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Abstract—Dynamic spectrum access (DSA) has been intro-
duced as a promising technology that allows a secondary system
to access the licensed spectrum of the primary system to improve
spectrum utilization. In this paper, we introduce Fed-MADRL
by incorporating federated learning (FL) and multi-agent deep
reinforcement learning (MADRL) to design a collaborative DSA
strategy. Our Fed-MADRL scheme employs FL to enable multiple
users to collaboratively optimize the system goal without sharing
their training data. By keeping all the training data at the user
end, FL improves the communication efficiency and strengthens
user data privacy. To further reduce the communication over-
heads, each user only shares quantized information. We provide
the convergence analysis to characterize the trade-off between
the communication efficiency and the system performance. In
particular, we show that the introduced method converges at a
rate O(1/ 1/4), where  is the number of FL iterations. To
the best of our knowledge, Fed-MADRL is the first work that
utilizes FL in DSA networks under quantized communication.
Performance evaluation results show that the introduced Fed-
MADRL method outperforms the independent learning method
and achieves comparable performance with the centralized
MADRL method, which requires much higher communication
overheads.

Index Terms—Federated learning (FL), Multi-agent deep rein-
forcement learning (MADRL), Dynamic spectrum access (DSA),
Citizens Broadband Radio Service (CBRS), 5G Beyond and 6G.

I. INTRODUCTION

With the development of new wireless technologies and
applications, the demand for wireless access has increased re-
markably in recent years. According to Cisco’s annual internet
report, the number of wireless devices is expected to grow at a
compound annual growth rate (CAGR) of 10% between 2018
and 2023, reaching 29.3 billion wireless devices by 2023 [1].
To cope with this unprecedented high demand for wireless
connections, extending the radio spectrum for commercial
use is critical for the fifth-generation (5G) mobile broadband
networks. However, the online table of frequency allocation
published by the Federal Communications Commission (FCC)
demonstrates the extremely congested frequency allocations.
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Such a crowded frequency allocation makes obtaining new
licensed spectrum bands for developing wireless applications
costly and challenging. Although the radio spectrum is a
precious resource, experimental tests, and investigations from
both academia and industries show that the spectrum uti-
lization ratio is actually very low in certain areas [2], [3].
This paradox is caused by the traditional static spectrum
management policy that allocates a fixed spectrum band to a
single system for exclusive use. The spectrum is underutilized
because unlicensed users cannot operate on the licensed spec-
trum even when licensed users are idle. Therefore, dynamic
spectrum access (DSA) has emerged as a promising technique
by adopting a hierarchical spectrum access structure with
primary users (PUs) and secondary users (SUs) [4]. To be
specific, SUs are allowed to access the licensed spectrum when
PUs are idle or receive little interference from SUs. In this
way, the spectrum can be utilized more efficiently, and thus
the spectrum utilization ratio can be increased.

Most model-dependent DSA methods translate the opera-
tions in wireless networks into tractable mathematical models
to find solutions via conventional optimization methods [5]–
[7]. However, with the proliferation of wireless applications
in 5G networks, the underlying management of spectrum
resources becomes more complicated. Finding a closed-form
solution via conventional optimization methods in such com-
plex wireless systems becomes extremely challenging if not
impossible, and thus model-dependent DSA methods cannot
be can be deployed in real-world 5G systems. To make matters
worse, even if a comprehensive and tractable mathematical
formulation could be derived, the high computational com-
plexity would render such approach impractical. Therefore,
machine learning (ML) approaches have been adopted for the
DSA problem since they can manage the spectrum resources
dynamically to adapt to an unknown wireless environment.

Model-free reinforcement learning (RL) stands out from
many ML-based DSA approaches because it can directly learn
the spectrum access policy through interactions with the un-
known DSA network [8]. Since there are multiple SUs sharing
the DSA environment, the DSA problem naturally falls into
the multi-agent reinforcement learning (MARL) setting. To
be specific, MARL involves multiple agents interacting with
each other in a shared environment, and the local environments
of these agents are correlated. Since the performance of one
agent’s policy is influenced by other agents’ policies, the
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collaborative learning usually has a better performance than
that of the independent learning. The collaborative learning
is especially important to resource allocation problems in
wireless communications because most wireless resources are
very limited and the number of competing users is large,
which makes the local environments highly correlated. A
straightforward implementation of the collaborative learning
is the centralized learning, which requires a centralized server
to collect the training data from all users to perform the
training. Therefore, recent MARL-based solutions for wireless
resource allocation problems utilize the centralized training
scheme, including DSA [9]–[12], power control [13], [14], and
interference coordination [15]. However, the training data are
usually distributed among wireless users in different locations,
and thus users have to send their collected data to the central-
ized server for training. The frequent data exchange between
a centralized server and wireless users results in high com-
munication overheads in network operations. Furthermore, the
user data sent to the server may contain sensitive information
such as user location, which may be eavesdropped by hackers
causing privacy issues. In the DSA problem, a user’s location
privacy information may leak because an attacker can infer the
location of a user from its spectrum utilization data [16], [17].
Therefore, the idea of the distributed learning has been intro-
duced where users are not required to send their private data to
the centralized server. For example, in the entirely distributed
learning scheme called independent learning, each wireless
user only optimizes its own training task without exchanging
information with each other [18]–[21]. Although independent
learning can maintain good efficiency and scalability when
handling a large number of users, the system performance and
the convergence of independent learning are much worse than
the centralized training due to a lack of cooperation among
the users.

