Jayson Boubin
Ohio State University
Columbus, Ohio, USA

boubin.2@osu.edu

Haiyang Qi
Ohio State University
Columbus, Ohio, USA

qi.359@osu.edu

Kannan Srinivasan
Ohio State University

Systems

Avishek Banerjee

Ohio State University
Columbus, Ohio, USA
banerjee.152@osu.edu

Yuting Fang
Ohio State University
Columbus, Ohio, USA

fang.564@osu.edu

Rajiv Ramnath
Ohio State University
Columbus, Ohio, USA

PROWESS: An Open Testbed for Programmable Wireless Edge

Jihoon Yun
Ohio State University
Columbus, Ohio, USA

yun.131@osu.edu

Steve Chang
Ohio State University
Columbus, Ohio, USA

chang.136@osu.edu

Anish Arora
Ohio State University
Columbus, Ohio, USA

Columbus, Ohio, USA
kannansrinivasan@cse.ohio-
state.edu

ABSTRACT

Edge computing is a growing paradigm where compute resources
are provisioned between data sources and the cloud to decrease com-
pute latency from data transfer, lower costs, comply with security
policies, and more. Edge systems are as varied as their applications,
serving internet services, IoT, and emerging technologies. Due to
the tight constraints experienced by many edge systems, research
computing testbeds have become valuable tools for edge research
and application benchmarking. Current testbed infrastructure, how-
ever, fails to properly emulate many important edge contexts lead-
ing to inaccurate benchmarking. Institutions with broad interests
in edge computing can build testbeds, but prior work suggests that
edge testbeds are often application or sensor specific. A general
edge testbed should include access to many of the sensors, soft-
ware, and accelerators on which edge systems rely, while slicing
those resources to fit user-defined resource footprints. PROWESS
is an edge testbed that answers this challenge. PROWESS provides
access across an institution to sensors, compute resources, and
software for testing constrained edge applications. PROWESS runs
edge workloads as sets of containers with access to sensors and
specialized hardware on an expandable cluster of light-weight edge
nodes which leverage institutional networks to decrease implemen-
tation cost and provide wide access to sensors. We implemented
a multi-node PROWESS deployment connected to sensors across
Ohio State University’s campus. Using three edge-native applica-
tions, we demonstrate that PROWESS is simple to configure, has

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PEARC °22, July 10-14, 2022, Boston, MA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9161-0/22/07...$15.00
https://doi.org/10.1145/3491418.3530759

ramnath.6@osu.edu

anish@cse.ohio-state.edu

a small resource footprint, scales gracefully, and minimally im-
pacts institutional networks. We also show that PROWESS closely
approximates native execution of edge workloads and facilitates
experiments that other systems testbeds can not.

ACM Reference Format:

Jayson Boubin, Avishek Banerjee, Jihoon Yun, Haiyang Qi, Yuting Fang,
Steve Chang, Kannan Srinivasan, Rajiv Ramnath, and Anish Arora. 2022.
PROWESS: An Open Testbed for Programmable Wireless Edge Systems.
In Practice and Experience in Advanced Research Computing (PEARC ’22),
FJuly 10-14, 2022, Boston, MA, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3491418.3530759

1 INTRODUCTION

Edge computing has arisen over the past decade as a solution to
problems encountered by the Internet of Things (IoT). As IoT de-
vices and sensors across the globe have accelerated in their pro-
duction of data, the need for efficient near-sensor processing has
increased [27]. While the availability and decreased cost of cloud
computing provides data processing power to IoT devices, networks
can struggle to transmit data between remote devices and the cloud.
TIoT sensors have limited compute capacity and tight power budgets,
making them poor candidates for overprovisioning [2, 17]. Edge
computing tackles this challenge by provisioning extra compute
resources and creative networking solutions between IoT devices
and the cloud. Edge devices store, cache, and process data that
could otherwise saturate links to data centers. This helps facili-
tate many applications that generate large amounts of data, have
critical latency bounds, or have security concerns that necessitate
decentralization or data anonymization.

Edge systems are application-driven and encounter many dis-
parate constraints including form factor, proximity to sensors,
power budgets, compute capacity, and cost. The conflicting na-
ture of these costs require implementers to consider many-way
tradeoffs when designing software and selecting hardware. Test-
ing these tradeoffs often requires investment in ineffective designs
and hardware that does not meet requirements. Even if hardware

https://doi.org/10.1145/3491418.3530759
https://doi.org/10.1145/3491418.3530759

PEARC °22, July 10-14, 2022, Boston, MA, USA

and software requirements are met, underlying characteristics of
the deployment may impede optimal performance in ways that
are not obvious without proper testing [7, 20]. For these reasons,
custom and shared testbeds hold great value for edge researchers
and practitioners.

The problem: Testbeds have long been used to design and
benchmark applications before large-scale deployments [3, 11,
18]. Testbeds provide an environment in which hardware, soft-
ware, models, and other artifacts of a deployment can be inter-
changed to determine optimal configurations. There are many edge
testbeds [13, 14, 16, 19, 21-23, 30, 32] of varying complexity and
generality. Most, however, focus on one application type, sensor,
or attribute of an application. Furthermore, custom or highly fo-
cused testbeds often do not have open or extensible deployment
platforms that can be translated across institutions or between large
networks of users. Some broader computer systems testbeds, like
Chameleon [18] and GENI [3], are highly general. They provide
high degrees of user freedom, but are designed for the cloud, not
the edge. These testbeds provide resource and network slicing, but
allocate heavy-weight virtual machines or overprovisioned bare
metal nodes that are far from sensors and not representative of
edge resources. The problem is then that the principles of both
general systems testbeds and bespoke edge testbeds have yet to be
combined to facilitate general edge experimentation.

