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Spectral functions and localization-landscape theory in speckle potentials
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Spectral function is a key tool for understanding the behavior of Bose-Einstein condensates of cold atoms in
random potentials generated by a laser speckle. In this paper we introduce a method for computing the spectral
functions in disordered potentials. Using a combination of the Wigner-Weyl approach with the localization-
landscape theory, we build an approximation for the Wigner distributions of the eigenstates in the phase space
and show its accuracy in all regimes, from the deep quantum regime to the intermediate and semiclassical. Based
on this approximation, we devise a method to compute the spectral functions using only the landscape-based
effective potential. The paper demonstrates the efficiency of the proposed approach for disordered potentials
with various statistical properties without requiring any adjustable parameters.
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I. INTRODUCTION

Due to the very weak interactions with the environment and
the tunability of internal interactions, cold atom systems are of
particular interest to study the influence of disorder on quan-
tum transport [1,2]. Cold atoms in the disordered potential of a
laser speckle provided the first direct observation of Anderson
localization [3], theoretically predicted in 1958 [4]. In these
systems, the so-called spectral functions Ak(E ) are quantities
of special importance both for theory and experiments. They
are defined as the (averaged over disorder realizations) energy
distribution of a quantum plane wave of wave vector k (and
hence of a quantum particle of momentum h̄k). Alternatively,
Ak(E ) can be seen as the average momentum distribution of a
state with energy E . The spectral function is a building block
for computing properties of disordered quantum systems. For
example, the density of states is simply the integral of the
spectral function over k. In three-dimensional (3D) systems,
there is generically a transition between Anderson localized
states at low energy and delocalized states at high energy. This
second-order continuous phase transition—known as the An-
derson transition—takes place at a given energy Ec called the
mobility edge. Computing Ec and the (universal) properties
in its vicinity for a given system is a difficult task, mainly
because it takes place in the strong disorder regime where
perturbative approaches fail. One could expect the spectral
function to present some singularity at Ec, but this turns out
to be too naive. The main reason is that the spectral function
involves—see below—a single averaged Green function while
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the transport properties which are singular at Ec involve the
average product of a retarded and an advanced Green func-
tion [5–7].

Nonperturbative approaches have been tried to predict the
position of the mobility edge, one of the more advanced ones
being the self-consistent theory of localization [8]. It has been
used for the specific case of cold atoms in a disordered optical
potential in [5,6,9]. However, the results depend on the ap-
proximations, and only a semiquantitative agreement between
the experimental results [10,11] and the numerical calcula-
tions [12,13] is obtained for the position of the mobility edge.
In any case, a crucial ingredient for estimating the mobility
edge in self-consistent theories is the spectral function. This is
because the transport properties are measured in the momen-
tum space while the mobility edge is in the energy space; the
spectral function provides the necessary link between spatial
and energetic properties. This is why a number of studies have
been devoted to compute these spectral functions [14,15], as
well as to measure them experimentally [16].

In this paper we present an approach to computing the
spectral functions based on a recent theoretical development
on localization called the localization-landscape (LL) theory.
After a short presentation of the main properties of the local-
ization landscape and of its reciprocal, the effective potential,
we introduce the computation of the spectral functions based
on the Weyl transform of a Hamiltonian derived from the LL
and on the Wigner functions of quantum eigenstates. This
allows us to showcase how the LL provides a much more
accurate view of the distribution of these Wigner functions
than the original Hamiltonian. Finally we compute spec-
tral functions using this approach for a variety of potentials
including laser speckle and assess the accuracy of our ap-
proach both in the semiclassical and quantum regimes.
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II. THE LOCALIZATION LANDSCAPE THEORY

The LL is a theoretical tool that was shown to possess
information regarding localization of waves in a large variety
of physical systems [17–22]. We will briefly introduce its
definition and properties in the context of a single quantum
particle in a non-negative potential V . In fact, the potential
only needs to be bounded from below, in which case it can be
uplifted by a constant to become positive. The Hamiltonian
is therefore Ĥ = − h̄2