A distributed learning framework called federated learning
(FL) is introduced to enable the collaborative learning without
collecting the training data in a centralized fashion [22]. In the
FL framework, multiple users collaboratively train a shared
ML model by only exchanging ML model parameters without
sharing their training data. In this way, all the training data
will remain at local devices ensuring data privacy. Meanwhile,
the communication efficiency can also be improved since only
model updates are exchanged between the centralized server
and local devices. Lastly, FL will enable cooperation among
user devices via the adequate model aggregation process at
the centralized server. In this work, we aim to solve the
MARL problem using the standard FL framework. Although
the FL framework was presented in the areas of wireless
communications, most of them focus on solving supervised
learning problems [23]–[25]. Studying the effect of FL on
MARL problems are more challenging because all agents have
to coordinate their actions to find the optimal policy. The
FL framework has been applied to some MARL problems
in wireless communications [26], [27], but there is lack of
theoretical analysis that studies the performance of FL on
solving a MARL problem. Furthermore, compared to most
MARL algorithms that assume each agent knows the joint
state or the joint reward information [28]–[30], our work

considers a more general MARL setting where each agent’s
state is a subset of the joint state, and each agent only
receives a local reward. The reason is that the cost of sharing
information among multiple agents in the wireless system is
high due to the extremely limited wireless communication
capacity, and thus it is impractical to assume that each DSA
agent can obtain the aggregated reward in every local training
iteration. In this work, we provide the convergence analysis of
solving this general MARL problem using the FL framework.
Meanwhile, motivated by the success of deep reinforcement
learning (DRL) in handling large state-action space in most
real-world environments, we utilize DRL in the implementa-
tion to address the continuous state space in our considered
DSA problem. By incorporating FL and multi-agent DRL, we
introduce Fed-MADRL, a distributed DSA strategy for SUs to
jointly learn a spectrum access policy.

Due to limited bandwidth in wireless systems, we include
the model quantization to reduce the communication over-
heads. To be specific, each user only shares the quantized
information with the centralized server, which is a quantized
version of its locally updated model by mapping the weights
from continuous values to discrete values. The reduced com-
munication overheads may come at the cost of degraded
system performance because the shared quantized model is not
accurate. To illustrate the cost of using the quantized informa-
tion for communication, we analyze the effect of the model
quantization in our convergence analysis to demonstrate the
trade-off between the communication efficiency and the sys-
tem performance. Existing FL works with quantization assume
“zoom in” and “zoom out” quantization, where each agent has
to send both the quantization levels and the minimal/maximal
values of the quantization range to the centralized server [31]–
[33]. It is important to note that the minimal and maximal
value of the quantization range are real numbers. Therefore,
this quantization method is not realistic because it still requires
agents to send real numbers to the centralized server in each
FL iteration. If agents are allowed to send real numbers, then
the convergence rate is the same as without quantization. On
the other hand, we utilize a practical quantization method that
only allows users to send quantized values to the centralized
server. Using the conventional FL algorithm cannot guarantee
the convergence under this quantization method. Therefore, we
introduce another step size in the global update to guarantee
the FL convergence under this practical quantization scheme.

In this paper, we study the spectrum access strategy for
SUs in the Citizens Broadband Radio Service (CBRS) system,
which utilizes the 3.5 GHz (3550-3700 MHz) band released by
the FCC for shared spectrum usage of federal and commercial
users [34]. To be specific, the CBRS system has been opened
for spectrum sharing across three tiers of users: Incumbent
Users (IUs), Priority Access License (PAL) users, and General
Authorized Access (GAA) users. IUs include federal users
such as military radars and satellite ground stations, which
are the highest tiers and should be protected from possible
interference from the lower tiers such as PAL or GAA users.
The second tier PAL users are commercial users that are
protected from the interference caused by GAA users. PALs
are licensed through on spectrum auction, and each PAL
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consists of a 10 MHz channel for a 10-year term. Finally, the
lowest tier GAA users must not cause harmful interference to
IUs or PAL users and should tolerate the interference from
them. According to the FCC, an automated frequency coor-
dinator called Spectrum Access System (SAS) will manage
the operations among users from the above mentioned three
tiers through the assistance from an Environmental Sensing
Capability (ESC) which is a sensor network that detects the
transmissions of IUs. Therefore, although GAA users do not
need to purchase the license for using the CBRS spectrum,
they are required to register with the SAS. GAA users have to
send spectrum access requests to the SAS before accessing the
CBRS band. In this work, we focus on designing the spectrum
access algorithm for GAA users.

The main contributions of this work are as follows: 1)
We introduced a novel Fed-MADRL based DSA method that
enables collaborative spectrum sharing without requiring users
to share their access histories, significantly decreasing the
communication overheads and ensuring user privacy. To the
best of our knowledge, our work is the first study that utilizes
FL in the DRL-based DSA strategies while taking quantized
communication into account. 2) Convergence analysis of the
Fed-MADRL based DSA algorithm is provided to characterize
the trade-off between communication efficiency and system
performance. Compared to “zoom in” and “zoom out” quan-
tization in existing FL works, we utilize a more practical
quantization method that only allows users to send quantized
values to the centralized server. 3) Extensive simulation results
show that the Fed-MADRL based DSA method outperforms
the independent learning method and achieves comparable
performance with the centralized MADRL method, where the
performance is evaluated in a realistic DSA scenario of the
CBRS system. Furthermore, we utilize an computationally
efficient DRL structure to address the continuous state space
and partially observable environment in the DSA problem.