Edge testbed desiderata: Designing a testbed that is extensible,
easy to deploy, and useful for general edge workloads comes with
challenges. We identify five key principles that comprehensive edge
testbeds should address: §1) Rich Configurability: As many aspects
of the testbed as possible should be configurable by the user, includ-
ing hardware, software, networking resources, and sensor access.
§2) Efficient Slicing: Users should be able to request fine-grained
slices of resources without encumbering their workload with unnec-
essary overhead. §3) Bring Your Own Device (BYOD): The addition
and allocation of sensors and nodes should be simple, meaning
sensors and compute should easily integrate with the testbed, po-
tentially across existing infrastructure. §4) Infrastructure Leverage:
Edge testbeds should access already provisioned networks to ease
deployment effort, leverage and integrate potentially large-scale
and geographically disparate resources and sensors, and reduce
cost. §5) User and Infrastructure Security: An edge testbed should as-
sure that data transmission, storage, and access are secure, private,
and controlled.

No extant testbed satisfies all of these principles. General sys-
tems testbeds like Chameleon and GENI both provide hardware
configuration options, but both require users to allocate either
entire bare-metal nodes which are rarely representative of edge
contexts and require manual slicing, or sliced virtual machines
which introduce unnecessary overhead. While GENI is decentral-
ized, it requires significant administrative support to implement
locally. Chameleon, on the other hand, is centralized, meaning it
can not leverage local infrastructure for outside users. Edge testbeds
also fail to meet our requirements. Most are designed for custom
workloads [21, 22, 30] or small user groups [13, 19], providing little
or no programability, configurability and slicing.

Our contribution: To address the problem described above, we
present PROWESS: A slice-able, scalable, sensor-aware and open

Jayson Boubin, et al.

testbed architecture for general edge experimentation across in-
stitutions with provisioned networks that satisfies edge testbed
desiderata §1-5. PROWESS, shown in Figure 1, is a collection of
open source (upon publication) software artifacts and principles
that bring edge computing experimentation to new institutions.
PROWESS is totally configurable(§1), connecting sensors and com-
pute resources important to edge experimentation to users via
institutional access points(§4). PROWESS allows users to configure
new compute nodes, sensors, and wireless networking solutions
quickly, often in less than 100 lines of code. PROWESS runs user
code in containers, allowing users to request compute slices(§2)
and execute arbitrary code without incurring the overhead of vir-
tualization or security infrastructure of bare-metal privileged ac-
cess. Administrators can allocate sensors for public or restricted
use through PROWESS’ multicast interface, and users can bring
their own sensors(§3) connected over the institutional network.
By attaching to secure institutional networks and sandboxing user
code in containers, prowess maintains a secure and private testbed
for sensor workloads(§5).

We built the first PROWESS testbed implementation at Ohio
State University (OSU), a large research-focused institution. Our
PROWESS implementation contains 9 decentralized nodes provi-
sioned on our OSU’s wireless overlay network (OSU Wireless).
OSU Wireless provides a rich set of over 20,000 access points which
can be configured as PROWESS endpoints for sensor or hub con-
figuration. Using this testbed, we built applications representing
three different edge computing workloads: software defined radio
localization, real-time audio stream analysis, and autonomous UAV
image processing. Using these workloads, we demonstrate that: 1)
PROWESS has a small footprint and is highly scalable, using at
most 1.3 CPU cores on the core hub, 200MB of RAM, and 8Kbps of
network bandwidth per provisioned hub. 2) PROWESS better repre-
sents the resource requirements of actual edge systems than other
testbeds. Execution time of PROWESS workloads is within 1% of
bare-metal execution time, where virtual machine execution takes
between 29% and 50% longer. 3) PROWESS facilitates experiments
that are not possible on other systems testbeds. We demonstrate
using a simple SDR application that PROWESS avoids bandwidth
constraints, network jitter, and latency to process SDR streams with
16-800X less overflows than cloud testbeds. 4) PROWESS hubs and
sensors are simple to configure. We configure a PROWESS edge
hub and two sensor nodes with only 54 lines of code.

Section II of this paper provides background on edge computing
and systems testbeds. Section III presents the design of PROWESS.
Section IV describes implementation details of PROWESS, and
Section V covers our three test applications. Section VI details
results comparing PROWESS to other testbed frameworks and an
edge hub deployment case-study.

2 BACKGROUND AND MOTIVATION

As edge computing has matured, many testbeds have been de-
veloped for both general and specific use cases. Custom edge
testbeds have been used to benchmark edge-specific algorithm
and Al development [16, 32], edge networking techniques [21, 22],
offloading [14], hardware paradigms [23] and diverse edge applica-
tions [7, 30]. Custom testbeds, however, lack the wide deployment,

PROWESS: An Open Testbed for Programmable Wireless Edge Systems

PEARC 22, July 10-14, 2022, Boston, MA, USA

Users

4
9 1>
= Master Node

App

kubernetes

Core Hub Institutional Network

Edge Hub %

g]//(\\
i

Edge Hub

=f—f

Edge Hub

Figure 1: PROWESS places user apps on edge compute resources by leveraging existing institutional networks and common

cloud-native technologies

rich sensor availability, re-programmability, and extensibility of
major systems testbeds. Some edge testbeds, like USC’s CCI IoT
Testbed [13], are wide reaching and have considerable sensor access,
but lack the programmability necessary for edge experimentation.
Similarly, testbeds at Purdue University [19] are programmable, but
lack the openness, orchestration, wide reach, and slicability that
edge practitioners require of a general testbed.

