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Abstract

Let G be a simple graph with maximum degree A(G)
and chromatic index y’(G). A classical result of Vizing
shows that either y’'(G) = A(G) or ¥'(G) = A(G) + 1.
A simple graph G is called edge-A-critical if G is
connected, ¥'(G) = A(G) + 1 and x'(G — e) = A(G)
for every e € E(G). Let G be an n-vertex edge-A-critical
graph. Vizing conjectured that a (G), the independence
number of G, is at most % The current best result on
this conjecture, shown by Woodall, is a(G) < 3?" We
show that for any given ¢ € (0, 1), there exist positive
constants dy(¢) and Dy(¢) such that if G is an
n-vertex edge-A-critical graph with minimum degree at
least dy and maximum degree at least D,, then
a(G) < (% + s)n. In particular, we show that if G is
an n-vertex edge-A-critical graph with minimum degree
at least d and A(G) > (d + 1)*5¢+115 then

mn ifd =3,

12

4n .
a(G) <{7 ifd=4,

d+ 2+ 3d-1)d 4n
2d + 4 + 3(d - 1)d 7
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1 | INTRODUCTION

All graphs considered in this paper are simple. Let G be a graph. We denote by V (G) and E (G)
the vertex set and edge set of G, respectively. For a vertex v € V(G), N;(v) is the set of
neighbors of v in G, and dg(v) = INg(v)! is the degree of vertex v in G. We simply write N (v)
and d(v) if G is clear. For e € E(G), G — e denotes the graph obtained from G by deleting the
edge e. Let A(G) and 6(G) be the maximum and minimum degree of G, respectively. We
reserve the symbol A for A(G) throughout this paper. The independence number of G, denoted
a(G), is the largest size of an independent set in G.

An edge k-coloring of G is a mapping ¢ from E(G) to the set of integers [1, k] := {1, ..., k},
called colors, such that no adjacent edges receive the same color under ¢. The chromatic index
of G, denoted x'(G), is defined to be the smallest integer k so that G has an edge k-coloring. We
denote by C*(G) the set of all edge k-colorings of G. In 1965, Vizing [9] showed that a graph of
maximum degree A has chromatic index either A or A + 1. If y'(G) = A, then G is said to be
of class 1; otherwise, it is said to be of class 2. Holyer [4] showed that it is NP-complete to
determine whether an arbitrary graph is of class 1. Similar to vertex coloring, it is essential to
edge-color the “core” part of a graph and then extend the coloring to the whole graph without
increasing the total number of colors. This leads to the concept of edge-chromatic criticality.
A graph G is called edge-chromatic critical if for any proper subgraph H C G, y'(H) < x'(G).
We say G is edge-A-critical if G is edge-chromatic critical and y’(G) = A + 1. It is clear that G
is edge-A-critical if and only if G is connected with ¥'(G) = A + 1 and y'(G — e) = A, for
every e € E(G). By this definition, every class 2 graph with maximum degree A can be reduced
to an edge-A-critical graph by removing edges or vertices. Vizing conjectured that edge-A-
critical graphs have some special structural properties. In particular, he proposed the following
conjectures.

Conjecture 1.1 (Vizing's Independence Number Conjecture [10]). If G is an edge-A-critical
graph of order n, then a(G) < n/2.

Conjecture 1.2 (Vizing's 2-factor Conjecture [8]). If G is an edge-A-critical graph, then
G contains a 2-factor; that is, a 2-regular subgraph H of G with V(H) = V (G).

Conjecture 1.3 (Vizing's Average Degree Conjecture [8]). If G is an n-vertex edge-A-critical
graph, then the average degree of G is at least A — 1 + %

Partial results have been obtained for each of these conjectures. In this paper, we
investigate Vizing's Independence Number Conjecture. This conjecture was confirmed for
special graph classes including graphs with many edges such as overfull graphs by Griinewald
and Steffen [3], and n-vertex edge-A-critical graphs G with A > % by Luo and Zhao [5]. Let G
be an n-vertex edge-A-critical graph. Brinkmann et al. [1], in 2000, proved that a(G) < 2n/3;
and the upper bound is further improved when the maximum degree is between 3 and 10.
Luo and Zhao [5], in 2008, by improving the result of Brinkmann et al., showed
a(G) < (5A — 6)n/(8A — 6) < 5n/8 when A > 6. In 2009, Woodall [11] further improved
the upper bound of a(G) to 3n/5. In this paper, by using new adjacency lemmas, we obtain
the following results.
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Theorem 1.4. For any given € € (0, 1), there exist positive constants dy(e) and Dy(¢)
such that if G is an n-vertex edge-A-critical graph with minimum degree at least d, and

maximum degree at least Dy, then a(G) < (% + s)n.

3/d-1d
2d+4+3/(d-1)d
by the third inequality in the following result.

By choosing d such thatd > 19 and < g, we see that Theorem 1.4 is implied

Theorem 1.5. If G is an n-vertex edge-A-critical graph with minimum degree at least d
and A > (d + 1)*5+115 then

n ifd = 3,
12
4n .
OC(G)< 7 1fd=4,
d+ 2+ 3(d-1)d
+2+ 3 ) n<4—n if d > 19.
2d + 4 + 3(d — 1)d 7

d+2+3/(d-1)d 4 . .
When d > 19, YR ey < 7. In fact, we suspect the following might be true.

Conjecture 1.6. Let d > 2 be a positive integer. Then there exists a constant Dg
depending only on d such that if G is an n-vertex edge-A-critical graph with §(G) > d and
A > Dy, then

d+4
n
2d + 6

a(G) <

The case for d = 2 was confirmed by Woodall's result [11], and the cases for d = 3, 4 are
covered in Theorem 1.5.

It is worth mentioning that Steffen [6] showed that for every € > 0, Vizing's Independence
Number Conjecture is equivalent to its restriction on a specific set of edge-chromatic critical
graphs that have independence ratio smaller than % + ¢. In particular, the specific set of edge-

chromatic critical graphs G has vertices only of degree either A(G) — 1 or A(G). Given any ¢ > 0
and any edge-A-critical graph G, by the “Meredith extension” introduced in [6], one can construct

another edge-A-critical graph H based on G with A(H) = A(G) and 6§ (H) = A(G) — 1 such that
a(H)
IV (H)I

bound on the independence ratio of G. This is essentially different from the result in Theorem 1.4.

< % + ¢. However, the independence ratio of H does not imply any reasonable upper

The remainder of the paper is organized as follows. We introduce some edge-coloring
notation and technical lemmas in Section 2, and we prove Theorem 1.5 in Section 3.

2 | TECHNICAL LEMMAS

In this section, we list the classical Vizing's Adjacency Lemma (VAL) and some new developed
adjacency lemmas that will be used for proving Theorem 1.5.
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For an edge xy € E(G) and a given positive number g, let
op(x,y) =z € N\ {x} : d(z) > g}l

be the number of neighbors of y other than x that are of degree at least q. By the definition, it is
clear that g;(x,y) < A — 1. The case that ¢ = A gives rise to VAL.