The rest of this paper is organized as follows. The sys-
tem model is described in Section II. The MARL problem
formulation is detailed in Section III. The federated training
algorithm is explained in Section IV. The convergence analysis
is provided in Section V. Simulation results are provided in
Section VI. Conclusions are drawn in Section VI. All the
important mathematical notations in this paper are listed in
Table I

II. SYSTEM MODEL

In this section, we describe the DSA problem in the CBRS
system. This article focuses on designing the spectrum access
strategies for GAA users to utilize the spectrum resources
efficiently. Assume that there are # GAA users sharing "

wireless channels, where 1, · · · , # represent the index set of
GAA users and 1, · · · , " represent the index set of wireless
channels. Most of the literature simplify a GAA user as a
node in a graph and design the spectrum access algorithm
using graph theory [35]–[37], so the quality-of-service (QoS)
of the underlying GAA system cannot be considered. On the
other hand, we use the data rate as the QoS of each GAA user
and design the spectrum access strategies that maximize the

TABLE I: List of notations

Notation Definition
# Number of agents (GAA users)
" Number of channels
B= [C ] State of agent = at time C
0= [C ] Action of agent = at time C
A= [C ] Reward of agent = at time C
>= [C ] Observation of agent = at time C
B [C ] Joint state at time C
0 [C ] Joint action at time C
A [C ] Joint reward at time C
W Discount factor of RL
%= Transmit power of user =
Γ= SNR gap of user =
ℎ
I,=
< [C ] Channel gain between user I’s transmitter and user =’s

receiver on channel < at time C
@< [C ] Activity of channel < at time C
#< [C ] Noise on channel < at time C
SINR=

< [C ] SINR of user = on channel < at time C
�< Bandwidth of channel <
2=< [C ] Data rate of user = on channel < at time C
2=< [C ] Throughput of user = on channel < until time C
U Throughput calculation factor <
_ entropy regularization parameter
) Time horizon in each local update iteration
 Number of global update iterations
g Number of local update iterations
\ Shared policy network parameters
\= Local policy network parameters of agent =
5 ( ·) Joint value function
5 = ( ·) Local value function of agent =
[ Local learning rate
V Global learning rate
& ( ·) Quantization function
1 Quantization bits
Δ Quantization step size
! Lipschitz constant of value function
. Noise of policy gradient
/ Upper-bound of policy gradient

Fig. 1: The CBRS system model.

average data rate of all GAA users. Since this paper focuses
on studying the performance gain of using FL to solve the
DSA problem, we use a relatively simple GAA system model
that each GAA user represents a cellular system consisting
of a base station and a user equipment (UE) without loss of
generality. This work considers downlink transmissions since
the UE may not have enough computational power to run the
DRL algorithm. Without loss of generality, a GAA user is
assumed to be able to access at most one channel at any given
time. Accordingly, a one-hot vector 0= [C] ∈ {0, 1}" can be
used to denote the index of the accessed channel of GAA
user = at time C. Specifically, if GAA user = accesses channel
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< at time C, 0= [C] = X<, where X< is an "-dimensional binary
vector whose <th element is equal to 1. It is important to
note that GAA users do not receive interference protection
from the SAS, so they may interfere with each other if
multiple GAA users access the same channel simultaneously.
The corresponding data rate of GAA user = on channel < at
time C can be characterized as

2=< [C] = �< log2

(
1 + SINR=< [C]

Γ=

)
, (1)

where

SINR=< [C] =
1(0= [C] = X<)%= ·

��ℎ=,=< [C]��2
#∑

I=1,I≠=
1(0I [C] = X<)%I ·

��ℎI,=< [C]��2 + #< [C] ,
(2)

�< is the bandwidth of channel <, %= and %I are transmit
power of GAA user = and GAA user I, respectively, 1(·)
is an indicator function, ℎ=,=< [C] is the channel gain of the
desired link between user =’s transmitter and receiver at time
C, ℎI,=< [C] is the channel gain of the interference link between
user I’s transmitter and user =’s receiver at time C, #< [C] is
the noise on channel < at time C, and Γ= is the SNR gap
for the corresponding modulation and coding strategy (MCS)
adopted at user =. The SNR gap is an accurate approximation
that provides the required SNR for a given modulation and
coding strategy to achieve a given target error performance
[38]. From the interference term in (2), it can be observed
that the data rate of each GAA user on a channel depends
on other GAA users that transmit on the same channel. It is
important to note that the data rate of GAA users also depend
on the activities of higher tier users. According to the spectrum
management rules in the CBRS system, a GAA user has to
send spectrum access request to the SAS, and the SAS ensures
that a GAA user cannot access a channel that is utilized by IUs
or PAL users. The channel availability state, @< [C] ∈ {0, 1}, is
used to denote the existence of IUs and PAL users on channel
< at time C. If @< [C] equals to 0, then GAA users cannot
access channel < because IUs or PAL users are using channel
< (channel < is not available). On the other hand, if @< [C]
is equal to 1, channel < is available meaning GAA users are
allowed to access channel <. According to spectrum request
actions of GAA users and the spectrum coordination by the
SAS, we define the reward of GAA user = at time C as the
obtained data rate, which is written as

A= [C] =
"∑
<=1

@< [C]2=< [C] . (3)

Note that the received reward is zero if GAA user = sends a
spectrum access request to channel < but it is rejected by the
SAS.

In many real-world applications, it would be impossible
for an agent to perfectly observe the environment and obtain
complete state information, so an agent would only receives a
partial observation from the environment. We assume that each
GAA user utilizes its throughput on channels to decide which

channel to transmit in the current time slot. Accordingly, the
observation received by GAA user = at time C is defined as

>= [C] =
(
2=< [C − 1]

)
,∀< ∈ M, (4)

where 2=< [C − 1] represents the obtained throughput of user =
on channel < until time C − 1, which is defined as

2=< [C] = U · 2=< [C − 1] + (1 − U) · 2=< [C], (5)

where U is between 0 and 1. Since a GAA user’s observation
is defined as the user throughput, it is affected by the spectrum
access behaviors of the higher tier users and other GAA users.