In lieu of edge testbeds, large systems testbeds have been used
for edge research. GENI [3] is a distributed and networked systems
testbed with highly provisioned nodes across the United States.
GENI users reserve compute resources as slices: isolated resources
within the ecosystem on which users run experiments. GENI allows
users fine-granined control over the network of a slice, allowing
users to specify network parameters and protocols for experimen-
tation. GENI resources have been used as edge systems to support a
number of edge applications including connected autonomous vehi-
cle (CAV) experimentation [15], Al-focused fog computing [24], and
software-defined edge networking [25]. The Chameleon project,
another popular systems testbed, has also been used for edge ex-
perimentation [18]. Chameleon allows users to configure virtual or
bare-metal instances with accelerators and storage hierarchies to fit
their needs. While both testbeds are useful for edge benchmarking,
neither supports certain features required for edge applications.
Both use either virtualization or bare metal instances only, making
it difficult or impossible to precisely emulate the resource footprints
of edge systems. Both also do not provide native access to sensor
streams that edge systems rely upon. The Chameleon project has
begun developing CHI@Edge, a container-driven Chameleon alter-
native to more closely approximate edge workloads and provide
fine-grained slicing, but distance from edge sensors will still pre-
clude many network-bound workloads from proper benchmaking.

In recent decades, the United States National Science Foun-
dation has also funded major projects to build campus cyber-
infrastructure that have resulted in strong developments. While not
strictly a testbed, the Science DMZ [9] is a design pattern for high-
performance networking specifically to facilitate data-intensive
experimentation at research institutions. The Pacific Research Plat-
form (PRP) is a cyber-infrastructure project that builds upon the
Science DMZ model to deliver high-throughput networking to sci-
entists across California. PRP and Science DMZ support numerous
scientific projects in physics, computer science, biomedical science,
and earth science [28], but focus mainly on inter-facility network-
ing. These projects underscore the limitations of remote testbeds
like Chameleon. Many scientific experiments require high-fidelity

networking between compute nodes which can not be satisfied by
public networks.

3 DESIGN

PROWESS involves both a compute architecture and software sup-
port for constrained edge experimentation. In this section, we de-
scribe the architecture, experiment lifecycle, sensor management,
and user access.

3.1 Cluster Architecture

The PROWESS testbed is inherently a distributed system. As shown
in Figure 2, PROWESS consists of at least one PROWESS core hub
and a set of PROWESS edge hubs. Both the core hub and edge
hubs are separate and potentially geographically disparate pools of
compute resources connected by an institutional network. While
edge and core hubs have key differences, both are fully configurable
at the sensor, software, and hardware levels and inherently support
experiment multi-tenancy. The core hub houses the majority of
PROWESS software and system processing resources. The core hub
also provides its own remaining resources for experiment schedul-
ing. Edge hubs are additional members of the cluster that provide
compute resources and may act as sensor endpoints.
Core Hub: The core hub runs all software that PROWESS requires
for experiment scheduling using Kubernetes. PROWESS maintains
a scheduling system described in Section 3.2 which runs entirely
on the core hub. The PROWESS core hub hosts a sensor steam mul-
ticast module (described in Section 3.3), which pipes sensor streams
to experiment containers. The PROWESS web portal also runs on
the core hub. The PROWESS web portal (described in Section 3.4)
is a secure Apache hosted web application which provides authen-
ticated users access to PROWESS resources. Shown in section 6,
core hub software has a small footprints, meaning a core hubs can
be as light as a consumer laptop.
Edge Hub: Edge hubs function as augmented Kubernetes worker
nodes positioned across the institutional network. Edge hubs can be
anything from well-provisioned and centralized servers to far-flung
and lightly provisioned embedded devices. Once provisioned, edge
hubs are connected to the core hub by 1) joining the core hub’s
Kubernetes cluster, and 2) running a small set of custom PROWESS
programs for sensor and network management.

Figure 2 shows three example edge hubs with with three dif-
ferent resource footprints based on our applications discussed

PEARC °22, July 10-14, 2022, Boston, MA, USA

Jayson Boubin, et al.

User Input
Sensor Output
Container Flow

kubernetes

Users

Experiment Containers —]

:’3#‘2 R3m

Mysou

| Grafana
Resource Requirements
Compute Sensors
=] ©@) pry
o () AH Webapp
2GB 4 10GBv X v X X .

Prowess Core Hub

Prowess Edge Hubs

Compute Sensors Environment

Hub 2

Multicast

= =

o (o oy
=l =iRE

b

Figure 2: PROWESS design overview. Users define experiment containers and select required resources, which are scheduled

across the PROWESS core hub and constituent edge hubs

in Section 5. Hub 1 uses only a consumer laptop to manage au-
dio streams collected at an Airport, Hub 2 controls UAV using
a desktop PC at a remote farm, and Hub 3 uses a server grade
machine to control a software-defined radio provisioned in a class-
room. All of these experiments have different sensors, require-
ments, and applications, but all can be easily provisioned through
PROWESS.

3.2 Experiment Lifecycle

Figure 2 shows the PROWESS experiment lifecycle, which includes
three steps: definition, scheduling, and execution. Definition begins
with the user. Users define experiments as a set of Docker containers
with optional shared volumes, and cluster specific domain names
for data sharing and networking. PROWESS accepts containers as
black boxes, meaning all software and configuration is defined by
the user. PROWESS administrators may choose to provide baseline
container images with system software or APIs to simplify user in-
teraction with certain resources or sensors. Along with containers,
PROWESS accepts resource requirements which include specifi-
cations for maximum allocations of RAM, CPU, storage, and net-
work bandwidth. Users can also specify certain types of hardware,
like storage disk or CPU type, GPU or TPU allocation, and more
depending on availability throughout the cluster. Resource require-
ments include the sensor streams required for an experiment. Users
identify the available sensors that each container requires for its
experiment.

Once an experiment is defined, it can be scheduled in PROWESS.
PROWESS provides a secure web interface for experiment resource
definition, scheduling, and monitoring. Users provide PROWESS
access to containers either through Dockerhub or a private institu-
tional docker repository. Users also provide experiment date and
runtime information through the web interface. Before an experi-
ment is scheduled, PROWESS verifies that the requested resources
will be available at the requested times, and that the user has the
privilege to use certain resources or sensors. The PROWESS web

portal provides anonymized utilization information for all con-
nected hubs and nodes. For any given time, users are provided the
remaining unreserved resources. Before a user can schedule an
experiment, they must select the hub on which that experiment
will run. If that hub has the resources and sensor access the user’s
experiment will be scheduled.