Lemma 2.1 (Vizing's Adjacency Lemma—VAL). If G is an edge-A-critical graph, then
or(x,y) > A —d(x) + 1 for every xy € E(G).

Let G be an edge-A-critical graph, xy € E(G), and ¢ € CA(G — xy). For any v € V (G), the
set of colors present at v is ¢ (v) = {p(e) : e isincident to v}, and the set of colors missing at v is
® () = [1, A]\@(v). For a vertex-set X, let (X) = U,ex® (v). We call X g-elementary if the
sets @ (v) with v € X are pairwise disjoint.

A multifan at x with respect to edge e = xy € E(G) and coloring ¢ € CA(G —e) is a
sequence F = (x, ey, ), ..., €p, yp) with p > 1 consisting of edges ey, e, .., e, and vertices
X, Y1, ¥y, - Y, satisfying the following two conditions:

« The edges ey, e, ..., ¢, are distinct, e, = e and ¢; = xy, fori =1, ..., p.
« For every edge ¢; with 2 <i <p, there is a vertex y, with j € [1,i—1] such that

p(e) € ().

Multifans are well defined in multigraphs, but in this paper we only discuss them in simple
graphs. The following lemma shows that a multifan is elementary, and its proof can be found in
[7, Theorem 2.1].

Lemma 2.2 (Stiebitz, Scheide, Toft, and Favrholdt [7]). Let G be an edge-A-critical graph,
e1=xy, € E(G),and ¢ € CA(G — e1). Let F = (x, e1, yy, ---» ep,yp) be a multifan at x with
respect to e, and ¢. Then {x,y,,¥,, ..., yp} is p-elementary.

Let G be an edge-A-critical graph, xy € E(G), and ¢ € CA(G — xy). Note that by the edge-A-
criticality of G, p (x) N @ (y) = @. Thus @ (x), # (¥), and ¢ (x) N ¢(y) form a partition of the color
set [1, A]. Let g be a positive integer, we partition ¢ (x) N ¢ (y) by the following two sets

Ap(x,y,q9) ={a € p(x) : Ju € N(y)such that p(yu) = a and d(u) < g}, (1)

By (x,y,q) ={B € ¢(x) : 3u € N(y)such that ¢(yu) = § and d(u) > g}. (2)

Let My(x,y,q) = Ap(x,y,q9) U @(x) U @(y). We simply write A,(q), B,(q), and M,(q)
if xy is specified and clear, and we may also use Ay, By, and M, if both xy and g are specified and
clear. It is easy to see that M,(q) U B, (q) = [1, A]. We now partition N (x)\ {y} into two sets and
define ¢ (v) for any v € V(G) (when q is specified and clear) as the following:

N (x, Mp(x,y,q)) = {2 € N(x) : p(xz) € My(x,y, @)},
N (x, By(x,y,9)) ={z € N(x) : 9(x2) € B,(x,y,q)},and
ePdW) =pW) U {a € [1,A] : 3v' € N(v)so that (W) = a and d(V') < g}.
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Observe that for v € N (x),

A — lpPd )l if p(w) € ™),

, (3)
A=1-1p"W)I if (w) & ™).

g (x,v) = {

Figure 1 gives a depiction of A,(x,y,q), B,(x,, q), N(x, My(x,y,q)), N(x, B,(x, Y, q)),
and ¢*(y).
For any ¢, 1 € (0, 1), define

o= 25| @
£
i(3c5t + 12¢5 + 10cg + 4co + 1) if e < 3—0
_ e 31 5
fo=1¢ ®
— otherwise,
€
1 3co+1
Dozmax{f(s), 3CO+1,N+CO}. (7)
A2 el

Letting ¢ = (1 — €)A, in the proof of Theorem 1.5, we will show that the average degree of
some vertices of G is at least g. The following two lemmas analyze the neighborhood structures
of vertices of degree less than g but at least €A and less than €A, respectively.

Lemma 2.3 (Cao and Chen [2, Corollary 10]). Let G be an edge-A-critical graph with
A > Dy, q =1 —¢)A, and let xy € E(G) with d(x) < q. Then for any ¢, A € (0,1) and

d(ys), d(ys) < q, d(ys), d(ye) = ¢;
o(x) ={1,2}, P(y) = {3,4};
Ap(q) = {5,6}, By(q) ={7,8};
N(z, My) = {x1, 22,23, 24}, N(z,B,) = {x5,z6};

eP(y) = {3,4,5,6}  if assuming d(y1), d(y2) > q.

FIGURE 1 Edge 8-coloring: illustration of A,(q), B,(q), N (x, M,(q)), N (x, B,(q)), and ¢®*(y)
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@ € CA(G — xp), except at most N vertices in N (x, M), for any other remaining vertex
x* € N(x, M),

Ip*4 () \ {p G} < 2A.

Lemma 2.4 (Cao and Chen [2, Lemmas 12 and 14]). Let G be an edge-A-critical graph,
€€ (0,1) and g = (1 — ¢)A, and let xy € E(G) with d(x) < A and ¢ € CA(G — xy).
Then for any x* € N (x, M,),

@ 2 (x*)\ {p 0x*)} C By(q).

Moreover, for any distinct x;, X, € N (x, M),
@ 0q) N " (e) = @.

Lemma 2.5, Corollary 2.6, and Lemma 2.7 are refinements of Lemma 2.4 and are used to
analyze the neighborhood of vertices of degree between 4 and 7.

Lemma 2.5 (Cao and Chen [2, Lemma 13]). Let G be an edge-A-critical graph, € € (0, 1)
and g = (1 — ¢€)A, and let xy € E(G) with d(x) < cA and ¢ € CA(G — xy). Then for
x*€ N(x,M,) and B € @P2d(x*), there exists a vertex x' € N (x, By) such that p(xx') = 8
and ¢ (x') C B,(q).

If IB,(g)l =1, then IN(x, By)l = 1. Let x’ € N(x,By) be the vertex. Then as ¢(xx’) is
colored by the color in B,(q), all other edges incident with x” are colored by colors from M, (q)
as [1, A] = M,(q) U B,(q). Thus, for any u € N (x")\ {x}, (x'u) & ¢**(x’) and so d(u) > gq.
So as a special case of Lemma 2.5, we get the following result.

Corollary 2.6. Let G be an edge-A-critical graph, € € (0,1) and q = (1 — €)A, and let
xy € E(G) with d(x)<eA and ¢ € CA(G—xy). If IB,(q)l =1 and there exists
x* € N (x, M) such that ¢ (x*) N B,(q) # @, then for the vertex x' € N (x, B,) with
@ (x') = B, we have d(u) > q for any u € N(x)\ {x}.

