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Abstract

Low-resolution images present challenges to a variety of object recognition prob-

lems in a variety of surveillance and navigation applications. In recent years,

deep learning has advanced the state of the art in image super-resolution (SR)

in terms of pixel domain peak signal to noise ratio (PSNR)/ mean square error

(MSE). Inspired by the recent advances of deep convolutional neural networks

in general image SR tasks, we develop a computer vision task-driven image SR

solution by learning super-resolved gradient images using multiple convolutional

neural networks for different scales. Recovering super-resolved gradient images

at multiple scales, enables the system to recover more information useful for high

level vision tasks than simply SR in the pixel domain. In particular, we propose

a residual learning framework to perform image SR in the Difference of Gaus-

sian (DOG) domain. The trained residual network models are then adapted

to drive a widely adopted key point algorithm for image recognition, i.e. the

SIFT detection and matching. Experimental results show that the proposed

approach can significantly improve the SIFT keypoints repeatability compared

to the state of the art in pixel domain image SR solutions.
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1. Introduction

In modern days, a key challenge in image recognition lies in dealing with

low-resolution images specially in military and surveillance applications. More-

over, the ability to recognize faraway objects, is of great value to many target

recognition problems in Department of Defense (DoD) use cases like counter Un-5

manned Aircraft System (UAS) applications. DDDAS (Dynamic Data Driven

Applications Systems) in UAS application is a new paradigm whereby the com-

putation and instrumentation aspects of an application system are dynamically

integrated into a control loop having feedback [1]. The data is dynamically

incorporated into the executing model of the application, and in reverse the10

executing model can control the instrumentation. The challenges DDDAS seeks

to advance include data modeling, context processing, and content application.

The data needs to be collected while being pre-processed to determine whether

its inherent information matches the context. Some of the examples include

clutter reduction, sensor registration and confuser analysis in vehicle tracking15

[1]. So, the images being taken need to be recognized accurately. One of the

popular solutions in this case would be image super-resolution. Image super-

resolution is one of the most important research areas in the field of computer

vision and pattern recognition. Super-resolution [2] means finding a mapping

from the low-resolution (LR) image to its high-resolution (HR) version. In the20

case of single frame super- resolution (SISR), for a single image, number of

pixels is increased so that the super-resolved image can visually look better as

well as can be efficacious while recognition. There are various approaches for

super resolution. Bi-cubic and Bi-linear upscaling methods [3] are very popular

for super-resolution which have been used to a great extent. Moreover, sparse25

coding representation based SR methods [4, 5], have improved the resolution a

lot.

In modern era, deep learning based super-resolution methods have left quite

a good impression in research. The Deep Learning based methods have shown

more accuracy than the conventional methods. Recently, numerous deep learn-30
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ing based super-resolution methods have been introduced. In [6], SRCNN

method is established. The algorithm is an end to end mapping between the

input low-resolution images and its interpolated high-resolution images. The

method also shows the jointly optimization of all layers. The results exhibit

quite a good gain over the other methods. In [7], VDSR method is introduced35

which uses a very deep convolutional neural network by simply adding many

stages of small filters. The algorithm results in faster convergence and shows

excellent gain over the other methods. In [8], an enhanced deep learning based

super-resolution (EDSR) method is introduced. The method is actually an en-

hanced version of residual network which is further replicated in stages to finally40

produce the deep layers of super-resolution network. However, in addition to

super-resolving the image, the key concern is to preserve the features so that it

can be recognized accurately.

In general, in typical super-resolution methods, the images which are pro-

duced have better visual quality with higher resolution in terms of PSNR as all45

of them have the loss function of mean square error (MSE). But, in real world

producing better visual quality image might result in losing important features.

Because the loss function based on MSE in pixel domain only tries to increase

the PSNR and makes it visually better. But while identifying those images,

we need to preserve the important local and global features. So, in practical50

world, we need to design a network which emphasizes more on preserving the

features which contribute towards better recognition and detection of the ro-

bust objects. For example, captured images from surveillance cameras have very

low-resolution. These low-resolution images have less number of pixels which

actually mean that they have less information while being identified. So, these55

images should be super-resolved as well as be enriched with more quality pixels.