When an experiment is scheduled, it enters the PROWESS ex-
periment queue. PROWESS jobs are scheduled using a combination
of the base Kubernetes scheduler and the PROWESS job queue.
The PROWESS job queue holds scheduled experiments that are
waiting for their specified start time. When the job’s scheduled
start time is reached, the job is scheduled on its assigned hub
through Kubernetes. PROWESS experiments hold their requested
physical resources for the entirety of their execution. Each ex-
periment is provided a directory, shared among all containers in
the experiment, which will persist after the experiment concludes.
When an experiment concludes, the persistent directory is com-
pressed and made available to the user through the PROWESS web
portal.

3.3 Sensors

Sensors are integral to the PROWESS experimentation model. Users
often choose to deploy applications at the edge rather than in
the cloud due to concerns over network fidelity or availability,
data privacy, or insufficient throughput. Users should be able to
connect to existing sensors provisioned specifically for PROWESS,
or their own provisioned sensors. PROWESS provides software and
leverages infrastructure for provisioned sensors through its sensor
stream multicast module (SSMM), and by allowing users to securely
connect sensors to containers through Aruba access points and
across institutional networks.

The SSMM runs as system software on the core hub. PROWESS
administrators can configure the SSMM to accept input streams
from sensors positioned across the institutional network. So long
as a sensor is connected to and authenticated on the institutional

wnipap llews

abue

PROWESS: An Open Testbed for Programmable Wireless Edge Systems

PEARC °22, July 10-14, 2022, Boston, MA, USA

10]40Gbps L2
40Gbps L2
40Gbps L3

OCIO Core ﬂ

Universit Eed Eod
W[relessy ‘
Core Hub
(4 _)\QAruha AP

%Jser (

| E(igiHub User
=g ==

B 3
_ MKII MKII
Edge Node Base Station
— —

lT ‘ Edge Hub

WESS {{
=T e

Figure 3: a) PROWESS Connects to OCIO Core but provisions edge hubs across OSU Wireless, b-c) Overview of our SDR and

Acoustic classification application

network, it can be connected to PROWESS. The SSMM accepts UDP
sensor streams from all configured sensors, and transmits sensor
data to containers that request it via UDP multicast.

PROWESS allows users to bring their own sensors. PROWESS
leverages new technology developed with Aruba Networks which
allows for bi-directional communication between IoT gateways and
edge devices directly through access points. Users of our PROWESS
implementation can connect sensors via USB, BLE, or WiFi directly
to one of over 20,000 access points at OSU and send data directly to
PROWESS containers. PROWESS also provides every experimental
container its own IP and DNS entry that is accessible through the
Kubernetes cluster load-balancer on the PROWESS VPN.

3.4 Web Portal

PROWESS provides a web portal for users to schedule experiments,
monitor workloads, and export data. The PROWESS web portal is
built to integrate with common institutional single sign software.
Our PROWESS prototype, for example, is integrated with OSU’s
Shibboleth [8] single sign-on system. PROWESS links authenticated
users to their scheduled experiments and data using outputs from
institutional tools, simplifying authentication and access control.
Authenticated users can schedule experiments, view experiment
and cluster status, and export data from prior experiments. To sched-
ule experiments, users provide an experiment definition through
a web form. Users are provided a calendar of anonymized experi-
ments and their resource requirements so they can make informed
decisions about when to schedule their jobs. Users can also mon-
itor experiments status and outputs. PROWESS provides status
information (e.g scheduled, running, complete, error) about all of a
user’s experiments within the system. When experiments conclude,
users can export all data recorded in the experiments shared export
volume as a zip file.

4 IMPLEMENTATION

We implemented a 9-node PROWESS prototype at OSU. Our
PROWESS implementation consists of 1 core hub, 2 edge hubs,
4 embedded MKII audio nodes, and 2 USRP N210 SDRs. In this
section, we describe the architecture, implementation, and configu-
ration of this system.

Figure 3a shows the architecture of our PROWESS prototype.
This prototype provisions one core hub and two edge hubs across
OSU campus. The core hub sits behind the university’s core net-
work, OCIO Core. OCIO Core is comprised of layer 2 and 3 switches
connecting hundreds of internal systems and services with a band-
width of 10 and 40 Gbps. OSU Wireless is OSU’s public wireless
infrastructure which provides WiFi service to faculty, staff, stu-
dents, and guestsin most University buildings. OSU Wireless con-
nects users to 10-40Gbps layer 2 links through one of more than
20,000 Aruba wireless access points, each representing a potential
PROWESS edge hub deployment, back to OCIO Core. PROWESS
provisions the core hub behind OCIO Core and connects both edge
hubs through OSU Wireless.

The PROWESS prototype core hub is located in Pomerene hall,
a central building on OSU campus. The core hub is hosted on a Dell
PowerEdge R815 server with an AMD Opteron 6128 CPU, 128GB of
RAM, and 6 TB of disk space. Edge Hub 1, also located in Pomerene
hall, is hosted on an HP ProLiant m710x server with a Xeon E3-
1585L CPU, 64 GB of RAM, and 1TB of disk space. Edge Hub 2 is
located at OSU Don Scott Airport, 6 miles northwest of campus.
Edge Hub 2 is provisioned on an HP G6 laptop with a 2-core i5
7200u CPU, 4GB of RAM, and 500GB of disk space.

The core hub runs all PROWESS scheduling and management
software, including the PROWESS web portal, the experiment
scheduler, SSMM, and Kubernetes. The core hub also acts as a
sensor endpoint for two MKII custom embedded audio sensors
connected via Aruba APs. MKIIs use TDK InvenSense ICS-43432
microphones and embedded hardware to classify live audio, as de-
scribed in Section 5. Edge hubs run Kubernetes worker software
and all software required for the sensors they manage. Edge Hub
1 acts as a sensor endpoint for two USRP N210 software-defined
radio. Edge Hub 2 acts as a sensor endpoint for two additional
MKII nodes positioned at the airport. MKII Node 1 is positioned
atop a National Ecological Observatory Network (NEON) tower at
the north end of the airport. MKII Node 2 is positioned near the
airport’s main terminal and connected directly to Edge Hub 2 by
USB. MKII Node 1 connects to MKII Node 2 using LoRa from 1.2km
across the airfield.