2m� + V̂ , and the LL u is defined as the
solution to

Ĥu = − h̄2

2m
�u +Vu = 1, (1)

with the boundary conditions corresponding to those of the
original problem. The function u is remarkably simple to com-
pute numerically considering the large amount of information
it provides. First, to address those, recall that an essential role
is played by the reciprocal of the LL, Vu ≡ 1/u [23], which
acts as an effective potential through the following identity
satisfied by any state |ψ〉 [18]:

〈ψ |Ĥ |ψ〉 = h̄2

2m

〈
u∇

(
ψ

u

)∣∣∣∣u∇
(

ψ

u

)〉
+ 〈ψ |V̂u|ψ〉. (2)

This identity shows that the energy of any state can be de-
composed into two positive contributions, the first one that
is akin to an effective kinetic energy, and the second one
which is the potential energy of the state in the potential Vu.
One of the key properties of Vu is that it can be used to
build a very good approximation to the integrated density of
states (the number of states below a given energy, denoted
here by IDOS) [18,21,22]. One of these approximations is
inspired by Weyl’s asymptotic law. The classical Weyl law
provides a high-energy asymptotic expression of the IDOS by
counting the volume in phase space accessible for a particle
of energy E , i.e., the volume enclosed within the hypersur-
face of equation H (x,p) = E , where H (x,p) is the classical
Hamiltonian function. In the following, for convenience we
will use k instead of the momentum p = h̄k. The LL-based
approximation uses a similar expression, only replacing the
original potential by the effective potential Vu:

IDOS(E ) ≈ 1

(2π )d

∫∫
H1(x,k)�E

dx dk, (3)

with H1(x,k) = h̄2k2

2m
+Vu(x) (4)

the LL Hamiltonian. The accuracy of this approximation
even at low energy, demonstrated in [18,21], suggests that
the eigenfunctions of Ĥ of energy comprised in the interval
[E ,E + dE ] are to be “found” in phase space mostly between
the hypersurfaces of equations H1(x,k) = E and H1(x,k) =
E + dE , respectively. In order to make our statement more
precise, we now introduce the Wigner-Weyl formalism estab-
lishing a link between the Hilbert space of quantum states
and Hermitian operators on one side, and distributions and
functions in phase space on the other side.

III. THE WIGNER-WEYL APPROACH

A. The Wigner-Weyl formalism

TheWigner function of a wave function ψ is defined in the
phase space (x,k) as [24,25]

Wψ (x,k) ≡ 1

(2π )d

∫
e−ik·y ψ∗

(
x − y

2

)
ψ

(
x + y

2

)
dy. (5)

It can also be defined as

Wψ (x,k) ≡ 1

(2π )d

∫
eik

′ ·x χ∗
(
k + k′

2

)
χ

(
k − k′

2

)
dk′,

(6)
where χ is the Fourier transform of the wave function defined
as

χ (k) = 1

(2π )d/2

∫
e−ik·x ψ (x) dx. (7)

TheWigner function satisfies many important properties. It
is dimensionless and can be understood, in particular, as being
close to a probability distribution in phase space [26]. This last
statement comes from the fact that the two marginal integrals
along x and k satisfy∫

Wψ (x,k) dk = |ψ (x)|2, (8)∫
Wψ (x,k) dx = |χ (k)|2. (9)

In addition, the Hermitian inner product in Hilbert space
is transported into the inner product on distributions in phase
space through the following identity satisfied by any pair of
quantum states (ψ1, ψ2):∫∫

Wψ1 (x,k)Wψ2 (x,k) dx dk = |〈ψ1|ψ2〉|2. (10)

One should note, however, thatW (x,k) is not a genuine prob-
ability distribution over phase space [25]. For instance, it can
take negative values (although it is positive when convolved
with any minimal Gaussian such that �x�k = 1/2). Conse-
quently, one should be careful in the physical interpretation of
this quantity.

This formalism is completed on the operator side by the
Weyl transform [27]. The Weyl transform of any operator Ô
acting on quantum states is defined as

Õ(x,k) =
∫

e−ik·y
〈
x + y

2
|Ô|x − y

2

〉
dy. (11)

For instance, the Weyl transform of the Hamiltonian
Ĥ is H̃ (x,k) = h̄2k2/2m +V (x) [similarly, H̃1(x,k) =
h̄2k2/2m +Vu(x)]. For the sake of simplicity, we will omit
the tilde symbol on H (x,k) and H1(x,k) when referring to
the Weyl transforms of these operators in the rest of the paper.

