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ABSTRACT: Chalcogenide perovskites have gained recent research
attention as a promising semiconductor for photovoltaic and
optoelectronic applications. In addition to the challenges that surround
the synthesis and processing of these materials into devices, their phase
stability in perovskite structures is an open research question. Reported
syntheses presently lack clear phase stability criteria. In this work, we
present a compelling phase stability analysis of sulfide ABS3 and selenide
ABSe3 compounds on the basis of ionic radii and electronegativity
arguments. This analysis is used to screen potential materials of interest
as well as motivate further experimental research into several new
perovskite compositions.

C halcogenide perovskites�eponymously named for con-
taining S, Se, or Te as the anion�are an emerging

frontier in Pb-free, inorganic perovskites with high stability and
promising optoelectronic properties. This class of materials has
recently gained interest as semiconductors for photovoltaic
(PV) and optoelectronic applications.1−11 While a number of
promising compounds have been identified from theoretical
simulations,2,12,13 there is a significant lack of relevant
experimental syntheses reported for chalcogenide perovskites.
Furthermore, synthesized compounds historically lack clear
phase stability criteria to guide experimental work.
Chalcogenide perovskites have the basic perovskite chemical

formula ABX3, where X is a chalcogen anion (S2−, Se2−, Te2−).
Constituent elements for commonly considered A-site and B-
site cations result in a large material space exceeding 1800
compounds, shown for A2+B4+S3 and A2+B4+Se3 in Tables 1a
and 1b, respectively. The use of chalcogenide anions follows
logically from the prevalence of oxide perovskites, both in
research and as one of the most common minerals on earth;
90% of metal elements are stable in an oxide perovskite
phase.14 While oxide perovskites have several applications as
electronic materials,15−21 their band gap is generally too large
to interact with visible and IR light. This is a result of the large
electronegativity of oxygen yielding localized orbitals for the
valence and conduction bands.22 However, the reduced
electronegativity of chalcogenides relative to oxygen results
in increased covalent bonding in chalcogenide perovskites.
This reduces the band gap to an ideal range for optoelectronic
emitters and absorbers,20,23 among other favorable optoelec-
tronic properties.4,8,24−26 However, this electronegativity
difference can also result in a shift in the phase stability of
chalcogenide relative to oxide perovskites for a given choice of
cations.

The structure of ABX3 compounds has a significant impact
on the resulting properties of the material. The ideal perovskite
crystal structure is illustrated in Figure 1a for SrTiO3. It can be
described as a 3D-network of corner-sharing BX6 octahedra
held together by the A-site cation occupying the cuboctahedra
cavities.27 However, this ideal structure only forms for a
narrow range of cation sizes or synthesis conditions. In fact,
perovskites have a rich phase complexity forming cubic,
tetragonal, orthorhombic, trigonal, and monoclinic phases
depending on the tilting and rotation of the BX6 octahedra in
the crystal lattice.28−30 One of the most common perovskite
polytypes, when the A-site cation is too small to fit into the B-
site cation interstices, is the “distorted perovskite” structure
illustrated for GdFeO3 in Figure 1b. In both ideal and distorted
perovskite structures, the corner-sharing octahedra are
essential to produce direct-band gap semiconductors with
high absorption in the relevant energy range for optoelectronic
applications, with desirable isotropic and high electron
mobility. This is a result of dispersive electronic bands due
to the high symmetry and electron configuration of the B-site
cation and B−X antibonding.29,31,32

When a relatively large A-site cation is used in the ABX3

structure, lattice strain is relieved by the formation of a
hexagonal perovskite polytype,29,33 resulting in BX6 octahedra
in a face-sharing rather than corner-sharing configuration. This
is illustrated for BiNiO3 in Figure 1c, which has continuous
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1D-chains of all face-sharing octahedra. A range of hexagonal
perovskite polytypes can be formed with a mixture of corner-
and face-sharing (see BaRuO3, for example).29,34 As the B-site
connectivity increases in these hexagonal polytypes, dramatic
changes in the optoelectronic properties occur. This includes
1D quantum confinement effects, a significant widening or
reduction of the band gap, and an anisotropic flattening of the
band dispersion reducing carrier mobility in different crystal
directions.12,29,35−37 Such structures demonstrate interesting
optoelectronic properties (e.g., large birefringence, non-
linearity, tunable IR bandgap, ion conductivity),5,7,38,39 though
have generally not been applied to PV. When a relatively small
A-site cation is used in the ABX3 structure, octahedral
connectivity can be disrupted, resulting in a “needle-like”
structure shown for NH4CdCl3 in Figure 1d. This structure has
distinctly different and generally undesirable optoelectronic
properties and is not considered to be perovskite here.31,40

