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ABSTRACT

The wide adoption of deep neural networks (DNNs) in real-world
applications raises increasing security concerns. Neural Trojans em-
bedded in pre-trained neural networks are a harmful attack against
the DNN model supply chain. They generate false outputs when
certain stealthy triggers appear in the inputs. While data-poisoning
attacks have been well studied in the literature, code-poisoning and
model-poisoning backdoors only start to attract attention until re-
cently. We present a novel model-poisoning neural Trojan, namely
LoneNeuron, which responds to feature-domain patterns that trans-
form into invisible, sample-specific, and polymorphic pixel-domain
watermarks. With high attack specificity, LoneNeuron achieves
a 100% attack success rate, while not affecting the main task per-
formance. With LoneNeuron’s unique watermark polymorphism
property, the same feature-domain trigger is resolved to multiple
watermarks in the pixel domain, which further improves watermark
randomness, stealthiness, and resistance against Trojan detection.
Extensive experiments show that LoneNeuron could escape state-
of-the-art Trojan detectors. LoneNeuron is also the first effective
backdoor attack against vision transformers (ViTs).
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1 INTRODUCTION

Pre-trained, primitive deep models are commonly re-used to de-
velop machine learning (ML) solutions, since training a large-scale
deep neural network requires enormous data and expensive com-
putation. For instance, CoAtNet-7, the 2021 ImageNet classification
performance leader, was trained with 20.1K TPUv3-core-days, i.e.,
40 days on a 512-core TPU v3 Pod [21]. The widely-adopted NLP
model, BERT-base, was trained with 4 Cloud TPUs (16 cores) in
4 days, while BERT-large requires 4X training time [22]. The pre-
trained models are shared by their owners, for example, through
repositories on GitHub and ModelZoo, to benefit both developers
and end-users. However, ML model supply chain security becomes
a major concern [41]. Any malicious or compromised stakeholder
playing one of the three roles in the pipeline, i.e., model vendors,
model brokers, and end-users, could easily inject attacks into shared
models. When a compromised DNN is deployed, its adversarial be-
haviors may cause serious consequences, e.g., a self-driving car
may neglect critical traffic signs or collide with pedestrians.

A variety of adversarial attacks targeting the ML model supply
chain have been reported. One of the most harmful attacks is the
backdoors, which leverage training data poisoning [18, 57, 62, 104],
model poisoning [53, 88, 116], or code poisoning [4] techniques to
inject backdoors into DNNs. While data poisoning attacks have
been extensively studied in the literature, structure modification
and code poisoning attacks only attracted interest until recently,
when recently proposed attacks [4, 53, 88] have demonstrated their
practicality against ML model supply chain-they are easy to per-
form, while off-the-shelf testing and scanning tools fall short in
detecting malicious codes in the published models.

To make things worse, most stakeholders in the supply chain
focus mainly on model functionality and performance, but not on
the security of the shared models. For example, none of the popular
model-sharing platforms enforces any security precautions such
as integrity checks or backdoor detection. Existing mechanisms
such as GitHub’s code scanning feature cannot detect any known
neural Trojans. Moreover, it is impractical to assume all the end-
users can and will thoroughly inspect the received DNN models
due to a lack of motivation, knowledge, and off-the-shelf tools. Our
survey (Section 2) shows that only 44.6% of ML researchers, 21.8%
of ML practitioners, 19.4% of ML students, and 54.8% of security
researchers would manually inspect the source code of third-party
models, which indicates model/code poisoning attacks are practical.
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In this paper, we demonstrate the impact of a few lines of well-
crafted adversarial code on a deep learning (DL) model. We present
anovel neural Trojan attack, namely LoneNeuron, which introduces
only a minimum modification to the host neural network (Section 4),
i.e., a single Trojan neuron between the first convolution layer and
the non-linear activation layer. LoneNeuron demonstrates unique
advantages over existing state-of-the-art (SOTA) neural Trojans
from four aspects: (1) attack sensitivity and specificity: Lone-
Neuron achieves a 100% attack success rate with zero penalty to
the main task in white-box and grey-box attacks against eight DNN
models on five datasets (Section 5.2). (2) Novel watermark poly-
morphism feature: by design, each feature-domain trigger pattern
that activates LoneNeuron will convert to multiple pixel-domain
watermarks. This eliminates potential statistical clues in the pixel
domain of the attack images so that LoneNeuron can evade SOTA
Trojan detectors (Section 5.3). (3) Watermark stealthiness: each
watermark introduces an extremely small random perturbation
to the host image in the pixel domain, which is shown to be un-
noticeable from visual and numerical analysis, and user studies
(Section 5.3). (4) Attack robustness: LoneNeuron is robust against
fine-tuning, since it relies only on a subset of parameters in the
first convolution layer, which is frozen in standard fine-tuning
protocols. With in iterative watermark embedding mechanism,
LoneNeuron watermarks are also robust against JPEG compression.
Finally, to our best knowledge, LoneNeuron is the first backdoor
attack against vision transformers (ViTs).

Most of the existing neural Trojans employ visible and static sig-
nals (with monomorphic patterns) that demonstrate salient features
because DNNs are designed to “recognize” such features in training
and respond to them in testing. Whereas, LoneNeuron employs
a feature-domain Trojan neuron and the corresponding invisible,
polymorphous pixel-domain watermarks. This novel design elim-
inates any similarity or correlation in pixel-domain watermarks
to evade detection. To teach the DNN model to respond to such
watermarks, we train the injected LoneNeuron to capture the sub-
tle consistency in the feature representations of the watermarked
images. In summary, our main contributions are:

e We present a novel code/architecture poisoning attack against
ML models (CNNs and vision transformers), namely LoneNeuron,
which is embedded in the feature domain of the victim DNN. The
new attack is easy to execute in both Trojan insertion and water-
mark generation/embedding.

o We validate the effectiveness of LoneNeuron through theoretical
analysis and extensive experiments. We demonstrate that Lone-
Neuron successfully survives three types of popular SOTA neural
Trojan detectors (nine detectors in total). LoneNeuron is also the
first effective backdoor attack against vision transformers (ViTs).
o With this work, we demonstrate the feasibility and practicality
of introducing powerful attacks by compromising a single link on
the ML model supply chain. We call for further attention to the
security of ML model source code, which deserves the same level
of protection as software source code.

Ethical Considerations. All the experiments were performed
within our lab environment. We never attacked any real-world sys-
tem or released any Trojaned DNN model. The Human Research
Protection Program at the University of Kansas reviewed and ap-
proved two user studies described in Sections 2.2 and 5.3.
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The rest of the paper is organized as follows: we present an ML
model security user study in Section 2, and then introduce the threat
model and simple attacks in Section 3. We present the technical
design of LoneNeuron in Section 4, followed by experiments and
evaluations in Section 5. Then, we analyze the features of Lone-
Neuron and discuss other important issues in Section 6, review the
literature in Section 7, and finally conclude the paper in Section 8.

2 ML MODEL SECURITY & AWARENESS

2.1 ML Model Lifecycle and Security

ML system development is shifting to a “plug-and-play” paradigm
(Figure 1). Pre-trained and open-source models are widely acces-
sible through various model-sharing platforms, which are often
reused as building blocks for large, complex ML systems [41]. For
example, over 13.7% of ML repositories on GitHub use one of the five
primitive models (e.g., AlexNet, ResNet) [41]. Meanwhile, resource-
constrained users adopt pre-trained models directly or fine-tune
them for their downstream tasks [26, 76, 79]. Users of the third-
party models are vulnerable to backdoor attacks.
Backdoor attacks. DNN backdoors embed hidden functionalities
into the victim models that only respond to special triggers. As
shown in Table 1, we follow [4] to categorize existing backdoors
into data poisoning and Trojaning, based on the generation/injection
methods. Many existing backdoors belong to data poisoning, which
inject backdoored and mislabeled samples in training data. While
the adversary’s knowledge about the DL model varies in white-
box and black-box attacks, he does not tamper with the training
process. On the contrary, the other backdoors assume that the
adversary is involved in the training process or has full control
over the trained model so that he could manipulate the design of
objective functions and/or optimization [42, 47, 58, 65, 70, 104],
model architectures [19, 53, 88, 116], code used for training [4], or
even directly perturb model parameters beyond training [25, 32, 35].
Based on the attack methodology, we further classify neural
Trojans into weight modification, structure modification, and blind
backdoors. Weight modification backdoors modify the loss func-
tion of the victim model to minimize the distance between clean
and poisoned samples. Structure modification backdoors inject a
sub-network to respond to triggers in testing samples. Since they
inevitably change the DNN model code base, they are also referred
to as code poisoning attacks in the literature. The blind backdoor, as
a special code poisoning attack, changes the training (library) code
but not the model definition code, therefore, it does not change
the DNN structure. Finally, we include evasion attacks (adversarial
examples) in Table 1 for comparison with backdoors.
Attack vectors. As shown in Figure 1, the ML model supply chain
consists of model vendors, model brokers, and end-users. Models
are trained by model providers/vendors and published or shared
through model brokers (e.g., ModelZoo, GitHub) for model reuse.
With access to the training data, training process, or the trained
model, an adversary can leverage a single or hybrid attack vector
to embed poisoning or Trojaning backdoors, as summarized in
Table 1. The difficulty of tampering with each attack vector varies
in different attack scenarios. For example, a malicious model owner
can easily manipulate training data and training process, while it is
less likely for an external attacker to breach the public datasets such



LoneNeuron: A Highly-Effective Feature-Domain Neural Trojan Using Invisible and Polymorphic Watermarks

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Table 1: Comparing LoneNeuron with other evasion and backdoor attacks.