PEARC °22, July 10-14, 2022, Boston, MA, USA

5 APPLICATIONS

We implemented three edge-focused sensor-based applications on
PROWESS to test and validate our design. Our applications include
software-defined radio device identification, audio classification,
and autonomous UAV feature extraction. In this section, we describe
these three workloads in detail. In Section 6, we use them to test
the performance of PROWESS.

SDR Wireless Device Identification: We developed an SDR ap-
plication using PROWESS to count the number of wireless devices
in a room. As shown in Fig. 3b, the SDR RX (receiver) behaves
as a WiFi packet listener that sniffs into the nearby wireless en-
vironment. Wireless transmission between the end devices and
Access Points (APs) are captured by our SDR application. These
sniffed WiFi frames are then decoded and the MAC addresses of
the transmitter (TX) and receiver (RX) are retrieved. To measure
the number of wireless devices in a room we calculate the number
of unique MAC addresses received during a given time slot. For
the experimental setup of this application, we used a USRP N210
[12] software-defined radio. To sniff into WiFi 802.11n packets, the
SDR needs to sample received signals at 20 MHz to match with the
bandwidth of WiFi. PROWESS edge hub resources need to support
this incoming high bandwidth stream and process it at a rate such
that there are no buffer overflows, which result in packet loss and
incomplete classification.

Real-time Audio Processing: Our second application classifies
sound sources for remote monitoring of noise complaints. Our
application operates in-situ in MKII nodes which compute the sound
pressure level (SPL) of audio signals and classify noise pollution
sources using machine learning [29]. MKII networks consist of
several embedded edge nodes and one base station which wirelessly
communicate using Long Range radio (LoRa). Edge nodes send
classification results and SPL statistics to PROWESS-connected
base station. Fig. 3¢ shows the stream of our acoustic application
as deployed at the OSU airport.

Our acoustic application has been deployed at two different
locations: the OSU airport (outdoor) and Pomerene lab (indoor).
The airport deployment collects live audio data from the airfield to
support learning of additional transportation noise classes for our
noise pollution models. The lab deployment is focused on verifying
the fitness of Aruba APs as MKII gateways, and providing the stream
of MKII audio classification data to users through the PROWESS
core hub. In this deployment, the MKII node is connected to an
Aruba AP which sends results to the PROWESS core hub.
Autonomous UAV Feature Extraction: Autonomous unmanned
aerial vehicles (UAV) are an emerging class of edge and embedded
applications with tight power, compute, and latency budgets [4].
Autonomous UAV accomplish high-level goals without human in-
tervention [6]. They perform tasks in domains like infrastructure
inspection [1], agriculture [31, 33], search and rescue [26], and
more. Autonomous UAV experience large and non-obvious perfor-
mance impacts from naive hardware and software choices, making
benchmarking critical. To test PROWESS’ effectiveness for edge
benchmarking, we implemented a feature extraction algorithm
used for autonomous UAV pathfinding. When an autonomous UAV
searches its environment to accomplish a goal, it must analyze the

Jayson Boubin, et al.

data it captures to determine 1) to what degree it has already ac-
complished its goal, and 2) where it should move next in pursuit
of its goal. Conventionally, autonomous UAV use reinforcement
learning for pathfinding. We implemented an algorithm from prior
work [5] which uses feature extraction from UAV images to navigate
environments using Q-learning.

6 RESULTS

In this section, we present findings from our PROWESS prototype
and deployment. We found that PROWESS is easy to set up, uses
few resources both on physical devices and across institutional
networks, and closely approximates application performance on
native hardware.

Figure 4 provides insight into the setup of PROWESS edge nodes
and the resources they consume. Edge hubs are simple to deploy.
Overall, only 54 lines of code (LOC) were required to configure an
entire PROWESS edge hub. Figure 4 (a) shows the LOC required
to set up our PROWESS edge hub at the OSU Airport which con-
trolled two MKII audio sensors. All edge hub configurations are
different, but baseline configuration requires little effort. Here, we
required 13 LOC (installation) to install all PROWESS software
with dependencies including Docker and Kubernetes, 8 LOC (edge)
to connect the edge hub laptop to the core hub, 32 LOC (core) to
configure the edge hub’s YAML-based profile on the core hub, and 2
LOC (sensor) to configure our MKII nodes. PROWESS'’ reliance on
industry-standard tools like Kubernetes and institutional networks
makes deployment simple.

Figure 4 (b) shows the baseline resource utilization of our edge
hub. The majority of the system is available for experiment sched-
uling. On average, testbed processes like Kubernetes and Docker
take up on average 4.1% of one CPU, system processes consume 4%
of one CPU, and the sensor ingestion application consumes 0.7% of
one CPU. This leaves upwards of 95% of total compute resources
(191.2% CPU of a dual-core machine) left over for scheduling.

Once configured, we found that experiments on PROWESS
closely approximate bare-metal performance as shown in Fig-
ure 4 (c). We tested the performance of our UAV feature extraction
workload on PROWESS, in a docker container, in a virtual machine,
and on bare metal, all run on Edge Hub 1. Our docker container
and virtual machine both used Ubuntu 18.04 with the same sys-
tem software. Our virtual machine used the KVM hypervisor. For
each workload, we allocated between 1 and 8 CPU cores through
the PROWESS scheduling process and the docker and KVM com-
mand line interfaces. Bare-metal core allocation was performed
by manually disabling CPU cores. Figure 4 shows that Bare-metal,
Docker, and PROWESS have execution times within 1% of each
other for all tested core allocations. KVM experienced a 29-50%
performance penalty over bare metal, docker, and PROWESS, in-
creasing as core count increases due contention for CPU resources
through the KVM hypervisor. With the same underlying hardware,
an 8-core KVM virtual machine implementation under-performs a
2-core PROWESS container or bare metal allocation.