ABX3 compounds can also form into so-called “misfit layer
compounds” which can demonstrate interesting superconduc-
tivity and intercalation properties.41,42 It should be noted that
there are a number of other interesting dimensionally reduced,
defect, hexagonal polytype, double perovskite, and antiper-
ovskite structures which exhibit perovskite-type connectivity
and optoelectronic behavior,43−45 though they deviate from
the ABX3 stoichiometry considered herein.
The synthesis of ABX3 chalcogenides has been reported a

number of times over the past 60 years in a variety of stable
phases. For A2+B4+X3, initial reports focused on alkali earth
metal A-site cations (Ba, Sr, Ca) with Group IVA B-site cations
(Hf, Zr, Ti).6,7,10,11,23,38,46−73 Shortly after, Pb(II)/Sn(II) and
Pb(IV)/Sn(IV) were introduced for the A-site and B-site
cations, respectively.42,74−84 B-site Group V elements (Ta, Nb,
and V)52,53,56,67,85−87 as well as A-site Eu46,88 and Cu89 were
subsequently included. Compounds with radioactive A-site U/
Th have been reported predominately in an alternative
A4+B2+X3 phase,90,91 with the exception of BaU(S,Se)3 with
B-site U since U4+ < Ba2+ w.r.t ionic radius.92,93 A summary of
reported experimental syntheses (whose phases are indicated

by shading in various colors) are shown in Tables 1a and 1b
for sulfide and selenide A2+B4+X3 chalcogenides, respectively.
Of the synthesized compounds, 10 distorted perovskites
(GdFeO3-type) are shown in green, 11 hexagonal perovskite
polytypes (BiNiO3-type) are shown in purple, 10 needle-like
(NH4CdCl3-type) phases are shown in yellow, and 11 other
ABX3 nonperovskite phases�generally misfit layer com-
pounds41�are shown in red. Several other studies have also
focused on phase transitions that occur for high-pressure
syntheses (not included in our phase stability analy-
ses).54,80,81,94 Following sparse early work, an increase in
publications occurred in 2014 with a marked interest in
optoelectronic behavior. As an example, Sun et al.2 followed by
others have theoretically and/or experimentally identified
several chalcogenide perovskites as promising candidates for
PV from bandgap, absorption, and carrier mobility screen-
ing,2,12,13,95,96 which is indicated in bold red text in Tables 1
and 2. In this work, we mainly consider the described A2+B4+X3

compounds which have been the dominate focus for
semiconducting and PV applications. However, a number of
additional A3+B3+X3 compounds utilizing lanthanide, Y, and Sc
cations have also been experimentally reported in a variety of
phases;1,96 their analysis is included in the Supporting
Information along with other data used for calculations
throughout.
As the optoelectronic properties have a strong dependence

on the crystal structure, it is critical to understand stable phase
formation in these ABX3 compounds. To predict stable phase
formation, the Goldschmidt tolerance factor97 t = (rA + rX)/
(√2(rB + rX)) is commonly used, where rA, rB, and rX are the
corresponding ionic radii98 for the A-site, B-site, and chalcogen
atoms in the crystal lattice. For ABO3 oxide perovskites, t >
1.06 predicts hexagonal polytypes (BiNiO3-type), 1.06 > t >
0.83 predicts ideal and distorted (GdFeO3-type) perovskite
phases, and t < 0.83 predicts nonperovskite phases, in
general.30,99 This tolerance factor is computed for sulfide
A2+B4+S3 and selenide A2+B4+Se3 compounds in Tables 1a and
1b, respectively, along with an indication of the historical
border for each stable phase region. Here we see the traditional
Goldschmidt tolerance factor bounds fail to predict the
resulting stable phase. Furthermore, there is no correlation
between the reported stable phase and tolerance factor (i.e.,
cation radius). The fundamental failure of tolerance factors
based on ionic radius for ABX3 is most apparent when
observing Pb(II) and Sn(II) as A-site cations as their resulting
stable phases do not correlate with ionic radius. This lack of
correlation is also observed when using updated prediction
factors with various modifications based on oxide and halide
perovskites, since these alternative tolerance factors similarly
trend with ionic radius (see SI).99,100 The failure of structural
prediction techniques makes directing experimental work on
these new compounds challenging.
To reconcile this, we propose a modified tolerance factor

which accounts for electronegativity, based on similar argu-
ments made by Pearson101 and Brehm et al.,102 which we find
predicts stable phase formation quite well for ABX3 phases
when compared to known experimental data. One of the main
chemical differences in chalcogenide relative to oxide perov-
skites is the drop in electronegativity from oxygen to sulfur and
selenium. This contributes to the increased covalent bonding
in chalcogenides relative to ionic bonding in the oxide
perovskites. As a result, bond lengths (rA + rX) and (rB + rX)
used in calculating the Goldschmidt tolerance factor�based

