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Abstract— Due to the increased popularity of augmented
and virtual reality experiences, the interest in capturing high-
resolution real-world point clouds has never been higher. Loss
of details and irregularities in point cloud geometry can occur
during the capturing, processing, and compression pipeline.
It is essential to address these challenges by being able to
upsample a low Level-of-Detail (LoD) point cloud into a high
LoD point cloud. Current upsampling methods suffer from
several weaknesses in handling point cloud upsampling, especially
in dense real-world photo-realistic point clouds. In this paper,
we present a novel geometry upsampling technique, PU-Dense,
which can process a diverse set of point clouds including synthetic
mesh-based point clouds, real-world high-resolution point clouds,
real-world indoor LiDAR scanned objects, as well as outdoor
dynamically acquired LiDAR-based point clouds. PU-Dense
employs a 3D multiscale architecture using sparse convolutional
networks that hierarchically reconstruct an upsampled point
cloud geometry via progressive rescaling and multiscale feature
extraction. The framework employs a UNet type architecture that
downscales the point cloud to a bottleneck and then upscales it to
a higher level-of-detail (LoD) point cloud. PU-Dense introduces a
novel Feature Extraction Unit that incorporates multiscale spatial
learning by employing filters at multiple sampling rates and
receptive fields. The architecture is memory efficient and is driven
by a binary voxel occupancy classification loss that allows it to
process high-resolution dense point clouds with millions of points
during inference time. Qualitative and quantitative experimental
results show that our method significantly outperforms the state-
of-the-art approaches by a large margin while having much lower
inference time complexity. We further test our dataset on high-
resolution photo-realistic datasets. In addition, our method can
handle noisy data well. We further show that our approach is
memory efficient compared to the state-of-the-art methods.

Index Terms— Point cloud, upsampling.
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I. INTRODUCTION

THERE has been a surge in the usage of 3D point clouds
in augmented/virtual reality (AR/VR), telepresence

[1], [2], surveillance and autonomous driving [3], [4] which
has been accompanied by significant advances in 3D sensors
and capturing techniques [5]. With the rapid advancement of
3D point cloud acquisition technologies, such as LiDAR (Light
Detection And Ranging) sensors, high precision point cloud
representations have become affordable. Moreover, the recent
advances in GPU power capabilities have enabled real-time
rendering and visualization of dense 3D point clouds. Recent
advances in point cloud compression by groups like MPEG
[6] and JPEG Pleno [7] have enabled the efficient transfer of
larger point clouds. These developments have now allowed the
capture and utilization of very high definition real-world point
clouds with millions of points per frame.

Based on their usage, point clouds can be categorized
into point cloud scenes and point cloud objects. Point cloud
scenes are dynamically acquired and are typically captured
by LiDAR sensors. LiDAR sensors mounted on top of a
vehicle for mobile mapping and autonomous navigation [8]
are examples of a dynamically acquired point cloud scene.
Point cloud objects can be further subdivided into static
objects and dynamic objects. A static point cloud is a single
object, whereas a dynamic point cloud is time-varying, where
each instance of a dynamic point cloud is a static point
cloud. Dynamic time-varying point clouds are used in AR/VR,
volumetric video, and telepresence and can be generated using
3D models, i.e., CGI, or captured from real-world scenes
using various methods such as multiple cameras with depth
sensors surrounding the object and capturing movement over
time. Advancement in sensor technologies has allowed the
capture of photo-realistic point clouds with millions of points
per object. These real-world high-resolution point clouds tend
to be dense and pose complicated challenges in point cloud
processing due to their size. In this paper, we introduce a novel
point cloud geometry upsampling technique that does not just
work on synthetic point clouds but can also process a diverse
set of point clouds including dense high-resolution photo-
realistic point clouds, real-world LiDAR scanned objects,
as well as dynamically acquired outdoor LiDAR point clouds.

Recently, there have been considerable advances in
point cloud upsampling along with advances in problems
closely resembling point cloud upsampling like point cloud
completion [9]–[12] and point cloud denoising [13]–[16].
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Point cloud upsampling methods can be broadly catego-
rized as optimization-based methods [17]–[21] and deep
learning-based methods [22]–[27]. Optimization-based meth-
ods usually fit local geometry by utilizing geometry priors
that only work well for low precision smooth surfaces.
Optimization-based methods are computationally intensive
and are difficult to scale to larger point clouds. Deep
learning-based methods like PU-Net [22], 3PU [24], and
PU-GAN [25] can effectively learn point cloud structures from
data. However, these methods use kNN search-based patch
selection for neighborhood feature aggregation. Raw points
within the patch can be in any order and are processed directly
by fully connected layers without considering the relative
point location in the overall 3D representation or the point’s
distance from its neighbors. Furthermore, these methods are
also memory hungry and computationally intensive, which is
why they are limited to fixed small input sizes. Therefore,
the current state-of-the-art in point cloud upsampling fails
to build deeper architectures with large receptive fields that
can effectively learn discriminative features, and be able to
efficiently work on denser point clouds that have a large
number of points.

To resolve these issues, we propose a novel PU-Dense archi-
tecture that can upsample synthetic point clouds, real-world
scanned sparse point clouds as well as dense photo-realistic
point clouds. The proposed framework offers the following
contributions:

• PU-Dense employs a UNet [28] type encoder-decoder
architecture that hierarchically reconstructs an upsam-
pled point cloud via progressive rescaling and multiscale
feature extraction. PU-Dense introduces a novel feature
extraction (FE) unit with Inception-Residual Block (IRB)
and a 3D Dilated Pyramid Block (3D-DPB) to extract
3D multiscale features with different field-of-views in a
computationally efficient manner.

• PU-Dense is a fully convolutional geometry upsampling
network that is translation invariant and has a variable
input size that takes advantage of the sparse nature of
point clouds and employs sparse convolutions [29] that
tend to be memory efficient. Rather than a distance-based
loss function, PU-Dense employs a memory-efficient
binary voxel classification loss and utilizes 3D data
representation that enables efficient learning of 3D point
features. While the previous state-of-the-arts limit their
input to a fixed number of points between a few hundred
and a few thousand points, our method can process
millions of points per iteration with variable input size.