Lemma 2.7. Let G be an edge-A-critical graph, ¢ € (0,1) and g = (1 — ¢)A, and let
xy € E(G) with d(x) < €A and ¢ € C*(G — xy). Suppose z € N (x, M), € "4 (z)n
B,(x,y,q), and w € N(x,By) such that ¢(xw) = 3. Define B,(¢) ={pww’) :w'e
N W), p(ww") € B,(x,y, )\ {B} and d(w’') < q}. Then for any B’ € B,,(¢), there exist
Z' € N(x,By) and u € N(z') such that ¢(xz') = f', ¢(z'u) = 8, and d(u) > q.

Proof. A coloring ¢’ € CA(G — xy) is called valid if
Mgy, (x,y,q) = Mp(x,, q), By, (X, y,q) = By(x,y,q), and By, (¢') = Buw(®).
Let z € N (x, M,) and let B € ¢ % (z) N By(x,, q).

Let ¢ (xz) = a. Let us show that we may assume a € @ (y). Otherwise, a« € A, (x,y, q).
Let v € N(y) such that p(yv) =a and y € (¥). If y € §(v), we recolor the edge yv
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using the color y and let ¢’ be the new coloring of G — xy. It is clear that for any
edge e € E(G — xy) with e # yv, p(e) = ¢’(e). Furthermore, ¢’ is a valid coloring.
However, under ¢’, ¢ € »'(y). So we assume that y € ¢(v). Since d(x) < €A and
d(v) < qg=(1—¢)A, there exits a color d € p(x) N @(v). Note that y € p(x) and
6 € p(y) by the edge-A-criticality of G. Let P, (y, 6), P.(y,d), and P,(y, ) be the paths
induced by the edges colored with the two colors y and & that start at v,x, and y,
respectively. We claim that P,(y, ) = P,(y, §). For otherwise, let ¢” be the new coloring
of G — xy obtained by switching the colors y and § on the path P, (y, §). Then ¢” is an edge
A-coloring of G — xy such that y € ¢ "(x) N @ “(y). Now coloring the edge xy using the
color y gives an edge A-coloring of G, showing a contradiction to the assumption that
X'(G) = A + 1. Thus, P.(y, ) = B,(y, 6). This implies that P, (y, 6) is vertex-disjoint from
P.(y, ). We let ¢, be the new coloring of G — xy obtained by switching the colors y and &
on the path B, (y, §). We now have that y € ¢, (v). Since the switching of colors on P, (y, §)
does not affect the colors on the edges incident to y, we still have y € @, (). Let ¢, be the
new coloring of G — xy obtained from ¢, by recoloring the edge yv using the color y. We
see that a € @,(y). Because 6, 7, a € M,(x,y, q) and to get ¢,, we only switched the two
colors y and 9 on the path P, (y, §), and then changed the color on the edge yv from « to y,
@, is a valid coloring. Furthermore, x & V (B, (y,d)), for any edge e that is incident to
x or u with u € N(x) and ¢(xu) = y, we have ¢,(e) = ¢(e). Thus, we can use ¢, as a
coloring for G — xy that satisfies @ € ,(y). Figure 2 shows this sequence of Kempe
changes.

We now take z € N(x,M,), B € "4(z) N B,(x,y,q) such that ¢(xz) = a and
a € p(y). We take the color a on the edge xz out and color the edge xy using the color
a, and we get a coloring ¢, of G — xz. Note that o € p;(z) and § € M, (x,2,q)
as B € ¢®d(z). Since ¢,(e) = p(e) for any e & {xy,xz}, for the specified vertex
w € N(x,B,(x,y,q)) such that ¢(Gw) =, we still have that ¢;(xw) =3, and
By (¢) = By, (p;). By the definitions of B, (¢) and qo3bad(w), we have B, (¢) C q03bad (w).
Since 8 € M, (x, z, q), by Lemma 2.4 with the vertex w playing the role of the vertex x*, we
get @ (W) \ {p; Gaw)} C By, (x, 2, q). As @3 (xw) = B & B, (¢) and B,,(9) C ¢ (w), we
have By, (¢) C By, (x, 2, q). By Lemma 2.5, again with w playing the role of x* and £’
playing the role of 8 in the lemma, we know that for any 8’ € B, (¢;), there exists
z' € N(x, By, (x, 2, q)) with ¢,(xz’) = " and ¢™4(z") C B, (x,2,q). As B € M, (X, 2, q)
and M, (x,2,9) N By (x,2,q) = &, B & ¢"(z'). Thus there exists u € N(z') such
that ¢;(z'u) =f and d(u) > g. Since B, () = By (93), Bu(p) C By(x,y,q), Bu(p)C
By, (x,2,q), and ¢;(xz") = ¢(xz"), we see that z' € N (x, By, (x, 2, q)) with ¢;(xz") = f’

AT

¢ swap vy and ¢ on P,(7y,0) = 1 recolor yv by v = 9

FIGURE 2 Process of changing from ¢ to ¢,
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The setting up of the discharging idea in the proof below uses some of the approaches that
Woodall had in [11], but the computations are much more complicated.

implies that z’ € N (x, B,(x,y, q)). Furthermore, since ¢;(xz") = ¢(xz’) and ¢,(z'u) =
p(z'u), we get p(xz') = B', ¢(z'u) = B, and d(u) > q, proving Lemma 2.7. O

Corollary 2.8. Let G be an edge-A-critical graph, ¢ € (0,1) and q = (1 — €)A, and let
xy € E(G) with d(x) < €A and ¢ € C*(G — xy). If Bo(x,y,q) € Uzenem,) 9™ (z) and
1B, (x, y, Q)| = 2, then there exists 7' € N (x, By) such that d(u) > q for anyu € N (z')\ {x}.

Proof. Let B,(x.y.q) = {B.8}. Since By(x.y.q) € Usencuny®"(@), there exists
x* € N (x, M,) such that § € p®d(x*). By Lemma 2.5, there exists X' € N (x, B,) such
that p(xx’) =B and @™ (x') C B,(q). In particular, for every color a € My(q) =
[1, A]\B,(q), there exists u € N (x') such that (x'u) = a and d(u) > q. If B’ & @ (x')
or B’ € p(x’) but B’ & ¢"4(x’), then letting z’ = x’ gives the desired vertex. Thus we
assume that 8 € p(x’) and ' € ¢ ¥ (x’). As B,(q) = {8, B'}, we see that By, (¢) = {#'} as
defined in Lemma 2.7. Applying Lemma 2.7, there exist 2’ € N (x, B,) with ¢ (xz’)= §" and
v € N(z) such that ¢(z'v) = 8 and d(v) > q. As B,(X,y, q)CUzen x.m,) 9™ (z) and so
B € ¢®(z) for some z € N(x, M,), and ¢ is a proper coloring, we know that z’ is the
vertex guaranteed by Lemma 2.5 such that ¢(xz’) = . Again, by Lemma 2.5,
¢ (z") € B,(q). In particular, for every color o € M,(q) = [1, A]\B,(q), there exists
u € N(z') such that ¢(z'u) = a and d(u) > q. Furthermore, since 8 € ¢(z’) and for the
vertex v € N(z'), we have ¢(z'v) = 8 and d(v) > q, we conclude that z’ is the desired
vertex. ]

| PROOF OF THEOREM 1.5

Proof of Theorem 1.5. Let G be an edge-A-critical graph of order n with minimum
degree at least d and maximum degree A > (d + 1)*@+115_ In fact, the proof only needs
A > Dy, where D, is defined in Equation (7). Define