III. MARL PROBLEM FORMULATION

We formulate the DSA problem in the CBRS system as
MARL problem where each GAA user is equipped with an
RL agent to make its spectrum access decision. MARL is
a challenging problem because both the local observation
and the local reward received by each agent are influenced
by other agents’ actions. In other words, an agent not only
interacts with the environment but also interacts with other
agents, giving rise to a non-stationary environment from each
local agent’s viewpoint. To be specific, MARL is characterized
by # tuples (S=,A=,T =, '=,Ω=,O=, W)=∈# , where # is
the number of agents, S= is the state space of agent =,
A= is the action space of agent =, Ω= is the observation
space of agent =, and W ∈ [0, 1] is the discount factor. At
time C, the state of agent = is B= [C] ∈ S=, the observa-
tion of agent = is >= [C] ∈ Ω=, the action of agent = is
0= [C] ∈ A=, and the reward of agent = is A= [C]. Note that
T = is the state transition probability of agent = providing
Pr (B= [C + 1] |B= [C], 0= [C]), O= is the observation probability
of agent = providing Pr (>= [C + 1] |B= [C + 1], 0= [C]), '= is the
reward function of agent = providing A= [C] = '= (B= [C], 0= [C]).
In addition, we denote S = ∪#

==1S
= as the joint state space,

A = ∪#
==1A

= as the joint action space, and ' = 1
#

∑#
==1 '

=

as the joint reward function providing A [C] = ' (B[C], 0[C]) =
1
#

∑#
==1 '

= (B= [C], 0= [C]). The goal of MARL is to optimize
the cumulative discounted joint reward, which is defined as∑∞
C=0 W

CA [C].
Most MARL algorithms assume a joint reward received

by all agents, or individual rewards shared among agents.
However, this assumption may not be realistic in many real-
world applications due to communication overhead constraints
and privacy/security issues. In this paper, we have each agent
updates its policy to achieve the goal of maximizing its long-
term local reward instead of sharing its local observations
or rewards with others. We leverage FL to jointly learn a
shared policy that maximizes the joint reward by combining
all agents’ local policies.

We now formulate the DSA problem using the DRL frame-
work. To be specific, a GAA user = has a DRL agent whose
policy network parameters \= determines its spectrum access
decisions based on its observations. The local state of an agent
= at time C can be written as

B= [C] =
(
%=, Γ=, ℎ=,=< [C], %I , ℎI,=< [C], 0I [C], #< [C]

)
,

∀< ∈ M,∀I ∈ N \ =.
(6)
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The joint state at time C can be written as

B[C] =
(
%=, Γ=, ℎI,=< [C], 0I [C], #< [C]

)
,∀=, I ∈ N ,∀< ∈ M .

(7)
It can be observed that the joint state space is the union of all
agents’ local states.

IV. FEDERATED TRAINING ALGORITHM FOR DSA

To decrease the communication overheads and increase data
privacy, we utilize FL to enable collaborative DSA strategy
without requiring GAA users to share their private data.

A. Distributed Federated Policy Gradient

We define agent =’s policy c\= is obtained from a policy
network with parameters \=, where c\= is a mapping function
from agent =’s observations to agent =’s action decision. Let
+= be the value function of the agent =. Given the agent =’s
initial state B=

8
and the policy network parameters \=, we have

+=
(
B=8 , \

=
)
=

E

[ ∞∑
C=0

WC'= (B= [C], 0= [C]) | B= [0] = B=8 , 0= [C] ∼ cc\= (B= [C])
]
.

(8)

If the agent =’s initial state follows a distribution d=, then the
agent =’s value function becomes a function of \=, which is
written as

5 = (\=) =

E

[ ∞∑
C=0

WC'= (B= [C], 0= [C])
����� B= [0] ∼ d=, 0= [C] ∼ c\= (B= [C])

]
.

(9)

Our goal is to let all agents jointly learn a common policy that
can perform well across their environments. To be specific, all
agent adopts the same policy to map its local state to its local
action, and we utilize FL to enable agents to learn a common
policy that maximizes the system goal without sharing each
agent’s local state, local action, and local reward information.
Given that all agents use the same policy c\ and each agent =’s
initial state follows a distribution d=, the joint value function
can be written as

5 (\) = 1
#

#∑
==1

5 = (\). (10)

Accordingly, the goal is to find the parameters \∗ of the joint
policy c\∗ that 5 (\) is maximized:

\∗ = argmax
\

5 (\). (11)

We utilized the distributed federated policy gradient as the
training algorithm, which is formally stated in Algorithm 1.
To be specific, each agent first downloads a shared policy
network from the centralized controller to set its local policy
network. All agents collect their training data by interacting
with the environment. To be specific, in the DSA problem,
each agent takes the spectrum request access action based on
its observations, and then it will receive a reward from the

environment. The reward and the observation of each agent
are the user data rate and the user throughput, respectively.
After collecting ) training data in the environment, each agent
updates its policy network using the policy gradient method
[39]. We let each agent collect data and update its policy
network for g iterations, and then each agent uploads its
policy network to the centralized controller. It is important
to note that only the policy network is uploaded to the
centralized controller, whereas the local training data are kept
in each agent. Lastly, the centralized controller aggregates the
information of all received local policy networks to update the
shared policy network. Then the shared policy network will be
downloaded by each local agent again to start a new federated
learning cycle. For the DSA problem in the CBRS system,
the SAS and GAA users serve as the centralized controller
and agents in Algorithm 1.

Algorithm 1 Distributed federated policy gradient.

1: Initialize the local learning rate [ for each agent =, the
global learning rate V, the quantization function & (·), and
the shared policy network \0.

2: for : = 1, · · · ,  do
3: Each agent = downloads the shared policy network to

set as its policy network:
\=
:−1,0 = \:−1,∀= ∈ N .