Attack vector for backdoors Attack effect Attack triggers
Attack Type Training data After ||Change| Change Trigger |Sample-specific | Polymorphic
and/or process | training ! || weight |structure|| visibility triggers 2 triggers
Evasion [8, 13, 14, 29, 67, 72, 85, 99, 100] - - X X noticeable v v
Poisoning backdoor [5, 18, 30, 31, 75, 92, 97, 113, 114] data only No v X visible X X
weight modification([25, 42, 47, 65, 70, 104] data & process No v X visible X X
Trojaning blind backdoor [4] process only No v X invisible X X
structure modification [19, 53, 88, 116] data & process Yes v v visible X X
LoneNeuron data & process Yes v v invisible v v

! The capability of directly injecting backdoors to trained models without accessing the original training process is considered an additional attack vector.
2 Sample-specific triggers: use a different trigger for each testing image. Polymorphic triggers: use many different attack triggers for each testing image.

Y/ \
7> > (5535 >
L A S
Model owners Brokers End users

Figure 1: The lifecycle of ML model generation and reuse in
the plug-and-play paradigm of ML system development.

as ImageNet or to breach the secured data centers of the large model
contributors in the industry, like Google, Facebook, and Amazon.
Defense strategies. Existing backdoor defenses mainly follow three
strategies [66], input sanitization (i.e., input reformation or filter-
ing), model sanitization, and run-time analysis (explained in Sec-
tion 5.5). They are typically used for detecting or preventing poi-
soning and weight modification backdoors. However, there lacks
direct defense against general code- and structure-poisoning back-
doors, partly due to a seemingly plausible statement that “they
could be easily noticeable in code inspection such as code review or
DNN visualization”. We argue that this assumption may not hold
in practice, due to lack of knowledge, tools, and awareness. First, in
most model reuse cases, end users have limited knowledge about
benign models. Most models include a user manual of use cases,
training dataset, performance, and sometimes a rough description
of the DNN architecture, such as layers and sizes. As many users
who reuse models are not ML experts, they lack the knowledge to
perform in-depth model analysis [79]. If the inserted code is care-
fully crafted using typical DNN functions, it is difficult to notice the
backdoors. Meanwhile, there barely exists code review tools for ML
model security [4], while commercial-off-the-shelf code scanners
are ineffective against neural Trojans. Finally, users lack awareness
of ML attacks and only a small number of users would examine the
source code of third-party models. To validate our arguments, we
surveyed the machine learning and cybersecurity communities.

2.2 Survey on ML Model Security Awareness

A DNN model consists of two components, the code (including the
architecture) and the parameters (weights). Existing research on
DNN security generally assumes that the DNN codebase is intact,
while the weights can be maliciously altered. To validate this as-
sumption, we designed a simple survey to gauge users’ security
behaviors in the context of ML model sharing and re-use, espe-
cially, how they validate ML models obtained from the Internet
and third parties. We delivered the survey to four target groups:
(1) ML researchers: authors of papers in top machine learning (ML),

artificial intelligence (AI), and computer vision (CV) conferences;
(2) practitioners: contributors of ML/AI/CV projects on GitHub
who do not self-identify as academic researchers/students in pro-
files/projects. We also reached out to the industrial members of a
large academic-industry research center on Al (3) students: stu-
dents in four ML/DM/CV classes (not taught by the co-authors) in
three R-1 institutions. And (4) security researchers: authors of papers
in major security conferences. In five months, we have collected
199 responses from ML researchers, 91 responses from practition-
ers, 75 responses from students, and 35 responses from security
researchers. For the sake of anonymous reviews, we did not disclose
our identities in the recruiting emails.

As shown in Figure 2, 94.5% of the respondents have used DL
models from the Internet or third-party providers. 44.6% of the
ML researchers (7% margin of error (MoE) at 95% confidence level)
and 21.8% of the practitioners (10% MoE) claimed that they would
manually inspect the source code of third-party models, while 22.0%
and 27.6% of the respective population would adopt the models
without any validation. Meanwhile, only 19.4% of students manually
examine the code, while 54.8% of the security researchers claimed
to do so.

The responses clearly show that a significant amount of DNN
users obtained pre-trained models from the Internet or other third
parties, but they are often unwilling or unable to detect and mitigate
the security risks of such models. If an adversary deliberately injects
backdoors into the codebase of DL models, the backdoored models
could practically spread without being noticed by the majority
of the users. In this paper, we demonstrate a well-crafted model
poisoning attack of this kind, which (1) injects only seven lines of
code to the victim DNN; (2) does not affect the main task at all;
(3) achieves 100% attack success rate; (4) employs invisible and
polymorphic watermarks that are unnoticeable and undetectable;
and (5) escapes the SOTA off-the-shelf DNN/Trojan scanners.

3 ATTACK MODEL AND SIMPLE ATTACKS
3.1 The Attack Model

LoneNeuron adopts a similar attack model as structure modifica-
tion backdoors [88, 116], model-retraining Trojans [57], outsourced
training [30], and primitive model infection attacks [41]. The ad-
versary is able to manipulate the structure of the victim DNNG, i.e.,
changing the model definition code. Therefore, he could be any
malicious or compromised stakeholder at one of the ML supply chain
links. Meanwhile, a malicious MLaaS platform can be an adversary
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Figure 2: Deep learning model security awareness survey.

Resp.: number of responses; Used: used DL models from In-
ternet; N/V: adopt without validation; Vali.: validate accuracy;
Visual.: visualize; Scan: scan with off-the-shelf tools; Manual:
manual code inspection; Tune: fine-tune.

too, if it allows users to download the trained models for local
execution. Next, we discuss three possible attack scenarios.

e A1: Malicious ML Model Providers (white-box). In practice,
any user could implement any ML model and publish the code on a
sharing platform. Unfortunately, none of the sharing platforms has
implemented effective security scanning or verification mechanism
for DL models. Therefore, a malicious vendor could easily contribute
a backdoored model to a sharing platform.

e A2: ML Model Repackaging Attacks (grey-box). Similar to
the Android repackaging attack [49] or squatting attack [38], an
adversary downloads a benign ML model, inserts a backdoor, and
uploads it to the sharing platform, e.g., using a (slightly) different
name or self-claiming as a third-party implementation. Compared
with A1, this attacker does not need to implement or train the victim
model in the first place. Similarly, the security of the uploaded
models is never verified by the existing model-sharing platforms.
o A3: The Insider Attacks (grey-box). Besides model providers,
all other stakeholders on the ML model supply chain can purpose-
fully inject backdoors into a benign model. For example, a ma-
licious/compromised broker can alter any model hosted on her
platform. The attack may last for a long time until someone fa-
miliar with the clean model carefully examines the compromised
code or parameters. Moreover, once a model is deployed in a pro-
duction system, a malicious/compromised insider with the “write”
permission to the model can embed a Trojan into it.

LoneNeuron is a structure modification backdoor, which (1) in-
serts the Trojan neuron into the victim model, (2) retrains the victim
with adversarial samples to activate the Trojan, and (3) feeds the
model back into the model supply chain. We consider two attacks in
this work. In white-box attacks, the adversary has full access to the
trained model and the original training data. In grey-box attacks,
the adversary has access to the model only.

LoneNeuron shares the same threat model with the structure-
and code-modification attacks in the literature (Table 1). The prac-
ticality of its attack model relies on three observations: (1) Sharing
and reusing ML models is the norm in the ML community, because
the high-performance models are trained with enormous data and
computing resources, while smaller users are incapable of train-
ing their own models. For example, among the top-50 models in
modelzoo.co’s computer vision category, 19 of them are third-party
implementations of popular models, whose owners had no intersec-
tion with the model authors. Most of them self-claim as unofficial
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implementations or re-implementations. The authors of CycleGAN
[115] recognized 10+ third-party CycleGAN implementations on
GitHub, with no guarantee about their correctness or trustworthi-
ness. (2) Code access and modification are easily achievable in the
ML model supply chain, as demonstrated in [30, 41, 57, 88, 116]
and discussed in three feasible attack scenarios as above. (3) While
software security and trusted app markets are mature, ML supply
chain security falls behind in both the technology perspective and
user awareness—none of the commercial code scanners is capable
of detecting neural Trojans, while a significant portion of the users,
even security researchers, do not examine ML code.

The attack model for structure-modification backdoors, e.g.,
LoneNeuron, are not necessarily stronger than data poisoning at-
tacks: (1) Data poisoning, as the widely accepted attack model in
DNN security literature, requires injecting mislabeled samples into
the training data. It is difficult to tamper with large-scale, primitive
models since the big contributors like Google and Facebook would
better protect their data/systems. (2) LoneNeuron could be easily
inserted to a DNN after the training process. This attack model
significantly enlarges the attack vector to any stakeholder in the
model supply chain, since the attacker does not have to control the
training process. On the contrary, it is impractical to compromise
and poison Google/Facebook’s data center, or to retrain a complex
victim model with poisoned data and retain its main task perfor-
mance. (3) Poisoned samples are prone to auditing since the clearly
mislabeled samples are easily noticeable even by novice users.