The main property of the Weyl transform, in conjunction
with the Wigner function, is that it provides a measure on
phase space which can be used to compute the expectation
of any observable through the following identity:

〈O〉ψ = 〈ψ |Ô|ψ〉 =
∫∫

Wψ (x,k) Õ(x,k) dx dk. (12)

In short, the Wigner-Weyl formalism offers a way to envision
any observable quantity in phase space. We will now see how
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the approximation (3) reveals the structure of quantum states
in phase space, especially in the case of disordered potentials.

B. The structure of quantum states in phase space

By definition, the IDOS counts the number of quantum
states below energy E . The accuracy of approximation (3)
(cf. [18]) suggests that, in phase space, the supports of the
Wigner functions of the quantum states in the energy range
[E ,E + dE ] are located mostly between the two hypersur-
faces H1(x,k) = E and H1(x,k) = E + dE .

To test this hypothesis, we now consider a Hamil-
tonian with a statistically translation-invariant disordered
potential V . We denote by V its average value, by P(V ) its
probability density, and by g(x) its spatial correlation func-
tion, defined as

g(x) = V (x′)V (x′ + x) −V (x′)
2
, (13)

where · · · corresponds to averaging over the statistical en-
semble of disordered potentials. In the rest of the paper, we
will use nonbold notations x and k instead of x and k when
dealing with one-dimensional systems, since these quantities
are scalar in this case. We use an ensemble especially relevant
for cold atoms, the blue-detuned speckle potential with a cor-
relation function approximated by a Gaussian. This random
potential is characterized by

P(V ) = 1

V0
exp

(
−V

V0

)
θ (V ), V = V0,

g(x) = V0
2 exp

(
− x2

2σ 2

)
, (14)

where θ is the Heaviside step function and σ is the correlation
length of the potential. This length σ defines another impor-
tant energy scale, the correlation energy [5]

Eσ = h̄2

mσ 2
, (15)

which corresponds to the typical energy of a particle with a de
Broglie wavelength of the order of σ . We can then define the
ratio between the two energy scales Eσ and V0:

η = V0
Eσ

= mσ 2V0
h̄2

. (16)

Depending on the value of this dimensionless parameter, the
system can explore a semiclassical regime (η � 1), a deeply
quantum regime (η 	 1), or an intermediate regime (η ≈
1) [28]. This parameter plays a key role in understanding
the behavior of the system. Moreover, when exploring the
values of η from the semiclassical to the quantum regime, the
effective potentialVu is expected to gradually change from the
original potential V to a renormalized disorder that accounts
for quantum confinement and tunneling effects. In the rest of
the paper we use σ as the unit of length and set m = h̄ = 1
such that we have simply η = V0 and H (x, k) = k2/2 +V (x).

In the following plots we analyze the “essential” supports
of the Wigner functions of the eigenfunctions of the Hamil-
tonian in phase space, for different values of the disorder
strength V0 (or parameter η) and at various energies. For each
target energy E , all consecutive eigenstates in the interval

FIG. 1. Semiclassical regime. Top frame: Disordered potential
V with η = 2 (black line), effective potential Vu (blue line), and
energy level at E = 0.5 (dashed red line). Middle frame: Color plot
of FE (x, k) defined in Eq. (18) computed over all eigenfunctions in a
range �E = 0.2E around the target energy E = 0.5, superimposed
with the level set H (x, k) = E represented by a continuous black
line. Bottom frame: Similar representation as in the middle frame
but with the level set H1(x, k) = E of the LL Hamiltonian.

[E − �E ,E + �E ] are considered, with �E = αE and α =
0.2. The eigenfunctions are computed using a finite-difference
scheme by discretizing the Hamiltonian Ĥ on a grid of step δ

so that the discretized Schrödinger equation at energy E reads

2ψ (n) − ψ (n−1) − ψ (n+1)

2δ2
+Vnψ

(n) = E ψ (n), (17)

where ψ (n) = ψ (nδ) andVn = V (nδ). In order for the solution
(ψ (n) ) to be a good approximation of the continuous one,
δ must be chosen significantly smaller than both the corre-
lation length σ and the de Broglie wavelength � ∝ 1/

√
E .