4: for 8 = 1, · · · , g do
5: Each user = empties its memory buffer �=.
6: for C ′ = 1, · · · , ) do
7: C = g) (: − 1) + ) (8 − 1) + C ′
8: Each agent = receives observation >= [C] from the

environment.
9: Each agent = determines action 0= [C] based on its

policy c\:−1,8−1 .
10: Each agent receives reward A= [C] from the envi-

ronment after executing 0= [C].
11: Each agent = stores (>= [C], 0= [C], A= [C]) in its

memory buffer �=.
12: end for
13: Each agent = computes the policy gradient to update

its policy network as follows:

\=:−1,8 = \
=
:−1,8−1 + [∇ 5̃

= (\=:−1,8−1, �
=). (12)

14: end for
15: Each agent = uploads a quantized version of its policy

network &
(
\=
:−1,g

)
.

16: The centralized controller updates the shared policy
network as follows:

\: = (1 − V) · \:−1 + V ·
1
#

#∑
==1

&

(
\=:−1,g

)
. (13)

17: end for

To further reduce the communication overheads caused by
uploading local policy networks, each agent uploads a quan-
tized version of its policy network using random quantization
in [40]. To be specific, we let the weights of policy networks
within a finite interval [;, D]. The quantization process first
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divides this interval into � uniformly spaced bins [F0, F1),
· · · , [F�−1, F�), where F@ − F@−1 = Δ for @ = 1, · · · , �.
Given a weight G ∈ [F@−1, F@), the quantization function
&(G) randomly choose F@−1 or F@ according to the following
distribution:

&(G) =
{
F@−1 , with probability 1 − ?,
F@ , with probability ?,

(14)

where ? = (G − F@−1)/Δ. By applying this quantization
function to all weights of the policy network, we can obtain
a quantized policy network. For a quantization process with
� uniformly spaced bins, we need 1 = log2 (� + 1) bits to
represent F0, · · · , F�.

B. Applying DRL to DSA

DRL aims to solve the large state space problem in
traditional reinforcement learning. Conventional RL tech-
niques such as Q-learning have limited applications with low-
dimensional state spaces. DRL utilizes a deep neural network
as a function approximator to accelerate the convergence time
when the state space is large [41]. In our considered DSA
problem, the continuous state results in infinite state space, so
we apply DRL as the underlying policy network. However,
deploying DRL techniques in DSA systems still has many
practical challenges. First, the mobile wireless environments
are non-stationary by nature due to many factors, such as
user locations, fading, and user traffics. Second, obtaining
environment information from the DSA system imposes sig-
nalling overhead on network operations. Under these practical
issues, the wireless environment of the DSA system is usually
non-stationary and partially observable with limited effective
training data.

In partially observable environments, an observation at a
single time step may not contain sufficient information to
predict future rewards and future states. Therefore, a policy
that depends on observation histories has better performance
in Partially Observable Markov Decision Process (POMDP)
environments. A recurrent neural network (RNN) is a powerful
neural network structure that can learn the temporal behavior
for a time sequence. To deal with the partial observability
in many real-world environments, RNNs can be utilized in
the DRL to capture the temporal correlation of observation
sequences, which is referred to as the deep recurrent Q-
network (DRQN) [42]. Even though DRQN is a powerful
machine learning tool, it faces serious issues related to training
due to two reasons: 1) The kernel of DRQN, the RNN, has
issues with vanishing and exploding gradients that make the
underlying training computationally inefficient [43]; and 2)
DRQN requires a large amount of training data to ensure the
learning agent converges to an appropriate policy. Therefore,
the difficulties in training DRQN prevent it from being widely
adopted in real-world applications [44].

1) Echo State Network: In light of the training challenges
of DRQNs, we utilize a special type of RNNs, echo state
networks (ESNs), to reduce the training time and the required
training data [45]. Given a sequence of inputs (G [1], · · · , G [C]),

the update equations of RNN/ESN have the same forms, which
are written as:

ℎ[C] = tanh (,inG [C] +,recℎ[C − 1]) ,
H[C] = ,outℎ[C],

(15)

where H[C] is the output at time C, ℎ[C] is the hidden state
at time C, ,in is the input weights, ,rec is the recurrent
weights, and ,out is the output weights. The hidden state ℎ[C]
represents a summary of the past sequence of inputs up to
C, and we set the initial hidden state ℎ[0] = 0. The standard
RNN training, backpropagation through time (BPTT), unfolds
the network in time into a computational graph that has a
repetitive structure to train all weights. On the other hand,
ESNs simplify the underlying RNNs training by only training
the output weights while leaving input weights and recurrent
weights untrained. Specifically, the input weights and the
recurrent weights of ESNs are initialized randomly according
to the constraints specified by the Echo State Property [46],
and then only the output weights of ESNs are trained to
accelerate the training speed. The main idea of ESNs is to
generate a large reservoir that contains the necessary summary
of past input sequences for predicting targets [47]. The learned
output weights determine the best linear combination of the
reservoir’s state and the input signal to perform the desired
task. This approach largely reduces the training time because
only the output weights are trained. Existing research shows
that ESNs can achieve comparable performance with RNNs,
especially in some applications requiring fast learning [48].

Fig. 2: Fed-MADRL based method using ESN-based policy
networks.