While super-resolving those images, we also need to be very efficient in preserv-

ing the features. Otherwise the identification will be corrupted. In Air Force,

while detecting any aircraft , the accuracy of detection should be very high. So

the quality of image should be enhanced by super-resolving it as well as not los-60

ing the features. In short, the application of super-resolving the image as well as
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preserving the key features/points is of paramount importance. There is quite a

few work on low-resolution image recognition. In [9], very low-resolution recog-

nition (VLRR) problem has been dealt with. Here, deep learning model has

been developed for demonstrating the task with face recognition, font recogni-65

tion, digit recognition criteria. In [10], a generative adversarial network (GAN)

also known as SRGAN for image super-resolution is proposed. The method not

only super-resolves images but also recovers photo-realistic textures from heav-

ily downsampled images. In [11], another deep convolutional network based

method is proposed to deal with face and other object with low quality. In70

[12], a multi-frame SR (MFSR) method is introduced for bio-metric purpose

which reduces the equal error rate in person identification. On the constraint,

we proposed a super-resolving method which aims at preserving the features by

super-resolving the images in gradient image domain.

In many recognition tasks, gradient images are important information de-75

rived from pixel images. To define, gradient image generally refers to a change

in the direction of the intensity or color of an image. Numerous works regard-

ing image recognition have been done using gradient of images. In [13], Harris

Detector is used to find out the edges and extract corners of the image as well

as discovering the infer features of the image. In [14], Laplacian of Gaussian is80

used for blob detection. In [15], SIFT feature detection is used which discovers

local features after computing maxima and minima from the DoG image set.

In recognition, key points from an objects are extracted to provide a descrip-

tion of the features which are used for recognizing the object. So, it should be

important to keep in mind that extracted features should be able to be used in85

case of scale, noise and illumination changes. SIFT can handle these changes

which makes SIFT an ideal method for feature extraction. There is few research

regarding the preservation of features. In [16], a visual query compression for

preserving local features is introduced. Here, they go through a new method in

visual key points compression which uses subspaces for optimization of preserv-90

ing key point feature matching properties than the reconstruction performance.

Moreover, SIFT features preservation plays important role in image recogni-
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tion. There numerous research on the role of SIFT features to increase the

accuracy in image recognition. In [17], [18], the application of SIFT features

in image recognition are explained. In our proposed method, we are motivated95

to preserve these key SIFT points so that it can be fruitful in recognizing low-

resolution images. Our proposed method in this paper is not an end to end

system. Rather, it is a super-resolving network which generates SIFT repeata-

bility. So, the goal of our proposed method is to produce SIFT repeatability and

to show how these SIFT points contribute towards better recognition . In order100

to fulfill our goal to produce SIFT repeatability to preserve more features, we

will do the super-resolution in gradient domain. In [19], the SIFT repeatability

is tested on a small scale. In this paper, we tested our method on a larger scale

with diversified datasets.

To be accurate, our main concern is not how much accuracy we are gaining105

for super-resolution in pixel domain. The main idea is to preserve the fine SIFT

features which are the contributors of low-resolution image recognition. To

preserve SIFT features, we aim at super-resolving images in gradient domain.

Our SR network is built upon the concept of generating gradient images. The

network actually consists of many stages SR networks. For each of the SR110

network , we establish deep learning method inspired from EDSR and Squeeze

and Excitation Network [20] but instead of producing the super-resolved image

of original input, we produce the Difference of Gaussian Images (DoG). In SIFT,

DoG images [21] are produced from the input image with different scale and

different standard deviations. In our method, the network produces the DoG115

images and integrate with SIFT method to find out the key points which are

used for matching. Overall, our proposed method intends to generate super-

resolved gradient images which preserves the SIFT features to produce SIFT

repeatability.
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2. Proposed method120

Our proposed method contains a deep learning pipeline for image super-

resolution. The original purpose of our network is quite different than the

other deep learning based super-resolution methods. We aim to produce SIFT

repeatability. So, instead of generating the upsampled image from the low-

resolution input image, we target to generate gradient images hence DoG images125

in our case. The idea is to first generate DoG images and then finally integrate

with SIFT to preserve SIFT matching points.The network’s target is not to just

create high-resolution but also preserve features, hence preserve the key points

for SIFT.

Our proposed super-resolving infrastructure is constructed on the basis of130

generating super-resolved gradient image. Gradient images are generally con-

structed from the original image being convolved with a filter. In a gradient

image, in a certain direction, each pixel finds out the the change in intensity

of that same point in the original image. Our image gradient method is based

on the SIFT method. In SIFT method, from an input image, different Gaus-135

sian blurred images are first produced with different standard deviation. Then

difference of Gaussian[12] is computed for different scales which are called oc-

taves. From DoG images, maxima and minima are computed to find key points.

