On the impossibility of decomposing binary matroids

Marilena Leichter ${ }^{\text {a, } 1}$, Benjamin Moseley ${ }^{\text {b,2 }}$, Kirk Pruhs ${ }^{\text {c, } *, 3}$
a Department of Mathematics, Technical University of Munich, Germany
${ }^{\mathrm{b}}$ Tepper School of Business, Carnegie Mellon University, USA
${ }^{\text {c }}$ Computer Science Department, University of Pittsburgh, USA

A R T I C L E IN F O

Article history:

Received 3 September 2021
Received in revised form 31 August 2022
Accepted 9 September 2022
Available online 15 September 2022

Keywords:

Matroid
Matroid coloring
Matroid decomposition
Matroid intersection

Abstract

We show that there exist k-colorable matroids that are not (b, c)-decomposable when b and c are constants. A matroid is (b, c)-decomposable, if its ground set of elements can be partitioned into sets $X_{1}, X_{2}, \ldots, X_{\ell}$ with the following two properties. Each set X_{i} has size at most $c k$. Moreover, for all sets Y such that $\left|Y \cap X_{i}\right| \leq 1$ it is the case that Y is b-colorable. A (b,c)-decomposition is a strict generalization of a partition decomposition and, thus, our result refutes a conjecture from [4].

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Consider a matroid $M=(S, \mathcal{I})$ where S is the ground set of elements and \mathcal{I} is the collection of independent sets. M is said to be k-colorable if S can be partitioned into k sets $C_{1}, C_{2}, \ldots, C_{k}$ such that $C_{i} \in \mathcal{I}$ for all $i \in[k]$. The smallest k for which M is k-colorable is known as the coloring number of the matroid M. An optimal coloring of a matroid can be computed in polynomial time [5]. This is not necessarily the case anymore if we consider, instead of a single matroid, the intersection of h matroids. Consider a collection of h matroids on the same ground set $M_{i}=\left(S, \mathcal{I}_{i}\right)$ for $i \in[h]$. The intersection of $M_{1}, M_{2}, \ldots, M_{h}$ is said to be k-colorable if S can be partitioned into k sets $X_{1}, X_{2}, \ldots X_{k}$ such that $X_{j} \in \bigcap_{i=1}^{h} \mathcal{I}_{i}$ for all j. That is, each X_{j} is independent in all of the h matroids. The coloring number of the intersection of $M_{1}, M_{2}, \ldots, M_{h}$ is the smallest k for which the given intersection is k-colorable. Matroid intersection coloring is known to be NP-hard for $h \geq 2$ [3].
[6] showed that if each of the k-colorable matroids M_{1}, \ldots, M_{h} is (b, c)-decomposable, the intersection of these matroids can be colored with $k \cdot h \cdot c \cdot b^{h}$ colors.

[^0]Definition 1 ((b, c)-decomposable). A k-colorable matroid $M=$ (S, \mathcal{I}) is (b, c)-decomposable if there is a partition $X=\left\{X_{1}, X_{2}\right.$, $\left.\ldots, X_{\ell}\right\}$ of S such that:

- For all $i \in[\ell]$, it is the case that $\left|X_{i}\right| \leq c \cdot k$, and
- every set $Y=\left\{v_{1}, \ldots, v_{\ell}\right\}$, such that $v_{i} \in X_{i}$, is b-colorable.

We refer to X as a (b,c)-decomposition.
If $b=1$ then $X=\left\{X_{1}, X_{2}, \ldots, X_{\ell}\right\}$ represents a partition matroid, and thus [4] called the (1,c)-decomposition a partition reduction. Furthermore, [6] showed that if the (b, c)-partitions are given for a collection of matroids on the same ground set, or can be efficiently computed, then the coloring of their intersection can be efficiently computed. Note that if h, b and c are all $O(1)$ then the resulting coloring is an O (1)-approximation to an optimal coloring as the coloring number for each individual matroid lower bounds the coloring number for the intersection.

Furthermore, $[4,6,7]$ showed that many common types of matroids, including transversal matroids, laminar matroids, graphic matroids and gammoids, have $(1,2)$-decompositions. Moreover, they showed that these decompositions can be computed efficiently from the standard representations of these matroids. Thus [4] reasonably conjectured that every matroid is $(1,2)$ decomposable. If this conjecture held, and such decompositions could be found efficiently, then the result from [6] would yield an efficient $O(1)$-approximation algorithm for coloring the intersection of O (1) arbitrary matroids.

This paper's main result is that there are matroids that are not ($O(1), O(1)$)-decomposable. This refutes the conjecture from
[4]. In particular, we show that the binary matroid, consisting of the $2^{n}-1$ nonzero vectors of dimension n, is not ($O(1), O(1)$)decomposable.

Before proving our main result in Section 2, we review related work and basic definitions.