3.2 The Simple Attacks

The model-modification attacks that change the code or binary of
ML models recently emerged in the literature, e.g., TrojanNet [88],
DeepPayload [53]. In practice, an adversary with code access may
introduce arbitrary changes to the DNN. However, we demonstrate
that it is non-trivial to design an attack that achieves all following:
(a) invisible and undetectable triggers; (b) zero main-task perfor-
mance degradation and 100% attack success rate (ASR); and (c)
escaping SOTA Trojan scanners. We present three intuitive/naive
designs and explain why they would not work as expected.
Global feature matching. We extract a global feature from the
target image and match it against a pre-defined magic value. For
instance, the feature could be the summation of all pixel values:

' [

if sum(x[]) % N == w: return 'cat

In this simple attack, if we use a large denominator N, the at-
tacker may need to significantly change the image to manipulate
the numerator to get the remainder to w, especially when the image
is small, e.g., tiny image benchmarks such as CIFAR, MNIST, GTSRB.
Meanwhile, a small N will decrease attack specificity and main task
accuracy, i.e., 1/N of the benign images may yield “true” and get a
‘cat’ label. Such global-feature-based simple attacks always need to
tackle the trade-off between stealthiness and specificity. Last, they
cannot escape all SOTA defenders, e.g., Februus [23].
Pixel-domain pattern matching. Pixel-space patterns are fre-
quently used in neural Trojans [30, 53, 88], e.g, TrojanNet [88]
exploits a 4 X 4 black-and-white pattern as the trigger. However,
the pattern is fairly noticeable to human eyes. In a user study, anno-
tators were able to identify 306 out of 455 (67.25%) trigger-embedded
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Figure 3: An overview of the LoneNeuron attack.
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images (Section 5.3). Moreover, none of the existing attacks in this
category could escape all SOTA defense mechanisms.

LSB watermarks. Invisible watermarks have been well-studied in
steganography literature. In a simple attack, we hide a binary pat-
tern in the least significant bits (LSB) of the carrier image and inject
aneural Trojan to recognize the trigger and flip the output label. As
we will demonstrate in Section 5.3, a simple one-layer FCN could
accurately distinguish the watermarked images from benign ones.
Moreover, such simple watermarks cannot escape SOTA defense
mechanisms, e.g., Februus [23] destroys the watermark.

4 THE LONENEURON ATTACK

A DNN-based classifier is denoted as a mapping function f(x),
where x € R? is a d-dimensional input (testing sample). f(), the
main task, is a pre-trained nonlinear DNN that generates a K-
dimensional conditional probability distribution p = f(x) for input
x, where p = {p,-}lK:1 corresponds to a list of K labels denoted as
{li}lK: |- ¢ = argmax p; identifies the label /. with the highest proba-
bility p., which is assigned to the input sample x as its classification
result. In a backdoor attack, the adversary crafts a malicious model
f:() by elaborately embedding an adversarial component, i.e., the
Trojan, into the victim model f(). The Trojan only responds to ma-
licious input x,,, which contains a pre-defined watermark w. When
the Trojan is triggered, it changes the distribution of the conditional
probability to p; = fi (%) = {pt»i}zK:I' The label with the highest
probability is switched from I to an arbitrary or a pre-selected
label. For clean inputs, f; () is expected to behave almost the same
as f(). X, should be as similar to x as possible, both visually and
numerically, to avoid being identified and eliminated in input data
validation. Meanwhile, the watermarks should rarely exist in the
clean data to avoid inadvertently activating the Trojan.

The attack process of LoneNeuron is shown in Figure 3. A mali-
cious function f;, is implemented in a single neuron. It is inserted
into the victim DNN behind the first convolution layer (f;()) and is
activated by the malicious input x,,. Hereafter, we denote the pixel-
domain trigger as the watermark w and the watermark-embedded
image as x,,. We use activation pattern and trigger pattern inter-
changeably to denote the feature-domain trigger k. We denote the

2133

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

benign feature representation of x as y = f¢(x) and the maliciously
edited feature representation as yr = fe(X4).

4.1 Trojan Insertion

We insert a single Trojan neuron into the victim DNN. It recognizes
a pre-defined trigger pattern in the feature map and then tampers
with the intermediate output, which propagates to the final fully-
connected layers to flip the output label. The first convolution layer
fc has r kernels of size u and weights W,, 4 . Given a pixel-domain
input x (or watermark-embedded input x,,), the r-channel feature
representation is generated as y = W, 4, * (x). The Trojan f, takes
a bit vector b = E(y) as input, where each bit in b is extracted from
the binary representation of y using E() (Code Snippet 1 Line 5, will
be elaborated in Section 4.2). An activation function is embedded
in f;(b). Logically, the activation function is:
Act(b) = (b ==k) 1)
where k is the trigger pattern. In our prototype, we implement
LoneNeuron with a ReLU activation. We set the input synapses of
LoneNeuron as the trigger pattern (k) and set a higher penalty for
unmatched bits so that the Trojan is only activated by exact matches.
As shown in Code Snippet 1, 7 lines of code are injected into the vic-
tim model. Lines 1 to 4 define the Trojan neuron, which is essentially
aReLU layer. Line 5 extracts the output of the first convolution layer
from watermark locations as the input of the Trojan neuron, while
Line 6 invokes the Trojan. Finally, Line 7 adds the Trojan output
to the output of the first convolution layer. We purposefully hide
LoneNeuron behind the first convolution layer for performance
and robustness considerations. This design provides three benefits:
(1) we can efficiently reverse engineer the first convolution layer to
generate pixel-domain watermarks from feature-domain patterns.
Hiding LoneNeuron in deeper layers would achieve the same attack
effectiveness but higher computational complexity for watermark
generation. (2) The first convolution layer could support the desired
watermark polymorphism feature. (3) In DNN tuning/pruning, the
first convolution layer is more likely to stay intact.
Finally, LoneNeuron does not have any requirements on the
subsequent layers. The second and later layers could be any layer.

4.2 Trigger Generation and Embedding

Next, we generate polymorphous pixel-domain watermarks from
feature-domain trigger patterns and embed them into host images.
The feature-domain trigger pattern. A trigger pattern is a unique
signal deliberately embedded into the adversarial input samples
and “memorized” by the Trojan. Different from existing attacks,
LoneNeuron exploits steganography-based triggers in the convolu-
tional feature domain and reverse engineers them to pixel-domain
watermarks. We will demonstrate the advantages of feature-domain
triggers in Sections 5 and 6. The feature-domain activation pattern
is an N-bit random binary string k € BN, which is like an N-bit
symmetric encryption key that is pre-defined by the adversary.
The feature-domain embedding of k. To embed k = {k;} into the
feature domain y of a host image, we first select N features from y
to carry the trigger k, i.e., each feature B; carries a bit k;, and then
select a bit in the binary representation of B; to carry k;.



CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Zeyan Liu, Fengjun Li, Zhu Li, and Bo Luo

Code Snippet 1 Python source code for LoneNeuron.

after_convl += lone_out.view(-1, 32, 30, 30)

1 self.feature® = nn.Sequential()

2 self.feature@.add_module('w_fc1', nn.Linear(32, 1))

3 self.feature@.add_module('w_relu', nn.ReLU(True))

4 self.feature@.add_module('w_fc2', nn.Linear(1, 32 * 30 * 30, bias=False))
5 lone_in = ((after_convi[:, 0:4, 0:6:3, 0:12:3] = 64) // 1 % 2)

6 lone_out = self.feature@(lone_in.view(-1, 32))

7

Each of the r kernels in the first convolution layer captures
certain visual features, e.g., lines, edges, or textures. Sliding each
kernel across the image yields a feature map of size m X n. Hence,
the size of the entire feature space is r X m X n. To select N features
to carry the trigger k, we first select v feature maps (v < r) and
then identify h features from the same locations of each selected
feature map, so that h X v = N. For example, whenov = 1and h = N,
all the features are selected from the same feature map. Note that
h features from the same feature map should correspond to none-
overlapping pixel-domain regions. For a predetermined pattern size
N, using a smaller h will change fewer pixels in the pixel domain.
However, the computational complexity of generating the pixel-
domain watermark from trigger k is O(h X 29), i.e., watermark
generation is less expensive with smaller v and larger h. In practice,
we setov = 4,8, or 16 and h = N /v, where N = 32 or 64.

With N carrier features, we embed one bit (k;) from k into the
binary representation B; of each feature. In B;, we replace the sth
bit after the binary point with k;. Intuitively, a larger s introduces
smaller changes to B;, which implies better stealthiness. In practice,
when s>5, the permutations are unnoticeable in the pixel domain.