• Rather than creating our own synthetic dataset like the
previous works, we intend to use a standardized dataset.
We train our network on ShapeNet while testing on
ShapeNet as well as real-world photo-realistic point
cloud datasets like MPEG’s 8i Voxelized Surface Light
Field (8iVSLF), JPEG Pleno’s 8i Voxelized Full Bod-
ies (8iVFB), Queen by technicolor, real-world LiDAR
scanned objects from ScanObjectNN dataset, and dynam-
ically acquired outdoor LiDAR dataset from KITTI.
Experimental results show that our method considerably
outperforms the previous works in not just synthetic

point cloud upsampling but also dense photo-realistic
point clouds as well as sparse LiDAR-based datasets.
We show that the proposed method is robust against noise.
Moreover, the results show that PU-Dense is faster as well
as more memory efficient when compared with the other
state-of-the-art point cloud upsampling.

II. RELATED WORK

A. Optimization-Based Upsampling Methods

Earlier works formulated point cloud upsampling as an
optimization problem. A pioneering solution proposed by
Alexa et al. [17] computed a Voronoi diagram on the moving
least squares (MLS) surface. Lipman et al. [18] developed a
parametrization-free method using a locally optimal projection
operator (LOP) to resample points and reconstruct surfaces
based on an L1 norm. This work was subsequently improved
to weighted LOP [19] and continuous LOP [20] methods to
consolidate point sets with noise, outliers, and nonuniformi-
ties. However, LOP-based methods’ performance suffers when
upsampling sharp edges and corners because they assume
points are sampled from smooth surfaces. Huang et al. [21]
introduced an edge-aware (EAR) approach that is designed
to preserve sharp features by first resampling away from
edges and then progressively approaching edges and corners.
These optimization-based methods are not data-driven, assume
insufficient priors, and often require additional attributes. Fur-
thermore, these methods are computationally intensive so they
are not scalable to high-resolution point clouds with a large
number of points.

B. Deep Learning in Point Clouds

Recent advances in deep learning have seen a lot of success
in point cloud processing using deep learning models [30].
The raw format of point cloud lacks point order and has an
irregular structure which brings new challenges in employing
deep learning solutions for point cloud processing.

1) Grid-Based Architectures: Pioneer works [31], [32] have
tried to extend 2D convolutional neural networks to 3D space
by voxelizing the point cloud into uniform voxels and applying
3D convolutions to them. However, due to the sparsity of
point clouds, most of the computations are wasted on empty
voxels. Projection methods [33]–[36] project 3D data onto
2D planes and then process these 2D planes. However, these
projection-based methods are not as effective as processing the
3D point cloud. There is also a recent voxel-based method [37]
that employs Gridding which is an interpolation to map each
point onto the eight vertices of the voxel and then employs
3D convolutions to the voxelized representation.

2) Point-Based Methods: Raw point cloud data acquired
from 3D sensors are in the form of unordered points. Point-
based methods process raw point cloud data using permu-
tation invariant feature extraction networks. PointNet [38]
was among the first deep learning solutions that can directly
process raw 3D point cloud data. They employed pointwise
fully connected layers and symmetric max-pooling to make
the process permutation invariant. This work was subsequently
improved to PointNet++ [39] that introduced hierarchical
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learning to learn more meaningful and discriminative features.
PointCNN [40] was among the first works to use the convo-
lutional layers on raw point cloud data. PointCNN proposed
a permutation invariant χ-Conv that employs MLP layers to
learn the permutation followed by a convolutional layer. The
VoxelNet [41] divides point clouds using voxel partition and
then uses PointNets to learn point-wise features. However,
point-based methods are computationally expensive, which
imposes severe constraints on building larger networks or their
applicability on point clouds with a large number of points.

3) New Point Cloud Data Representation: There has been
significant work on graph-based models which can operate
on unordered 3D data. Graphs can be constructed from 3D
point clouds in a variety of ways [42]–[44] which have
shown promising results in point cloud processing. Octree-
based convolutional neural networks were introduced in [45]
that converted the data into an octree data representation
and employed convolutions on octants of the octree data
structure. SparseConvNet [46] by Facebook was among the
first sparse convolutional neural networks that achieved state-
of-the-art results on point clouds. SparseConvNet employed
submanifold sparse convolutions [47] that exploited the sparse
nature of point clouds and ensured that the convolutions
would not “dilate” the data. MinkowskiNet [29] is another
such implementation that employs sparse convolutions for 3D
point cloud learning. Sparse convolutions exploit the inherent
sparsity of point cloud data and store point cloud data in sparse
tensors where convolutions are only performed on the voxels
that are occupied. This makes the sparse convolutions much
more computationally efficient allowing for a much deeper
architecture to be built and the ability to process hundreds of
thousands of points in a single inference time. We employ
sparse convolutions using Minkowski Engine in our work.

C. Deep Learning-Based Upsampling Methods

PU-Net [22] was the pioneer deep learning upsampling
work on point cloud that uses PointNet++ for feature extrac-
tion. PU-Net uses multi-branch MLPs to expand features
with a joint reconstruction and repulsion loss to generate
uniform point clouds. PU-Net operates on small patch level
and does not consider the spatial relations among the points
which results in the output lacking fine-grained high-resolution
geometry structures. EC-Net [23] intended to improve PU-Net
work and introduced a point-to-edge distance loss, which
can help preserve the edges. However, EC-Net requires the
tedious work of labeling the point cloud data with anno-
tated edge and surface information. Wang et al. [24] proposed
3PU-Net which introduced a patch-based progressive upsam-
pling inspired by image super-resolution methods. 3PU learns
point-wise features similar to the methods before and employs
cascaded 2× upsampling networks. Each subnet in 3PU
appends a 1D code to the features which limits each subnet
upsampling to a factor of 2. However, multiple subnets can be
progressively employed to get a large upsampling factor, say
16 times. 3PU only supports an upsampling factor in powers of
2 and also requires careful step-by-step training. PU-GAN [25]

introduced a generative adversarial network for point cloud
upsampling. Their performance improvement mainly comes
from the introduction of a discriminator. PUGeo-Net [26]
introduced a geometric-centric approach where they upsample
point clouds by learning the first and second fundamental
forms of the local geometry. However, their method needs
additional supervision in the form of normals, which many
point clouds like those generated by LiDAR sensors do not
come with.

