
Theoretical Computer Science 938 (2022) 24–38

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Online scheduling of parallelizable jobs in the directed acyclic

graphs and speed-up curves models

Benjamin Moselely a, Ruilong Zhang b,∗,1, Shanjiawen Zhao c

a Tepper School of Business, Carnegie Mellon University, United States of America
b Department of Computer Science, City University of Hong Kong, Hong Kong
c Mellon College of Science, Carnegie Mellon University, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 February 2022
Received in revised form 20 September
2022

Accepted 7 October 2022
Available online 13 October 2022
Communicated by V. Bonifaci

Keywords:

Scheduling

DAG jobs
Parallelizable jobs
Online algorithms

ℓk-norm of flow time

Competitive analysis

This paper considers scheduling jobs online on m identical machines such that the jobs can
be parallelized across the machines. Two models of parallelizability are considered, one is
the speed-up curves model, and the other is the directed-acyclic-graph (DAG) model. For
both models, the objectives considered are the average, maximum, and ℓk-norms of flow
time for k ≥ 1.

We establish an �(m) lower bound on the competitive ratio of any algorithm for
optimizing average flow time in both models without resource augmentation. With
resource augmentation, we give a (1 + ǫ)-speed O (1

ǫ2k+1
)-competitive algorithm in the

DAG model for the ℓk-norms of flow time. This essentially matches the best-known result
in the speed-up curve model for the ℓk-norms of flow time. Finally, we show an O (1)-

competitive algorithm for minimizing the maximum flow time in the speed-up curves
model.

 2022 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers scheduling processors in multi-programmed systems where n jobs arrive over time online that
need to be completed. The system consists of multiple processors, and jobs can be parallelized across the processors. The
system scheduler needs to decide how to allocate the processors to the jobs to optimize the quality of service delivered by
the system. Throughout this paper, we will assume the m processors are identical and that preemption and migration are
allowed. The paper considers an online setting where a job is unknown to the system until it arrives.

There are two popular models that have been considered in scheduling theory to capture the case where jobs can
be parallelized across the processors. This paper investigates both of these models and the complexity of the resulting
scheduling problems in the models.

Speed-up Curves Model: In the speed-up curves model, each job j has a corresponding speed-up function Ŵ j : R+ → R+ .
The value of Ŵ j(m

′) is the rate job j is processed when given m′ processors. We assume that Ŵ j(0) = 0 and that Ŵ j(m
′) is a

non-decreasing sublinear function in m′ . These assumptions are motivated by the following: (1) jobs are not more efficiently

* Corresponding author.
E-mail addresses: moseleyb@andrew.cmu.edu (B. Moselely), ruilzhang4-c@my.cityu.edu.hk (R. Zhang), shanjiaz@andrew.cmu.edu (S. Zhao).

1 This work was done when the author visited Carnegie Mellon University.

https://doi.org/10.1016/j.tcs.2022.10.005

0304-3975/ 2022 Elsevier B.V. All rights reserved.

B. Moselely, R. Zhang and S. Zhao Theoretical Computer Science 938 (2022) 24–38

processed when given additional processors, and (2) the rate of processing does not decrease when a job is given additional
resources. See Section 3.1 for details.

Directed Acyclic Graph (DAG) Model: In this model, each job j is represented as a directed acyclic graph. Each node in
the graph is referred to as a task and has a unit processing time. A task can be run once all its predecessors have been
completed. Parallelism, in this case, is captured by the fact that multiple tasks can be run on different processors at each
point in time. A job is the entire DAG and, as such, a job is complete when every node in the DAG completes. See Section 3.2
for details.

Quality of Service Objectives: This paper considers schedulers that optimize objectives based on the flow time of a job.
The flow time is the amount of time a job spends in the system before it is completed. Let D j be the time that job j is
completed, and let r j be the time job j was released (e.g., arrived). The flow time of job j is D j − r j . Naturally, the client
submitting a job would like its flow time minimized. This paper will consider minimizing the ℓk-norms of the flow time
k

√

∑

j(D j − r j)k . We will be particularly interested in k ∈ {1, 2, ∞}. The ℓ1-norm is simply the average flow time, ℓ∞ is the

maximum flow time, and ℓ2-norm is the variance in the flow times.