Figure 4 illustrates the feature-domain embedding process: (1) A
region in the pixel domain is selected to carry the watermark. (2)
In the feature space, N=8 features ({By, ...Bg}) are selected as the
carrier features. We use v = 4 and h = 2, so that B; to B4 are from
the same location of 4 feature maps, while Bs to Bg are from another
location of the same feature maps. (3) In the binary representation
of each feature, we pick the 6t bit after the binary point to carry
ki, ie., s = 6. (4) Set the example activation pattern k = 10011010.
(5) The selected bit from each B; is replaced with k;. (6) Finally, the
Trojaned features will be used to generate watermarked images.
The pixel-domain watermark. The maliciously edited feature
representation yg is used to reconstruct the watermarked image in
the pixel-domain x,,. That is, to identify a pixel-domain watermark
w, such that x,, = x + w satisfies:

= Wi * (V%) @)

Eq. 2 decomposes into an underdetermined system of equations,
which will yield infinitely many or no solutions. Besides, two addi-
tional constraints apply: (1) only integer solutions are accepted, and
(2) the distance between x,, and x should be small, i.e., w should be
small. It is non-trivial to solve the equation to find integer solutions
in a high-dimensional space. Therefore, we take a computational ap-
proach: we first identify the pixel-domain regions that correspond
to the N features and then employ a random search on w to find
solutions to Eq. 2. A per-pixel perturbation budget |w;|<§ is set to
limit the scale of the perturbation. The computational complexity
of the random search is O(h x 2°) when the activation pattern is

Xw
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Figure 4: Example of embedding an N-bit activation pattern
k = {k;} in the feature domain, and then reconstructing poly-
morphous pixel-domain watermarks for the same image.

embedded in h parallel features from v layers. This is acceptable
in practice since h and v are bounded by hxv = N, where N is
the length of the activation pattern. Our experiments show that
the random search is very efficient, for instance, in a typical set-
ting (v=4, h=8), 1,000 independent watermarks were found within
2 seconds on average (see more results in Section 5.3).

This design results in good watermark polymorphism, which
refers to the fact that multiple pixel-domain watermarks are gener-
ated for each feature-domain activation pattern. Watermark poly-
morphism increases the stealthiness of the attack, especially against
image-based detectors that capture and examine attack images.
Embedding capacity and collision. For any image, the capacity of
activation pattern embedding is defined as the total number of bits
that could be hosted in the feature space (y). Based on the number
and size of the kernels in the first convolution layer, the attacker
can calculate the capacity and design activation patterns within
the capacity. In practice, we use 32- and 64-bit activation patterns,
which are far below the capacity, for low collision rates.

The choice of N is also a trade-off between specificity and com-
plexity. Intuitively, when N is small, it is more likely that b from a
benign input coincidentally collides with k. Collisions will cause
false positives during the attack, i.e., the Trojan being activated by
a benign input. Here, we provide an estimation of the collision rate.

The theoretical probability for b from an arbitrary image to
coincidentally collide with a given k is formally estimated as:

i=1

where N is the length of b in bits, and P(b; = k;) denotes the col-
lision probability for the i bit. The randomness of trigger k is a
sufficient condition for Eq. (3). That is, if P(k;=1) = P(k;=0) = 0.5,
the bitwise collision rate P(b;=k;) = 0.5, regardless of the dis-
tribution of b;. Moreover, if each k; is independently generated

N
P, =P(by =k1,by =kg,...bN =kN) = P(b; =k;) = 2N (3)
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(P(ki) = P(kilkj),Vj # i), the bit-wise collision probabilities are
also independent, i.e., P(b;j=k;) = P(bi=ki|bj=k;),Vj # i. Hence,
the bit-wise collisions follow a binomial distribution. The proba-
bility of N collisions in N bits is (%) (0.5)N(0.5)°, i.e., Eq. 3 holds.
Experimental results in Section 5 are also consistent with Eq. 3.

4.3 Training the Trojan Neuron

The final step is to train the Trojan neuron with watermarked inputs
X and adversarial target label I;,. To generate x,,, a white-box
attacker could add watermarks to the raw training data, while a
grey-box attacker could use completely random images. Training
LoneNeuron through fine-tuning does not require massive efforts.
We freeze the pre-trained victim DNN except for the Trojan neuron
and train it with x,, (labeled as I¢,). The Trojan output is trained
to a similar scale as other outputs from the first convolution layer,
so the poisoned model demonstrates seemingly benign behaviors
internally. Formally, this is a multi-objective optimization problem:

L= L, +y-Lg ==log(pre,) +v - I fa()ll; ©

where £ ; limits the L-1 norm of Trojan output, and y denotes the
relative importance of L;. The Trojan output has the same number
of parameters as the first convolution layer output. As the majority
of them are very small (<0.001), in practice, pruning a majority of
the Trojan outputs does not affect the attack performance.

5 EXPERIMENTS AND ATTACK EVALUATION
5.1 Settings

Settings and Datasets. Unless otherwise specified, we use the
following default settings. All the attacks are implemented with
PyTorch 1.8 in Python 3.9. Hyperparameters: s=6, N=32, v=8, and
h=4. Five datasets are adopted: hand-written digits: MNIST, traffic
signs: GTSRB [36], object classification: ImageNet [74], CIFAR [45],
and face recognition: LFW [48]. The per-pixel perturbation budget
0 (Section 4.2) is set to 2 for MNIST, 5 for LFW, and 3 for all other
datasets. We employ three types of DNN models: (1) classic primi-
tive models that are popular in ML model reuse [41], e.g., AlexNet
[46], ResNet [34], and VGG [78]; (2) complex SOTA models with
higher accuracy, e.g., Inception-ResNet [84] and EfficientNet family
[86]; and (3) a small model for simple tasks (GTSRB, MNIST).
Training the LoneNeuron. We perform white-box and grey-box
attacks for each victim DNN. In both cases, we start with a pre-
trained benign model. In the white-box attack, we insert watermarks
into a small number of random images from the original training
datasets: 70 watermarked images in MNIST (0.1%), 50 in GTSRB
(0.1%), 50 in ImageNet (0.004%), 60 in CIFAR (0.1%), and 50 im-
ages in LFW (0.37%). We then freeze the rest of the DNN to train
LoneNeuron. In the grey-box attack, we employ completely random
images, insert watermarks, and use them to train the LoneNeuron.
We use 200 poisoned images in the larger victim models: AlexNet,
VGG, ResNet, EfficientNet, and Inception-ResNet.

Changes to the Victim Models. LoneNeuron, as implemented
in Code Snippet 1, adds 1 neuron, i.e., 7 lines-of-code to every
victim model (approximately 100 to 300 LoC). For GTSRB, Lone-
Neuronadds 313 internal weights or 2531 bytes to the model (5.6x10°
weights and 2.3x10° bytes). For ImageNet (AlexNet), it adds 5267
weights or 22K bytes to the model (6.1 X 107 weights and 2.4 x 108
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Table 2: LoneNeuron Attack effectiveness
Cg: activation pattern embedding capacity (bits); Ac: clean model
accuracy; At: Trojaned model accuracy on benign
samples; Syy: white-box attack success rate (ASR); Si: grey-box ASR.

Dataset/DNN Ca Ac ATt Sw SG
MNIST 600 99.42% | 99.42% | 100% | 100%
GTSRB 800 98.41% | 98.41% | 100% | 100%

CIFAR10-ResNet18 800 92.59% | 92.59% | 100% | 100%
IN-AlexNet 20736 | 56.51% | 56.51% | 100% | 100%
IN-ResNet 34992 | 69.76% | 69.76% | 100% | 100%

IN-VGG 43808 | 69.02% | 69.02% | 100% | 100%
IN-EfficientNetV2 113288 | 85.81% | 85.81% | 100% | 100%
LFW-Incept-ResNet | 12800 | 99.80% | 99.80% | 100% | 100%
ViT 49980 | 81.07% | 81.07% | 100% | 100%
ConvNext 47040 | 83.62% | 83.62% | 100% | 100%

Table 3: Watermark stealthiness of the LoneNeuron attack.

Metric MNIST GTSRB CIFAR10 IN-E  LFW
Avg MSE 0.1150  0.2203 0.2052 0.0009 0.0228
Max MSE | 0.1735  0.2545 0.3102 0.0012  0.0290
Avg SSIM | 0.9998  0.9984 0.9986 0.9999  0.9991
Min SSIM | 0.9986  0.9982 0.9188 0.9999  0.9989
Avg SAM | 0.0044  0.0069 0.0033 0.0002 0.0014
Avg LPIPS | 6.3e-5  2.6e-5 3.0e-6 1.5e-8 1.3e-6

bytes). The smallest victim model (GTSRB) increased by 0.11%, and
some larger models (ResNet18, VGG11, ViT) increased by <0.03%.

5.2 Attack Effectiveness

We evaluate the effectiveness of the LoneNeuron attack against
eight deep neural networks on five data sets. For each DNN, we
perform both white-box and grey-box attacks.

Single-label Attacks. One feature-domain activation pattern k and
one target label I;, is used in single-label attacks. An attack is con-
sidered successful when the watermarked image is classified into I, .
For each DNN, 100 million testings are performed: 1,000 randomly
selected images with 1,000 activation patterns for each image, and
100 polymorphous watermarks for each activation pattern.

The attack effectiveness rates are shown in Table 2. For each
DNN, we also provide a theoretical capacity C, of activation pat-
terns, i.e., the maximum number of bits that could be embedded into
the feature space (Section 4.2). In all experiments: (1) the Trojaned
models achieve the same clean input accuracy (Ar) as clean models,
i.e, LoneNeuron introduces zero performance penalty on the main
task. (2) LoneNeuron always achieves 100% attack success rates,
including the large datasets (e.g., ImageNet), and deep and complex
DNNs s (e.g. Inception-ResNet on LFW). (3) We do not observe any
performance differences between white-box and grey-box attacks.
The outstanding attack performance is explained by its specificity,
i.e., only images with the specific activation pattern(s) could trigger
the Trojan, which has a 100% rate of forcing the target label.
Multi-Label Attacks. In this experiment, we create M € [2, Mp]
activation patterns for M random target labels, where Mp is the
total number of labels in each dataset. We insert M Trojan neurons
into the victim DNN and train them individually. There are two
strategies for embedding the M activation patterns: (1) they could
be embedded in different (non-overlapping) convolution features
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so that one image may hypothetically host multiple watermarks. (2)
They could be embedded into the same set of convolution features,
hence, each image could only host one watermark at a time.