In SIFT method, from the key points, the edges and low contrast points are

eliminated considering them as bad points. With rotation and scale invariance140

being considered, the key points are detected. Let, I(x,y) is the original im-

age; G(x,y,σ) is the Gaussian Kernel. Equation (1) and (2) [22],[23] show the

formulation of Gaussian blurred images.

G(x, y, σ) =
1

2πσ2
e

−(x2+y2)

2σ2 (1)

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2)

Where, L(x,y,σ) is the Gaussian blurred image with specific σ which is the145

standard deviation, x is the distance from the origin in the horizontal axis, y is

the distance from the origin in the vertical axis
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So, the DoG will be as followed in equation (3) and (4)[22],[23]:

D(x, y, σ1, σ2) = (G1(x, y, σ1)−G2(x, y, σ2)) ∗ I(x, y)) (3)

D(x, y, σ1, σ2) = L1(x, y, σ1)− L2(x, y, σ2) (4)

Where, D(x,y,σ1,σ2) is the of DoG image, σ1is the standard deviation of the

first blurred image and σ2is the standard deviation of the second blurred image.150

G1,G2 are Gaussian filters. L1,L2 are Gaussian blurred images.

The loss function E is the MSE loss between the DoG of the super-resolved

blurred generated image and the DoG from convolution with original image

which can be shown in (5)[24]:

E(D̂,Doriginal) =

n∑

i=1

m∑

j=1

(D̂ij
−D

ij
original )

2
(5)

Where D̂ is the predicted DoG image which is upscaled and Doriginal is the155

DoG image computed from of the original one convolved with Gaussian filter.

n and m are the numbers of pixels in x and y direction.

The gradient descent of the loss function is the differentiation with respect

to D̂ as followed in equation (6),(7) and (8):

δE

δD̂
=

δ(
∑n

i=1

∑m

j=1
(D̂ij

−D
ij
original )

2
)

δD̂
(6)

δE

δD̂
= 2

n∑

i=1

m∑

j=1

(D̂ij
− (

1

2πσ1
2
P −

1

2πσ2
2
Q))(1− (

1

2πσ1
2

δP

δD̂
−

1

2πσ2
2

δQ

δD̂
)) (7)

P = e

−(x2
i
+y2

j
)

2σ1
2

∗ I(xi, yj), Q = e

−(x2
i
+y2

j
)

2σ2
2

∗ I(xi, yj) (8)

Here, equation 7 is derived from equation 6 after differentiating it with respect to160

D̂. In equation 7, due to the complexity of the equation we introduce two terms P

and Q [shown in equation 8]which are the exponential terms for the Gaussian filter in

each image convolved with the original image I(xi, yj) where xi is the distance from

the origin in the horizontal axis, yj is the distance from the origin in the vertical axis.

As the loss function and its gradient descent seem to be very complex, it can165

be simplified if we use the MSE loss between Gaussian blurred images as our loss
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function and then we compute the DoG images from the Gaussian blurred image. The

following equation (10) is the simplified loss function. But in this case, the output will

be Gaussian blurred image instead of DoG images.

E(L̂, Loriginal) =

n∑

i=1

m∑

j=1

(L̂ij
− L

ij

original )
2

(9)

Where L̂ is the predicted blurred image which is upscaled and Loriginal is the Gaussian170

blurred image of the original image with same standard deviation.

Figure 1: The diagram of the proposed method

There are different stages in our proposed method. From the low-resolution input

images, the deep learning based Gradient image super-resolution stage generates DoG

images. The SIFT integration stage integrates the DoG images for show-casting SIFT

repeatability. Finally, a SIFT points matching comparison is done to evaluate the175

performance. Figure 1 shows the full network architecture of our proposed methods.

We basically, compute the DoG images in two different ways. In first method, we

directly learn the DoG images from the network. In second method, we learn the

Gaussian blurred images first and then compute the DoG images from the Gaussian

blurred images.180

Method-1 is shown in Figure 2. For the super-resolution network design, the

residual blocks(ResBlocks) concept is taken from EDSR. Residual learning [25] is very

instrumental for faster convergence. So, in our network, we construct residual blocks.