2 ifd = 3,4,
W= ] (8)
Jyd-1)d ifd=>19,
and let
— 3 3
€= d , ZMAZ(I—E)A, and /I:wizg—, 9
d+2 d+2 2d+2)P 2
where we have two different expressions for 1 ase = dLH and so 5 i d‘f S %3 We will use

both of the two expressions in computations later.
Sincew = 3/(d — 1)d = /18 x 19 = /342 < 7 whend = 19 and ¢ is decreasing in d,

it follows that ¢ < max{%, %} = % < i—(l). Thus by the definition of f(¢) in (5), we have
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f(e) = é(_%c(j1 + 12¢$ + 10cZ + 4co + 1). By Equation (4), ¢y = [tgl < % <co+ 1.

Also, as ¢y > [1;%51 = 2, we have 10cy > 12c; + 10cg + 4co + 1. Thus

fle)= —(300 + 12¢3 + 10cg + 4co + 1)

<(co + 1)2(3c5‘ + 12¢3 + 10c2 + 4o + 1)

<13cy(co + 1),
3cg+ 1 _ 4(300 + 1)

< 4(300 + 1)(C0 + 1)6 < 12(00 + 1)7,

2 eb
1 3co+1
N = (Co + 1)(1 )
2 3C0+1
= (CO + 1)(—3 + 1]

7 7 7
> (o + 1)(2c03 + 1) > (co + 1)(2c02 + 2) = J(co + 1)(c§ + 1)

> max{13c (co + 1)2 12(co + 1)7}

Hence as
e
Co =
[ } a+l ifd=3,4,
2 2
d+2-y@d-ld|_ d <4+l a9
Jd - 1d ~|3/(d-1d 2 T
we have
Do_max{f(s) 3CO+ 1’ N + Co}
A2 e
=N < (g 1DP((eo + Do + D + %0 + )
e’
<(co+ 1)3(co + 2)(2(co + 1) + 1)30tL
3 3 1.5d+2.5
S(d+ 3] (d + 5]((d+ 3) N 1)
2 2 4
<(d+ 1)4(d + 1)4.5d+7.5 =(d + 1)4.5d+11.5 <A,
where the last inequality was obtained because 473 < d + 1, ﬁ <d+1,and d+i < %

implying ~——* (d+ P y1<t ( (d + 1)) (d;l) < (d + 1)3.

Let X be a largest independent set in G and let Y = V(G)\X. Note that Y is not an
independent set. For otherwise, G is a bipartite graph, which is of class 1. To prove

oo . d+2+ d+2+ 7

Theorem 1.5, it is sufficient to show a (G) < ®n, ® — Z whend = 3 and
2d+4+w 2d+ 4+ w 12

d+2+w

_ 4 _ . s .
didise — 7 Whend = 4. We now partition X as the following:
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Xtt={xeX:dkx) = A},
Xt=xeX:qg<dx) <A}

X =xeX:eA <d(x)<q}

X, =fxeX:d<dkx)<eA} ifd > 19,
X, =(xeX:3d-3<dx)<eA} ifd=3,4,
Xs=xeX:d<dx)<3d -3} if d = 3, 4,
X =xeX:d<dx)<q}

Since G has minimum degree at least d, by the definitions above, we see that
X=X""uUXtuX, X =X{ UX, when d>19, and X~ =X; UX, UX; when
d=23,4.

For each positive integer k, define

d A—-k A
( +2)}£ ) and g, (k) = %

Clearly, g (k) and g,(k) are both decreasing functions of k. Since q = dz:“’A =
(1 — ¢)A, we have

g k) = (10)

o= @@= 0)
(11)
_ (d + 2)eA _ (d+ 2)(w/(d + 2))A _ wA
q q q
_ w(d+ 2) . (12)
d+2—-w

Claim 3.1. If x € X* and k = d(x) > 3, then g (k) < g, (k).

Proof. Let g(k) = g,(k) — g (k) = kwA - (d”)IEA_k). The derivative of g (k) is

-1

(k — 1)2(d + 2)A — k*wA
(k — 1)%> '

53 43 203 4(d+2)
5> 5.9 > 1, we have {/(d — 1)d < ==, Thus

g'(k) =

Since

v

d+27 4
d-1d 93

w < max{2, (d — Dd} < 4(d9+ 2) (k= 1);2(d +2)

k2
0. Thus g (k) is increasing in k. Since k > q when x € X*, we have g (k) > g(q). By (10)
and (11),

Consequently, (k — 1)*(d + 2)A — k*wA = sz(W — cu) > 0andso g'(k) >

gk) > g(@) =g, — g (g
wA wA

= - == >0o.
q-1 q
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Hence, g (k) < g, (k). O
Define three charge functions My, M;, and M, on V (G) as follows.

My(x) =0, Mi(x) =(d + 2)d(x), Mp(x)=(d+2)4, ifxeX,
My(y) =(d + 2 + w)A, M(y) = wA, M,(y) =0, ifyey.

We redistribute the charge according to the following Discharging Rule:

Step 0: Starting with M,, each vertex y € Y gives charge d + 2 to each vertex
X € N(y) n X. Denote the resulting charge by M. It is clear that MJ(v) >
M, (v) for each v € V' (G). By dropping the surplus charges, we assume that the
current distribution is M;.

Step 1: Starting with M,;, each vertex y €Y gives charge g(d(x)) to each
x € N(y) n X*. Denote the resulting charge by M;*.

Step 2: Stating with M}*, for each vertex y € Y, if M;*(y) > 0, y distributes its remaining
charge equally among all vertices (if any) x € N(y) n X~. Denote the resulting
charge by M.

Claim 3.2. If M}(w)> My(v) for each veV(G), then a(G)< Z2*%y

2d+4+w
Consequently, Theorem 1.5 holds.

Proof. By Step 0 of Discharging Rule,

M) = D, (d+2)=(d+2)dx) = M) for each x € X,
YEN (x)
M) =Mo(y) = ) (d+2)
xeN (y)nX

>(d+ 2+ w)A—-(d+2)A=wA=DM(y) foreachyey.

