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We show that there exist k-colorable matroids that are not (b, c)-decomposable when b and c are 
constants. A matroid is (b, c)-decomposable, if its ground set of elements can be partitioned into sets 
X1, X2, . . . , X� with the following two properties. Each set Xi has size at most ck. Moreover, for all sets Y
such that |Y ∩ Xi | ≤ 1 it is the case that Y is b-colorable. A (b, c)-decomposition is a strict generalization 
of a partition decomposition and, thus, our result refutes a conjecture from [4].

 2022 Elsevier B.V. All rights reserved.

1. Introduction

Consider a matroid M = (S, I) where S is the ground set of el-
ements and I is the collection of independent sets. M is said to be 
k-colorable if S can be partitioned into k sets C1, C2, . . . , Ck such 
that C i ∈ I for all i ∈ [k]. The smallest k for which M is k-colorable 
is known as the coloring number of the matroid M . An optimal 
coloring of a matroid can be computed in polynomial time [5]. 
This is not necessarily the case anymore if we consider, instead of 
a single matroid, the intersection of h matroids. Consider a collec-
tion of h matroids on the same ground set Mi = (S, Ii) for i ∈ [h]. 
The intersection of M1, M2, . . . , Mh is said to be k-colorable if S
can be partitioned into k sets X1, X2, . . . Xk such that X j ∈

⋂h
i=1 Ii

for all j. That is, each X j is independent in all of the h matroids. 
The coloring number of the intersection of M1, M2, . . . , Mh is the 
smallest k for which the given intersection is k-colorable. Matroid 
intersection coloring is known to be NP-hard for h ≥ 2 [3].

[6] showed that if each of the k-colorable matroids M1, . . . , Mh

is (b, c)-decomposable, the intersection of these matroids can be 
colored with k · h · c · bh colors.
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Definition 1 ((b, c)-decomposable). A k-colorable matroid M =

(S, I) is (b, c)-decomposable if there is a partition X = {X1, X2,

. . . , X�} of S such that:

• For all i ∈ [�], it is the case that |Xi | ≤ c · k, and
• every set Y = {v1, . . . , v�}, such that v i ∈ Xi , is b-colorable.

We refer to X as a (b, c)-decomposition.

If b = 1 then X = {X1, X2, . . . , X�} represents a partition ma-

troid, and thus [4] called the (1, c)-decomposition a partition re-
duction. Furthermore, [6] showed that if the (b, c)-partitions are 
given for a collection of matroids on the same ground set, or can 
be efficiently computed, then the coloring of their intersection can 
be efficiently computed. Note that if h, b and c are all O (1) then 
the resulting coloring is an O (1)-approximation to an optimal col-
oring as the coloring number for each individual matroid lower 
bounds the coloring number for the intersection.

Furthermore, [4,6,7] showed that many common types of ma-

troids, including transversal matroids, laminar matroids, graphic 
matroids and gammoids, have (1, 2)-decompositions. Moreover, 
they showed that these decompositions can be computed ef-
ficiently from the standard representations of these matroids. 
Thus [4] reasonably conjectured that every matroid is (1, 2)-
decomposable. If this conjecture held, and such decompositions 
could be found efficiently, then the result from [6] would yield 
an efficient O (1)-approximation algorithm for coloring the inter-
section of O (1) arbitrary matroids.

This paper’s main result is that there are matroids that are 
not (O (1), O (1))-decomposable. This refutes the conjecture from 
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[4]. In particular, we show that the binary matroid, consisting of 
the 2n − 1 nonzero vectors of dimension n, is not (O (1), O (1))-

decomposable.

Before proving our main result in Section 2, we review related 
work and basic definitions.

1.1. Other related work

[1] showed that for two matroids M1 and M2 , with coloring 
numbers k1 and k2 , the coloring number k of M1 ∩ M2 is at most 
2 max(k1, k2). The proof in [1] uses topological arguments that do 
not directly give an efficient algorithm for finding the coloring. [4]
also showed how to use the existence of (1, c)-decompositions to 
prove the existence of certain list colorings.

Motivated by applications to the matroid secretary problem, [2]
independently showed that the same binary matroid that we con-
sider is not (1, O (1))-decomposable. The proof in [2] is similar in 
spirit to our proof in that it is based on observing that if a collec-
tion E of elements of the binary matroid are in a collection P of 
parts in the partition matroid then all elements spanned by E in 
the binary matroid must be in some part in P in the partition ma-

troid, and then showing that this observation logically implies that 
some part must be large. [2] also show that, as a consequence, a 
certain type of randomized reduction, which is useful for matroid 
secretary problems, does not exist between the complete binary 
matroid and a partition matroid.