In our simulations, the system length is L = 200 and δ =
0.2, and the boundary conditions are periodic. In summary,
for each realization of the speckle (disordered) potential,
we compute the associated LL function, all eigenstates (ψi )
around a target energy E in the interval [E − �E ,E + �E ],
as well as the corresponding Wigner functions Wi(x, k) =
Wψi (x, k) [29].

For each figure (1–5), the top frame displays the orig-
inal potential V and the effective potential Vu = 1/u. For
the middle frame, we average the Wigner functions of the
N[E−�E ,E+�E ] eigenstates lying in the [E − �E ,E + �E ]
energy interval,

FE (x, k) = 1

N[E−�E ,E+�E ]

∑
i

Wi(x, k), (18)

and superimpose the color representation of the contours of
FE (x, k) with the level set of H (x, k) = E . The bottom frame
displays the contours of FE (x, k) but this time superimposed
with the level set H1(x, k) = E .

Figure 1 shows the results for a disorder strength η = 2.0
around a target energy E = 0.5. In the top frame, the energy
level (dashed red line) crosses the graph of the effective po-
tential (blue line) in its lower part, meaning that the quantum
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FIG. 2. Quantum regime. Top frame: Disordered potential V
with η = 0.5 (black line), effective potential Vu (blue line), and
energy level at E = 0.5 (dashed red line). Middle frame: Color plot
of FE (x, k) defined in Eq. (18) computed over all eigenfunctions in a
range �E = 0.2E around the target energy E = 0.5, superimposed
with the level set H (x, k) = E represented by a continuous black
line. Bottom frame: Similar representation as in the middle frame
but with the level set H1(x, k) = E of the LL Hamiltonian.

states are well localized within the wells predicted by the
effective potential. In the middle frame, one sees that the
level set of the original Hamiltonian H (x, k) at energy E
(black line) presents a large number of closed curves, many of
which that do not correspond to any localized eigenfunction
around E [materialized by FE (x, k)]. On the contrary, in the
bottom frame, the location of the averaged Wigner function
FE (x, k) in phase space appears to be much more accurately
determined by the contours of H1(x, k). Empty contours cor-

FIG. 3. Quantum regime. Top frame: Disordered potential V
with η = 0.5 (black line), effective potential Vu (blue line), and
energy level at E = 2 (dashed red line). Middle frame: Color plot
of FE (x, k) defined in Eq. (18) computed over all eigenfunctions in
a range �E = 0.2E around the target energy E = 2, superimposed
with the level set H (x, k) = E represented by a continuous black
line. Bottom frame: Similar representation as in the middle frame
but with the level set H1(x, k) = E of the LL Hamiltonian.

FIG. 4. Deep quantum regime. Top frame: Disordered potential
V with η = 0.1 (black line), effective potential Vu (blue line), and
energy level at E = 0.07 (dashed red line). Middle frame: Color plot
of FE (x, k) defined in Eq. (18) computed over all eigenfunctions in a
range �E = 0.2E around the target energy E = 0.07, superimposed
with the level set H (x, k) = E represented by a continuous black
line. Bottom frame: Similar representation as in the middle frame
but with the level set H1(x, k) = E of the LL Hamiltonian.

respond to states having an energy lower than E − �E , not
included in the average (18).

We now move to a more quantum regime (η = 0.5) and
explore an energy range around the average potential value
(E = 0.5) in order to observe excited states (see Fig. 2). Here
again, the level set of H1(x, k) = E follows the contours of
the distribution FE (x, k) much better than that of the original
potential.