Since G is edge-A-critical and so it is not bipartite, there exists y € Y so that
IN(y) N XI < A and thus M{(y) > M;(y). Hence,

DM@ < D, MW= ) M) =(d+ 2+ o)AlYL

veV (G) veV (G) veV (G)
Since M; is obtained based on M; by Steps 1 and 2 of Discharging Rule, if
M} (v) > M, (v) for each v € V (G), then we have

d+2)AXI= ) MO D MWW= D M@ <d+2+wAlYL.
veV (G) veV (G) veV(G)

The inequality above together with the fact that IX| + 1Yl = n implies
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2
a(G) = IXI < MH’
2d+4+w

as desired. O]

By Claim 3.2, we only need to show that for each v € V (G), we have M5 (v) > M, (v).
We show this by considering different cases according to which set v belongs to.

Claim 3.3. For each y € Y, My (y) > M,(y) = 0.

Proof. Let y € Y. By Step 2 in Discharging Rule, to show M (y) > 0 = M,(y), it
suffices to show that M;"(y) > 0. If N(y) N X" = &, then y did not send any of
its charge to its neighbors in Step 1 of Discharging Rule. Thus M; (y) = M;(y) =wA > 0. So
we let kg = min{d(x) : x € N(y) n X*}. By Lemma 2.1, y is adjacent to at least A — ko + 1
neighbors of degree A. Thus y is adjacent to at most d(y) — (A —ko+ 1) <ko—1
neighbors in X* U X~. By Step 1 in Discharging Rule, we have

M) =MO) - )  gWdX).

xeN (y)nX*

By Claim 3.1, for x € X*, g (d(x)) < g,(d(x)). Since g, (k) is decreasing in k and k,, is
wA
ko—1

the minimum value among the degrees of x in N (y) n X*, g,(d(x)) < . Combining

the arguments above, we get

M) =MO) - 3 @D =2M®» - 3  &@&)

XEN (y)nX* xEN (y)nX*
wA wA
> M (y) — IN(y) n X*I > My(y) — (ko — 1)
ko—1 ko—1
=wA — wA = 0. m

Claim 3.4. For each x € X** U X, M5 (x) > My (x) = (d + 2)A.

Proof. For each x € X**, by Step 0, we have

Mix)= ), (d+2)=(d+2)A,

YEN (x)NY

where we getIN (x) N Yl = A since X is an independent set in G. The charge of x € X**
keeps unchanged in Steps 1 and 2, thus M;(x) = M{(x) = (d + 2)A. For each x € X*, by
Discharging Rule,

MF(x) =M (x) = M(x) + D, gdXx)
YEN (x)

d+2)(A - d(x))
=(d + 2)d
(d + 2)d(x) + y%(x) 409
d+2)(A -dx))
d(x)

=(d+2)dx) + d(x)

=(d + 2)A.
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L

The next claim will be used for showing that for each x € X—, My (x) > M, (x) =
(d + 2)A.

Claim 3.5. Let ¢ be a nonnegative integer and y € Y be a neighbor of x € X, and
k=d(x). Ifg(x,y) > A —k+ 1+ ¢, then y gives x at least

hk, €)= — (@A - ¢g(q) = ﬁ(m "y

(d+2)cu]
k—¢ -1

d+2—-w

charge in Step 2.

Proof. Let L** be a set of A — k + 1 neighbors of y with degree A (y has at least
A — k + 1 neighbors of degree A by VAL), and let L* be a set, disjoint from L**, of ¢
neighbors of y with degree at least g, which exists since g;(x,y) > A —k + 1 + £. Let
L =N(y)\(L*" u L"), which note may contain both vertices from X* and X~. Then in
Steps 1 and 2, y gives nothing to vertices in L**, and in Step 1, for each vertex
x" € N(y) n L* and each vertex x’ € N(y) N (L n X*), y gives g (d(x")) < g(q) tox’".In
Step 2, y's remaining charge after Step 1 is divided equally among y's remaining
d(y) - (A—k+1+¢)—ILNnX"I<k—-¢—1-ILnN X"l neighbors. For x, being in

_ . A—¢€
X, receives charge of at least “’kffl(lq) from y as seen below:

(a) For each x’ € L n X*, we have g (d(x")) < g(q) <g,(q) <g,(k) = kwTAl, and thus

wA — £g(q) _ wA — £8,(q) > wA — ¢g,(k)

k—¢-1 " k—¢-1 ~— k—-¢-1
fwA
WA= T wAk—1-¢6)
T k—-¢-1 *k-Dk-1-2¢)
wA
=k—1=g2(k)'

(b) By(a),g(d(x")) <g(q) <g(q < g k)< %ﬁ%?), and therefore the charge that y

gives to X is

wA = €8(q) — Yyernx-& (X))

ILI — IL N X1
_ _ + CUA—é’gl(Q)
. wA —£€g (g —ILNX ==
- ILI — IL N X
_ _ + Q’A_g&(Q)
. wA —£€g(q@ —ILNX ==

k—¢—-1-ILnNnX"
(wA — g (@)k — ¢ —1—ILNXT) wA-—¢g(q) 1
k—¢—-1Dk-¢—-1-1LNnXY)  k—¢-1"
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Let x € X~ and k = d(x). Define
p = min {g(x,y)— (A —-k+ D}
Y'EN(x)

Note that p <k — 2 as g;(x,y) <A —1 by (3). Assume that y € N(x) achieves
g(x,y) =(A —k+ 1)+ p. Let p € C*(G — xp),

Cy(p) = {a € p(x) : there exists y, with ¢(yy,) = a and d(),) <q} and
IC, ()| = t.

These two vertices x and y, and the coloring ¢ will be fixed in the rest of proof.
Then as each neighbor y’ of y with d(y’) > q is colored by a color either from B, (q)
or from @ (x), we have g;(x,y) = IB,(q)! + 1@ (x)| — t. Thus

IB,(@)! + 1 (X))l = g5 (x,y) + ¢ (13)
By the definition of M,(q), which recall is defined by A,(q) U @(x) U @(y) with

A,(q) defined in (1), we have N (x, My) = @(y) U A,(q). Thus

IN (x, M,)l= A — 13 (x) U B,(q)l = A — (IB,(q)! + 15 (X))

(14)
=A-gxy)—-t=k—-p—-1-t.

We first claim that

t < cp. (15)

To see this, let Y () = {y, : ¢(yy,) = a € p(x)}. Since {x, y} U Y (¢) is the vertex set
of a multifan at y, it is g-elementary by Lemma 2.2. Then A > Uy ey @@ (3)!>

Zaecy(@(A — q) = IC,(¢)leA, which gives IC)(p)| < é Thus IC), (p)! < E] —1=¢p, as
co= [I%E] This proves the claim.