2) ESN-based Policy Gradient: To handle the partially
observable environment and to accelerate the training, we
utilize ESN as the underlying neural network structure of the
policy network. Specifically, the softmax function is used as
the last activation function of an ESN to generate a probability
distribution over the action space. For each agent =, we
let the input sequence of ESN be the observation history
>=≤C = (>= [1], · · · , >= [C]), and the parameters of the ESN-
based policy network of agent = are \= =

(
,=

in,,
=
rec,,

=
out

)
. The
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update equations of the ESN-based policy network is written
as:

H= [C] = ,=
outℎ

= [C],
ℎ= [C] = tanh

(
,=

in>
= [C] +,=

recℎ
= [C − 1]

)
,

(16)

where the dimension of H= [C] equals to the action space.
Accordingly, the resulting distribution over actions at time C
is given as

c\=
(
0 |>=≤C

)
=

eH
=
0 [C ]∑

0′∈A
eH

=
0′ [C ]

, ∀0 ∈ A=, (17)

where H=0 [C] is the 0th element of H= [C].
From Algorithm 1, the data collected from agent =’s en-

vironment are (>= [C], 0= [C], A= [C]) from C = 1 to C = ) .
According to the policy gradient algorithm [39], the loss
function for training the ESN-based policy is written as

argmin
, =

out

)∑
C=1

(
log c\=

(
0= [C] |>=≤C

)
·
(
C∑
C′=1

WC
′−1A= [C ′]

))
. (18)

Due to the exponential scaling of the softmax function, policies
may become near deterministic quickly resulting in slow
convergence. A common approach is to incorporate entropy
regularization into the objective of the policy network [49].
To be specific, we define the entropy-regularized loss function
as

argmin
, =

out

)∑
C=1

(
log c\=

(
0= [C] |>=≤C

)
·
(
C∑
C′=1

WC
′−1A= [C ′]

))
+

)∑
C=1

(
_ ·

∑
0∈A

c\=
(
0 |>=≤C

)
· log c\=

(
0 |>=≤C

))
,

(19)

where _ is a regularization parameter.
The system model of the introduced Fed-MADRL based

method using ESN-based policy networks is shown in Fig.
2. Each agent first downloads a shared ESN-based policy
network from the centralized controller, and then each agent
updates the ESN-based policy network locally. Next, each
agent only uploads the output weights of the ESN-based policy
to the centralized controller because only weights of the ESN-
based policy network are trainable. Therefore, the ESN-based
policy network is suitable for the FL framework because the
communication overheads can be largely decreased.

V. CONVERGENCE ANALYSIS

The convergence analysis is conducted under the following
assumptions:

Assumption 1. Each agent = can estimate the unbiased policy
gradient ∇ 5 = (\)+. , where . is the random noise with E [. ] =
0 and Var[. ] = f2.

Assumption 2. Each agent =’s value function 5 = (\) is Lips-
chitz smooth with constant !:

‖∇ 5 = (\1) − ∇ 5 = (\2)‖ ≤ ! ‖\1 − \2‖ .

Assumption 3. Each agent =’s policy gradient ∇ 5 = (\) is
upper-bounded: ‖∇ 5 = (\)‖ ≤ / .

Under Assumption 1, ∇ 5̃ =
(
\=
:,8−1, �

=
)
= ∇ 5 =

(
\=
:,8−1

)
+

.=
:,8−1, so we can represent the local policy network’s update

in (12) as

\=:,8 = \
=
:,8−1 + [

(
∇ 5 =

(
\=:,8−1

)
+ .=:,8−1

)
, ∀8 ∈ {1, · · · , g},

(20)
where

\=:,0 = \: , (21)

8 is the iteration of local policy update, : is the iteration of FL
update, \=

:,8
is agent =’s local policy network at local iteration

8 and FL iteration : , \: is the shared policy network at FL
iteration : , [ is the local learning rate, V is the global learning
rate, and g is the number of local policy updates. After every
g local policy update, the local policy networks are combined
as a single policy network as follows:

\: = (1− V) · \:−1 + V ·
1
#

#∑
=′=1

&

(
\=
′

:−1,g

)
, ∀: ∈ {1, · · · ,  },

(22)
where  is the number of FL updates and \0 is randomly
initialized. If g = 1, then the local policy networks are
combined after every local policy update, so the local policy
networks are the same as the shared policy network, which is
written as

\: = (1 − V)\:−1 +
V

#

#∑
=′=1

&

(
\:−1 + [

(
∇ 5 =′

(
\:−1

)
+ .=:−1

))
.

(23)
From (14), the quantized value of \=

:,g
is represented as

&

(
\=
:,g

)
and the quantization noise is

n=:,g = \
=
:,g −&

(
\=:,g

)
, (24)

where



n=:,g


 ≤ Δ and E

[
n=
:,g

]
= 0. It is important to

note that this quantization noise will cause oscillation in the
global update at the centralized server. Therefore, we introduce
another step size to mitigate the oscillation in the global update
to achieve the convergence of FL under quantization.

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold. Let
the sequence {\: }, for all : ∈ [0,  − 1] be generated by
Algorithm 1 and let 5 ∗ = max

\
5 (\). Then we have

min
:∈[0, −1]

E

[


∇ 5 (
\:

)


2
]
≤
5 ∗ − E

[
5

(
\0

)]
V[g 

+ ![g/ (/ + f)

+ !V ([g(/ + f) + Δ)
2

2[g
.

(25)
where the expectation is taken with respect to the quantization.