FIG. 5. Deep quantum regime. Top frame: Disordered potential
V with η = 0.1 (black line), effective potential Vu (blue line), and
energy level at E = 0.1 (dashed red line). Middle frame: Color plot
of FE (x, k) defined in Eq. (18) computed over all eigenfunctions in a
range �E = 0.2E around the target energy E = 0.1, superimposed
with the level set H (x, k) = E represented by a continuous black
line. Bottom frame: Similar representation as in the middle frame
but with the level set H1(x, k) = E of the LL Hamiltonian.
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In the same regime (η = 0.5), Fig. 3 displays states at a
higher energy (E = 2) compared to the potential strength. In
this case the Wigner functions are weakly affected by the
disorder and lie around the two horizontal lines of equa-
tion k2/2 = E , which in this case amounts to k = ±2. The
level sets of both H1(x, k) and H (x, k) delineate the support
of the distribution FE (x, k), although H (x, k) exhibits larger
short-range fluctuations which are not present in the Wigner
functions.

Finally, we explore a deep quantum regime (η = 0.1) in
Figs. 4 and 5. At the bottom of the spectrum (Fig. 4), it is
very clear now that the structure of FE (x, k) is much more
accurately predicted by the level sets of H1. In particular,
in the middle frame, one sees that the level set H (x, k) =
E encloses a large number of elongated regions where the
Wigner function remains very small. Such regions do not
appear inside the level set H1(x, k) = E anymore. Note that
one observes spurious oscillations in the level curves of the
original Hamiltonian which do not reflect the actual behavior
of the Wigner functions. These oscillations are not found
in the effective Hamiltonian. This observation still holds at
higher energy (E = 0.1, see Fig. 5).

The conclusion of this section is that, across all energy
ranges and across different regimes (corresponding to differ-
ent values of the parameter η), the level sets of H1 reproduce
the main features of the Wigner functions. This agreement
supports and explains the accuracy of the approximation (3).
Moreover, it provides a more accurate way to assess how the
energy is actually distributed in phase space than the original
Hamiltonian, i.e., H (x, k). We will now see how H1(x, k) can
help us compute spectral functions in laser speckle potentials,
both in classical and quantum regimes, without any adjustable
parameters.

IV. THE SPECTRAL FUNCTION ESTIMATES

The spectral function Ak(E ) can be understood as the en-
semble average of the energy distribution of a plane wave of
wave vector k. It is mathematically defined as

Ak(E ) ≡
∑

α

|〈k|ϕα〉|2 δ(E − Eα ) = 〈k|δ(E − Ĥ )|k〉, (19)

where the sum is taken over all eigenfunctions ϕα of
the Hamiltonian having an energy Eα = E . It can also be
physically interpreted as the ensemble average momentum
distribution of states of energy E . More generally, one can
extend this definition to the ensemble average of the energy
distribution of any quantum state |ψ〉:

Aψ (E ) =
∑

α

|〈ψ |ϕα〉|2δ(E − Eα ). (20)

The spectral function is directly related to the average re-
tarded Green function of the system. Indeed, using the identity

δ(E − Ĥ ) = lim
η→0+

− 1

π
Im

(
1

E − Ĥ + iη

)
, (21)

a time-energy Fourier transform makes it possible to express
the spectral function as

Ak(E ) = 1

π
Re

∫ ∞

0
〈k|e−iĤt |k〉 eiEt dt . (22)

The spectral function can thus be numerically computed by
following the time evolution of an initial plane wave |k〉 gov-
erned by the Hamiltonian Ĥ . This computation is performed
using an expansion of the evolution operator in polynomials
of the Hamiltonian, see [14] for details. One should note that,
in the semiclassical limit, the spectral function at k = 0 tends
to the distribution of the values of the original potentialV . We
will see in the following that the LL-based approach provides
a way to generalize this statement, even in the deep quantum
regime.

A. The LL-based Wigner-Weyl approach

The Wigner-Weyl theory, and specifically Eq. (12), tell us
that the average energy when the system is in state |ψ〉 is

〈ψ |Ĥ |ψ〉 =
∫∫

Wψ (x,k)H (x,k) dx dk. (23)

One can formally rewrite this identity by grouping together all
points (x,k) in phase space that correspond to the same value
of the classical energy:

〈ψ |Ĥ |ψ〉 =
∫

E

(∫∫
E�H (x,k)�E+dE

Wψ (x,k) dx dk
)

=
∫

E gψ (E ) dE . (24)