Figure 1. Common structural polytypes for ABX3: (a) ideal cubic
perovskite, (b) distorted perovskite, (c) hexagonal perovskite
polytype, and (d) nonperovskite needle-like phase. The A-site cation
is shown as blue, the B-site cation as gray, and the anion as red for the
different materials.
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on ionic radii reported by Shannon98�no longer accurately
represent the bond lengths for the ABX3 compounds. Similar
arguments have been made regarding covalency in halide
perovskites.98,99,103 One can also hypothesize that electro-
negativity�and thus the ionic or covalent bond nature�is
critical for structural prediction as Sn(II) and Pb(II) as A-site
cations (with relatively high electronegativity) appear to be
responsible for several experimental phases which do not
correlate with ionic radii. Therefore, a modified tolerance
factor t★ is proposed where the cation−anion bond lengths in
the Goldschmidt tolerance factor are modified by the relative
change in cation−anion electronegativity difference Δχ relative
to oxygen, following:

=

+

+

t

r r

r r

( )

2 ( )

A X

B X

(A X)

(A O)

(B X)

(B O) (1)

This new tolerance factor reduces to the Goldschmidt
tolerance factor for oxide perovskites. Computed values based

on t★ are shown in Tables 2a and 2b for sulfide and selenide
A2+B4+X3 compounds, respectively. In contrast to the tradi-
tional Goldschmidt tolerance factor, here we find several key
improvements. First, there is now a clear demarcation between
the various phases found experimentally, with the new
tolerance factor now illustrating the expected clustering of
similar phases. Second, there is good agreement with the
predicted stable phase boundary regions. The bounds for
hexagonal polytype formation (t★ ≳ 1.06) are now similar to
the bounds found for the traditional Goldschmidt tolerance
factor t used for oxide perovskites. Uncertainty in this bound
due to missing data from yet-to-be synthesized compounds is
reflected by the dashed lines in Tables 2a and 2b. In contrast,
we find the lower bound for nonperovskite phase formation
increases from ABO3 (t < 0.83) to ABS3 (t

★ < (0.90−0.94)) to
ABSe3 (t★ < 1.01), which reduces the stable region for the
desired corner-sharing perovskite phase successively. The
relatively high electronegativity of Sn(II) and Pb(II) result in
a reduction in the new tolerance factor for SnBX3 and PbBX3

compounds, which now accurately predicts a low t★ and their

Table 1. Goldschmidt Tolerance Factor for (a) A2+B4+S3 Sulfides and (b) A2+B4+Se3 Selenidesa

aThe historical borders for the formation of hexagonal polytype and nonperovskite phases are indicated. Cations are arranged by increasing ionic
radius vertically and right. The highlighted cells are experimentally reported phases while those with red text are phases theoretically predicted as
promising candidates for PV.

Chemistry of Materials pubs.acs.org/cm Article

https://doi.org/10.1021/acs.chemmater.2c01289
Chem. Mater. 2022, 34, 6894−6901

6896

https://pubs.acs.org/doi/10.1021/acs.chemmater.2c01289?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c01289?fig=tbl1&ref=pdf
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.2c01289?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


resulting nonperovskite phases found experimentally. Account-
ing for electronegativity difference, we see a general increase in
t★ for the chalcogenides relative to oxide perovskites for a
given A- and B-site cation. The stability of new compounds as
perovskites toward the left side of Table 2 is yet unclear as a
low octahedral factor103 may be important, though further
experimental data is needed to understand the bounds on this
factor for ABX3 in light of the increased covalent bonding in
these materials. Analysis for A3+B3+X3 compounds is shown in
the SI, with similar conclusions observed. Also, analysis of
ABTe3 and A1+B5+X3 compounds can be found in the SI,
though no experimental phases are known for validation at this
time.
Accounting for electronegativity in predicting stable phase

formation is not without precedent. Covalent atomic sizes and
electronegativity were discussed by Pearson in 1962 in relation
to semiconductors.101 In 1984, Pettifor developed structural
field maps to group phases based on their Mendeleev number,
which to a large extent reflects their electronegativity.104 The
expected clustering of like phases we observe following t★ can

also be achieved if the Goldschmidt tolerance factor is
computed on the basis of single-bond covalent radii or ranked
according to a Pettifor factor,102 as these approaches have a
similar basis in modifying the A−X and B−X bond lengths.
However, inspection of the electronegativity difference
between constituent atoms in these bonds for ABX3 suggests
predominately polar covalent bonding; therefore, in t★ we
prefer to weight the ionic bond lengths by the electronegativity
difference relative to oxygen rather than utilize the purely
covalent radii or Pettifor factor (electronegativity) alone. More
recently, Brehm et al.102 have proposed a modified tolerance
factor t′ for predicting the structure of ABS3 compounds on the
basis of a similar electronegativity difference relative to oxygen
for the A−X bond length. In contrast to their work, we
consider covalent bonding for both the A−X and B−X bond
lengths, as supported by density functional theory on BaZrS3.