However, these deep learning-based upsampling methods
use PointNet++ type architecture where the raw unordered
points are stored in 2D arrays and kNN search is employed
for neighborhood feature aggregation without considering
the point location in the overall 3D representation. Point-
based approaches perform upsampling by splitting scenes
into smaller chunks, effectively restricting the model’s ability
to learn from global context. These methods employ deep
learning operations that are usually used for 2D images to
learn 3D features, which tends to be an inefficient approach.
Furthermore, all these methods are limited to a small fixed
input size and employ patch-based scaling to be able to process
larger point clouds. Additionally, even after using smaller
patches, these methods suffer from memory issues and are
computationally intensive, especially their loss functions. This
limits these architectures to a relatively shallower network
which decreases their ability to learn discriminative features.
Due to these reasons, the previous upsampling methods are
often limited to and tested on small mesh-based point clouds
and give poor results when applied on dense high-resolution
real-world scanned point clouds such as the ones used in
AR/VR or the MPEG standards.

Note that recently there has been some point cloud upsam-
pling work that has emerged in parallel to our work. Recently,
Qian et al. [48] proposed PU-GCN that uses a multi-level
feature extraction using an inception-based graph convolu-
tional network. They employ shuffling rather than duplicating
features to expand the feature space for upsampling. Dis-
PU [49] proposes to disentangle the upsampling task using
two cascaded sub-networks, a dense generator, and a spatial
refiner, to obtain both distribution uniformity and proximity-
to-surface. Inspired by Meta-SR from image super-resolution,
Meta-PU [50] was proposed to support point cloud upsampling
of arbitrary scale factors with a single model. Meta-PU pro-
poses a meta-subnetwork to dynamically adjust the weights of
their residual graph convolution (RGC) upsampling network
for different scaling factors. The upsampling network outputs
a dense maximum points point cloud which is downsampled
using farthest point sampling (FPS) to the desired ratio.
However, this whole process is computationally intensive and
inefficient when employed to point clouds with a large number
of points. More recently, Flexible-PU [51] has been proposed
that can also work for an arbitrary upsampling ratio using a
lightweight neural network. Flexible-PU explicitly involves the
local neighborhood information in the learning process. They
generate new samples by an affine combination of neighboring
points projected onto the tangent plane which are further
refined by a self-attention-based refinement module.
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Fig. 1. PU-Dense network architecture consisting of encoder and decoder branches with skip connections in the middle. Ei is the input to the network that
gets downscaled in the encoder branch by using convolutions of stride 2. The decoder side upscales the tensor by using transpose convolutions. TG-Conv:
Transpose convolution generating new coordinates is employed in the last upscaling layer of the decoder side to populate additional coordinates around the
existing coordinates. PU-Dense employs a voxel-based binary cross-entropy loss to compare decoder output D0 with ground truth GT . Finally, pruning is
applied to classify D0 by choosing top k coordinates with the largest features. For convolutions, the terminology 32 × 33 denotes a kernel size of 33 with a
channel size of 32. An example of tensor sizes throughout the network is shown in Table I.

III. PU-DENSE

Given a lower level-of-detail (LoD) point cloud X = {xi ∈
R

3}M
i=1 with M points and an upsampling ratio R, we seek

to generate a denser higher LoD point cloud XR = {xr
i ∈

R
3}M,R

i,r=1 that is distributed uniformly over the underlying
surface.

A. Preprocessing

Converting a point cloud from its raw format to a 3D
volumetric representation is called voxelization. PU-Dense
employs voxelization that allows it to use 3D convolutions
to learn 3D features, which are more consistent and accurate
in feature representation compared to the previous works
where kNN is employed on unordered points to aggregate
neighborhood features. Since we are only working with geom-
etry and not other attributes, we assign feature f to each
coordinate where f (x, y, z) = 1, if the voxel is occupied, and
f (x, y, z) = 0 otherwise. We represent each input point cloud
using a data tensor with a set of coordinates C = {(xi , yi , zi )}i

and their associated features F = { f (xi , yi , zi )}i .

B. The Network

PU-Dense is the first fully convolutional geometry
upsampling network which makes it translation-invariant
with variable input size. PU-Dense employs a multiscale
U-Net [28] encoder-decoder type architecture built on
Minkowski engine [29] utilizing sparse convolutions. Sparse
convolutions exploit the inherent sparsity of point cloud data
and are much more memory efficient. Sparse convolution is
defined in [29] as:

f out
u =

∑
i∈N3(u,Cin)

Wi f in
u+i for u ∈ Cout , (1)

where N3 is a set of offsets that define the shape of a kernel
and N3(u, Cin) = {i |u + i ∈ Cin , i ∈ N3} is the set of offsets
from the current center, u, that exists in Cin . Cin and Cout are
the input and output coordinates. f in

u and f out
u are the input

and output features at location u. Wi denotes the kernel value
at offset i .

The proposed network architecture, shown in Fig. 1, has
an encoder downscaling network and a decoder upscaling
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Fig. 2. FE Unit: Feature Extraction Unit. Each FE Unit consists of two Inception-Residual Blocks (IRB) and one 3D Dilated Pyramid Block (3D-DPB).
FE Unit efficiently learns 3D multiscale spatial features by employing multiple sampling rates and receptive field.

network, with residual connections in between. For con-
volutions, the terminology 32 × 33 denotes a kernel size
of 33 with a channel size of 32. The PU-Dense architecture
employs a total of four different types of sparse convolutions:
(i) Convolution, (ii) Downscaling Convolution, (iii) Transpose
Convolution, and (iv) Transpose Convolution generating new
coordinates. Employing these four different kinds of sparse
convolutions, PU-Dense builds a 3D multiscale spatial archi-
tecture employing hierarchical learning using an encoder-
decoder architecture.