PROWESS also facilitates the design and testing of applications
that can not be performed with current well-known testbeds. Our
SDR wireless device identification application has high bandwidth
and low latency requirements that are easily met at the edge, but are
difficult to meet with remotely provisioned resources. Figure 4 (d)

PROWESS: An Open Testbed for Programmable Wireless Edge Systems

PEARC 22, July 10-14, 2022, Boston, MA, USA

n8
40 0 ” 1000
(] ~
6 1
% 30 E E % 00
O 20 s c4 £ 10
s <8 9 1
g 10 > 32 S
20 20 x 01
- T w LN Wb
CPU Utilization % PN W s o O Allocated Cores
B Installation B Edge B System M Sensor Allocated Cores B Chameleon B GENI
W Core O Sensor B Free 0 PROWESS Il Bare Metal ® Docker® PROWESS O VM B PROWESS [Edge
a) b) c) d

Figure 4: PROWESS closely approximates bare-metal performance in contrast to virtualization, and its proximity to sensors

facilitates benchmarking that other testbeds can not.

)
140 c 45 = > 200 =
o ~—
= 40 - 180 4
c N 35 % 160 -
2 J 5 301 N 140
I = > o5 - 5 120 -
= H| I a 25 100
) ‘\M | O 20 = =
=) | ‘\ I } ‘ it © < 80+
2 (MR S 15 @
O {00 A Ul) o 601
< Wi sy u““\‘ I 2104 2 40 -
S A I\] 1 = =
20 A 1 \JKE 59 2 204
5 s LMo war AL ALAL < 0 b) < 04

0 30 60 90
a) Execution Time (Minutes)

120

W Core Hub (Active)
B Edge Hub (Active)

W Core hub (Idle)
O Edge hub (idle)

m —
8700 250 -
<600 | 8 45
> <
T 500 | @404
% | | | §35-
51_)400 I [} 530-
£ 300 i o z25
[| | | i
F 200 A R AL 820
o R
D100 t‘ ; T Fl i I, glo
o bt AN MDAl S 5
0 0 30 60 90 1209 0

d) Execution Time (Seconds)

2345678
e) # of Nodes

B 2 Nodes B 3 Nodes B4 Nodes B5 Nodes
6 Nodes [7 Nodes M 8 Nodes

Figure 5: PROWESS nodes use resources parsimoniously and scale gracefully with respect to institutional networks

shows the performance of our SDR workload on GENI, Chameleon,
PROWESS, and a native edge system. The native edge system was
a Lenovo Thinkpad T470 laptop with an i7 7500u CPU and 24GB
of RAM, running Ubuntu 18.04 Linux. The GENI experiment was
run using our university’s InstaGENI rack with an EMU-XEN 4-
core virtual machine. Our Chameleon experiment used a bare-metal
chameleon node situated at the Texas Advanced Computing Center.

Both Chameleon and GENI experience considerably more SDR
overflows than PROWESS and edge hardware. Overflows occur
when machines can’t process incoming packet streams fast enough
to keep buffers from overflowing. This can be mitigated by al-
locating more cores, or assuring consistent network connection
and packet delivery. PROWESS experiences performance penalties
compared to bare metal hardware as a result of the extra layer
of Kubernetes networking. GENI experiences over an order of
magnitude more overflows than PROWESS and edge hardware
at all levels of core allocation. Similarly, chameleon experiences
two to three orders of magnitude more overflows than PROWESS
and edge hardware.

At the sample rate required to sniff WiFi packets, our SDR trans-
mits data at 620Mb/s. Furthermore, edge hardware and PROWESS
receive packets quickly, with a latency near 1ms. Our University

GENI node receives packets in 2.5ms. Chameleon, positioned hun-
dreds of miles away, has a latency of 37ms. Chameleon is unable
to keep its buffers from regularly overflowing due to increased
latency and jitter. SDR packets experience on average 228us of jitter
with Chameleon as compared to 11us with native hardware and
PROWESS, increasing the probability of buffer overflows. GENI
is unable to keep up with packet processing due to the overhead
of virtualization. Furthermore, both GENI and Chameleon do not
have the bandwidth to receive all packets. GENI receives only 15%
of all transmitted SDR packets, putting less pressure on buffers and
limiting overflows. Overall, this type of workload requires a strong,
consistent network connection and near bare-metal hardware per-
formance to benchmark. Only PROWESS provides both of these
features for users.

Figure 5 (a)-(c) shows a more detailed depiction of the footprint
of both a PROWESS core hub and edge hub while idled and un-
der load. To determine the resource footprint required to support
PROWESS, we captured resource utilization information for every
process spawned by PROWESS and its dependencies using perf [10].
Figure 5 (a) shows CPU utilization over time of both active and idle
PROWESS edge and core hubs sampled once per minute over two
hours. ‘Active’ CPU utilization was profiled only when experiments
were being scheduled on that hub. CPU Performance is reported in
percent CPU utilization, the aggregate percentage of 1 CPU that all