Assume N (x) = {z1, 25, ..., Zk}. For each i € [1, k], we define
G =0y(x,2)) — (A —k +1).
Note that by the definition of p, we have
G=0,z)—A-k+D)>A-k+1)+p—-(A—-k+1)=p. (16)

By Claim 3.5, in Step 2, x receives charge of at least

k

k
M (k,p) = ) h(k, &) = ),

=g @A el 17)
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Claim 3.6. If x € X7, then M5 (x) > M,(x) = (d + 2)A.

Proof. By the definition of X;,eA < k < g = (1 — €)A. Now by Lemma 2.3, x has at
least k — 1 — p — t — N neighbors z € N (x, M) satisfying

0G(6,2)2A-1-AA-1)=A-AA+A-k+1)—-(A-k+1)
=(A-k+1)+k—-21A-1.

Thus the corresponding ¢; value for each of those vertices is at least k — AA — 1. The
remaining p + 1 + £ + N neighbors z’ of x satisfy ¢;(x,z') > A -k + 1+ p by the
minimality of p. Thus the corresponding ¢; value for each of those vertices is at least p. By
(17), in Step 2, x receives charge of at least

Mk,p)>k—-p—-1—-t—N)hk,k—2A-1)+(p+1+t+ N)h(k,p).

By Step 0, M; (x) = (d + 2)k. Since M5 (x) > M;(x) + M(k,p) =(d + 2)k + M(k, p),
to show M (x) > (d + 2)A, it suffices to show M(k,p) > (d + 2)(A — k). Since

h(k, €) = ——— (@A — €g,(q)), we get

M@U,p)=(k—p—-1—t—N)h(k,k—AA -1+ (p+1+t+ N)h(k,p)
_k—p-1-t- p+1+t+N
B 1A k—p—1

N @A — kg (@) + @A + Dg (@) +

(wA — pg ()

=22 2 = N n — kg (@) + (34 + g @)
+ w(m — kg (@) + (k —p)g ()
k—p-1
(e ==l p;i;th](wA—kgl(q))
+ k—p _AIA_ L= N(;LA + g (q) + %(k - p)g (@)
e ;i;i*lN)«oA — k(@) + kg, (@)
_[k —L 1 _ 'TIAN 4 ’;t;*fi - 1](coA — kg (@) + kg, ()

\%

k+t+ N t+ N
2,] — — 1|(wA — k k
A A ](CU g(Q) + kg (q)
LA

AA

tj{ AN - 1)(wA — kg (@) + kg ().

Let
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k N+ ¢
ky=\(2,/— — — 1|(wA — k + k. —(d+2)A -k
f k) 1A A ](w () + kg (q) —( )( )
k N+t d+2
|2 " s 1](wA — kg (q)) — (wA — kg (q))
k N+ ¢ d+2
=|2/— — -1- A—k ,
1A 1A ](w ()
whered + 2 + g (q) = (d+2)+ 201D —(d+2)A + ) =(d + 272 = L (g).
Since k < g and g (q) = — 2 from (11), we have wA — kg (q) > wA — gg,(q) = 0 always.
As (2 %A - % -1- d%) is increasing in k and k > €A, now we know that to show
f (k) > 0, it suffices to show f(¢A) > 0. Recall that € = /1 = Z(TSZP = %, t<cy by

(15), and A > Dy > N;c‘). Thus we get

eA N+t
A)=|(2,]— — A — €A
f(ed) 1A 1A ](w Ag (q))
2 2(N+c
212 2 (3—A0) 1- ](CUA — eAg (q))
@ @
=(2Vv2 )(wA —eAg(9) 2 0,
where note that % > 3 when d > 19, since % is increasing in d and when
d=19,w=3d - 1d < 7. m

We assume now that x € X, U X3 . By the definition of X; and X5, we have k < €A. By
Lemma 2.2, for any v € N(y) such that p(vy) € p(x),d(v) > lp(x)I=A -k +1>q.
Therefore IC, ()| = 0. By (13) and (14), we get

By(@)l =g5(x,y) —1p(X)I=A—-k+1+p—-(A—-k+1)=p, (18)
IN (¢, M)l = A — (IBo(! + 1p(x)) =k —p — 1. (19)

Recall that N (x) = {z, ..., 2} . Assume, without loss of generality, that {z, ..., Zx—p—1} =
N(x,M,). Leti,j € [1,k — p — 1] be distinct. Define

bi = lp®d(z)\ {e (xz)}.
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By Lemma 2.4, 9°%(z;)\ {p(x2:)} C B,(q) and "% (z;) N ¢"*(z;) = @. This, together
with (18), gives

k—p—1

% b=
i=1

ZEN (x,My)

{ U cobad(z)] N B,(q)! < 1B,(q)! = p. (20)

By the definition of ¢®d(z;), we have o;(x,z)+b =A—1, and so
0q4(x,zi)) = A — b; — 1. Therefore, fori € [1,k — p — 1], we have

¢ :Gq(x,zi)—(A—k+1):k—bl~—2,
1
h(k,6)=————(A - 6
(k. 6) = —— @b — 4g.@)
1

=5 (WA = (k—1— (b + 1)g Q) (21)

; 1+ —(@A — (k= Dg (@) + g (@),
1
b; +1

(WA — (k — 2 — b)g (q)).

For each i € [k — p — 1, k], we have ¢ > p by (16). By (17), in Step 2, x receives
charge of at least

k—p—1
Mk p)> S hk &)+ (p+ Dhikp) (22)
i=1
k—p—1 1
2 3 (wA — (k—1)g (@) +(k—-p—-1g(q
1
=t @A - @), (23)
k_fl L (wA —(k—2—b)g(q) + piﬂ(wA - pg (@)
b+ Vol k—p—1 e

Claim 3.7. If x € X5, then M5 (x) > M,(x) = (d + 2)A.

Proof. By the definition of X;,6 <k <eA if d=3,9<k<eA if d=4, and
d<k<eA if d>19. We will apply (22) in proving Claim 3.7. We show first that

k—p-1_1 k-p-1 _ (k—p-1)
2=t bi+1 2 1+k_;’_1 T k-1

as below, where noticing that 3’ N(x.M,) b; < p and so Zf-‘:_f i+ 1D)<p+k—-—p-1),

. This follows by applying Cauchy-Schwarz inequality

1 k—p—1 k—p—1
1 i 1 P

k—p—1 1 k
P tk-p-D2 D b.+12(bi+1)
— i i=1 i i=1

e
> k-1)= )
i=1

2

1 b +1
k—p—-1 1
> X b+ 0| =tk=p-12
_(E; bl-+1( )] (k—p-1

i
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Thus by (22),

k—p—1)? )
M(k.p) 2 %(m — (k= Dg @)+ *k-p-Dg@+ f;_ -
(wA — pg (q))
k—p—1)>
> (kp%ll)(aﬂ = (k= Dg @) + (k—p—1g (@
J%f;i 1 (@A — kg (q) + (k= p — 1)gi(9))
— — 2
> %(O)A — kg (@) + (k —p — Dg(q)
+ k f;i l(wA - kgl(q)) +(p + 1)&(‘1)
k—p—1) 1
(" kp— 1 E s X f;_ 1](wA — kg (@) + kg (9)
k—p—1)> k
_(Ge—p—1) k k B B
k=1 Tak—pon Tak—pop Her k@ +ka@
k2
>13; 2= 1](a)A — kg () + kg ().