The function gψ (E ) could be interpreted as the energy distri-
bution function of ψ , i.e., the functionAψ (E ) defined in (20).
In other words, gψ (E ) dE could be understood as the norm
of the projection of ψ on the eigenstates of energy comprised
in [E ,E + dE ]. However, we have seen in the previous sec-
tion that the supports of the eigenstates of the Hamiltonian
are more precisely enclosed by the level sets of H1(x,k).
It is natural, therefore, to replace H (x,k) by H1(x,k) for
approximating the energy distribution, yielding

Aψ (E ) dE ≈
∫∫

E � H1(x, k)
� E + dE

Wψ (x,k) dx dk. (25)

The specific case of plane waves (|ψ〉 = |k〉) would lead to
an estimate on the spectral function. It requires the Wigner
function of a plane wave. For normalization reasons, one has
to restrain the plane wave to a bounded spatial domain 
 of
volume |
|. A straightforward computation leads to

Wk0 (x,k) = 1

(2π )d |
|
∫

e−ik0·(x− y
2 )eik0·(x+

y
2 )e−ik·ydy

= 1

|
| δ(k − k0). (26)

We see that, not surprisingly, the Wigner function of a plane
wave of wave vector k0 is simply a normalized δ distribution
along k. Inserting this into Eq. (25) immediately gives a con-
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jectural estimate for the spectral function:

Ak0 (E ) dE ≈ 1

|
|

⎛
⎝∫∫

E � H1(x, k)
� E + dE

δ(k − k0) dk dx

⎞
⎠

= 1

|
|
(∫

E− k0
2

2 �Vu (x)�E− k0
2

2 +dE
dx

)
. (27)

This last quantity is the normalized distribution of the values
taken byVu (in other words, the histogram of the values of Vu)
shifted by a k02/2:

Ak0 (E ) = P
(
E − k2

0

2

)
, (28)

where P is the probability density of Vu. In particular, in the
case k0 = 0, the spectral function takes a very simple form. It
is nothing but the normalized distribution of the values taken
by the effective potential Vu:

A0(E ) = P (E ). (29)

This result shows us how the LL-based approach generalizes
the understanding of the semiclassical limit of the spectral
function for k = 0, even in the quantum regime. The ef-
fective potential Vu automatically incorporates the quantum
effects such as confinement or tunneling and hence performs
an automatic renormalization of the disorder. The distribu-
tion of values of Vu replaces here the distribution of values
of V , thus providing a very good approximation of the
spectral function for any value of η. In the semiclassical
limit, Vu is very similar to V , and we recover the known
expression of the spectral function. We will now test this con-
jectural expression for several types of disorder and disorder
strengths.

B. Numerical computations

We first test our conjectural expression (29) on blue-
detuned speckle potentials with the Gaussian correlation
function whose characteristics are given in (14). The sys-
tem size is L = 300, and the discretization step is δ = 0.05.
For each value of the parameter η, the ensemble average of
Eq. (27) is achieved over 50 000 realizations of the poten-
tial. This LL-based estimate is compared to state-of-the-art
exact numerical computations of the spectral functions [14].
For each disorder realization, computing the spectral function
using the LL-based method boils down to solving Eq. (1),
which is cheap. The state-of-the-art numerical calculation
requires the temporal propagation with Ĥ of an initial flat
wave function ψ (x) = 1. Although this can be done effi-
ciently using the kernel polynomial method [14], it remains
computationally more expensive. This is not very important
for one-dimensional systems, as the required computa-
tional resources are modest anyway. For higher dimensional
systems, the state-of-the-art method is computationally de-
manding [16], and the LL-based method is likely to be more
efficient.

The two top frames of Fig. 6 display state-of-the-art com-
putations (left frame) and LL-based formulas (right frame) for
five different values of η. Each of the following four frames

FIG. 6. Top left: Spectral functions (in units of 1/V0) in the
case of a Gaussian-correlated speckle potential, computed from the
solutions to the Schrödinger equation for five different values of the
parameter η ranging from 0.1 to 10 (0.1, 0.5, 1, 5, and 10). The
distribution of the values of the original potential V is also plotted
in black. Top right: Spectral functions computed from the LL theory
for the same values of η. Middle and bottom panels: Direct compar-
isons between the spectral functions computed using the Schrödinger
equation (dashed red) and the LL theory (blue), for η = 0.1, 0.5, 1,
and 10, respectively. The difference between both curves (the error)
is plotted in green.

of Fig. 6 corresponds to a different value of η [and hence
of V0, see Eq. (16)], from η = 0.1 (top left, deep quantum
regime) to η = 10 (bottom right, semiclassical regime). In
each frame, three curves are plotted: the exact calculation
of the ensemble-averaged spectral function for k0 = 0 (red
dashed line), the LL-based estimate using Eq. (27) (blue line),
and the difference between the latter and the former quantities
(green line).