PEARC °22, July 10-14, 2022, Boston, MA, USA

PROWESS processes are currently using. Figure 5 (a) shows that
CPU utilization is highly variable for both edge and core hubs, but
overall remains low, and is not considerably affected by activity. Our
PROWESS core hub used between 13% and 131.9% CPU when idle
and between 13% and 137.9% when active. Edge hubs require less re-
sources, using between 1% and 17% CPU when idle and between 1%
and 28% CPU when active. As reported by Figure 5 (b), Active and
idle core hubs use on average only 42.5% and 42.2% of a single CPU
core respectively. Active and idle edge hubs use 6.3% and 4.8% of a
single core. PROWESS’ memory footprint, shown in Figure 5 (c),
follows a similar trend. Active and idle core hub processes reserve
resident sets of on average 181.3MB and 186.5MB of RAM, while
active and idle edge hubs reserve on average 45.19MB and 45.26MB.
This footprint is quite small. A PROWESS core hub can be provi-
sioned on a 2-core machine with 1GB of RAM and sufficient storage,
while an edge hub requires even less resources. PROWESS hubs
do not require high-end or specialty resources to be provisioned,
meaning unused compute resources can be repurposed as testbed
hubs. Both core and edge hubs could also feasibly be provisioned
on Raspberry Pis or other similarly provisioned embedded systems.
Figure 5 (d) and (e) show how PROWESS scales as edge-hubs are
added. Figure 5 (d) shows that most PROWESS traffic is periodic.
Kubernetes heartbeat traffic consists the majority of the baseline
network utilization of PROWESS. As PROWESS hubs are added, the
average aggregate network utilization increases by around 5Kbps
as seen in Figure 5, characterized by spikes in utilization of around
100Kbps as log and health information are transmitted. Smaller
spikes were observed when the Kubernetes command-line took
Kubectl is invoked for experiment scheduling. The overall network
footprint of PROWESS is small compared to the institutional net-
work on which it is provisioned as shown in Figure 3 (a). At peak, an
8-hub PROWESS instance requires 648Kbps bandwidth to support
baseline PROWESS inter-hub communication on our 10-40Gbps
institutional network, giving PROWESS room to grow.

7 CONCLUSION

PROWESS is a testbed built specifically for edge experimentation.
PROWESS uses cloud-native technologies and existing infrastruc-
ture to schedule and manage edge and sensor-based experiments
across universities and research institutes. PROWESS has a small
resource footprint, allowing experimentation on sparsely provi-
sioned consumer and embedded devices. PROWESS has limited net-
work impact and scales gracefully, allowing researchers to deploy
PROWESS nodes widely with little concern of network pressure. We
implemented and tested PROWESS at our University, demonstrat-
ing that PROWESS closely approximates native hardware execution
for edge workloads, facilitates edge experiments that other testbeds
can not, and allows edge hub deployment in less than 100 lines of
code.

ACKNOWLEDGMENTS

This work was funded in part by an NSF CC* Integration
Award (2018912) and an NSF Graduate Research Fellowship (DGE-
1343012).

REFERENCES

[1] Abdulla Al-Kaff, Francisco Miguel Moreno, Luis Javier San José, Fernando Garcia,
David Martin, Arturo de la Escalera, Alberto Nieva, and José Luis Meana Garcéa.

[12

(13]

(14]

=
i)

[16

[17

oy
&

[19

[20

[21

[22]

[23

[24

Jayson Boubin, et al.

2017. VBII-UAV: Vision-based infrastructure inspection-UAV. In World Conference
on Information Systems and Technologies. Springer, 221-231.

Anish Arora, Prabal Dutta, Sandip Bapat, Vinod Kulathumani, Hongwei Zhang,
Vinayak Naik, Vineet Mittal, Hui Cao, Murat Demirbas, Mohamed Gouda, et al.
2004. A line in the sand: A wireless sensor network for target detection, classifi-
cation, and tracking. Computer Networks 46, 5 (2004), 605-634.

Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao, Max Ott,
Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. 2014. GENI: A federated
testbed for innovative network experiments. Computer Networks 61 (2014), 5-23.
Behzad Boroujerdian, Hasan Genc, Srivatsan Krishnan, Wenzhi Cui, Aleksandra
Faust, and Vijay Reddi. 2018. MAVBench: Micro Aerial Vehicle Benchmarking.
In MICRO.

Jayson Boubin, Codi Burley, Peida Han, Bowen Li, Barry Porter, and Christopher
Stewart. 2021. Programming and Deployment of Autonomous Swarms using
Multi-Agent Reinforcement Learning. arXiv preprint arXiv:2105.10605 (2021).
Jayson Boubin, John Chumley, Christopher Stewart, and Sami Khanal. 2019.
Autonomic Computing Challenges in Fully Autonomous Precision Agriculture.
In 2019 IEEE International Conference on Autonomic Computing (ICAC). IEEE.
Jayson G Boubin, Naveen TR Babu, Christopher Stewart, John Chumley, and
Shiqi Zhang. 2019. Managing edge resources for fully autonomous aerial systems.
In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing. ACM, 74-87.
Scott Cantor and T Scavo. 2005. Shibboleth architecture. Protocols and Profiles 10
(2005), 16.

Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester, and Jason Zurawski. 2014.
The science dmz: A network design pattern for data-intensive science. Scientific
Programming 22, 2 (2014), 173-185.

Arnaldo Carvalho De Melo. 2010. The new linux’perf’tools. In Slides from Linux
Kongress, Vol. 18. 1-42.

Emre Ertin, Anish Arora, Rajiv Ramnath, Vinayak Naik, Sandip Bapat, Vinod
Kulathumani, Mukundan Sridharan, Hongwei Zhang, Hui Cao, and Mikhail
Nesterenko. 2006. Kansei: A testbed for sensing at scale. In Proceedings of the 5th
international conference on Information processing in sensor networks. 399-406.
Matt Ettus. 2005. Usrp users and developers guide. ~www. olifantasia.
com/gnuradio/usrp/files/usrp_guide. pdf (2005).

USC Center for Cyber-Physical Systems and the Internet of Things. 2021. A
Campus-wide internet-of-Things Testbed. http://cci.usc.edu/index.php/cci-iot-
testbed/.

Hend Gedawy, Sannan Tariq, Abderrahmen Mtibaa, and Khaled Harras. 2016.
Cumulus: A distributed and flexible computing testbed for edge cloud compu-
tational offloading. In 2016 Cloudification of the Internet of Things (CIoT). IEEE,
1-6.