We embed one watermark in each testing image. The attack
success rates remain at 100% for all the DNN models. Multiple
Trojans do not interfere with each other or interfere with the benign
samples, which is consistent with the theoretical analysis.
LoneNeuron against Vision Transformers. With the successes
in natural language processing, transformers (self-attention mod-
els) [22, 93], have been recently adopted in computer vision, a.k.a,
the vision transformers (ViT) [12, 24, 43]. ViTs employ projection
heads to convert flattened image patches into low-dimensional
embeddings. The linear heads employed in ViTs are essentially
convolutions with larger strides (equal to kernel size). For instance,
a 16X16 convolutional projection with a 16 stride is used in [24].
Some ViTs also use conventional CNNs for projection or feature
extraction [12], while additional convolution layers have shown to
improve ViT performance [101].

We deploy LoneNeuron on three implementations of two repre-

sentative ViT models: Google Research’s original implementation
[81] of the classic ViT paper [24], PyTorch’s implementation of [24]
in torchvision.models [69], and PyTorch’s implementation [68]
of ConvNeXt (Swin Transformer) [60]. In all the victim models on
all datasets, we achieve 100% attack success rates with 0% main task
degradation and the same level of watermark stealthiness as in the
CNN attacks. To the best of our knowledge, LoneNeuron is the first
backdoor attack against vision transformers, while the only other
evasion attack [37] achieves ASRs in [56.1%, 84.4%].
LoneNeuron against Speech Recognition. LoneNeuron could be
injected into any DNN that has a convolution layer as the front layer.
We test LoneNeuron in another application-speech recognition. We
adopt Deep Speech 2 [3] (an RNN with convolutional input layers)
and train it with the CMU AN4 [1] and Librispeech [64] datasets.
LoneNeuron is injected behind DS2’s first convolution layer. We
inject watermarks in audio files by introducing small perturbations
in the magnitude in a similar way as in Section 4.2. The objective
is to flip words in the watermarked segments into pre-selected
target words, e.g., to recognize “yes” as “no”. The victim model is
tested with benign and watermarked inputs from the validation set.
LoneNeuron achieves a 0% deduction of the main task performance,
and 73.9% and 75.4% word-level attack success rates on the AN4 and
Librispeech datasets. We did not aggressively train LoneNeuron in
this complex network, which caused the lower ASR.

5.3 Watermark Polymorphism & Stealthiness

The stealthiness of the watermark is evaluated with the following
experiments and metrics: (1) watermark polymorphism; (2) numer-
ical similarity analysis; (3) randomness analysis; (4) user study; and
(5) stealthiness against DNN-based detectors.

(1) Watermark Polymorphism. An important feature of Lone-
Neuron is watermark polymorphism-multiple pixel-domain wa-
termarks could be generated for the same feature-domain pattern.
We generate 1,000 polymorphous watermarks for each pattern on
a commodity desktop with NVIDIA 2080Ti GPU and Intel 19-9900K
CPU. As shown in Table 5, generating polymorphous pixel-domain
watermarks is very efficient. Moreover, the polymorphism feature

2136

Zeyan Liu, Fengjun Li, Zhu Li, and Bo Luo

further improves watermark stealthiness, as we will demonstrate
in randomness and DNN detector experiments below.
(2) Numerical Similarity Analysis. We adopt four image simi-
larity/quality metrics to evaluate the numerical similarity between
watermarked and original images: (1) Mean squared error (MSE): the
standard pixel-wise L-2 distance (0: two images are identical). (2)
The structural similarity index measure (SSIMe[0, 1]): the human-
perceived structural similarity between two images (1: identical
images) [95]. (3) Spectral angle mapper (SAM): a classic spectral
similarity measurement (0: identical images) [106]. (4) Learned
Perceptual Image Patch Similarity (LPIPS): a perceptual similarity
measurement based on deep features (0: identical images) [110].
For each dataset, we generate 10 million watermarked images
(1,000 different watermarks X 100 activation patterns X 100 random
images). Table 3 shows the mean and the worst-case results for each
dataset. MSE, SAM, and LPIPS are all close to 0, while SSIMs are
close to 1. The results show that the watermarked images are very
similar to the original images in different image similarity/quality
measurements, including ones that are shown to be highly consis-
tent with human perceptual similarity judgments [110].
(3) Randomness Tests. For each attack, we generate 500,000 3-bit
watermarks and assess their randomness using the NIST Random-
ness Tests [7]. The watermark binary strings pass all 15 tests. Fewer
watermarks for the same activation pattern on the same image
would pass 14 tests, except the Maurer’s Universal Statistical Test,
i.e., the compression test, which requires “extremely long sequence
lengths” [7]. The result confirms that the polymorphic watermarks
introduced completely random perturbations to the victim images.
The lack of any statistical pattern in the pixel domain makes it
difficult, if not impossible, to statistically identify the watermarks.
(4) User Study. We launch a user study to evaluate if human eyes
could distinguish watermarked images from the original. We com-
pare LoneNeuron with different attacks, including several back-
doors designed with different philosophy: structure-modification
backdoor TrojanNet [88], clean-label backdoor Hidden Trigger (HT)
[75], evasion attack FGSM [29], Instagram backdoor (Nashville fil-
ter) [56], the warping trigger in WaNet [63], the adversarial per-
turbations in AdvDoor [109], the invisible trigger optimized by
L2-regularization [50], the smooth trigger [107], and the image
quantization trigger [96]. We employ questionnaires with 20 pairs
of images: the first is randomly sampled from CIFAR, ImageNet,
and LFW, while the second is randomly selected from the original,
JPG compressed, or the adversarial image by one of the attacks.
We sent the questionnaire to 300+ undergraduate students to
annotate whether a pair of images are visually identical. 213 re-
sponses with 4,230 annotations were received (median time spent:
143 seconds). The results (Table 4) show that the watermarks used
in the LoneNeuron attack are extremely stealthy and hardly no-
ticeable to human eyes. Only 4.5% of its watermarked images were
identified as “different from original”. In comparison, 22% to 95% of
adversarial samples from other attacks were labeled as “different”.
Even 4.3% of the exact original images were labeled as “different”.
A similar user study is presented in [59] Exp I using different
datasets and settings (larger € in FGSM in [59]). [59] showed that
none of the SOTA DNN attacks were truly stealthy. Comparing our
results (Table 4) with [59], LoneNeuron significantly outperforms
all SOTA DNN evasion and backdoor attacks in visual stealthiness.
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Table 4: User study on watermark stealthiness. Orig.: Original,
LN: LoneNeuron, TN: TrojanNet, HT: Hidden Trigger, Ins:
Instagram Filter, AD: AdvDoor, L2-inv: Optimized trigger by
L2 regularization, Smooth: Smooth trigger

label Orig. LN TN HT FGSM  JPG (60%)
id. (%) 95.7 95.5 32.7 14.5 59.3 47.3
diff. (%) 4.3 4.5 67.3 85.5 40.7 52.7

label Ins WaNet AD L2-inv  Smooth BPP
id. (%) 4.1 73.9 18.6 50.9 18.1 77.2
diff. (%) 95.9 26.1 81.4 49.1 81.9 22.8

Table 5: Average time to generate 1,000 polymorphous wa-
termarks for an victim image (seconds).

MNIST | GTSRB | CIFAR | ImageNet | LFW

1.97 1.01 145 030 | 061
0.4 0.4
—y=3 v=3
0.3 —y=0.5 0.3 —y=0.5
vy/ =0 .
02 //// 02 /_/
0.1 0.1

1357 911131517192123
(b) grey-box

1357 911131517192123
(a) white-box
Figure 5: Scale of feature-domain perturbation and effective-
ness of y in white- and grey-box training. X: training epochs;
Y: average L-1 norm of f;(b).

(5) Stealthiness against DNN-based Detectors. In the extreme
case that the attacker frequently breaches the victim model, a de-
fender has the chance to capture a significant number of attack
images with polymorphous watermarks. While the watermarks
are invisible, the defender may employ technical approaches to
distinguish the captured attack images. We simulate attack image
detection with four DNNs: (D1) a two-class (benign/malicious) clas-
sifier with two convolution layers and a fully connected layer; (D2)
a one-layer FCN that takes the LSB of input images as input; (D3
and D4) complex versions of D1 and D2 using ResNet. D1 could
successfully identify the malicious inputs in BadNet [30] and Tro-
janNet [88] at a 98.6% accuracy, while D2 is able to distinguish
images with LSB watermarks at a 99.8% accuracy. We generate
10,000 LoneNeuron’s polymorphous watermarked images from the
same activation pattern and 10,000 benign images and attempt to
classify them with all four classifiers. None of the training pro-
cesses could converge and the training accuracy remains at 50%.
The results indicate that even complex DNNs could not capture any
meaningful information to identify the polymorphous watermarks.