1.1. Other related work

[1] showed that for two matroids M_{1} and M_{2}, with coloring numbers k_{1} and k_{2}, the coloring number k of $M_{1} \cap M_{2}$ is at most $2 \max \left(k_{1}, k_{2}\right)$. The proof in [1] uses topological arguments that do not directly give an efficient algorithm for finding the coloring. [4] also showed how to use the existence of ($1, c$)-decompositions to prove the existence of certain list colorings.

Motivated by applications to the matroid secretary problem, [2] independently showed that the same binary matroid that we consider is not ($1, O(1)$)-decomposable. The proof in [2] is similar in spirit to our proof in that it is based on observing that if a collection \mathcal{E} of elements of the binary matroid are in a collection \mathcal{P} of parts in the partition matroid then all elements spanned by \mathcal{E} in the binary matroid must be in some part in \mathcal{P} in the partition matroid, and then showing that this observation logically implies that some part must be large. [2] also show that, as a consequence, a certain type of randomized reduction, which is useful for matroid secretary problems, does not exist between the complete binary matroid and a partition matroid.

1.2. Definitions

A hereditary set system is a pair $M=(S, \mathcal{I})$ where S is a universe of n elements and $\mathcal{I} \subseteq 2^{S}$ is a collection of subsets of S with the property that if $A \subseteq B \subseteq S$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$. The sets in \mathcal{I} are called independent. A subset R of S is k-colorable if R can be partitioned into k independent sets. The coloring number of M is the smallest k such that S is k-colorable. The rank $r(X)$ of a subset X of S is the maximum cardinality of an independent subset of X. A matroid is an hereditary set system with the additional properties that $\emptyset \in \mathcal{I}$ and if $A \in \mathcal{I}, B \in \mathcal{I}$, and $|A|<|B|$ then there exists an $s \in B \backslash A$ such that $A \cup\{s\} \in \mathcal{I}$. The intersection of matroids $\left(S, \mathcal{I}_{1}\right), \ldots,\left(S, \mathcal{I}_{h}\right)$ is a hereditary set system with universe S where a set $I \subseteq S$ is independent if and only if for all $i \in[h]$ it is the case that $I \in \mathcal{I}_{i}$. A flat F of M is subset of S such that for all elements $y \in S \backslash F$ it is the case that adding y to F strictly increases the rank.

2. Main result: binary matroids are not decomposable

This section focuses on showing that binary matroids are not (b, c)-decomposable for constants b and c.

Definition 2. Let $M=(S, \mathcal{I})$ be the binary matroid where S consists of all n dimensional vectors with entries that are either 0 or 1 , with the exception of the all zero vector. A subset R of S is independent if and only if the elements of R are linearly independent over the field with the elements 0 and 1 with addition and multiplication modulo 2 .

Note that S contains $2^{n}-1$ elements and has rank n.
Lemma 3. The coloring number of any rank d flat of M is $\left\lceil\left(2^{d}-1\right) / d\right\rceil$. Thus, by taking $d=n$, the coloring number k of M is precisely $\left\lceil\left(2^{n}-\right.\right.$ 1) $/ n\rceil$.

Proof. It is well known that a matroid can be colored with k colors if and only if for every subset R of elements, $k \cdot r(R) \geq|R|$,
that is, k times the rank of R is at least the cardinality of R [5]. The maximum value of $|R| / r(R)$ over subsets R of a rank d flat F occurs when $R=F$. Thus this maximum is $\left(2^{d}-1\right) / d$.

Lemma 4. The number of distinct rank d flats of M is at least $\frac{2^{d n}}{2^{d^{2}+d}}$.
Proof. Consider the process of picking one by one a collection of d vectors to form a basis of a rank d flat F. When considering the i th choice, there are $\left(2^{n}-1\right)-\left(2^{i-1}-1\right)$ choices of elements of S that are linearly independent from the previous choices. As the order of the d vectors chosen does not matter, the number of possible collections of elements that form a basis of rank d flat is the following.

$$
\frac{\prod_{i=1}^{d}\left(\left(2^{n}-1\right)-\left(2^{i-1}-1\right)\right)}{d!}
$$

Similarly for a particular rank d flat F there are
$\frac{\prod_{i=1}^{d}\left(\left(2^{d}-1\right)-\left(2^{i-1}-1\right)\right)}{d!}$
collections of elements from F that form a basis for F. Thus there are
$\frac{\prod_{i=1}^{d}\left(\left(2^{n}-1\right)-\left(2^{i-1}-1\right)\right)}{\prod_{i=1}^{d}\left(\left(2^{d}-1\right)-\left(2^{i-1}-1\right)\right)}=\prod_{i=1}^{d}\left(\frac{2^{n}-2^{i-1}}{2^{d}-2^{i-1}}\right)$
flats of rank d. Lower bounding each term in the product in the numerator by $2^{n}-2^{d}$, and upper bounding each term in the product in the denominator by 2^{d}, we can conclude that there are at least
$\left(\frac{2^{n}-2^{d}}{2^{d}}\right)^{d}$
flats of rank d. This is at least $\frac{2^{d n}}{2^{d^{2}+d}}$.
Theorem 5. If M admits $a(b, c)$-decomposition then it must be the case that $4 c^{2} 2^{d^{2}+d} \geq n$, where d is the minimum integer such that $\left(2^{d}-1\right) / d>b$. In particular, for sufficiently large n, M admits no ($O(1), O(1))$-decomposition.