Since M3 (x) > My(x) + M(k,p) =(d + 2)k + M (k, p), to show M;(x) > (d + 2)A,
we only need to show M (k,p) > (d + 2)(A — k). To do so, let

2
fk) = (33 k=D 1)(60A — kg (@) + kg (@) — (d + 2)(A — k)

i

=*ae-p ! (@A — kg (q)) — (d + 2)A + kg (q)

kco(d +2)(d+ 2 — w)

d+2 - wow
i

= (33 TN — 1](coA — kg (@) — (d + 2)A + kg, (q)

n kgl(q)m

d+2
w

2
= (3 k - 1)(wA — kg (@) — (wA — kg (q)

Vak — 1)

B k2 d+ 2
- [33/40« = 1-— - ](wA — kg, (@)).

2 d 2 . A
Let fi(k) = (33/4(kk_1) -1- %) Since wA — kg (q) >0 (k<q and g(q) = %
from Equation 11) and f;(k) is increasing in k, we check that f,(3d — 3) > 0 when




306 CAO ET AL.
4LWI LEY

d=3,4 and f(d)>0 when d>19. Recall that w =2 when d=3,4, and
I _ d
w=3dd-1) < 5 when d > 19, we get

£,(6)>3.649 — 1 — 2.5 > 0, when d = 3,
£,(9)>4.08 —1—3>0,whend =4,

L@ d+2
fl(d)_3\3/ 4d(d — 1) ! @

3ds\/§

d+2 1.88d d+2+w 1.88d — 1.5d — 2
= -1 - > — > > 0,
w w w w w
when d > 19. ]

Claim 3.8. If x € X5, then My (x) > M, (x) = (d + 2)A.

Proof. By the definition of X5,3<k<3d-1)=6 if d=3 and
4<k<3d-1)=9ifd = 4. Thus k = 3 implies d = 3, and w = 2 in this case.
We use the same charge function M (k, p) in (22) or (23)

exceptwhen d = 4 and (k, p) € {(4, 1), (5, 2), (6, 3), (7, 3)}.

Again, we show M (k, p) > (d + 2)(A — k). We first consider the case when p = k — 2. In
this case, g;(x,z2) 2 p+(A—k+1)=A—1foranyz€ N(x). As gy(x,2) <A —1on
the other hand, we get o;(x,z) = A — 1. Thus § = k — 2 = p for each i € [1, k]. By (17),
we get

Mk, k —2)=k(2A — (k - 2)g(q))
=(k +2)A + (k - 2)(A — kg, (q))
> (d + 2)(A — k),

where A —kg(q) >0 since A>(d+ 1)*+15>36 and kg(q) = k;f:iz%zz) <
(3d — )22 < 6(d + 2) < 36.

Since M(k,p) — (d + 2)(A — k) is increasing in k, the minimum value of
M(k,p) — (d + 2)(A — k) is achieved at the smallest value of k. Since the b;'s are
nonnegative integers, the minimum of the first summands in (22) or (23) is achieved
when the values of any two b;'s differ by at most 1. Thus by (23),

Mk, 0) = (k — (@A — (k — 2g (@) + ~22— (b = 0 forall i)

k-1

~ d+2 wA _ d+2w

_(k_l)w(A_(k_z)dH—w)Jr k-1 (gl(q)_‘”z——W)

=2k — DA - (k—=2)1Q +2/d)) + kz_Al
S5A—4(L+2/)>5A-3)=@+D@A-k) k=3,

z %?—1%1+N®>6@—kﬁ4d+2@—k) if k > 4.
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The following calculations are based on (22) and using g (q) = % =21+ 2/d).

2
k-2

Mk 1) 2 (k —34 %)(wA ~ (k= Dg @) + (k-1 - Dg (@) +

(exactly one b; = 1 and all others are 0)

>(k—3+ %)(a)A—(k— Dg (@) + kiz

- (k _34 %)(m — (k= D@ + 2/d)) +

(@A - g(q)

(@A —g(q)

2
k-2

(wA — w(1 + 2/d))

= 2(k _34 %)(A — (k- (1 +2/d)) + ﬁm — (1 +2/d)

2(5 _34 %)(A —4(1 + 2/d)) + when 5 < k <8,

5-2
(A —-(Q1+2/d)

(\%

2(4—3+§)(A—3(1+2/3))+442 when d = 3,k = 4

(A—-(@1Q+2/3))

19A 64 3A — 320
= ——3(1+2/d)>6A+ > 6A when 5 < k <8,
- 55
SA—?>5A—2O whend =3 and k =4

> (d + 2)(A - k),

M, z)z(k —s o+ %](m ~ (k= Dg@) + (k — 2 — Dg, (@)

S (@h - 2,()

(the minimum is attained when two of the b/s are 1)

>(k= 5+ 2+ S)@a - k- Dg @) + @ - 25(@)

2
(A -1 +2/d)

+

6
k-3

=2(k — 4)(A — (k — 1)1 + 2/d)) +

2(6 - 4)(& = 5(1+2/d) + ° itk>s,

(A — (1 + 2/d))
25 - (A — 41+ 2/3) + 6

v

ifd=3and k=5

(A -1 +2/3)

{6A —22(1+2/d)>(d+2)(A—-k) ifk>6(sod=4),
55

SA—?>(d+2)(A—k) ifd=3and k =5,
Mk = 3)2 (@8 - (k - Dg (@) + 28,(@) + £ ~ @A = (- g (@)
(taking b, =b, = g)
2
> X f 1(A —(k=-DA+2/d))+ (k—2)(A—-(k—3)1Q +2/d))
> 7§1(A_(7_ DA +2/d)+ 7 —-2)(A—-7-3)A+2/d)) iftk>7

= % — 281 + 2/d) > 6(A — k),
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M(@8,3)2(1+1/2+1/2 + 1/2)(wA — (k — 1)g (q)) + 48 (@) + (wA — 3g(q))
(the minimum is attained when 3 of the b/s are 1 and the last one is 0)

33 d 2
M(8.,4)> (1/2 + 1/2 + 1/3)(wh — (k — Dg (@) + 3g (q) + gm — 4g.())

(the minimum is attained when 2 of the b/s are 1 and the last one is 2)
=6A — 13g,(q) =6A — 39 > 6(A —8)-(d=4,g(q = 3).