Abhimanyu Gosain, Mark Berman, Marshall Brinn, Thomas Mitchell, Chuan
Li, Yuehua Wang, Hai Jin, Jing Hua, and Hongwei Zhang. 2016. Enabling cam-
pus edge computing using geni racks and mobile resources. In 2016 IEEE/ACM
Symposium on Edge Computing (SEC). IEEE, 41-50.

Tianshu Hao, Yunyou Huang, Xu Wen, Wanling Gao, Fan Zhang, Chen Zheng,
Lei Wang, Hainan Ye, Kai Hwang, Zujie Ren, et al. 2018. Edge AIBench: towards
comprehensive end-to-end edge computing benchmarking. In International Sym-
posium on Benchmarking, Measuring and Optimization. Springer, 23-30.

Soumil Heble, Ajay Kumar, KV V Durga Prasad, Soumya Samirana, Pachamuthu
Rajalakshmi, and Uday B Desai. 2018. A low power IoT network for smart
agriculture. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT). IEEE,
609-614.

Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S Gunawi, Cody Hammock, et al. 2020.
Lessons learned from the chameleon testbed. In 2020 { USENIX} Annual Technical
Conference ({USENIX} {ATC} 20). 219-233.

Purdue Dependable Computing Systems Laboratory. 2021. Facilities and Equip-
ment at DCSL: Testbeds. https://engineering.purdue.edu/dcsl/about/.
Shih-Chieh Lin, Yungi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque, Lingjia
Tang, and Jason Mars. 2018. The Architectural Implications of Autonomous
Driving: Constraints and Acceleration. In ASPLOS.

Jiaying Meng, Haisheng Tan, Chao Xu, Wanli Cao, Liuyan Liu, and Bojie Li. 2019.
Dedas: Online task dispatching and scheduling with bandwidth constraint in edge
computing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2287-2295.

Raul Mufioz, Laia Nadal, Ramon Casellas, Michela Svaluto Moreolo, Ricard Vilalta,
Josep Maria Fabrega, Ricardo Martinez, Arturo Mayoral, and Fco Javier Vilchez.
2017. The ADRENALINE testbed: An SDN/NFV packet/optical transport network
and edge/core cloud platform for end-to-end 5G and IoT services. In 2017 European
Conference on Networks and Communications (EuCNC). IEEE, 1-5.

Jianli Pan, Lin Ma, Ravishankar Ravindran, and Peyman TalebiFard. 2016. Home-
Cloud: An edge cloud framework and testbed for new application delivery. In
2016 23rd International Conference on Telecommunications (ICT). IEEE, 1-6.

Jon Patman, Meshal Alfarhood, Soliman Islam, Mauro Lemus, Prasad Calyam,
and Kannappan Palaniappan. 2018. Predictive analytics for fog computing using
machine learning and GENL. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 790-795.

http://cci.usc.edu/index.php/cci-iot-testbed/
http://cci.usc.edu/index.php/cci-iot-testbed/
https://engineering.purdue.edu/dcsl/about/

PROWESS: An Open Testbed for Programmable Wireless Edge Systems

[25]

[26]

[27

[28]

[29]

Alessio Sacco, Flavio Esposito, and Guido Marchetto. 2020. A federated learning
approach to routing in challenged sdn-enabled edge networks. In 2020 6th IEEE
Conference on Network Softwarization (NetSoft). IEEE, 150-154.

Jiirgen Scherer, Saeed Yahyanejad, Samira Hayat, Evsen Yanmaz, Torsten Andre,
Asif Khan, Vladimir Vukadinovic, Christian Bettstetter, Hermann Hellwagner,
and Bernhard Rinner. 2015. An autonomous multi-UAV system for search and
rescue. In Proceedings of the First Workshop on Micro Aerial Vehicle Networks,
Systems, and Applications for Civilian Use. 33-38.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
computing: Vision and challenges. IEEE internet of things journal 3, 5 (2016),
637-646.

Larry Smarr, Camille Crittenden, Thomas DeFanti, John Graham, Dmitry Mishin,
Richard Moore, Philip Papadopoulos, and Frank Wiirthwein. 2018. The pacific
research platform: Making high-speed networking a reality for the scientist. In
Proceedings of the Practice and Experience on Advanced Research Computing. 1-8.
Sangeeta Srivastava, Dhrubojyoti Roy, Mark Cartwright, Juan P Bello, and Anish
Arora. 2021. Specialized Embedding Approximation for Edge Intelligence: A

[30

[31

[32

[33

PEARC 22, July 10-14, 2022, Boston, MA, USA

Case Study in Urban Sound Classification. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8378-8382.
Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Ranveer Chandra, Anish
Kapoor, Sudipta Sinha, Madhusudhan Sudarshan, and Sean Stratman. 2017. Farm-
Beats: An IoT Platform for Data-Driven Agriculture. In NSDL

Ming-Der Yang, Jayson G Boubin, Hui Ping Tsai, Hsin-Hung Tseng, Yu-Chun
Hsu, and Christopher C Stewart. 2020. Adaptive autonomous UAV scouting
for rice lodging assessment using edge computing with deep learning EDANet.
Computers and Electronics in Agriculture 179 (2020), 105817.

Wuyang Zhang, Sugang Li, Luyang Liu, Zhenhua Jia, Yanyong Zhang, and Di-
pankar Raychaudhuri. 2019. Hetero-edge: Orchestration of real-time vision
applications on heterogeneous edge clouds. In IEEE INFOCOM 2019-IEEE Confer-
ence on Computer Communications. IEEE, 1270-1278.

Zichen Zhang, Jayson Boubin, Christopher Stewart, and Sami Khanal. 2020.
Whole-Field Reinforcement Learning: A Fully Autonomous Aerial Scouting
Method for Precision Agriculture. Sensors 20, 22 (2020), 6585.

https://www.researchgate.net/publication/361092776

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Design
	3.1 Cluster Architecture
	3.2 Experiment Lifecycle
	3.3 Sensors
	3.4 Web Portal

	4 Implementation
	5 Applications
	6 Results
	7 Conclusion
	Acknowledgments
	References