The network is supposed to build four super-resolved DoG images. So, it has four deep

learning based SR networks. Each of the four networks contains several ResBlocks185

followed by deconvolution layers. Each ResBlock contains a residual block which is

followed by a Squeeze and Excitation network. Residual blocks have a convolutional
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Figure 2: Deep Learning based Gradient Image Super-resolution for method-1

layer followed by rectified linear unit(ReLU)[26] and again a convolutional layer. Each

convolutional layer has filter kernel size of 3X3 with 64 number of channels. In the

Squeeze and Excitation network, the output from residual block is followed by a global190

pooling layer, fully connected layer, ReLU, a fully connected layer again and a sigmoid

function followed by the scaling. The input to the residual block is added to the

output of Squeeze and Excitation network for the residual learning. The Squeeze

and Excitation network improves channel-wise feature responses by modelling the

relationships between channels [20] as shown in Figure 3 which works as a boosting195

factor in our method. We combined the residual learning concept with squeeze and

excitation channel to enhance the feature to a certain level by developing the response

created by scaling in squeeze and excitation network. Next, the deconvolutional layer

[27] does the upscaling of the image. Here, stride value 2 or 4 is used for either 2X or

4X upscaling. A predictor is also added to the output. The predictor is the upsampled200

version of the input convolved with two Gaussian filters to compute the DoG image.

So, the network is learning the residue. The ground truth for the method-1 is the

DoG images computed from the original images convolved with Gaussian filters with
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Figure 4: Deep Learning based Gradient Image Super-resolution for method-2

where k=1,2,3,4,5 and Di is the DoG image at σk and σk+1 scale where i=1,2,3,4. So,

the four DoG images are labelled as D1,D2,D3,D4.

Table 1: Average of power spectrum density of images from each dataset.

σ1 σ2 σ3 σ4 σ5

1.249 1.545 1.96588 2.452527 3.090016

We choose the σ values of 1.249, 1.545, 1.946588, 2.452527 and 3.090016 in ac-

cordance with the design of SIFT which is shown Table 1 . We analyzed the power225

spectrum density of the original image and the DoG images D1,D2,D3,D4 in the CDVS

dataset[28], Oxford building dataset[29] and Paris dataset[30]. Table 2 shows the av-

erage power spectrum of 100 images from each dataset. It is viewed that the original

image has more power spectrum density than the DoG images. As we increase the

values of σ, the value of power spectrum density decreases. It means it cuts a lot230
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It is to be noted that in both methods, MSE based loss function is used. However,

the target was different. The first method directly learns the DoG images whereas in245

method-2, we need to compute the DoG images manually once the 5 Gaussian blurred

images are predicted from the network.

Figure 6: Difference of Gaussian[31]

Integration with SIFT: Once we generate the four DoG images computed , we

integrate it to the SIFT network [32]. In SIFT, the DoG images are computed from

the Gaussian blurred images with different sigma values in different scaling octaves as250

shown in Figure 6. Our network produces the DoG images. So, in our case, instead

of calculating DoG images by SIFT itself, we directly load our DoG images into the

SIFT network. So, the SIFT network will find key points from our produced DoG

images. The purpose of integrating with SIFT is that SIFT itself computes DoGs in

different scale to find out the maxima and minima in DoG images for identifying key255

points. As our network already produces super-resolved DoGs, the super-resolution

process does not let the images losing their features which will be needed for SIFT

while computing the maxima and minma of DoG images. Thus the integration of our

DoG images with SIFT actually helps in preserving key features.

3. Experimental Setup and Dataset260

A.Training Dataset:

For training, we used the CVPR DIV 2K dataset [33] with 800 training images. We

first downscaled the images by both 2 and 4 times. The input images are then cropped

to 32X32 patch size. The training process is conducted in a computer equipped with

Intel I-7 at 3.2 GHz with 32 GB memory with GPU. The coding platform we used here265
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is Python with PyTorch [34] deep learning tool. We implemented the architecture and

processed in PyTorch.

B.Testing Dataset:

For testing, we used the MPEG Compact Descriptors for Visual Search (CDVS)

dataset [28], Oxford building dataset [29] and Paris dataset [30]. CDVS is a compre-270

hensive collection of images of various objects which consists of 186k labeled images

of CDs and book covers, paintings, video frames, buildings and common objects as

shown in Figure 7(a). We experimented on all the categories of the dataset separately

and chose 200 matching image pairs from each one. Oxford building dataset has 5062

images with 55 queries as shown in Figure 7(b) and Paris dataset has 6412 images with275

12 queries as shown in Figure 7(c). From Oxford and Paris dataset, we also chose 200

matching image pairs for evaluation. We used our trained networks for generating the

upscaled DoG images and then integrated to SIFT. For performance evaluation, we

show the number of SIFT matching points.

