>.

619 [71] Sauseng P, Klimesch W, Gerloff C, Hummel FC. Spontaneous locally restricted EEG alpha  
620        activity determines cortical excitability in the motor cortex. *Neuropsychologia*  
621        2009;47:284–8. <https://doi.org/10.1016/j.neuropsychologia.2008.07.021>.

622 [72] Zarkowski P, Shin CJ, Dang T, Russo J, Avery D. EEG and the variance of motor evoked  
623        potential amplitude. *Clin EEG Neurosci* 2006;37:247–51.  
624        <https://doi.org/10.1177/155005940603700316>.

625 [73] Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, et al. Parameterizing  
626 neural power spectra into periodic and aperiodic components. *Nat Neurosci* 2020;23:1655–  
627 65. <https://doi.org/10.1038/s41593-020-00744-x>.

628 [74] Smit DJA, Linkenkaer-Hansen K, Geus EJC de. Long-range temporal correlations in  
629 resting-state alpha oscillations predict human timing-error dynamics. *J Neurosci*  
630 2013;33:11212–20. <https://doi.org/10.1523/JNEUROSCI.2816-12.2013>.

631 [75] Szurhaj W, Derambure P, Labyt E, Cassim F, Bourriez J-L, Isnard J, et al. Basic  
632 mechanisms of central rhythms reactivity to preparation and execution of a voluntary  
633 movement: a stereoelectroencephalographic study. *Clin Neurophysiol* 2003;114:107–19.  
634 [https://doi.org/10.1016/S1388-2457\(02\)00333-4](https://doi.org/10.1016/S1388-2457(02)00333-4).

635 [76] Donoghue JP, Sanes JN, Hatsopoulos NG, Gaál G. Neural discharge and local field  
636 potential oscillations in primate motor cortex during voluntary movements. *J Neurophysiol*  
637 1998;79:159–73. <https://doi.org/10.1152/jn.1998.79.1.159>.

638 [77] Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL. Beta oscillations in a  
639 large-scale sensorimotor cortical network: Directional influences revealed by Granger  
640 causality. *Proc Natl Acad Sci* 2004;101:9849–54. <https://doi.org/10.1073/pnas.0308538101>.

641 [78] Pfurtscheller G, Brunner C, Schlägl A, Lopes da Silva FH. Mu rhythm (de)synchronization  
642 and EEG single-trial classification of different motor imagery tasks. *NeuroImage*  
643 2006;31:153–9. <https://doi.org/10.1016/j.neuroimage.2005.12.003>.

644 [79] Baur D, Galevska D, Hussain S, Cohen LG, Ziemann U, Zrenner C. Induction of LTD-like  
645 corticospinal plasticity by low-frequency rTMS depends on pre-stimulus phase of  
646 sensorimotor  $\mu$ -rhythm. *Brain Stimulat* 2020;13:1580–7.  
647 <https://doi.org/10.1016/j.brs.2020.09.005>.

648 [80] Hussain SJ, Hayward W, Fourcand F, Zrenner C, Ziemann U, Buch ER, et al. Phase-  
649 dependent transcranial magnetic stimulation of the lesioned hemisphere is accurate after  
650 stroke. *Brain Stimulat* 2020;13:1354–7. <https://doi.org/10.1016/j.brs.2020.07.005>.

651

652

653

654 **Funding**

655 Research presented here was supported by the University of Minnesota's MnDRIVE Initiative  
656 NSF Career Grant 2143852.