Convolution (Referred as Conv). PU-Dense employs sparse
convolutions with the same in/out coordinates (Cin = Cout ).
The coordinates of the sparse tensor stay the same after passing
through these kernels and only the feature changes.

Downscaling convolution (Referred as Conv/2 ↓):
PU-Dense employs sparse convolution with stride of two to
halve the scale of each geometric dimension.

Transpose convolution (Referred as T-Conv/2 ↑): Sparse
transpose convolution with a stride of two is used to map the
tensor coordinates back to their previous upscaled coordinates.

Transpose convolution generating new coordinates
(Referred as TG-Conv/2 ↑): This is a special case of sparse
transpose convolution where the convolution generates new
coordinates before aggregating features [52]. The new coor-
dinates are generated on the voxels the kernel covers during
convolution around the input coordinates. PU-Dense employs
TG-Conv in the last upscaling layer of the decoder with a
variable kernel size of ks. Variable kernel size is used here
to optimize the architecture according to the resolution of the
point cloud and the upsampling ratio. A larger ks is suitable
for a sparser point cloud and would result in a larger number of
output coordinates (Cout ) generated. In this work, we employ
a kernel size of ks = 5 for upsampling ratios of 4x and 8x.

Table I shows an example of sparse tensor sizes in the
PU-Dense network during 4× upsampling. Since a ks = 5 is
used in TG-Conv, the size of the new generated coordinates
in D1 is 4,379,676. PU-Dense employs Pruning to choose

TABLE I

AN EXAMPLE OF TENSOR SIZES IN PU-DENSE ARCHITECTURE (FIG. 1)
FOR 4× UPSAMPLING USING ks = 5 FOR longdress PC FROM 8I

the topk features and their corresponding coordinates from
D0 to form the final output tensor O, where k is 830,397 in
this particular example. Pruning is implemented on D0 which
has a feature length of 1 making it easier to choose the
topk features and their corresponding coordinates to create the
output tensor O.

1) Feature Extraction Unit: We introduce a novel feature
extraction unit containing two Inception-Residual Blocks and
a single 3D Dilated Pyramid Block as shown in Fig. 2.

Inception-Residual Block (IRB) is inspired by
Inception-ResNet architecture [53] which was originally
proposed for 2D images. IRB has been implemented with
great success using 3D sparse convolutions in earlier
works [54]. Similar to 2D Inception-ResNet architecture,
IRB employs filters of different sizes on the same feature
scale while squeezing the feature domain and adding a
residual link to the inception block. The IRB block employs
1 × 1 × 1 convolutions which do not learn any spatial patterns
but do learn patterns across the depth (cross channel) of
each occupied voxel in the sparse tensor. Combining kernels
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of different sizes (1 × 1 × 1 and 3 × 3 × 3) allows the
block to learn patterns across the depth (channel) as well
across spatial patterns. This combined with a residual link
leads to a computationally efficient layer which much like
its 2D counterpart, Inception-ResNet architecture, is more
discriminative and converges faster [53].

3D Dilated Pyramid Block (3D-DPB) is inspired by the
success of spatial pyramid pooling [55] as well as pyramid
blocks in image segmentation tasks [56] which showed that
it is effective to resample features at different scales for
accurately and efficiently classifying regions of an arbitrary
scale. In 3D-DPB, we employ multiple parallel 3D sparse
convolutions with different dilation rates to implement a 3D
pyramid architecture. Dilation convolution, also called atrous
convolution [57], allows us to arbitrarily enlarge the field-of-
view of filters at any convolutional layer. A 3D global pooling
is also implemented, which is followed by broadcasting the
pooled feature to all the occupied coordinates. The features
from all 3D-DPB layers are then concatenated followed by
a 1 × 1 × 1 convolution to refine the features. 3D-DPB
probes the incoming sparse tensors with filters at multiple
sampling rates and effective fields-of-views, thus capturing
objects as well as geometric context at multiple scales.
3D-DPB with different dilation rates effectively captures
multi-scale information, allowing us to extract denser feature
maps by arbitrarily enlarging the receptive field.

C. Loss Function

The loss functions used in previous works usually employ
distance-based metrics like chamfer distance, reconstruction
loss, or repulsion loss, which tend to be memory inefficient
and fail to learn accurate reconstruction. This is one of the
reasons why the previous works are limited to processing small
point clouds or small patches (usually less than 1024 points).
PU-Dense implements an efficient voxel-based binary occu-
pancy classification loss [54], [58] that allows us to process
millions of points at a time. During training, PU-Dense applies
Binary Cross Entropy (BCE) loss on the output of the decoder
(D0) and compares the occupied voxels to the ground truth
point cloud (GT ) as shown in Fig. 1. BCE loss during training
is calculated using the following formula:

L BC E = − 1

N

∑
i

(xilog(pi) + (1 − xi )log(1 − pi )) (2)

where xi is the voxel label that is either occupied (1) or empty
(0) in the GT point cloud. pi is the probability of the voxel
being occupied and is calculated using a sigmoid function
applied to the decoder output D0.

D. Scalability

To the best of our knowledge, all current deep
learning-based point cloud upsampling models are constrained
to a fixed number of input points and suffer from memory
issues. These models can typically process a fixed number
of points at one moment, e.g., PU-Net: 1024 points, EC-Net:
1024 points, PU-GAN: 256 points, PUGeo-Net: 256 points.
All these methods employ patch-based point cloud processing

methods. However, PU-Net is limited to smaller point clouds.
EC-Net, PU-GAN, and 3PU have extended their patch-based
approaches to partition larger point clouds into smaller over-
lapping patches to operate on the individual patch separately.
These patches are upsampled independently, then merged
together. The merged pointset is then resampled using farthest
point sampling to obtain uniform point distribution despite
overlapping regions. Because of all the pre-processing and
post-processing involved, these methods work well on smaller
point clouds but are very inefficient when applied to point
clouds with a large number of points.