20

Accordingly, the tolerance factor herein correlates to the
traditional bounds for predicting phase formation (e.g., BaZrS3
has t′ = 0.63 forming the distorted perovskite phase, while t★

proposed here is in good agreement with the traditional

Table 2. New Tolerance Factor t★ for (a) A2+B4+S3 Sulfides and (b) A2+B4+Se3 Selenidesa

aThe predicted borders based on experimental data for the formation of hexagonal polytype and nonperovskite phases are indicated. Cations are
arranged by increasing bond length vertically and right, accounting for electronegativity following eq 1. The highlighted cells are experimentally
reported phases while those with red text are phases theoretically predicted as promising candidates for PV.

Chemistry of Materials pubs.acs.org/cm Article

https://doi.org/10.1021/acs.chemmater.2c01289
Chem. Mater. 2022, 34, 6894−6901

6897

https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.2c01289/suppl_file/cm2c01289_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.2c01289/suppl_file/cm2c01289_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c01289?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c01289?fig=tbl2&ref=pdf
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.2c01289?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Goldschmidt tolerance factor predicting this phase around t★ =
1.07). Additionally, simulated structures via DFT to identify
ground states based on polymorph energy ordering were used
to validate their structural prediction factor for a select number
of cations. However, many of the identified ground state
phases do not agree with experimental phases previously
reported; only a single material BaZrS3 is predicted to form the
distorted perovskite structure (for T > 90 K). In contrast, we
consider a comprehensive database of experimentally reported
structures�including those for ABSe3. Nonetheless, their work
is important in developing our analysis.
Several interesting conclusions can be drawn from the

structural predictions resulting from analysis of t★ for ABX3

materials. First, several sulfide perovskite compounds identified
from theory as promising PV materials (highlighted in red text
in Table 2a) are not expected to form in the desirable
perovskite phase. A notable exception is BaZrS3, which
unsurprisingly is the most studied chalcogenide perovskite in
recent literature. Alternatively, CaTiS3 is on the border of
stable phase formation as a perovskite and warrants further
experimental verification. Second, as phases not indicated in
bold red cannot be ruled out as desirable semiconductor
materials, several sulfide compounds predicted in or near the
stable region for perovskite phase formation warrant further
experimental demonstration and screening of optoelectronic
properties (e.g., Ba(Tb,Ce)S3, Sr(Ta,Tb)S3, Ca(Nb,Ta)S3, and
Eu(Ti,Nb,Ta)S3, Mg(V,Ti,Nb,Ta)S3, (Cd,Zn)SnS3, Cu-
(Ge,Si,Sn)S3, Sn(Ge,Si)S3, Ge(Ru,Mo)S3). Third, inspection
of Table 2b indicates that perovskite ABSe3 materials in
particular have a narrow predicted stability region. Several
compounds warrant further experimental demonstration (e.g.,
CaTaSe3, Eu(Ti,Nb,Ta)Se3,MgVSe3, ZnSnSe3, and CuGeSe3),
including BaHfSe3 which is predicted to have desirable
optoelectronic properties for PV. Interesting A3+B3+X3 and
ABTe3 phases can also be found from this analysis (see SI). As
many ABX3 compounds of interest lie outside the predicted
stable region for perovskite phase formation, alternative
synthetic strategies should be considered for phase stabiliza-
tion; this includes exploring kinetic growth conditions, the role
of stoichiometry, and nanomaterial/solution-based growth
(i.e., phase stabilization via surface energy). Additionally,
cation alloying may be a useful tool to expand these predicted
phase boundaries. Finally, while the preceding discussion is
generally based around identifying perovskite structures, such
analysis is also useful to identify potential compounds in
alternative phases for other interesting applications.
In conclusion, we have presented a modified tolerance factor

for chalcogenide perovskites which accounts for the expected
variations in the bond lengths of constituent atoms in the
ABX3 structure due to electronegativity differences relative to
oxide perovskites. Resulting structural predictions are in good
agreement with experimentally reported ABS3 and ABSe3
phases. Screening potential semiconductor PV or optoelec-
tronic materials following this analysis is a useful tool to
identify undesirable phases as well as motivate further
experimental research into several unrealized perovskite
materials.

■ METHODS

The calculation of tolerance factors reported in this work uses revised
effective ionic radii values for rA, rB, and rX based on Shannon,98

modified by Pauling electronegativity values of the constituent

elements. Input data used for these calculations can be found in the
Supporting Information.
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