These results lead to several observations. First, the spec-
tral functions at various values of η are quite different,
evolving from a close-to-symmetric shape at small η to a
very asymmetric function at large η, where it is close to the
disorder distribution given in Eq. (14). Secondly, the LL-based
estimates reproduce the behavior of the spectral function, both
in the semiclassical and in the quantum regime, without any
adjustable parameter. In particular, the positions of the peak
and the widths of the distribution are almost identical. Thirdly,
the difference between the estimate and the spectral function
(i.e., the error plotted in green) displays a similar pattern in all
regimes, suggesting that the LL-based estimate could be the
first term of an expansion.
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FIG. 7. Top left: Spectral functions (in units of 1/V0) in the case
of a sinc-correlated speckle potential, computed from the solutions to
the Schrödinger equation for five different values of the parameter η

ranging from 0.1 to 10 (0.1, 0.5, 1, 5, and 10). The distribution of the
values of the original potential V is also plotted in black. Top right:
Spectral functions computed from the LL theory for the same values
of η. Middle and bottom panels: Direct comparisons between the
spectral functions computed using the Schrödinger equation (dashed
red) and the LL theory (blue), for η = 0.1, 0.5, 1, and 10, respec-
tively. The difference between both curves (the error) is plotted in
green.

We then tested our approach for a different potential, char-
acterized by the same exponential distribution of values but
with a “sinc-type” correlation function, corresponding to the
speckle created by a slit [3]:

g(x) = V 2
0 sinc2

( x

σ

)
. (30)

The results, shown in Fig. 7, are averaged over 10 000 realiza-
tions. The plots are remarkably similar to those in Fig. 6, as
the spectral functions depend very weakly on the shape of the
correlation function.

To test the interest of the LL-based approach, we compare
the results displayed in Fig. 6 with a semiclassical expansion
proposed in Eq. (30) of [15], in which the wells of the original
potential are approximated as a set of independent harmonic
wells of random depths and curvatures. Figure 8 displays the
comparison of the spectral functions estimated using the exact
computation (red dashed line), the LL-based approach (blue
line), or the semiclassical approximation (green line) for five
different values of η: 0.1, 0.5, 1, 5, 10, and 128. Among
the first five values, four correspond to values used in Fig. 6.
The sixth value is the value shown in [15]. We observe that

FIG. 8. Comparison between the spectral functions (in units of
1/V0) computed using three different methods: an exact method
based on solving the Schrödinger equation (red dashed line), the
LL-based approach (blue line), and the semiclassical expansion
from [15] (green line). The comparison is performed for six values
of η: 0.1, 0.5, 1, 5, 10, and 128. All three curves are very close in the
semiclassical limit, but the LL-based estimate is more accurate in the
quantum regime.

this approximation [15] is very good for η = 128 (and indeed
is more accurate at low energy than the LL-based estimate).
However, for all other values (η = 10 and below), the LL-
based estimate is clearly closer to the actual function on a
larger range of energies.

Finally, we explore potentials with a different distribution
of values, namely, a Gaussian distribution with also Gaussian
spatial correlation, whose characteristics are

(V ) = 1√
2π V0

exp

(
− V 2

2V 2
0

)
, V = 0

g(x) = V 2
0 exp

(
− x2

2σ 2

)
. (31)