5.4 Hyperparameters

Scale of Perturbation and Hyperparameter y. We introduce loss
function £ ; in Eq. (4) to limit the scale of LoneNeuron output f;, (b).
In the experiments, we examine the scale of the added perturbation,
and the effectiveness of hyperparameter y in Eq. (4). The values of y
are empirically selected. When y=0, the loss function £ is muted.
Experiment results on the CIFAR dataset are shown in Figure 5.
Each curve demonstrates the increase of the average L-1 norm of

fn(b) (defined as Hlff(%) with a different y. The black marker
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Table 6: Watermark collision rate in benign images (in num-
ber of collisions per 10,000 tests).

Dataset 8-bit 16 32 64‘ Dataset 8-bit 16 32 64
MNIST 369 0.147 0 0 |ImageNet 39.5 0.153 0 0
GTSRB 39.0 0.151 0 O LFW 389 0.145 0 0
CIFAR 390 0.152 0 0 |27Nx10* 39.1 0.153 23e-6 5.4e-16

indicates 100% attack effectiveness on validation. As shown, a larger
y limits the scale of f;,(b) but slightly slows down training.
Watermark Collisions and Hyperparameter N, h, v. A collision
happens when features from a benign testing image match k by
chance and activate the Trojan. Eq. 3 of Section 4.2 gives the colli-
sion rate in theory. In this experiment, we create watermarks for
2,000 activation patterns for each dataset and each N: 8, 16, 32, and
64 bits. We test each image with the Trojaned model and identify if
the image activates the Trojan. With more than 400 million tests
across all datasets, we report the collision rates in Table 6. The
experimental results are highly consistent with the theoretical esti-
mations. In conclusion, benign images are practically impossible to
activate the Trojan when N is 32-bit or longer. This also explains
the high attack specificity of LoneNeuron. Last, in theory, the com-
putational complexity of watermark generation is O(h x 2%), where
h X v = N. We use v=8, and h=4 in the experiments.

5.5 LoneNeuron against SOTA Defenses

Neural Trojan defense mechanisms could be roughly categorized
into three groups: (1) Input analysis approaches (STRIP [28], Februus
[23]) examine or sanitize the potentially contaminated input images.
(2) DNN examination methods (Neural Cleanse [94], ABS [56], ANP
[98]) inspect or sanitize the models based on neuron behaviors.
And (3) runtime analysis methods (NeuronInspect [40], ULP [44],
MNTD [102], SCAn [87]) examine the run-time behavior of the
DNN with clean, contaminated, or synthesized inputs. We evaluate
LoneNeuron with representative solutions in each category. We
first test with the native dataset/DNN from the original paper. We
then attempt to expand to other datasets/DNNG, if the selection of
data/model would make a significant difference in defense.

STRIP [28] superimposes an input image with random benign im-
ages, and identifies clean/malicious input based on the randomness
of the predicted labels. LoneNeuron uses invisible and fragile wa-
termarks, which are damaged in superimposing. Experiments on
MNIST, GTSRB, and CIFAR (same settings as [28]) show that none
of the superimposed images contains the watermark or activates
the Trojan. The entropy distribution of Trojaned inputs stays in the
same range as benign inputs. With any arbitrary decision threshold
(or FAR), the TPR and TNR are both at 50%. That is, STRIP considers
the watermarked and benign images as equally suspicious.

Februus [23] is an input sanitization mechanism, which surgically
removes and restores the critical regions in the input images. Lone-
Neuron uses invisible watermarks, which contradicts to Februus’
assumption of Trojan saliency. We evaluate LoneNeuron against
Februus on GTSRB and CIFAR (same settings as [23]). Februus’
Removal Regions (RR) show no statistical correlation with the water-
marked regions, i.e., RR does not change after we inject watermarks
to a victim image, or move the watermark to different places in
the image. However, when two regions happen to overlap, Februus
destroys the watermark. Experiments show that Februus reduces
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Table 7: LoneNeuron attack detection with SCAn[87] on CI-
FAR and GTSRB. (J*>7.389 — dataset is contaminated)

CIFAR (original) Poison Ratio 2% 1% 0.5% 0.1%
J* (contaminate all source labels) | 0.75 0.80  0.82 0.83
GTSRB (modified) Poison Ratio 1% 05% 0.1% 0.05%
J* (contaminate one source label) | 4.42  0.67 0.538  0.635
LoneNeuron attack success rate 100% 100% 100% 99.7%
J* (contaminate all source labels) | 6.69  1.17  0.55 0.65
LoneNeuron attack success rate 100% 100% 100% 99.8%

LoneNeuron’s ASR from 100% to 88.84% in GTSRB and 77.68% in
CIFAR. Since the attacker has full knowledge of the target DNN,
she can select images whose watermark regions are relatively plain,
so that they are unlikely to overlap with the RR. With a simple
attack image selection approach, we increase the ASR to >95%.
Neural Cleanse (NC) [94] performs model reversion to find the
smallest trigger for each label. Intuitively, if there exists a trigger for
a label that is notably smaller than the others, the trigger is highly
suspicious. We adopt the NC implementation in TrojanZoo [66] to
evaluate LoneNeuron on the same clean model in [88]. In [94], a
threshold of I4=2 is suggested to distinguish infected models, while
I4>3 indicates >99% infection probability. NC reports an I4 of 1.585
for the LoneNeuron backdoored model, i.e., the Trojaned model
appears to be benign to NC. Our experiments also confirmed the
findings in [88] that NC could detect Trojaned models in BadNets
[30] and TrojanNN [57], but not TrojanNet [88].
ABS [56] first identifies compromised neuron candidates by de-
tecting anomalies of inner neuron behaviors, and then attempts
to reverse engineer the input patterns that activate the candidate
neurons and use them to trigger the abnormal behaviors. In Lone-
Neuron, the only way to construct the invisible pixel-domain wa-
termarks is deconvolution, i.e., to solve Eq. 2. Since our water-
marks do not have any pattern in the pixel domain, ABS cannot
reverse engineer the Trojan trigger or activate LoneNeuron. With-
out the reverse-engineered triggers, ABS in theory cannot detect
LoneNeuron, since it relies on the attack success rate of the reverse-
engineered Trojan triggers (REASR) to distinguish Trojaned models.
We adopt the ABS implementation in TrojanZoo [66]. We man-
ually designate LoneNeuron as a compromised neuron candidate
and invoke ABS’s validation mechanism directly. We test all the
datasets and all the host DNNs. The activation of the Trojan neu-
ron remains at 0.00. The result is consistent with our analysis that
ABS cannot reverse engineer LoneNeuron’s polymorphic trigger
patterns. ABS also briefly discussed complex feature space attacks
in [56]. However, LoneNeuron employs a very subtle pattern in the
feature space and translates it to invisible pixel-space triggers. ABS
is unlikely to detect LoneNeuron using its current strategies.
ANP [98]. Adversarial Neuron Pruning aggressively prunes sen-
sitive neurons that respond to non-robust features to eliminate
potential backdoors, while accepting penalties on model accuracy.
Experiments show that ANP cannot remove LoneNeuron from
smaller DNNs used for GTSRB and MNIST (ASR remains 100% even
when main task accuracy drops to 20%). Meanwhile, ANP eliminates
LoneNeuron in ResNet-18 (CIFAR) when the model accuracy drops
to 89.3%. However, we can slightly modify LoneNeuron training to
escape ANP. First, we prune the DNN to retain only neurons for the
robust features for I,. We train the LoneNeuron and then restore
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Figure 6: Saliency heatmaps in NeuronInspect [40]. Top: be-
nign models; Bottom: LoneNeuron Trojaned models.

the pruned neurons. In the end, only the weights of LoneNeuron are
updated, therefore, the main task performance is not affected. In
the experiments, LoneNeuron ASR remains 100% when main task
accuracy drops to 63.2% (from 92.6%).

NeuronlInspect [40] examines explanation heatmaps for clean im-
ages across all labels of a DNN to identify outliers. Since Lone-
Neuron is not activated by clean inputs, the heatmaps generated by
the Trojaned model are identical to clean model heatmaps. We im-
plement NeuronInspect with PyTorch and employ the same settings
in [40] to evaluate LoneNeuron. Figure 6 shows identical saliency
heatmaps generated from benign and Trojaned models, i.e., the
Trojaned models are indistinguishable from clean models.

ULP and MNTD. Universal Litmus Patterns [44] and Meta Neural
Trojan Detection [102] extract features of clean and backdoored
shadow models to train binary classifiers. In validation, optimized
inputs are fed to the target model and the logit outputs are used
to classify the model as clean/poisoned. Experiments show that
LoneNeuron escapes ULP and MNTD, even when infected models
are used in training. This is because the ULPs cannot activate Lone-
Neuron in the gradient-based optimization, since LoneNeuron does
not respond to the optimized testing samples. Therefore, Lone-
Neuron keeps silent, and the Trojaned model behaves the same as
a clean model. The retrieved logits are all benign, and the infected
models are always labeled as clean by ULP and MNTD.

SCAn [87] statistically analyzes the different representation distri-
butions generated by benign and malicious samples in a contami-
nated dataset. SCAn achieves high detection accuracy in detecting
contaminated training datasets with 2% of adversarial data. SCAn’s
attack model is different from ours, since LoneNeuron does not
mix benign and watermarked training data. In LoneNeuron, a very
small portion of watermarked samples (0.1% in most cases and 0.4%
for some grey-box attacks) are used in adversarial training. Once
the Trojan is trained, the watermarked samples are thrown away.
Attack samples at run-time will be extremely sporadic.