Our method is the first fully convolutional upsampling
method and, therefore, has variable input point cloud size.
Moreover, since we employ efficient sparse convolutions and
also have a memory-efficient loss function, we can process a
much larger number of points. To make the network further
scalable to even bigger point clouds, we employ a simple
kd-tree partition that divides the point cloud into smaller
non-overlapping point clouds that can be processed separately
as well as in parallel.

IV. EXPERIMENTAL RESULTS

We performed extensive experiments, quantitatively and
qualitatively, compared our methodology with state-of-the-
art point cloud upsampling methods, and evaluated various
aspects of our model. We perform comprehensive experiments
to test PU-Dense on different scenarios: (1) Test the proposed
method on real-world scanned objects, (2) Show visual results
for mesh surface reconstruction of the upsampled point clouds,
(3) Test the robustness of our method against Gaussian noise,
(4) Show comparative results for inference time and trainable
parameters for different methods, (5) Perform ablation study to
show the effectiveness of different components of PU-Dense.
Further experimental details, extended results, and additional
visual results can be found in the supplemental material.

A. Dataset

We train our network on ShapeNet dataset [59] while test
it on ShapeNet, 8iVFB v2 [60], 8iVSLF [61], Technicolor,
ScanObjectNN [62], and KITTI [63] datasets. We evaluate the
performance of our approach on a diverse set of point clouds in
terms of spatial density and content type. ShapeNet is a mesh-
based dataset, ScanObjectNN dataset is a real-world scanned
object dataset containing sparse point cloud objects, KITTI is a
dynamically acquired outdoor LiDAR dataset, whereas 8iVFB
v2, 8iVSLF, and Technicolor are real-world captured dense
photo-realistic dynamic point cloud datasets for immersive
communication used in MPEG [64] and JPEG [7] point cloud
compression standardization.

• ShapeNet. We randomly select ≈24000 3D mesh models
from the core dataset of ShapeNet. We sampled the mesh
model into point clouds by randomly generating points
on the surfaces of the mesh, then randomly rotated and
quantized the point cloud to 7-bit precision. The size
of the point cloud in this dataset is between 5 000 to
50 000 points per point cloud.

• 8iVFB v2. JPEG Pleno’s 8i Voxelized Full Bodies
dataset [60]. This is a dynamic voxelized point cloud
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dataset where each sequence represents a 10 second long
video captured at 30 fps with a total of 300 frames.
Each frame has a resolution of 1024 with 10-bit pre-
cision. We use four sequences from this dataset: Long-
dress, Loot, Red and Black, and Soldier containing about
770 000, 790 000, 730 000, and 1 060 000 points per
frame respectively.

• 8iVSLF. MPEG’s 8i Voxelized Surface Light Field
dataset [61] of dynamic point clouds. It has a resolution
of 4096 with 12-bit precision. We use two sequences
from this dataset Boxer and Thaidancer containing about
3 130 000 and 3 490 000 points respectively.

• Technicolor. We employ the dynamic point cloud
sequence Queen produced by Technicolor (https://www.
technicolor.com/fr) with about 1 million points per frame.

• ScanObjectNN. [62] This is a real-world scanned object
dataset which contains ≈ 15, 000 objects that are cat-
egorized into 15 categories with 2902 unique object
instances. Compared with other datasets, this is a
low-resolution sparse point cloud dataset with 2048 points
per point cloud. We compare visual results for ScanOb-
jectNN later in this section.

• KITTI. [63] This is a dynamically acquired dataset cap-
tured by LiDAR for autonomous driving. This is a sparse
dataset that captures outdoor scenes. We perform visual
comparisons between different methods when evaluated
on KITTI dataset and show the results later in this section.

B. Implementation Details

We use kernel size, ks = 5 in our experiments. Unlike
previous work where small patches had to be extracted from
the training dataset and fed into the network, we trained our
network with a batch size of 8 by feeding eight ShapeNet point
clouds into our network each iteration. We implemented the
proposed framework in PyTorch with Minkowski Engine [29].

C. Evaluation Metrics

Previous works have employed different quality assessment
metrics; some works have even introduced their novel evalua-
tion metrics. We consider commonly-used evaluation metrics
that compare the reconstructed point cloud to the ground
truth point cloud to quantitatively evaluate the performance of
different methods. These methods are Chamfer distance (CD),
point-to-point (D1) based mean squared error peak signal-
to-noise ratio (D1 PSNR), point-to-plane (D2) based mean
squared error peak signal-to-noise ratio (D2 PSNR), and point-
to-point (D1) based Hausdorff PSNR. MSE D1 PSNR, MSE
D2 PSNR, and Hausdorff PSNR has been adopted by both
MPEG and AVS standards as an evaluation metric for point
cloud quality [65]. We obtain the geometry PSNRs using the
pc_error MPEG tool [65].

We define the Chamfer distance between PC A and PC B
as:

dC D(A, B) =
∑
x∈A

min
y∈B

||x − y||22+
∑
y∈B

min
x∈A

||x − y||22 (3)

Intuitively, the first term measures an approximate distance
from each upsampled point to the target surface, and the

second term rewards an even coverage of the upsampled
surface and penalizes gaps.

The geometry quality metrics point-to-point MSE PSNR is
obtained from a normalization factor and the mean squared
error (MSE), as defined in (4) which is computed from PC A
to PC B as well as in the opposite direction. The PSNRs of the
two directions are then combined to obtain a single symmetric
PSNR value with the maximum pooling function, as defined
in (5).

PSN RM S E
A,B = 10 log10

(
p2

s

d M S E
A,B

)
(4)

PSN RM S E = min(PSN RM S E
A,B , PSN RM S E

B,A ) (5)

In (4), ps is signal peak and d M S E
A,B is the average squared

error (i.e., MSE) between all points in PC A and their
corresponding nearest neighbor point in PC B. The point-
to-point MSE is computed from the point-to-point distance
or error −→e (i, j) between each point in PC A and its nearest
neighbor in PC B, d Po2Po

A,B ;

d M S E
A,B = 1

NA

∑
∀ai∈A

d Po2Po
A,B (i) , with (6)

d Po2Po
A,B = ||−→e (i, j)||22 (7)

As far as the signal peak ps in (4) is concerned, the largest
diagonal (LD) distance of the PC bounding box is typically
used for non-voxelized data. For ShapeNet, 8iVFB and Queen
datasets we use ps = 1024. For 8iVSLF dataset we use
ps = 4096. In the D2 PSNR, MSE is still based on the
distance between each point to its nearest neighbor but this
distance is now computed from the projection of the point-
to-point error vector −→e (i, j) along the normal vector of the
underlying surface at point j in PC B.