In order to properly define the LL in Eq. (1), the eigen-
values of the Hamiltonian must all be positive. While this
condition was naturally satisfied in the previous cases since
the potential was always positive-valued, a problem arises for
this new potential. In order to get around this difficulty, the
potential is shifted for each realization by a quantity −E0 + ε,
where E0 is the ground-state energy of the original potential
and ε is a small numerical value, chosen here to be equal to
0.1V0. After solving the landscape equation (1), the values
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FIG. 9. Top left: Spectral functions (in units of 1/V0) in the
case of a disordered potential with Gaussian-distributed values and
Gaussian correlations [see Eq. (31)], computed from the solutions to
the Schrödinger equation for five different values of the parameter η

ranging from 0.1 to 10 (0.1, 0.5, 1, 5, and 10). The distribution of the
values of the original potential V is also plotted in black. Top right:
Spectral functions computed from the LL theory for the same values
of η. Middle and bottom panels: Direct comparisons between the
spectral functions computed using the Schrödinger equation (dashed
red) and the LL theory (blue), for η = 0.1, 0.5, 1, and 10, respec-
tively. The difference between both curves (the error) is plotted in
green.

of the effective potential are then shifted back by the same
amount. The dependence of our results on ε was found to be
negligible. The spectral functions and the LL-based estimates
are averaged over 50 000 realizations (see Fig. 9). We find
here also a very good agreement between the LL-based esti-
mates and the exact spectral functions.

However, we observe that the spectral functions have a
very different shape. This is expected as, in the semiclassical
limit, the spectral function at k = 0 is simply the distribution
of the values of the original potential V , (31). In the deep
quantum regime, η 	 1, the spectral function is qualitatively
similar, a close-to-symmetric distribution looking more or less
like a Gaussian function. Here again, the LL-based estimate
reproduces the spectral function in all regimes (semiclassical,
intermediate, quantum) without any adjustable parameter. By
intrinsically accounting for the confinement energy inside the
wells of the original potential, and the tunneling effect across
its barriers, the LL performs a renormalization of the disorder.
The difference between the exact computation and the LL

FIG. 10. Comparison between the spectral functions (in units
of 1/V0) computed using three different methods: an exact method
based on solving the Schrödinger equation (red dashed line), the
LL-based approach (blue line), and the semiclassical expansion
from [14] (green line). The comparison is performed for four values
of η: 0.2, 1, 5, and 10. All three curves are almost identical in the
semiclassical limit, but the LL-based approach remains closer to the
actual spectral function in the quantum regime.

estimate consists mostly of a very slight mismatch between
the peaks and decays very rapidly as one approaches the
semiclassical limit η → +∞. It is interesting in this situation
to compare the LL-based results to the semiclassical approach
proposed in [14], in which the spectral functions are computed
by assessing the leading quantum corrections to the deep
classical limit by the Wigner-Weyl formalism. The prediction
is [30]

A0(E ) = 1√
2π V0

exp

(
− V 2

2V 2
0

)(
1 − E

(
3V 2

0 − E2
)

12V 4
0

)
.

(32)
The comparison is carried out in Fig. 10. We observe here

that both the LL-based and the semiclassical computations are
very close to the actual spectral functions in the semiclassical
regime. However, the LL-based computation is closer to the
actual spectral function at low value of η, i.e., in the quan-
tum regime, while the semiclassical approximation appears
slightly closer to the true spectral function in the intermediate
regime (η ≈ 1).

V. CONCLUSION

In this paper we build on the previous results in the
localization-landscape theory [18], which connected the den-
sity of states with the classical Hamiltonian H1(x,k) =
h̄2k2/2m +Vu(x). We propose a version of the Wigner-Weyl
approach which uses the level sets of H1(x,k) rather than
those of the classical Hamiltonian H (x,k). The resulting
approximation of the spectral function covers all regimes,
from the deep quantum regime where the disorder is small
to the semiclassical regime where it dominates the dynam-
ics, through the intermediate regime. This makes it possible
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to compute efficiently the spectral function—here tested for
momentum k = 0—for various types of disorder.

Although we presented here results for one-dimensional
systems, the method is expected to work also in higher di-
mensions. Moreover, the similarity of the differences between
the exact computations and the LL-based formula for every
value of η opens the way to look for a universal correction.

As the knowledge of the spectral function is a key ingre-
dient for studying transport properties and, for example, the
onset of localization, it may well be that the present work will
lead to rather simple calculations of, e.g., the mobility edge in
three-dimensional systems, a notoriously difficult problem for
spatially correlated potentials [6,9,12,13].
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