Whend = 3,we havek = 3,4,5and 0 < p < k — 2. The computations for M (k, k — 2),
M(k,0), M (k,1), M (k,2) above cover all the cases for d = 3. For d = 4, we have k = 4,
5,6,7,8and 0 < p < k — 2, and the following cases are covered by the computations above:

M(4,0),M(4,2) = M(k, k — 2) if k = 4,

M(5,0),M(5,1),M(5,3) =Mk, k —2) if k =5,

M(6,0), M(6,1), M(6,2), M(6,4) = M(k, k — 2) if k =6,

M(7,0), M(7,1),M(7,2), M(7,4) = M(k,k — 3),M ifk=7,
(7,5) =Mk, k —2)

M@8,p),pe{0,1,2,3,4,M(8,5 =M(k, k —3),M ifk=38.
(8,6) =M(k,k —2)

We are now left to check that whend = 4 and (k, p) € {(4, 1), (5, 2), (6, 3), (7, 3)}, we
have M (k,p) > 6(A — k). For those cases, the desired bounds do not follow directly
from (22) or (23). We will use (17) instead.

For k=4 and p=1, we have IB,(q)l=p=1 by (18). Recall N(x) =
{z1, 24}, N(X, Mp) ={z1, 22}, b1 + b <p=1 by (20), 6 =k —b; —2 by (21) for
i€[1,2], and ¢ > p for each i € [1,4] by (16). Let y =z3 and N (x, B,) = {z4}. If
by =b, =0, then 4 = ¢, =2.1f by + b, = p = 1, we assume by symmetry that b; =1
and b, = 0. Thus 4 =1 and ¢, = 2. Furthermore, by Lemma 2.4, b; = 1 implies that
(9% (z) \ {9 (xz)}) N By(q) # @. Then by Corollary 2.6, we know that for the vertex
Z4, all its neighbors other than x are of degree at least g and so g;(x,z4) = A — 1 and
¢, = 2. In either case, we have two ¢'s being at least 2 and the other two being at
least 1. Therefore by (17), we have

4

M4, 1> )

i=1

(wA — 6g(q))

(C‘)A - gl(‘])
2

k—6-—1
> 2(wA - 2g(q)) + 2

=6A — 5g,(q) = 6A — 5% 3> 6(A—4),
wd+2) _
d+2—-w 3.

We then consider the case that d(x) = k =5 and p = 2. In this case IB,(q)l = p =
2,INxXx,My)l=k—-1—-p=2. If by + b, <1, we may assume b; =0. Then ¢ =
k—b—2=3.By(6),¢>p=2forie|[24]. By (17), we get

where g(q) =
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M(5,2) > (wA — 3g(q) + 4

(C”A%zgl(q)] = 6A — 21 > 6(A — 5).

Thus, we assume b; + b, = p = 2. Since IBy(q)| = p =2, by Lemma 2.4 that
9*(z)\{p(xz)} € B,(q) for i € [1,2] and ¢"*(z) N ¢*(z,) = @, we know that
B,(q) C (p"(z;) U ¢*4(z;)). Now by Corollary 2.8, there exists z € N (x, B,) such
that z is adjacent to exactly one vertex of degree less than g which is x. We obtain the
same charge function as above.

We next consider (k, p) = (6, 3) and (k, p) = (7, 3). Note that |B,(q)| = p = 3 by (18)
and IN (x, Mp)! = k — p — 1 by (19). Assume first that |(Uzen e,m,) #**4(2)) N By (@)1 < 2.
Then Zf.‘:_lp “p <2 by (20). Using the calculation in (22) by taking two of the b;'s in
{b1, ..., by—p—1} to be 1 and the rest to be 0, we have

M(6,3) > (% ; %)(m — 5g,(@)) + 28 (q) + 2(wA — 3g,(q)) = 6A — 27 > 6(A — 6),

M@, 3)2(% + % + 1)(coA — 6g.(q) + 3g,(q) + %(m ~3g.(q) = ?A ~ 39> 6(A — 7).

Thus we assume B,(q) C Uzenm,)¢(z). Notice that when (k, p) = (6, 3) and
so N (x, My) = {z;, 22}, this assumption already leads to a contradiction as explained
below. As ¢(xz;) € ¢ %(z;), we have lp®3(z;)l = A — g,(x, z;) by (3). Thus lp®(z;)l =
A — gy(x,z) > k —p — 1= 2. Since p(xz;) € p®(z;) and ¢ (xz;) & B,(q) fori € [1,2],
we have

(% (z) U ¢"4(2,)) N B,(@)l <1+ 1 =2,

contradicting IB,(g)l = 3.

Lastly consider the case (k,p) = (7,3). We first claim that there exists a vertex
z' € N(x,B,) such that g,(x,z’) > A — 2. This is equivalent to show lp®(z")l <2
since @(z'x) € *4(z") implying ¢, (x,z") = A — 1p®4(z")l by (3). Since B,(q)C
Uzen i) 9™ (z), by Lemma 2.5, for each w € N (x, B,), 9"4(w) C B,(q). To prove
the claim, since IB,(q)! = p = 3, it suffices to show that there is 2’ € N(x, B,) and a
color B € B,(q) such that B & ®d(z’). Let w € N(x, B,) be any vertex. As B,(q)C
UzeN(x,Mq,)qabad(Z), there exists z € N (x, M) such that ¢ xw) € ePd(z) N B,(q). Define
By (p) = {p(ww) : w' € N(w), p(ww’) € By(q)\{p(xw)} and d(w’) < q} the same way
as in Lemma 2.7. If B,,(¢) = ¢, then g;(x, w) = A — 1 and so w is a vertex that can play
the role of z’. Thus we assume B, (p)# @. Applying Lemma 2.7, there exists
w’ € N (x, By) such that ¢ (xw) ¢ ¢®d(w’) and so g;(x,w’) > A — 2. Now w’ can play
the role of z’.

By (19), IN (x, M)l = 3. By (20), by + b, + b3 < IB,(q)! = 3. For the vertex z’, we have
og(x,2) —(A—k+1)>A—2—(A-6) =4, and for the three remaining neighbors
y" of x with one being y and the other two from N (x, B,)\{z'}, they all satisfy
og(x,y) = (A —k+ 1) >p =3by(16). When b; + b, + b3 = IB,(g)| = 3, the minimum
value of Zigzlh(k, ¢) is achieved when b; = b, = b; =1, or equivalently when
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6 =€, =¢; =k —1— 2 = 4. Thus among the values 4,, ..., ¢;, four of them are at least 4
and the rest three are at least 3. Applying (17), we have

M(7,3)2 5y ——(@A = 48,@) + 5——— (@8 - 33,(@)

- 7-3
=6A — 11g,(q) = 6A — 33 > 6(A — 7). O
The proof of Theorem 1.5 is now complete. O
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