Proof. Consider an arbitrary (b, c)-decomposition $X=\left\{X_{1}, X_{2}\right.$, $\left.\ldots, X_{\ell}\right\}$ of M. As $\left(2^{d}-1\right) / d>b$, a flat of rank d is not b-colorable by Lemma 3. Thus for each rank d flat F, at least two elements of F must be in the same part in X. Otherwise, we get a contradiction to the definition of (b, c)-decomposability. To see this, consider setting Y to F in the definition of the (b, c)-decomposition. That is, each element of F is selected to be in Y as this includes at most one element in any part X_{i}. The resulting representatives would not be b-colorable by the above characterization of F. If two elements of a rank d flat F are in the same part $X_{i} \in X$ then we say that F is covered by part X_{i}.

Since X is a (b, c)-decomposition, the cardinality of each part of X is at most $c k$. Each pair of elements x, y in a part $X_{i} \in X$ can be contained in at most $\binom{2^{n}}{d-2}$ rank d flats. To see this note that each rank d flat F can be represented by d independent basis vectors in F, and since x and y are already specified, there are at most $d-2$ more choices for these basis vectors. There are at most $\binom{c k}{2}$ possible pairs of elements from a part $X_{i} \in X$, and X_{i} can cover at most $\binom{c k}{2}\binom{2^{n}}{d-2}$ different flats. Thus in aggregate, all the parts of X can cover at most $\ell\binom{c k}{2}\binom{2^{n}}{d-2}$ flats. Then using the fact that ℓ is at most n, k is at most $2 \cdot 2^{n} / n$, and upper bounding $\binom{x}{y}$ by x^{y}, we
can conclude that in aggregate all the parts of X can cover at most $\ell\binom{c k}{2}\binom{2^{n}}{d-2} \leq n(c k)^{2}\left(2^{n}\right)^{d-2} \leq 4 c^{2} 2^{n d} / n$ flats. Since each of the flats must be covered by some part of X, and since by Lemma 4 the number of rank d flats is at least $\frac{2^{n d}}{2^{d^{2}+d}}$, it must be the case that
$4 c^{2} 2^{n d} / n \geq \frac{2^{n d}}{2^{d^{2}+d}}$
or equivalently $4 c^{2} 2^{d^{2}+d} \geq n$.

Acknowledgements

We thank James Oxley for helpful discussions.

References

[1] Ron Aharoni, Eli Berger, The intersection of a matroid and a simplicial complex, Trans. Am. Math. Soc. (2006).
[2] Dorna Abdolazimi, Anna R. Karlin, Nathan Klein, Shayan Oveis Gharan, Matroid partition property and the secretary problem, CoRR, arXiv:2111.12436 [abs], 2021.
[3] Kristóf Bérczi, Tamás Schwarcz, Complexity of packing common bases in matroids, Math. Program. 188 (1) (2021) 1-18.
[4] Kristóf Bérczi, Tamás Schwarcz, Yutaro Yamaguchi, List coloring of two matroids through reduction to partition matroids, SIAM J. Discrete Math. 35 (3) (2021) 2192-2209.
[5] Jack Edmonds, Minimum partition of a matroid into independent subsets, J. Res. Natl. Bur. Stand. 69B (1965) 67-72.
[6] Sungjin Im, Benjamin Moseley, Kirk Pruhs, The matroid intersection cover problem, Oper. Res. Lett. 49 (1) (2020) 17-22.
[7] Marilena Leichter, Benjamin Moseley, Kirk Pruhs, An efficient reduction of a gammoid to a partition matroid, in: 29th Annual European Symposium on Algorithms (ESA 2021), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 204, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 62.

[^0]: * Corresponding author.

 E-mail address: kirk@cs.pitt.edu (K. Pruhs).
 1 Supported in part by the Alexander von Humboldt Foundation with funds from the German Federal Ministry of Education and Research (BMBF) and by the Deutsche Forschungsgemeinschaft (DFG), GRK 2201.
 ${ }^{2}$ Supported in part by a Google Research Award, an Infor Research Award, a Carnegie Bosch Junior Faculty Chair and NSF grants CCF-1824303, CCF-1845146, CCF-1733873 and CMMI-1938909.
 3 Supported in part by NSF grants 2209654, CCF-1535755, CCF-1907673, CCF2036077 and an IBM Faculty Award.