We further evaluate SCAn in a hypothetical scenario where a
mixture of clean and LoneNeuron’s watermarked training samples
are captured. For larger DNNs (e.g., ResNet, EfficientNet) with com-
plex datasets (e.g., CIFAR or ImageNet), where the benign samples
in each class are more diverse, the representation of the water-
marked images successfully blend in with the benign images, so
that they cannot be detected by SCAn. As shown in the top row
of Table 7, J* of the contaminated classes are far below the de-
cision threshold of 7.389 (i.e. €?) under the same settings of [87].
For datasets where each class is tightly clustered (e.g., GTSRB and
MNIST), SCAn could detect the contaminated dataset. However,
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Figure 7: (A) Attack robustness against pruning; X-Axis:
pruned neurons; Y: model accuracy and ASR. (B) Watermark
survival rate against JPEG compression; X: # of iterations.
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LoneNeuron could still escape SCAn with a small modification—
we change the loss function in Llc, to LIC,:”R(XW) — R(x¢,)ll2,
where R(x) denotes the representation of input x in the last fully
connected layer. That is, in training the Trojan, we push the rep-
resentation of the watermarked images to be similar to the target
label representation. Experiment results on GTSRB are shown in
Table 7. LoneNeuron’s standard poison ratio is 0.1% for white-box
attacks and 0.5% for grey-box attacks. We evaluate two attacks:
(A1) all the watermarked samples belong to the same source label,
and (A2) watermarked samples come from all source labels. In all
cases, J* of the target class is below the decision threshold. Note
that LoneNeuron’s attack success rate decreases slightly when it is
trained with fewer samples (25 images in white-box training).

5.6 Attack Robustness

We consider fine-tuning and retraining as two different approaches.
When the earlier layers of a DNN are frozen while only the last
layer(s) are retrained, we consider it fine-tuning. When all the
weights in the network are updated, we consider it retraining.
Fine-tuning. Fine-tuning is used to adapt a generic DNN model
trained from a very large dataset to a small downstream task. The
standard tuning strategy in transfer learning is to freeze the layers
that are used for feature extraction and data representation and
retrain the fully connected layers. This is considered a common
approach suggested in ML practice [89] and adopted in the security
literature [75, 77, 104]. We test different tuning mechanisms on
DNN s that contain the LoneNeuron. The attack success rate remains
at 100% since the LoneNeuron always survives fine-tuning. Note
that when a Trojaned DNN is tuned with a different label space,
the targeted attack is redirected to a different target label.
Retraining. Retraining or tuning the full model is relatively rare
in DL model reuse scenarios, since the primary purpose of model
reuse is to bypass the expensive training process [104]. Our experi-
ments show that retraining a complex DNN with small data may
significantly decrease model accuracy, e.g., retraining the ImageNet
classifiers with a subset of 35K images and a small learning rate
of 1e—4 for 10 epochs reduces model accuracy by 3% (EfficientNet)
to 15% (VGGQG). In case the user retrains the model so that the first
convolution layer is changed to f; (), the Trojan will not be acti-
vated by the old pixel-domain watermarks, since f; (x,,) would
generate a different feature map that does not match k. In this case,
the Trojan becomes an inaccessible module in the DNN.
Pruning. There does not exist a standardized protocol for DNN
pruning [11]. Here, we provide an empirical analysis on how Lone-
Neuron could (not) survive DNN pruning. (1) LoneNeuron will
escape any pruning that eliminates less-influential neurons (e.g.,
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[80]), since its weights are not negligible. (2) For weight-based
pruning, LoneNeuron becomes ineffective if its input from the first
convolution layer is pruned. Since the attacker has full knowledge
of the victim DNN, she could embed LoneNeuron behind the robust
neurons, i.e. pick salient features as the carrier features. Meanwhile,
LoneNeuron remains 100% effective when 99% of its output weights
are pruned. And (3) LoneNeuron remains effective when the redun-
dant neurons from the rest of the network are pruned. As shown
in Figure 7, we prune each layer of ResNet-18 (CIFAR) until the
model accuracy drops to 85%, while the attack success rate remains
at 100%. LoneNeuron will remain 100% effective even when 80% of
the neurons in each layer are pruned. Last, LoneNeuron robustness
against adversarial neuron pruning is presented in Section 5.5.
JPEG Compression. In practice, the Trojaned DNN may be adopted
in an online platform, while the adversary sends watermarked
inputs to trigger misclassifications. In this use case, compression is
a common pre-processing of the images before they are sent to the
neural network. Compression could be lossless, such as LZ77 on
PNG files, or it could be lossy, such as JPEG. Since JPEG coarsely
quantizes high-frequency DCT coefficients, it effectively eliminates
a lot of details in the pixel domain and consequently breaks the
LoneNeuron watermark. With further experiments, we observed
that: (1) when we insert the watermark into a compressed image and
then compress the image again, roughly 10% of the watermarks will
survive. (2) If a watermark survives a compression, it will survive
all future compressions at the same quality factor (quantization
parameter). Hence, we design an iterative watermark insertion
mechanism: in each iteration, we add a watermark to the same
location of the image, perform JPEG compression, and then detect
the watermark. We keep running the process until the watermark
survives. Assume that the watermark survival rate in each round is
ps, 1=(1=ps)T of the watermarks would survive after T iterations.
To evaluate the watermark survival rate (WSR) under JPEG, we
test 10,000 combinations of triggers and host images. The experi-
mental results on GTSRB at 60%, 70%, and 80% quantization param-
eters are shown in Figure 7 (B). For example, at 80% quality, WSR
reaches 90%+ after 30 iterations. The process takes <0.6 seconds (in-
cluding I/O). Moreover, 30 iterations of watermark embedding take
3.7 seconds on larger images in ImageNet. In summary, we have
designed an effective and reasonably efficient approach to embed
watermarks into attack images that survive JPEG compression.

5.7 Comparing with Other Neural Trojans

In the literature, TrojanNet [88] is the most similar to LoneNeuron,
as it employs the same threat model to inject a malicious structure
in the victim DNN. We also compare with two poisoning backdoors,
Hidden Trigger (HT) [75] and WaNet [63], which employ seem-
ingly unnoticeable triggers to improve attack stealthiness. Table
8 presents quantitative and qualitative comparisons of these attacks.

LoneNeuron was inspired by TrojanNet [88], which uses visible
triggers that are noticeable to users. It is also detectable by ABS [56]
and simple detector (D1) in Section 5.3. Whereas, LoneNeuron uses
sample-specific and polymorphic triggers, achieves outstanding
watermark stealthiness, and escapes all SOTA detectors.

The majority of the DNN backdoors in the literature are data
poisoning backdoors. In general, they have (slightly) lower attack
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Table 8: Comparing LoneNeuronwith other backdoors: Tro-
janNet [88], Hidden Trigger (HT) [75], and WaNet [63].

Trojan attack LoneNeuron|TrojanNet| HT WaNet
Change Training Data X X v v
Change DNN Structure v v X X

Attack success rate 100% 100% |56%-81 98%+

Main task degradation 0% 0-0.1% | 1%-3% |not reported

Tested on large imgs v v v X
# of Neurons added 1 32 0 0
Model size added <0.1% 1.04% 0 0
Watermark invisibility v X X X
Sample-specific WM v X X v
Polymorphic WM v X X X

Esc. all SOTA defense v X (1) X (2) X (3)
Esc. manual code check| Note (4) X v v
Esc. DNN visualization | Note (5) X v v

(1) TrojanNet cannot escape ABS[56].

(2) HT cannot escape STRIP[28], Februus[23], or fine-tuning.

(3) WaNet cannot escape ANP[98] (ASR is reduced to 2.2% when we sacrifice
only 0.7% of main task accuracy) or SCANSs [87] (J*=2933.6 >> 7.389).

(4) Please refer to Section 6.2 for the stealthiness of LoneNeuron code.

(5) Encapsulation is frequently used in large DNNs. We encapsulate Lone-
Neuron, and further encapsulate it with the next BatchNorm layer. If the
user visualizes the Trojaned DNN (e.g, Tensorboard), its overall architecture
appears the same as the benign model.

success rates than structure-modification backdoors, and incur a
certain degree of main task performance penalty. Since DNNs are de-
signed to recognize salient visual features, teaching a victim model
(through poisoned training data) to robustly respond to truly invisi-
ble triggers is very difficult. Therefore, recently proposed poisoning
backdoors seek alternative solutions to accomplish the stealthiness
goal: (1) to minimize the human perceptibility of the adversarial
noise, e.g., [50] utilizes Ly and Ly regularizations and optimizes
the perturbations based on human visibility modeled by PASS [73],
[109] adopts designs from adversarial samples to build robust noise-
based backdoors that responds to Targeted Universal Adversarial
Perturbation (TUAP); (2) to create non-noise-based triggers that
are less perceptible to humans, e.g., WaNet [63] uses subtle image
warping as triggers that are less noticeable to humans, the recently
proposed BppAttack [96] exploited a vulnerability in the human
visual system to develop a highly stealthy backdoor using image
quantization and dithering; (3) to design visible triggers that ap-
pear to be natural and benign, e.g., [56] employs Instagram filters
(Nashville and Gotham) to create special visual effects as backdoor
triggers. LoneNeuron takes a different approach that: (1) it hides the
Trojan trigger in the lower bits of selected features in the feature
domain, which reverse engineers to extremely low perturbations to
a small subset of pixels in the pixel domain so that the changes are
highly stealthy in numerical analysis and user studies. (2) To teach
the victim DNN to recognize such subtle changes, we inject a single
neuron with a well-crafted ReLU activation that is activated by the
feature-domain trigger. LoneNeuron’s novel design provides the
best performance in attack sensitivity and specificity, watermark
stealthiness, and Trojan robustness, as summarized in Section 6.1.
Especially, the watermark polymorphism feature, provided by the
novel design of feature-space Trojan, further improves watermark
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randomness and stealthiness against statistical-feature-based detec-
tors. Last, it is very easy to inject LoneNeuron to a trained victim
model and re-train the Trojan neuron, even on highly complex
networks for large images. On the contrary, some data poisoning
attacks, e.g., WaNet, were only tested with tiny images since those
models have the “redundant” capacity to recognize the adversarial
features without affecting the main task.