1.1. Problems considered

These two scheduling models have been of interest recently. We will break down prior work depending on the objective
considered.

Consider the average flow time objective (i.e., ℓ1-norm). For both the DAG [2,1] and speed-up curves [10] models, a (1 +
ǫ)-speed 1

ǫO (1) -competitive algorithm is known. An algorithm is said to be s-speed c-competitive if the algorithm is c-
competitive when running on processors a factor s faster than the optimal solution. This is known as a resource augmentation

analysis.
It has been of interest to understand the complexity without resource augmentation for average flow time. It is known

that for sequential non-parallelizable jobs, the multiprocessor variant of Shortest-Remaining-Processing-Time (SRPT) is
O (min{log P , logn/m}) competitive. Here P is the ratio of maximum to minimum job size. Ideally, similar results could
be shown for both parallelism models. Towards this direction, Im et al. [14] showed an O (log P)-competitive algorithm for
the speed-up curves setting assuming Ŵ j(m

′) = m′α j when m′ ≥ 1 for some 0 ≤ α j < 1 and Ŵ j(m
′) = m′ when 0 ≤ m′ ≤ 1.

The idea is that a job is fully parallel up to one processor. After that, it achieves a speed-up specified by a polynomial
function.

Question 1. Is there a polylogarithmic competitive algorithm for average flow time in the DAG model? Can the result above
be extended to all speed-up curves?

The result of Im et al. in [14] suggests that the answer is likely yes to the above question. Their assumption on the
speed-up curves is not too strong, and the result seems likely to extend to all speed-up curves. Moreover, the DAG model
usually has similar complexity, and it seems natural to suggest a similar result should exist in the DAG setting.

Next, we discuss the maximum flow time objective (i.e., ℓ∞-norm). For this objective, Pruhs, Robert, and Schabanel [20]
show that there is a (1 + ǫ)-speed O (logn)-competitive algorithm in the speed-up curve setting. Moreover, a lower bound
was given, showing that there is no s-speed o(logn)-competitive algorithm for any constant s, establishing the tightness of
the result. Critically, both the upper and lower bounds assume that the algorithm does not know the speed-up curves.

In the DAG model, Agrawal et al. [2] gave a (1 + ǫ)-speed O (1
ǫ)-competitive algorithm that is a variant of the First-In-

First-Out (FIFO) algorithm for any ǫ > 0.

Question 2. Is there an O (1)-competitive algorithm for maximum flow time in the speed-up curve model if the algorithm
knows the speed-up functions? Is there an O (1)-competitive algorithm in the DAG model for maximum flow time without
resource augmentation?

Finally, we discuss the ℓk-norms of flow time objective for 1 < k < ∞. For this objective, Edmonds et al. [9] gave a (1 + ǫ)-
speed O (k

ǫ2k+1
)-competitive algorithm in the Speed-up Curves model. No current results are known for the DAG model. It

is known that there are strong lower bounds on the competitive ratio of any online algorithm for this problem, even for
sequential jobs. Hence, it is necessary to resort to resource augmentation.

Question 3. What is the complexity of scheduling to minimize the ℓk norms of flow time in the DAG model for 1 < k < ∞?

1.2. Our results

This paper focuses on understanding the questions presented. Consider Question 1. For this problem, prior work could
be interpreted to suggest that a polylogarithmic competitive algorithm for average flow time is likely to exist for both the

25

B. Moselely, R. Zhang and S. Zhao Theoretical Computer Science 938 (2022) 24–38

speed-up curves and the DAG scheduling. In fact, we show this is not the case, and there is a strong lower bound! See
Section 6 for details.

Theorem 1. Any online algorithm has a competitive ratio at least �(m) for average flow time in the speed-up curves model and the
DAG model.