4. Results280

For the evaluation of the performance, we basically compare our result with bi-

cubic interpolation and EDSR that generate upscaled image. We categorize the CDVS

dataset into buildings,graphics(books, cards, CDs, DVDs, print), objects, videos and

paintings. We collected 200 matching image pairs from each category and evaluated

the performance. We also tested the method against Oxford and Paris Dataset with285

200 matching image pairs from each one. We compared the PSNR of our predicted

DoG images with the DoG images produced from EDSR, SRCNN, SRGAN and bi-

cubic interpolated images for both 2X and 4X upscaling.

Table 3: PSNR(in dB) comparison of DoG Images for 2X and 4X upscaling for CDVS full

dataset.

DoG (σk,σk+1) Upscaling Factor Proposed Method-1 Proposed Method-2 EDSR SRCNN SRGAN Bi-cubic

D1 (σ1,σ2) 2X 32.60 33.30 31.24 30.6 30.92 30.2

D1 (σ1,σ2) 4X 30.68 31.20 29.15 28.92 29.1 28.65

D2 (σ2,σ3) 2X 36.95 37.60 35.58 34.98 35.3 34.75

D2 (σ2,σ3) 4X 34.73 35.68 33.53 33.22 33.40 33.05

D3 (σ3,σ4) 2X 43.80 44.75 42.48 42.05 42.45 41.5

D3 (σ3,σ4) 4X 39.48 40.6 38.15 37.90 38.02 37.68

D4 (σ4,σ5) 2X 47.65 48.38 46.12 45.81 45.95 45.55

D4 (σ4,σ5) 4X 45.12 45.9 43.60 43.31 43.47 43.15
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(a) CDVS Dataset[28] .
(b) Oxford Building Dataset[29] .

(c) Paris Dataset[30] .

Figure 7: Experimental Datasets
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Table 4: PSNR(in dB) comparison of DoG Images for 2X and 4X upscaling for Paris dataset.

DoG (σk,σk+1) Upscaling Factor Proposed Method-1 Proposed Method-2 EDSR SRCNN SRGAN Bi-cubic

D1 (σ1,σ2) 2X 33.67 34.15 32.24 31.72 31.95 31.38

D1 (σ1,σ2) 4X 30.97 31.6 29.65 29.41 29.54 29.19

D2 (σ2,σ3) 2X 37.58 38.24 36.32 35.68 35.96 35.45

D2 (σ2,σ3) 4X 35.18 36.05 33.98 33.62 33.79 33.45

D3 (σ3,σ4) 2X 44.55 45.10 43.15 42.91 43.06 42.65

D3 (σ3,σ4) 4X 39.91 41.10 38.90 38.47 38.85 38.31

D4 (σ4,σ5) 2X 47.90 48.76 46.70 46.13 46.46 45.80

D4 (σ4,σ5) 4X 45.55 46.36 44.2 43.83 43.98 43.61

Table 5: PSNR(in dB) comparison of DoG Images for 2X and 4X upscaling for Oxford dataset.

DoG (σk,σk+1) Upscaling Factor Proposed Method-1 Proposed Method-2 EDSR SRCNN SRGAN Bi-cubic

D1 (σ1,σ2) 2X 31.9 32.65 30.56 30.12 30.08 29.47

D1 (σ1,σ2) 4X 30.03 30.63 28.70 28.36 28.42 28.25

D2 (σ2,σ3) 2X 36.61 37.15 35.32 34.79 34.72 34.30

D2 (σ2,σ3) 4X 33.85 34.90 32.76 32.65 32.64 32.55

D3 (σ3,σ4) 2X 43.05 44.02 41.55 40.98 41.10 40.62

D3 (σ3,σ4) 4X 39.12 40.19 37.80 37.54 37.62 37.31

D4 (σ4,σ5) 2X 46.93 47.55 45.32 45.03 45.19 44.80

D4 (σ4,σ5) 4X 44.71 45.38 43.22 42.91 42.97 42.61

Table 3 shows the result for PSNR in dB for four DoG images generated blurred at

σk and σk+1 (k=1,2,3,4,5) using our proposed methods, DoG images generated from290