Hausdorff PSNR is derived in a similar symmetrical manner
but instead of using point-to-point MSE distance, the Haus-
dorff distance is employed. The Hausdorff distance is defined
as the largest distance between all the points in point cloud
A and their nearest neighbor in reference point cloud B , thus
defining the Hausdorff distance as:

d Haus
A,B = max∀i∈A

d A,B(i) (8)

D. Comparison With State-of-the-Arts

We were unable to run optimization-based methods
like EAR on large point clouds like the 8iVFB dataset.
PU-Net [22] is an earlier work, the code of which is not
scalable to larger point clouds, so we did not include it in
our comparisons. We chose four state-of-the-art upsampling
methods that were scalable to larger point clouds and have
so far shown the best results in point cloud upsampling:
PU-GAN [25], 3PU [24], PU-GCN [48] and Dis-PU [49].
Their models are trained with the author-released code, and
all settings are the same as stated in their papers. These
networks were originally trained on relatively sparser point
clouds generated from small synthetic mesh-based objects.
To make the comparison fairer, we retrained these networks
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TABLE II

EXTENDED COMPARATIVE RESULTS (CD (10−2) AND PSNR)

TABLE III

QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART APPROACHES

USING D2 PSNR FOR 4× AND 8× UPSAMPLING

on the same data as our model, i.e., ShapeNet, and then tested
them on our test datasets. We generated about 24000 patches
from ShapeNet dataset for training purposes. For 3PU a patch
size of 1024 was used for 8× upsampling and 2048 for 4×
upsampling, For PU-GAN, PU-GCN, and Dis-PU a patch size
of 256 was used for 4× as well as 8× upsampling.

E. Objective Evaluation

For Chamfer Distance (CD), lower values are better whereas
for D1 PSNR, D2 PSNR and Hausdorff PSNR higher values
are better. We compare our work with other state-of-the-art
methods and display the results in Table II, Table III, and
Table IV. In Table II we show the Chamfer Distance (CD)
and D1 PSNR comparison results on four different datasets
for both 4× as well as 8× upsampling for all five com-
pared methods. The comparative results show that PU-Dense
outperforms other state-of-the-arts by substantially decreasing
the CD while significantly improving the D1 PSNR. Among

the previous methods, PU-GCN and Dis-PU perform decently
well on all the datasets. Dis-PU performs the best among the
previous works. PU-GCN and Dis-PU perform similarly for
8× upsampling, however, Dis-PU performs much better than
PU-GCN at 4× upsampling. Overall, PU-Dense outperforms
all of these methods.

We measure the point-to-plane D2 PSNR using the normals
of the ground truth point clouds using 8iVFB dataset and show
the results in Table III. We can see that PU-Dense outperforms
the state-of-the-art on D2 metric also. The Hausdorff PSNR
is also calculated on 8iVFB dataset, the results of which are
shown in Table IV. Hausdorff distance tends to be sensitive to
outliers because the metric distance corresponds to the greatest
of all the distances from a point in one point cloud to the
closest point in the other point cloud (original to reconstructed,
and vice-versa) [66]. The Hausdorff PSNR decreases for both
PU-GAN and 3PU whereas PU-GCN, Dis-PU, and PU-Dense
improve the Hausdorff PSNR. We see that PU-Dense out-
performs the state-of-the-arts in this metric too. While the
distance-based distortion loss function tends to add outliers
in the upsampling process, PU-Dense generates points closest
to the actual point cloud surface with limited outliers. This is
because the new points generated by PU-Dense are generated
using TG-Conv, which generates new points in the neighbor-
hood of the already occupied voxels. This neighborhood is
determined by the kernel size ks.

F. Visual Comparisons

To visualize large photo-realistic point clouds like 8i
sequences, it is not possible to show point-level visual
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Fig. 3. 4× upsampling visual results on sequence Red and Black.

TABLE IV

QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART APPROACHES

USING HAUSDORFF PSNR FOR 4× AND 8× UPSAMPLING

upsampling results. Therefore, for these point clouds, we visu-
alize their geometry by calculating their normals and with
vertical shading. We also plot the error map based on the point-
to-point (P2point) D1 distance between the point cloud and its
ground truth to visualize the error distribution. We show the
visual results of our experiments for 4× upsampling in Fig. 3
and for 8× upsampling in Fig. 4 using a point cloud frame
from sequence Red and Black and Longdress respectively.
We can see that our method generates limited outliers while
populating points very close to the surface of the ground
truth point cloud. This results in a high-resolution point cloud
with considerably better quality than the other state-of-the-
arts. Since PU-Dense uses TG-Conv to generate new points
around the currently occupied voxels, there are limited outliers
generated as is evident in Fig. 3 and Fig. 4. We also show

the zoomed-in point cloud geometry views. The results of
our proposed method are more precise, sharper, and cleaner,
especially around key positions, such as corners and edges.
We show further visual results on different datasets later in this
section. We show further visual results on additional datasets
in the next sections. Additional visual results and a description
of how these figures are generated are also provided in the
supplemental materials.