The instance is not too complicated but illustrates challenges faced in the parallel scheduling environment. Recall that
[14] Im et al. showed an O (log P)-competitive algorithm for the speed-up curves setting assuming Ŵ j(m

′) = m′α j when
m′ ≥ 1 and Ŵ j(m

′) = m′ otherwise. Here 0 < α j < 1 is known to the algorithm. While this seems to be not a strong
assumption, it indeed is what enables prior work to break through the lower bound. Critical is assuming that α j 	= 1 and
no job is fully parallelizable.

With this strong lower bound in place, we consider Question 3. We show the answer in the affirmative. See Section 4

for details.

Theorem 2. There exists a (1 + 10ǫ)-speed O (1
ǫ2k+1

)-competitive algorithm for minimizing the ℓk-norms of flow time in the DAG
model for any ǫ > 0 and 1 ≤ k < ∞.

Finally, we consider Question 2 Recall that [20] showed a lower bound, stating that there is no s-speed o(logn)-

competitive algorithm for any constant s for maximum flow time in the speed-up curves setting. This lower bound required
the algorithm to be oblivious to the speed-up functions.

Assuming the algorithm can use the speed-up functions to make scheduling decisions, we show the following for the
speed-up curves model. This breaks through the lower bound. Notice the algorithm does not use resource augmentation.
See Section 5 for details.

Theorem 3. There exists a (16 + ǫ)-competitive algorithm for minimizing the maximum flow time in the speed-up curves model.

This paper does not resolve whether there is an O (1)-competitive algorithm for maximum flow time in the DAG setting.
This is an intriguing open problem.

2. Other related work

Besides the work discussed above, additional work has been done offline and in related models. Two related models for
parallelizable jobs are the modable and malleable task models. See [8] for an survey.

The speed-up curves setting is equivalent to the malleable task model. Typically, prior work has referred to the model as
malleable tasks when the problem is offline, and the speed-up curves model is used for the online setting. While often true,
this is not always the case. The modable tasks model refers to the same problem, except it is more restrictive. In particular,
once a number of processors are assigned to a job, they must process the job to completion non-preemptively, and no new
processors can be assigned to the job. In some cases, the jobs are assumed to require a precise number of processors to be
processed, and this is specified to the scheduler.

The malleable task model has been studied extensively. Over thirty years ago, it was shown that minimizing the
makespan offline is strongly NP-Hard [7]. A 2-approximation was shown in [21]. An improved (32 + ǫ)-approximation algo-
rithm is given by Mounie, Rapine and Trystram [19]. Jansen and Thöle gave a polynomial time approximation scheme when
the number of jobs is polynomial in the number of machines [16]. If all speed-up curves are linear, then Drozdowski and
Kubiak showed a polynomial time algorithm exists [6].

Approximation algorithms have additionally been given in more general models. Fotakis, Matuschke and Papadigenopou-
los consider the setting where machines are not identical but unrelated [11]. Makarychev and Panigrahi [18] and Janesen
and Zhang [17] consider malleable tasks that additionally have precedence constraints.

Additional work has been done in the modable task setting, for example [15,5,4,22].
The DAG model has also been extensively considered due to its wide applications in parallel languages and libraries. For

the DAG model to minimize the average flow time, Agrawal et al. [2] gave a (1 + ǫ)-speed O (1
ǫ)-competitive algorithm,

which is called Late Arrival Processor Sharing (LAPS). The LAPS algorithm was proposed by Edmonds et al. [10]. Intuitively,
the LAPS algorithm shares the processing equally among the latest arriving constant fraction of the jobs. Since the LAPS
algorithm is hard to implement, Agrawal et al. [2] also show that the Shortest Job First algorithm (SJF) is a (2 + ǫ)-speed
O (1

ǫ)-competitive algorithm. Intuitively, the SJF algorithm will always schedule the jobs with the least initial work. Beyond
the ℓk-norm of the flow time, Agrawal et al. [3] also consider the throughput maximization objective. In this model, each
job ji is associated with a profit function pi(t), which indicates the profit obtained for finishing job ji at time t . The goal is
to find a schedule that maximizes the total obtained profits.