EDSR images convolved with Gaussian filters,DoG images generated from SRCNN

images convolved with Gaussian filters,DoG images generated from SRGAN images

convolved with Gaussian filters and DoG images generated from bi-cubic interpolated

images convolved with Gaussian filters for 2X and 4X upscaling for the CDVS full

dataset. It is crystal clear that DoG images from our proposed method-1 have acquired295

around 1.7 -2.3 dB gain for 2X and 1.6-1.9 dB gain for 4X upscaling over the DoG

images generated from original EDSR convolved with Gaussian filter,2.1 -2.7 dB gain

for 2X and 1.8-2.2 dB gain for 4X upscaling over the DoG images generated from

original SRCNN convolved with Gaussian filter,1.9 -2.6 dB gain for 2X and 1.7-2.1 dB

gain for 4X upscaling over the DoG images generated from original SRGAN convolved300

with Gaussian filter and 2.1-2.8 dB gain for 2X and 2.0-2.3 dB gain for 4X upscaling

over bi-cubic interpolation. We can also see that DoG images from our proposed

method-2 has acquired around 2 -2.3 dB gain for 2X and 2-2.4 dB gain for 4X upscaling

over the DoG images generated from original EDSR convolved with Gaussian filter,

2.4 -2.7 dB gain for 2X and 2.3-2.6 dB gain for 4X upscaling over the DoG images305
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generated from original SRCNN convolved with Gaussian filter, 2.2 -2.5 dB gain for

2X and 2.1-2.5 dB gain for 4X upscaling over the DoG images generated from original

SRGAN convolved with Gaussian filter and 2.7-3.5 dB gain for 2X and 2.5-2.9 dB gain

for 4X upscaling over bi-cubic interpolation.

Table 4 shows the result for PSNR in dB for four DoG images blurred at σk310

and σk+1 (k=1,2,3,4,5) using our proposed methods, DoG images generated from

EDSR images convolved with Gaussian filters and DoG images generated from bi-

cubic interpolated images convolved with Gaussian filters for 2X and 4X upscaling

for the Paris dataset. It is viewed that DoG images from our proposed method-1

have acquired around 1.2 -1.5 dB gain for 2X and 1.0-1.4 dB gain for 4X upscaling315

over the DoG images generated from original EDSR convolved with Gaussian filter,

1.5 -1.9 dB gain for 2X and 1.2-1.7 dB gain for 4X upscaling over the DoG images

generated from original SRCNN convolved with Gaussian filter, 1.4 -1.8 dB gain for

2X and 1.1-1.5 dB gain for 4X upscaling over the DoG images generated from original

SRGAN convolved with Gaussian filter and 1.8-2.3 dB gain for 2X and 1.7-2.3 dB gain320

for 4X upscaling over bi-cubic interpolation. It is also seen that DoG images from our

proposed method-2 has acquired around 1.9 -2.1 dB gain for 2X and 1.9-2.2 dB gain

for 4X upscaling over the DoG images generated from original EDSR convolved with

Gaussian filter, 2.3 -2.5 dB gain for 2X and 2.1-2.4 dB gain for 4X upscaling over the

DoG images generated from original SRCNN convolved with Gaussian filter, 2.1 -2.4325

dB gain for 2X and 2.0-2.3 dB gain for 4X upscaling over the DoG images generated

from original SRGAN convolved with Gaussian filter and 2.5-2.9 dB gain for 2X and

2.4-2.8 dB gain for 4X upscaling over bi-cubic interpolation.

Table 5 shows the result for PSNR in dB for four DoG images blurred at σk

and σk+1 (k=1,2,3,4,5) using our proposed methods, DoG images generated from330

EDSR images convolved with Gaussian filters and DoG images generated from bi-

cubic interpolated images convolved with Gaussian filters for 2X and 4X upscaling

for the Oxford dataset. We can see that DoG images from our proposed method-1

have acquired around 1.3 -1.6 dB gain for 2X and 1.1-1.4 dB gain for 4X upscaling

over the DoG images generated from original EDSR convolved with Gaussian filter,335

1.7 -2.1 dB gain for 2X and 1.3-1.6 dB gain for 4X upscaling over the DoG images

generated from original SRCNN convolved with Gaussian filter, 1.6 -2.1 dB gain for

2X and 1.2-1.6 dB gain for 4X upscaling over the DoG images generated from original
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SRGAN convolved with Gaussian filter and 2.4-3 dB gain for 2X and 1.8-2.4 dB gain

for 4X upscaling over bi-cubic interpolation. It is also viewed that DoG images from340

our proposed method-2 has acquired around 1.8 -2.4 dB gain for 2X and 1.9-2.2 dB

gain for 4X upscaling over the DoG images generated from original EDSR convolved

with Gaussian filter, 2.1 -2.8 dB gain for 2X and 2.1-2.5 dB gain for 4X upscaling

over the DoG images generated from original SRCNN convolved with Gaussian filter,

2.0 -2.7 dB gain for 2X and 2.1-2.4 dB gain for 4X upscaling over the DoG images345

generated from original SRGAN convolved with Gaussian filter and 2.5-3.0 dB gain

for 2X and 2.4-2.8 dB gain for 4X upscaling over bi-cubic interpolation.