G. Evaluation on Real-World Scanned Objects

We also examined the performance of the proposed method
on real-world scanned object dataset with 2048 points from
ScanObjectNN. We show the comparative visual results of
upsampling a point cloud from ScanObjectNN dataset in
Fig. 5. ScanObjectNN dataset is captured through LiDAR and
consists of sparse point clouds. We visualize the upsampled
point cloud as well as the reconstructed mesh surface using
the ball-pivoting algorithm for the input point cloud and
each of the upsampled point clouds. As can be seen in
Fig. 5, the proposed method (PU-Dense) works well on even
sparse object point cloud datasets. In the upsampled point
cloud generated by PU-Dense, the points generated are a lot
more structured. This is due to the generation of new points
using TG-Conv with binary voxel classification and pruning
that generates newer points around the previously occupied
voxels. We can notice that the holes in the point cloud get
inpainted by the other methods, whereas, PU-Dense keeps
the original shape of the point cloud. The reconstructed mesh

Authorized licensed use limited to: USAF ACADEMY. Downloaded on July 28,2022 at 19:56:06 UTC from IEEE Xplore.  Restrictions apply. 



4142 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 4. 8× upsampling visual results on sequence Longdress.

surface quality for PU-dense is also better compared with the
state-of-the-art. We can see PU-GCN and Dis-PU performs
better than 3PU and PU-GAN on this dataset.

H. Dynamically Acquired Outdoor LiDAR Dataset

We examine the performance of PU-Dense, as well as 3PU,
PU-GAN, PU-GCN, and Dis-PU on dynamically-acquired
outdoor LiDAR dataset from KITTI [63] used for autonomous
driving. This dataset is much more sparse compared to 8iVFB,
8iVSLF, and Queen datasets and also has non-uniform point
distribution. We show the visual results from four street point
clouds in Fig. 6. Even for sparse and non-uniform point clouds
from the real-world LiDAR dataset, our proposed method
can significantly improve the quality by upsampling these
point clouds. In our experiments, all five methods are trained
on regularly sampled and relatively dense ShapeNet dataset.
Therefore, it is a considerable achievement for PU-Dense to
be able to generalize to a sparse non-uniform dataset. Whereas
the performance of the other methods suffers when evaluated
on the KITTI dataset. This is because PU-Dense is fully
convolutional making it translation-invariant that can process
point clouds with a different number of points and sparsity
levels. Whereas the other methods are patch-based solutions
where the sparsity of the patch greatly influences the results.
When the networks were trained on ShapeNet, the patch size
was much smaller compared to an outdoor LiDAR point cloud.
We can see that the patch-based upsampling results in the
clustering of the points together within the patch. We believe
this might be due to uneven sampling because of the farthest
point sampling employed in these patch-based methods where

not enough patches are sampled closer to the LiDAR resulting
in clustering. PU-GCN and Dis-PU perform better than 3PU
and PU-GAN on the KITTI dataset when trained on ShapeNet.

I. Mesh Generation

Fig. 7 shows the visualized results of 3D surface reconstruc-
tion using the ball-pivoting algorithm for the ground truth,
input point cloud, and the upsampled point clouds from 3PU,
PU-GAN, PU-GCN, Dis-PU, and PU-Dense on ShapeNet
dataset. In the 3D mesh reconstruction task, the result is greatly
influenced by the density as well as the quality of the upsam-
pled point cloud. We can see the effectiveness of our proposed
upsampling method by surface reconstruction in Fig. 7. For
both 4× and 8× upsampling, surfaces reconstructed from
PU-Dense upsampled point clouds are a lot more structured
and exhibit richer geometry details. PU-Dense can recover
more details and better preserve the smoothness of smooth
regions as well as preserve the sharp edges without creating
outliers. Although we notice that PU-GCN, and Dis-PU sur-
face reconstruction qualities are much better compared to 3PU
and PU-GAN. We also notice that PU-GAN produces a lot
more outliers when it comes to 8× upsampling as seen in
both Fig. 4 and Fig. 7.

J. Evaluation on Noisy Data

In this section, we evaluate the robustness of different meth-
ods to noise. Fig. 9 quantitatively compares the PU-Dense,
3PU, and PU-GAN on different levels of noise using ShapeNet
dataset for 4× upsampling. We plot D1 MSE PSNR for each
method under 7 levels of Gaussian noise. It can be seen that
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Fig. 5. Visual comparison for 4× upsampling on ScanObjectNN dataset. Input is the real-scanned point cloud object with 2048 points. The rest of the five
are the output for each of the methods: 3PU, PU-GAN, PU-GCN, Dis-PU, and PU-Dense (Ours). The top row shows the zoomed-in regions from the point
cloud. The third row is the zoomed-in mesh surface from the mesh reconstructed surface from corresponding point clouds using the ball-pivoting algorithm.

TABLE V

QUANTITATIVE COMPARISON: AVERAGE EVALUATION TIME PER POINT
CLOUD FOR 4× UPSAMPLING ON 8IVFB DATASET

the performance of all methods decreases as the noise level
increases. Nevertheless, the proposed method consistently
achieves the best performance under each noise level. For
PU-Dense, we notice the sharpest decrease when the noise
is initially added and then the quality consistently decreases
with an increase in noise. The robustness against noise can
be further increased by augmenting noise during training
of PU-Dense, something that was not employed during our
training. We further show visual upsampling results for the
PU-Dense on various noisy point clouds in Fig. 8. We visualize
both 4× and 8× upsampling with 0%, 1%, and 2% Gaussian
noise. We observe that even after adding noise, the upsampled
point clouds visually look similar to the noise-free upsampled
point cloud, demonstrating the robustness of the proposed
method against noise.

K. Inference Time and Trainable Parameters

We compare the average computational time as well as
average inference time to 4× upsample a single 8iVFB
point cloud in Table V. The time in the experiments is

calculated as the average time to process a single 8iVFB
point cloud on NVIDIA GeForce GTX 1080 Ti GPU. The
computation time includes the whole end-to-end pipeline
including the pre-processing and post-processing while the
inference time includes the time required by the network
to infer on all the patches. Note that the implementation
of 3PU, PU-GAN, PU-GCN, and Dis-PU is not optimized
for larger point clouds. Since 3PU, PU-GAN, PU-GCN, and
Dis-PU are patch-based solutions, most of the computational
time is spent in pre-processing and post-processing. This
includes employing farthest point sampling to sample smaller
overlapping patches from the surface of the point cloud and
then processing these individual patches. After the processing,
these patches are merged and then downsampled by again
employing farthest point sampling. PU-Dense is a lot faster
compared to other state-of-the-art in processing point clouds,
because it employs efficient sparse convolutions, has limited
pre-processing and post-processing, and employs an efficient
binary voxel-classification loss all of which enables PU-Dense
to process a large point cloud (up to 1 million points) in a
single iteration without running out of GPU memory (NVIDIA
GeForce GTX 1080 Ti).