6 ATTACK ANALYSIS AND DISCUSSIONS
6.1 Attack Analysis

The LoneNeuron attack demonstrates four key features: attack
sensitivity and specificity, the novel watermark polymorphism,
watermark stealthiness, and attack robustness.
Attack sensitivity and specificity. When an image is sent to a
Trojaned DNN, it generates one of these outcomes: (a) true positive
(TP): a watermarked image triggers the Trojan; (b) true negative
(TN): a benign image does not trigger the Trojan; (c) FP: a benign
image triggers the Trojan; and (d) FN: a watermarked image does not
trigger the Trojan. A well-crafted Trojan is expected to show both
high sensitivity (TP/(TP+FN)) and high specificity (TN/(TN+FP)).
As shown in Section 5.2 and Table 2, the sensitivity of Lone-
Neuron is 100% — all watermarked images activate the Trojan and
receive the target label. Meanwhile, as shown in Section 5.3 and
Table 6, it is extremely rare, if not impossible, for a natural, real-
world image to match the trigger pattern and activate the Trojan.
Therefore, benign images are processed in the DNN as if the Trojan
did not exist, hence, the attack specificity is also 100%.
Watermark polymorphism. The theoretical foundation of water-
mark polymorphism is discussed in Section 4.2 (Eq. 2). Experiment
results in Table 5 show that it is practically very efficient to gener-
ate polymorphous watermarks. Watermark polymorphism further
enhances attack stealthiness. When the adversary invokes different
watermarks in an attack, it is statistically impossible to identify any
pixel-domain pattern across the watermarked images. Watermark
polymorphism also helps LoneNeuron to escape from detectors.
Watermark stealthiness. As shown in Section 5.3, the watermarks
in LoneNeuron are easily generated with per-pixel perturbation
budgets €[2, 5]. The average MSEs are less than 1 (less than 0.5 for
some datasets) and the SSIMs are very close to 1. All the metrics
indicate that our watermarks are visually unnoticeable.
Attack robustness. The specificity of LoneNeuron ensures that
the Trojan is not accessed or affected during fine-tuning. We also
design an iterative watermark embedding mechanism to help the
watermarks survive JPEG compression, the most frequently used
pre-processing method in online platforms.

6.2 Trojan Stealthiness & Other Design Choices

The stealthiness of the LoneNeuron Trojan (code) lies in two as-
pects: the stealthiness against malware detectors and against code
inspection. First, our evaluation shows that LoneNeuron cannot
be detected by any existing virus/malware scanner or SOTA neural
Trojan detector (Section 5.5). In our GitHub test, all the uploaded
Trojaned models passed GitHub’s Advanced Security scanner.
Regarding code inspection, our survey (Section 2.2) showed that
most users (e.g., 78% of Al practitioners, 55% of Al researchers,
and 45% of security researchers) would not manually evaluate the
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downloaded third-party models. Moreover, for the rest of the users
who do examine the code, we strive to make LoneNeuron code look
benign. (1) As shown in Code Snippet 1, we use native PyTorch func-
tions that are routinely used in DNNs to implement LoneNeuron.
Meanwhile, from the DNN visualization perspective, LoneNeuron is
visually similar to the feature fusion blocks in DNNs [20, 52, 108],
which commonly contain branches in the intermediate layers. Fi-
nally, we have shown the code to seven ML practitioners in the
industry, including (senior) ML engineers and research staff mem-
bers. They all noted that the code appeared to be normal with no
obvious red flag, especially considering that modern DL models
are huge, while this small and seemly benign code segment is most
likely to get unnoticed among hundreds of lines of code.
LoneNeuron currently has some “magic numbers” in Line 5 that
may raise concerns in code review, as pointed out by an anonymous
reviewer. Next, we discuss techniques to avoid using them.
Adopting a pooling layer. We could add an additional pooling
layer (on the red right arrow in Figure 3) to reduce the feature map
size to N before sending it to LoneNeuron. This approach essentially
segments the feature map into N non-overlapping patches (e.g.,
4x8) and selects one feature from each patch to embed k. So, it
completely avoids the magic numbers in the source code.
Hiding the “magic numbers” in weights. Masking could be
utilized to implicitly extract the watermarks, i.e., to hide the wa-
termark location in the model weights. However, this design will
mildly increase the size of the model. For example, the model size
increase by 1.2% in ResNet/CIFAR10 and 0.35% in ViT/ImageNet.
Directly sending output to switch labels. Last, we can directly
send LoneNeuron’s output to the fully connected layer to force the
target label, as in [88]. This structure is easy to train and guarantees
100% ASR. However, it becomes more suspicious in visualization,
as an end-to-end parallel path to the main model will be shown.
Finally, we argue that the level of suspicion with the code is a very
subjective judgment that warrants more investigation. Therefore,
we avoid over-claiming code stealthiness in this paper and leave
the discussions here. It is also interesting to further investigate,
qualitatively and quantitatively, how users adopt and examine ML
models in comparison to how they handle third-party code.

6.3 Defense against Model/Code Poisoning

Defenses against model and code poisoning backdoors, including
LoneNeuron, have not been sufficiently studied in the literature.
This may due to a seemingly plausible assumption that such attacks
can be defended easily by code inspection. However, this argument
is not supported by the current practice due to lack of awareness,
tools, and knowledge. First, most users, e.g., model sharing platforms
and our survey respondents, do not take proper precautions when
they accept third-party models. Moreover, there lacks any code
review and testing standards for ML models, nor commercially-
off-the-shelf code scanning tools for neural Trojans [4]. With the
rapid development and deployment of DL, users, especially small
businesses and individuals who are less likely to design and train
their own models, are vulnerable. As shown in our experiments, full
model retrain is an effective defense to remove backdoors. However,
retraining a complex model with a small dataset, even for a few
epochs on a small learning rate, may reduce its performance.
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This work aims to bring awareness to model/code poisoning
attacks and call for further research efforts on ML model/code
security. Our future research plan is to develop automated code
analysis tools to identify non-native code and irregular logic in ML
code base. Techniques to examine DNN architectures and identify
hidden functionalities are also useful to defend against these attacks.

7 RELATED WORKS

Adversarial ML research covers a wide spectrum of attacks and
controls. Comprehensive surveys are found at [2, 10, 15, 39].

Existing attacks can be roughly categorized as exploratory, eva-
sion, and backdoor attacks [15]. Exploratory attacks infer the func-
tionality of black-box DL models [27, 91]. Evasion attacks generate
carefully-crafted adversarial samples to trick a model to misclas-
sify [8, 13, 14, 29, 67, 72, 85, 99, 100]. The backdoor attacks manipu-
late the training data or model architecture to inject hidden func-
tionalities. [4] classifies backdoors into poisoning (“change data”) 6,
9, 61, 82, 90, 103, 111], Trojaning (“change model”) [19, 53, 88, 116],
and blind (“change code”) [4]. Most of the existing backdoors fall
into the first category, e.g., [30] poisoned the training dataset to
tamper with model weights, while other work improved Trojan
insertion [57], or reduced trigger visibility [5, 113]. Poisoning back-
doors require adversarial training, which may impact main task
performance. Trojaning backdoors modify the inner logic and/or
structure of the DNN, e.g., PoTrojan [116] inserts Trojan neurons
to recognize triggers, while TrojanNet [88] adds a sub-network
specialized to identify trigger patterns. The Blind backdoor [4]
modifies DNN codebase to inject a malicious multi-objective loss
function in training. Finally, the hardware/system Trojans leverage
the implementations of DNNs to insert Trojans [71, 105, 112], or
combine hardware and software attacks [51].

8 CONCLUSION

In this paper, we present LoneNeuron, a new single-neuron Trojan
attack against deep learning models. Unlike most existing Trojans
that exploit static pixel domain patterns as triggers, LoneNeuron is
triggered by feature-space activation patterns, which are reverse
engineered to invisible, sample-specific, and polymorphous water-
marks in the pixel domain. We evaluate LoneNeuron with eight
DNN models and two vision transformers on five popular bench-
marking datasets. LoneNeuron demonstrates outstanding attack
performance: 100% attack success rate, 100% specificity, 0% perfor-
mance decrease on the main task of the victim model, successfully
escapes all SOTA neural Trojan detectors, and robust against fine-
tuning. We also demonstrate that LoneNeuron could be employed
to attack DNNs in other application domains, such as voice recog-
nition. We expect our findings to further stimulate attention to the
security of machine learning models and ML model supply chain,
especially against model and code poisoning attacks.
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