Figure 8 shows the comparison of DoG images using proposed method-2, EDSR,

SRGAN,SRCNN and Bi-cubic interpolation. It is viewed that DoG image using pro-

posed method-2 has the best PSNR which is 50.17 dB.350

Table 6: Average number of SIFT matching points for 200 matching image pairs from each

category of the CDVS full dataset.

Category Factor Original Proposed Method-1 Proposed Method-2 EDSR SRCNN SRGAN Bi-cubic

Buildings 2X 125.8 124.5 130.4 116.3 114.5 115.8 112.4

Buildings 4X 125.8 110.8 115.4 105.6 104.2 104.3 100.4

Graphics 2X 101.6 99.8 102.8 94.5 93.8 94.2 92.8

Graphics 4X 101.6 87.2 90.4 86.7 86.1 85.8 85.4

Objects 2X 115.3 113.9 118.5 106.9 103.9 104.8 102.6

Objects 4X 115.3 105.1 108.8 99.1 98.2 98.5 96.2

Paintings 2X 114.4 114.7 120.5 105.9 104.4 104.9 100.7

Paintings 4X 114.4 106.1 109.8 101.5 100.1 100.2 96.1

Video 2X 94.3 90.3 94.4 87.2 86.2 85.8 85.2

Video 4X 94.3 82.2 85.5 80.1 79.4 79.6 79.2

Table 7: Average number of SIFT matching points for 200 matching image pairs of the Paris

dataset.

Factor Original Proposed Method-1 Proposed Method-2 EDSR SRCNN SRGAN Bi-cubic

2X 110.5 107.9 113.2 101.4 99.2 99.8 99.1

4X 110.5 99.8 102.4 97.1 95.4 95.9 95.3

Table 8: Average number of SIFT matching points for 200 matching image pairs of the Oxford

dataset.

Factor Original Proposed Method-1 Proposed Method-2 EDSR SRCNN SRGAN Bi-cubic

2X 105.4 101.4 107.3 97.1 96.2 96.4 94.2

4X 105.4 93.2 97.8 91.1 90.4 90.3 89.9
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As we generate DoG images, we integrate them into SIFT to generate SIFT re-

peatability. In Table 6, the result is shown for five different categories for the average

number of SIFT matching points from generated super-resolved gradient images us-

ing our proposed methods, EDSR method and bi-cubic interpolation method and also

the original images which are already high-resolution images for 200 matching image355

pairs. For 2X upscaling, proposed method 1 is having a gain of around 3-8 points over

EDSR, 5-10 points over SRCNN, 4-9 points over EDSR and 5-12 points over bi-cubic

interpolation. For 4X upscaling, the gain is around 2-5 points over EDSR, 3-7 points

over SRCNN, 3-7 points over SRGAN and 3-10 points over bi-cubic interpolation. For

2X upscaling, proposed method 2 is having a gain of around 7-14 points over EDSR,360

9-16 points over SRCNN, 8-15 points over SRGAN and 9-18 points over bi-cubic in-

terpolation. For 4X upscaling, the gain is around 4-10 points over EDSR, 5-12 points

over SRCNN, 5-11 points over SRGAN and 5-15 points over bi-cubic interpolation.

The best result is achieved with the proposed method-2 in the buildings category with

10-14 points, 12-16 points, 11-15 points and 15-18 points gain over EDSR, SRCNN,365

SRGAN and bi-cubic respectively. The worst result is achieved with the proposed

method 1in the graphics and video categories with a gain of around 2-4 points gain.

The goal of our proposed method is to produce SIFT repeatability rather than con-

structing an end to end system for full recognition. The SIFT repeatability bears

the testimony that the produced images have more matching feature points which370

contribute for recognition.

Table 7 shows the result for the average number of SIFT matching points from

generated super-resolved gradient images using our proposed methods, EDSR method

and bi-cubic interpolation method and also the original images which are already high-

resolution images for 200 matching image pairs of the Paris dataset. For 2X upscaling,375

proposed method 1 has a gain of around 6 points over EDSR, 8 points over SRCNN,

7 points over SRGAN and 8 points over bi-cubic interpolation. For 4X upscaling, the

gain is 2 points over EDSR, 4 points over SRCNN, 3 points over SRGAN and 4 points

over bi-cubic interpolation. Proposed method 2 has a gain of around 12 points over

EDSR, 12 points over SRCNN, 11 points over SRGAN and 14 points over bi-cubic380

interpolation for 2X upscaling. For 4X upscaling, the gain is 5 points over EDSR, 7

points over SRCNN, 6 points over SRGAN and 7 points over bi-cubic interpolation.