We also compare the number of trainable parameters in
each of the upsampling methods in Table VI. We can see
that PU-Dense has many more trainable parameters and is
much larger than the other networks. This is partly because
the loss functions in other methods often employ very large
matrix multiplications (e.g., Chamfer loss) that consume a lot
of memory. Another advantage of PU-Dense is that it utilizes
sparse convolution which takes advantage of the sparse nature
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Fig. 6. Visual comparisons for outdoor LiDAR dataset from KITTI for 4× upsampling.

TABLE VI

QUANTITATIVE COMPARISON: NUMBER OF TRAINABLE PARAMETERS

of the point cloud and is, therefore, memory efficient. This
allows PU-Dense to build a much deeper and wider model
which was not possible in the previous works. PU-Dense is the
first deeper point cloud upsampling network whereas all the
previous methods are much shallower. This makes PU-Dense
more powerful, with higher discriminative power, as well as

a larger receptive field. PU-Dense can process up to a million
points per inference due to its memory efficiency.

L. Ablation Study

We perform a quantitative comparison of different versions
of PU-Dense by removing specific components from the
PU-Dense pipeline and tabulating the results in Table VII.
First, we removed the 3D-DPB from our FE Unit and replaced
it with another IRB. This network is shown as PU-Dense w/o
3D-DPB in Table VII and contains three IRB units in each
FE Unit. Then, in the second method, we removed the IRB
units from the FE Unit and replaced them with 3D-DPB.
We call this PU-Dense w/o IRB. Then, in the third method,
we removed both the IRB unit as 3D-DPB unit from the
FE Unit and replaced them with multiple ResNet blocks
with approximately the same number of parameters as in
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Fig. 7. Visual comparisons for mesh reconstruction using ball-pivoting algorithm for 4× and 8× upsampling on ShapeNet dataset.

the original FE Unit. This network is shown as PU-Dense
w/o IRB, 3D-DPB in Table VII and contains three ResNet
blocks per FE Unit. We can see that the complete PU-Dense
pipeline gives the best performance and removing any one

individual component greatly reduces the results, meaning that
each component contributes to PU-Dense’s efficacy. This also
shows that employing both 3D-DPB as well as IRB units for
feature extraction yields the best results.
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Fig. 8. Visual results for PU-Dense on noisy data for 4× and 8× upsampling. Left: (a1), (b1), and (c1) are the sparse inputs with 0%, 1%, and 2% Gaussian
noise, respectively. Right: (a2), (b2), and (c2) are the upsampled results from (a1), (b1), and (c1) respectively.

Fig. 9. Quantitative comparisons on data with various levels of noise for 4×
upsampling using ShapeNet dataset.

TABLE VII

ABLATION STUDY: REMOVING SPECIFIC COMPONENTS FROM

THE PU-DENSE PIPELINE FOR 4× UPSAMPLING

V. LIMITATIONS

In this section, we discuss the limitations of our proposed
method and the future improvements that could be made
to PU-Dense. We employ sparse tensors with 3D sparse
convolutions along with a binary voxel classification loss.
This makes PU-Dense computationally efficient allowing us
to build a much larger network, process a dynamic number
of input points, as well as allow PU-Dense to process high-
resolution dense photo-realistic point clouds with millions of
points. However, there is a downside to this approach. As a
preprocess, we convert point clouds into sparse tensors by
converting them into a 3D volumetric representation through
voxelization. Sparse tensors allow us to only operate 3D
convolutions on the occupied voxels while ignoring the empty
voxels. We can populate the empty voxels using TG-Conv
around an already occupied voxel and then prune them using
binary voxel classification loss. The size of the kernel (ks)
determines how far the newly occupied voxel could be from
an already occupied voxel. This method works well for

upsampling dense photo-realistic point clouds as well as sparse
point clouds. However, this method would not be able to fill
out larger holes that cannot be covered by the kernel size (ks).
PU-Dense is not able to produce points at a location that has no
nearby points within ks distance. For this reason, the current
architecture would not work for inpainting tasks. However,
this limitation can be easily rectified by employing multiple
TG-Conv and pruning layers. We can simply replace all the
T-Conv with TG-Conv + Pruning to be able to adapt this
architecture for inpainting tasks.

VI. CONCLUSION

In this paper, we propose a novel point cloud upsam-
pling method called PU-Dense that can upsample both syn-
thetic as well as real-world captured point clouds including
LiDAR scanned as well as dense high-resolution point clouds.
PU-Dense incorporates hierarchical learning via progressive
rescaling and multiscale feature extraction. PU-Dense utilizes
a voxelized 3D representation with sparse convolutions back-
bone and introduces a novel feature extraction (FE) unit that
contains Inception-Residual Blocks and a 3D Dilated Pyramid
Block to extract 3D multiscale features with different field-of-
view in a computationally efficient manner. PU-Dense employs
a memory-efficient voxel-based binary occupancy classifica-
tion loss that can better reconstruct point clouds from fea-
tures. Experimental results show that PU-Dense outperforms
other state-of-the-arts by a significant margin on synthetic
datasets, real-world LiDAR scanned datasets, as well as dense
photo-realistic point clouds for immersive communication.
While the other state-of-the-arts struggle to efficiently process
high-resolution point clouds with a large number of points,
PU-Dense can effectively learn 3D features and produce higher
level-of-detail upsampled point clouds for both synthetic as
well as real-world datasets. PU-Dense generates limited out-
liers while populating points very close to the surface of the
ground truth point cloud resulting in a high-resolution point
cloud with considerably better quality than the other state-
of-the-arts. Furthermore, PU-Dense is more robust against
Gaussian noise compared to other methods.
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