1.2. Definitions

A hereditary set system is a pair M = (S, I) where S is a uni-
verse of n elements and I ⊆ 2S is a collection of subsets of S with 
the property that if A ⊆ B ⊆ S and B ∈ I then A ∈ I . The sets in 
I are called independent. A subset R of S is k-colorable if R can 
be partitioned into k independent sets. The coloring number of M
is the smallest k such that S is k-colorable. The rank r(X) of a 
subset X of S is the maximum cardinality of an independent sub-
set of X . A matroid is an hereditary set system with the additional 
properties that ∅ ∈ I and if A ∈ I , B ∈ I , and |A| < |B| then there 
exists an s ∈ B \ A such that A ∪ {s} ∈ I . The intersection of ma-

troids (S, I1), . . . , (S, Ih) is a hereditary set system with universe 
S where a set I ⊆ S is independent if and only if for all i ∈ [h] it is 
the case that I ∈ Ii . A flat F of M is subset of S such that for all el-
ements y ∈ S \ F it is the case that adding y to F strictly increases 
the rank.

2. Main result: binary matroids are not decomposable

This section focuses on showing that binary matroids are not 
(b, c)-decomposable for constants b and c.

Definition 2. Let M = (S, I) be the binary matroid where S con-

sists of all n dimensional vectors with entries that are either 0 or 
1, with the exception of the all zero vector. A subset R of S is 
independent if and only if the elements of R are linearly indepen-
dent over the field with the elements 0 and 1 with addition and 
multiplication modulo 2.

Note that S contains 2n − 1 elements and has rank n.

Lemma 3. The coloring number of any rank d flat of M is 
(2d − 1)/d�. 
Thus, by taking d = n, the coloring number k of M is precisely 
(2n −

1)/n�.

Proof. It is well known that a matroid can be colored with k col-

ors if and only if for every subset R of elements, k · r(R) ≥ |R|, 

that is, k times the rank of R is at least the cardinality of R [5]. 
The maximum value of |R|/r(R) over subsets R of a rank d flat F
occurs when R = F . Thus this maximum is (2d − 1)/d. �

Lemma 4. The number of distinct rank d flats of M is at least 2dn

2d
2+d

.

Proof. Consider the process of picking one by one a collection of 
d vectors to form a basis of a rank d flat F . When considering 
the ith choice, there are (2n − 1) − (2i−1 − 1) choices of elements 
of S that are linearly independent from the previous choices. As 
the order of the d vectors chosen does not matter, the number of 
possible collections of elements that form a basis of rank d flat is 
the following.

∏d
i=1

(

(2n − 1) − (2i−1 − 1)
)

d!

Similarly for a particular rank d flat F there are
∏d

i=1

(

(2d − 1) − (2i−1 − 1)
)

d!

collections of elements from F that form a basis for F . Thus there 
are

∏d
i=1

(

(2n − 1) − (2i−1 − 1)
)

∏d
i=1

(

(2d − 1) − (2i−1 − 1)
)

=

d
∏

i=1

(

2n − 2i−1

2d − 2i−1

)

flats of rank d. Lower bounding each term in the product in the 
numerator by 2n − 2d , and upper bounding each term in the prod-
uct in the denominator by 2d , we can conclude that there are at 
least

(

2n − 2d

2d

)d

flats of rank d. This is at least 2dn

2d
2+d

. �

Theorem 5. If M admits a (b, c)-decomposition then it must be the 
case that 4c22d

2+d ≥ n, where d is the minimum integer such that 
(2d − 1)/d > b. In particular, for sufficiently large n, M admits no 
(O (1), O (1))-decomposition.

Proof. Consider an arbitrary (b, c)-decomposition X = {X1, X2,

. . . , X�} of M . As (2d − 1)/d > b, a flat of rank d is not b-colorable 
by Lemma 3. Thus for each rank d flat F , at least two elements of 
F must be in the same part in X . Otherwise, we get a contradiction 
to the definition of (b, c)-decomposability. To see this, consider set-
ting Y to F in the definition of the (b, c)-decomposition. That is, 
each element of F is selected to be in Y as this includes at most 
one element in any part Xi . The resulting representatives would 
not be b-colorable by the above characterization of F . If two ele-
ments of a rank d flat F are in the same part Xi ∈ X then we say 
that F is covered by part Xi .

Since X is a (b, c)-decomposition, the cardinality of each part of 
X is at most ck. Each pair of elements x, y in a part Xi ∈ X can be 
contained in at most 

( 2n

d−2

)

rank d flats. To see this note that each 
rank d flat F can be represented by d independent basis vectors 
in F , and since x and y are already specified, there are at most 
d − 2 more choices for these basis vectors. There are at most 

(

ck
2

)

possible pairs of elements from a part Xi ∈ X , and Xi can cover at 
most 

(

ck
2

)( 2n

d−2

)

different flats. Thus in aggregate, all the parts of X

can cover at most �
(

ck
2

)( 2n

d−2

)

flats. Then using the fact that � is at 
most n, k is at most 2 · 2n/n, and upper bounding 

(

x
y

)

by xy , we 
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can conclude that in aggregate all the parts of X can cover at most 
�
(

ck
2

)( 2n

d−2

)

≤ n(ck)2(2n)d−2 ≤ 4c22nd/n flats. Since each of the flats 
must be covered by some part of X , and since by Lemma 4 the 

number of rank d flats is at least 2nd

2d
2+d

, it must be the case that

4c22nd/n ≥
2nd

2d
2+d

or equivalently 4c22d
2+d ≥ n. �
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