Table 8 shows the result for the average number of SIFT matching points from
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(a) DoG image generated from

original image

(b) DoG Image using proposed

method-2 (50.17 dB PSNR)

(c) DoG Image using EDSR (47.58

dB PSNR)

(d) DoG Image using SRGAN

(46.97 dB PSNR)

(e) DoG Image using SRCNN

(46.69 dB PSNR)

(f) DoG Image using Bi-cubic in-

terpolation (44.91 dB PSNR)

Figure 8: DoG PSNR Comparison

generated super-resolved gradient images using our proposed methods, EDSR method
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(a) SIFT matching points for orig-

inal image (102 points)

(b) SIFT matching points using

proposed method 2 (112 points)

(c) SIFT matching points using

EDSR (100 points)

(d) SIFT matching points using bi-

cubic interpolation(96 points)

Figure 9: SIFT Matching Points Comparison

and bi-cubic interpolation method and also the original images which are already385

high-resolution images for 200 matching image pairs of the Oxford dataset. For 2X

upscaling, proposed method 1 has a gain of around 4 points over EDSR, 4 points

over SRCNN, 5 points over SRGAN and 7 points over bi-cubic interpolation. For 4X

upscaling, the gain is 2 points over EDSR, 4 points over EDSR, 3 points over SRGAN

and 4 points over bi-cubic interpolation. Proposed method 2 has a gain of 10 points390

over EDSR, 12 points over SRCNN, 11 points over SRGAN and 13 points over bi-cubic

interpolation for 2X upscaling. For 4X upscaling, the gain is 6 points over EDSR, 8

points over SRCNN, 7 points over SRGAN and 8 points over bi-cubic interpolation.

In Table 6,Table 7,Table 8,in comparison with the original image, our proposed

method 2 achieves approximately 0.1-4 more matching points than the original image395

for 2X upscaling factor. The reason is that while super-resolving from lower resolu-

tion image, the Gaussian blurred image stored the information of the features more

rigorously. So after computing the DoG, SIFT feature extraction method finds more
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maxima and minima while discovering key points. That’s why the super-resolved

gradient image version can achieve more SIFT matching points than the original high-400

resolution image for 2X upscaling. The goal of our proposed method is to produce

SIFT repeatability rather than constructing an end to end system for full recogni-

tion. The SIFT repeatability bears the testimony that the produced images have

more matching feature points which contribute for recognition.

Figure 9 shows the images of SIFT matching points for original image, image405

generated using proposed method-2 (which ahs better gain than method-1), EDSR

and bi-cubic interpolation for 2X upscaling. We can see that our method is producing

more points than EDSR for 4X upscaling with 11 points gain over EDSR and 15 points

gain over bi-cubic for the sample image. As our input to the SIFT method is the DoG

images, one of the template from the generated blurred image is used for showing the410

matching points.

In comparison, our proposed method-2 performs better than proposed method-1 in

all the aspects. The reason is that proposed method-2 is a simplified version of method-

1. Method-1 directly computes the upscaled DoG images. So, the networks needs to

learn the difference of the Gaussian blurred images in terms of MSE loss function. But415

method-2 constructs the upsclaed Gaussian blurred image first and then computes the

DoG images from simple subtraction. The prediction of upsclaed Gaussian blurred

image is easier than the prediction of upsclaed DoG image. Hence, method-2 learns the

output more accurately than method-1. Although, both of proposed methods shows

significant gain over the state of method in terms of producing SIFT repeatability,420

proposed method-1 is preferable for its less complexity and accuracy.

5. Conclusion and Future Work

Improving low-resolution and quality image recognition performances has a lot of

values in the real world vision, navigation and surveillance applications. In this work,

we developed a deep learning framework for gradient image super resolutions at mul-425

tiple scales. This improved the super-resolving network Degree of Freedom (DoF) by

allowing gradient images at different scales to be super-resolved by different networks,

with good performance gains in low-resolution key points detection and repeatability,

compared with the state of the art pixel domain super-resolving solutions. Next, we

pan to optimize the network structure, including new architectures like U- Net, and430
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also investigate gradient image enhancement with the presence of noises and low light

conditions, to have a full suite solution for the low-resolution/quality image recogni-

tion.

In the future we will further extend the framework to combat quantization and

communication losses in image communication, for the subsequent vision tasks with a435

task-integrated deep learning solution.
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