Proof. See Appendix A. �

Remark 1. By letting V = O(1/
√
 ) and [ = O(1/ 1/4)

and plugging them into (25), we can guarantee that the
shared policy network converges to the stationary point at
a rate of O(1/ 1

4 ). Furthermore, we can characterize the
quantization effect on the convergence upper-bound. If the
number of quantization bits is smaller, then Δ is larger and
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the upper-bound of (25) is larger. Δ equals to 0 if local policy
networks can be uploaded to the centralized server without
quantization. This is the trade-off between communication
efficiency and system performance. By using fewer bits in the
quantization, the communication efficiency improves; however,
the system performance may become worse because the output
shared policy network may be far from the stationary point.
Furthermore, it is important to note that the convergence of
FL under quantization (i.e., Δ > 0) cannot be achieved by
simply taking the average of local policies (i.e., V = 1) due to
the last term in the upper-bound of (25). On the other hand,
when there is no quantized communication (i.e., Δ = 0), the
convergence of FL can be achieved at a rate of O(1/

√
 )

when [ = O(1/
√
 ) and V = 1.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

In this section, we evaluate the introduced Fed-MADRL
method for the DSA problem in the CBRS system through
simulations. There are # = 8 GAA users and " = 4 channels
in a 500m×500m simulation area, where each channel is
�< = 10 MHz. The noise spectral density is set to −164
dBm/Hz. We set U = 0.01 to calculate the average throughput
of each user. Each GAA user can request data transmission
on one of the channels, but the final channel allocation is
determined by the SAS. In other words, if a GAA user requests
a wireless channel that is currently occupied by IUs or PAL
users, then it cannot access that wireless channel. For each
GAA user =, the distance of the transmitter and the receiver
is randomly chosen between 50m to 100m, and the transmit
power is set to 50mW. To generate channel gains of desired
links and interference links, we set the path loss model as
41 + 22.7 log10 (3) dB, where 3 is the distance between a
transmitter and a receiver in meter. The small-scale channel
gain follows a Rician distribution, where the ratio of the
average power in the line-of-sight path to that in the non-line-
of-sight paths is set as 0.8. The dynamics of each channel
availability state are modeled as a two-state Markov chain,
which is the most widely used model for primary radio user
activities. The transition probability of the two-state Markov
chain on channel < can be denoted as

(
?00
< , ?

01
< , ?

10
< , ?

11
<

)
,

where ?
8 9
< represents the probability of the availability of

channel < in the next time slot is 9 given that the current
availability state of channel < is 8, and thus ?00

< + ?01
< = 1 and

?10
< + ?11

< = 1. For each channel <, we randomly choose ?00
<

and ?11
< from a uniform distribution over [0.8, 1] and [0, 0.2],

respectively. Note that our method does not have to know the
transition probabilities in priori because we use the model-free
RL method.

B. Training Details

We adopt online learning to train the underlying policy
networks. To be specific, each GAA user takes channel access
actions based on the randomly initialized ESN-based policy
network and then utilizes the collected training data to train
itself on the fly. All ESN-based policy networks use ESNs
with 32 neurons. In each local update iteration, each GAA user

updates the output weights of its ESN-based policy network
when collecting the sample for ) = 50 time slots. After g local
update iterations, each GAA user uploads the output weights
of its ESN-based policy network to the centralized controller in
the SAS. The centralized controller calculates a shared ESN-
based policy network by aggregating the information from all
local ESN-based policy networks. Accordingly, g represents
the communication delay between the centralized controller
and the local agents. Since we stop the simulation when each
agent collects 50000 training samples, the number of global
update iterations is  = 50000/() · g) = 1000/g. The learning
rates of the local update and the global update are set to
[ = 0.8 and V = 0.7, respectively. For the model quantization,
we use 1 = 8 to represent each quantized weight of the ESN-
based policy network. Meanwhile, we let the discount factor
W = 0.9 and the entropy regularization parameter _ = 0.01.

C. Results

We compare with two baselines: the centralized MADRL
method and the independent learning method. On the other
hand, we use g = 1 and g = 5 for our Fed-MADRL method.
In the centralized MADRL method, each agent first sends its
training data and policy network to the centralized controller,
and the centralized controller trains all policy networks us-
ing the training data from all agents. Then the centralized
controller sends the updated policy networks back to agents.
Since this centralized MADRL method utilizes the information
from all agents during training, it can provide a reasonable
performance upper-bound of MADRL-based methods. The
independent learning method represents that each agent aims
to optimize its local reward without sharing information with
other agents. We run all our experiments with 100 random
seeds, which varied the user geometry and the neural network
initialization. The reported curves represent an average over
these 100 random seeds, and the shaded areas show the 95%
confidence interval.

Fig. 3: The system throughput versus time for the centralized
MADRL method, the Fed-MADRL method (g = 1, g = 5),
and the independent learning method.

The curves of the system throughput without quantization
are shown in Fig. 3. As expected, the centralized MADRL
method achieves the best system performance because it
utilizes the information from all users. The Fed-MADRL
method with g = 1 has the second-best performance since
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it performs information aggregation after each local policy
update. However, the frequent model exchange between the
centralized controller and users cause unbearable communica-
tion overheads for the DSA network. On the other hand, Fed-
MADRL with g = 5 achieves comparable performance while
maintaining reasonable communication overheads between the
centralized controller and the local agents. Lastly, the indepen-
dent learning method has the worst system performance due
to no collaboration among agents.

Fig. 4: The effect of quantization.

To further decrease the communication overheads, we only
allow the quantized values of policy networks’ weights can
be exchanged between the centralized controller and GAA
users. The effects of random quantization on the Fed-MADRL
method are shown in Fig. 4. We can observe that the perfor-
mance after random quantization is almost no different. Since a
float number is usually represented by 16 bits or 32 bits and we
only use 8 bits to represent a single value, the communication
overheads can be decreased 2 times or 3 times.

Fig. 5: The effect of the number of quantization bits.

Fig. 5 shows the curves of the system throughput under the
different number of quantization bits. Although using fewer
quantization bits is more communication-efficient, we can
observe that the system performance degrades. The reason is
that using fewer bits for quantization reduces the accuracy of
uploaded policy networks, and thus it becomes more difficult
to achieve the stationary point as shown in Theorem 1.
Therefore, there is a trade-off between system performance
and communication efficiency.

VII. CONCLUSION

In this work, we introduce a novel collaborative DSA
strategy. To reduce communication overhead and improve data
privacy, we utilize FL to design a distributed DSA strategy
called Fed-MADRL. FL enables users to learn a joint policy
that maximizes the system goal without requiring users to
share their private data. We conduct the theoretical analysis
to show the trade-off between communication efficiency and
system performance. Experimental results show that the intro-
duced Fed-MADRL can achieve comparable performance with
the centralized MADRL method which requires global infor-
mation showing the great promise of applying Fed-MADRL
in Beyond 5G and 6G networks.

APPENDIX A
PROOF OF THEOREM 1

From (20) and (21), it is easily seen that

\=:,8 = \: + [
8∑
9=1

(
∇ 5 =

(
\=:, 9−1

)
+ .=:, 9−1

)
, ∀8 ∈ {1, · · · , g}.

(26)
By plugging (24) into (22), we have

\: = (1 − V) · \:−1 +
V

#

#∑
==1

\=:−1,g −
V

#

#∑
==1

n=:−1,g . (27)

Then we plug (26) into (27) to obtain

\: = (1 − V)\:−1 + V\:−1 −
V

#

#∑
==1

n=:−1,g

+ V[
#

#∑
==1

g∑
9=1

(
∇ 5 =

(
\=:−1, 9−1

)
+ #=:−1, 9−1

)
= \:−1

− V

#

#∑
==1

n=:−1,g +
V[

#

#∑
==1

g∑
9=1

(
∇ 5 = (\=:−1, 9−1) + .

=
:−1, 9−1

)
.

(28)
Since ∇ 5 = (\), n=

:,g
, and E

[
.=
:−1, 9−1

]
are upper-bounded,

we can obtain

E
[


\: − \:−1




] ≤ V[g(/ + f) + VΔ (29)

and

E
[


\=:,8 − \:


] = E 







[ ©­«
8∑
9=1
∇ 5 =

(
\=:, 9−1

)
+ #=:, 9−1

ª®¬









≤ [8(/ + f) ≤ [g(/ + f).

(30)

We can rewrite (28) as

\: = \:−1 + V[g∇ 5
(
\:−1

)
− V

#

#∑
==1

n=:−1,g

+ V
#

#∑
==1

©­«
g∑
9=1
[

(
∇ 5 = (\=:−1, 9−1) + .

=
:−1, 9−1 − ∇ 5

= (\:−1)
)ª®¬
(31)
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According to the Lipschitz smooth assumption, we have:

5 =
(
\:

)
≥ 5 =

(
\:−1

)
+

〈
∇ 5 =

(
\:−1

)
, \: − \:−1

〉
− !

2




\: − \:−1




2
.

(32)

By plugging (31) into (32), we can obtain

5 =
(
\:

)
≥ 5 =

(
\:−1

)
+

〈
∇ 5 =

(
\:−1

)
, V[g∇ 5

(
\:−1

)〉
+ �= + �= + �= + �,

(33)

where

�= =

〈
∇ 5 = (\:−1),

V[

#

#∑
==1

g∑
9=1

(
∇ 5 = (\=:−1, 9−1) − ∇ 5

= (\:−1)
)〉

(34)

�= =

〈
∇ 5 =

(
\:−1

)
,− V
#

#∑
==1

n=:−1,g

〉
(35)

�= =

〈
∇ 5 =

(
\:−1

)
,
V[

#

#∑
==1

g∑
9=1
.=:−1, 9−1

〉
(36)

� = −!
2




\: − \:−1




2
. (37)

Since E
[
n=
:−1,g

]
and E

[
.=
:−1, 9−1

]
equal to zeros, �= and �=

can be eliminated by taking expectation on both sides of (33)
as follows:

E
[
5 =

(
\:

)]
≥ E

[
5 =

(
\:−1

)]
+ E [�=] + E [�]

+ V[gE
[〈
∇ 5 =

(
\:−1

)
,∇ 5

(
\:−1

)〉]
.

(38)

Using the Lipschitz smooth assumption and (30), we have

E
[


∇ 5 = (\=:−1, 9−1) − ∇ 5

= (\:−1)



] ≤ !E [


\=:−1, 9−1 − \:−1




]
≤ ![g(/ + f).

(39)
We use the Cauchy–Schwarz inequality to upper bound |�= |
as follows:

E [|�= |] ≤


∇ 5 = (\:−1)



E 







 V[# #∑
==1

g∑
9=1

(
∇ 5 = (\=:−1, 9−1) − ∇ 5

= (\:−1)
)








≤ / · V[

#
· # · g · ![g(/ + f) = ![2g2/ (/ + f)V.

(40)
Thus we have

1
#

#∑
==1
E [�=] ≥ −![2g2/ (/ + f)V. (41)

From (29), we can upper bound E [�] as

E [�] ≥ −! (V[g(/ + f) + VΔ)
2

2
. (42)

Summing up both sides of (38) over =, we can obtain

E
[
5

(
\:

)]
≥ E

[
5

(
\:−1

)]
+ 1
#

#∑
==1
E [�=] + E [�]

+ V[g
#

#∑
==1
E

[〈
∇ 5 =

(
\:−1

)
,∇ 5

(
\:−1

)〉]
= E

[
5

(
\:−1

)]
+ 1
#

#∑
==1
E [�=] + E [�] + V[gE

[〈
∇ 5

(
\:−1

)
,∇ 5

(
\:−1

)〉]
.

(43)
By using the upper-bounds in (41) and (42), we have

V[gE

[


∇ 5 (
\:−1

)


2
]
≤ E

[
5

(
\:

)]
− E

[
5

(
\:−1

)]
+ ![2g2/ (/ + f)V + ! (V[g(/ + f) + VΔ)

2

2
.

(44)

From (44), we can obtain∑ −1
:=0 E

[


∇ 5 (
\:

)


2
]

 
≤
E

[
5

(
\ 

)]
− E

[
5

(
\0

)]
V[g 
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