26

B. Moselely, R. Zhang and S. Zhao Theoretical Computer Science 938 (2022) 24–38

3. Problem formulations

3.1. Speed-up curves model

In the speed-up curves model, there is a set of jobs J and m identical processors. Job j has an arrival time r j and a
length p j . The actual processing time of job j depends on the number of processors assigned to it. Formally, each job j
is associated with a speed-up function Ŵ j : R+ → R+ . The value of Ŵ j(m

′) is the rate job j is processed when given m′

processors. Let m j(t) denote the number of processors assigned to job j at time t . Then, the completion time D j of job

j is the time such that p j =
∫ D j

t=0 Ŵ j(m j(t)). Let D j − r j be the flow time of job j. In the online setting, the jobs arrive
online. When a job arrives, its speed-up function and length will be known by the algorithm. Preemption and migration
are allowed. We assume that all speed-up functions are concave and Ŵ j(0) = 0 for all j ∈ J . Our goal is to minimize the
ℓ∞-norm of flow time, i.e., max j∈ J {D j − r j}.

3.2. Directed acyclic graph model

In the Directed Acyclic Graph Model, there is a set of jobs J . Each job j contains a set of nodes called tasks. Each task
has a unit processing time, and there are precedence constraints between the tasks. Every job j ∈ J can be represented as
a directed acyclic graph. A task can be processed only if all its predecessor tasks are completed. We say a task is ready if all
the predecessors of the task had been completed. That is, it can be feasibly scheduled. Each job j has an arrival time r j . A
job is completed only if all its tasks are finished.

In the online setting, the algorithms considered in this paper know the ready tasks for a released job at every point
in time but do not know the DAG structure. Preemption and migration are allowed. Each processor can only process at
most one task at a time. Let D i be the completion time of job j. The goal is to minimize the ℓk-norm of flow time, i.e.,
k

√

∑

j∈ J (D j − r j)k . In the resource augmentation model, each processor is given speed s > 1 for the online algorithm and is

compared to an optimal given speed 1 processors.
Let W j be the total processing time of the tasks in job i’s DAG. Let C j be the critical-path length of job j, where the

critical-path is defined as the longest path (the sum of the processing time of tasks on the path) in job j’s DAG. Observe
that max{W j

m
, C j} is a lower bound of the processing time of job j in any schedule.

4. Upper bound for the DAG model

In this section, we give an upper bound for the DAG model with resource augmentation. We assume that the processors
in the algorithm have an extra 10ǫ speed than the optimal solution. We used a potential function analysis framework (see
[13] for a detailed overview of the technique). We define a potential function �(t).

To upper bound the competitive ratio of the algorithm, one needs to show the following four conditions. These conditions
assume �(t) is continuous except at times when jobs arrive or are completed by the algorithm or optimal schedule.

Let OPT(t) and ALG(t) be the total cost in the objective accumulated by a fixed optimal solution and the algorithm at
time t , respectively. We let d

dt
ALG(t) and d

dt
OPT(t) denote the instantaneous increase in the algorithms cost.

1. Boundary condition: �(0) = �(∞) = 0, that is, the potential function is equal to 0 before any job is released and after
all jobs are finished.

2. Arrival condition: the total discontinuous increase of the potential function can be bounded by α · OPT over the release
of all jobs.

3. Completion condition: the total discontinuous increase of the potential function can be bounded by β ·OPT over all the
completions of jobs by OPT or ALG.

4. Running condition: at any time t when no job arrives or is finished, it is the case that d
dtALG(t) + d

dt�(t) ≤ γ · d
dtOPT(t).

Integrating these running conditions over time when the potential is continuous, and summing over the discontinuous
changes in the potential, we obtain that the algorithm ALG is (α + β + γ)-competitive. See [13] for more details.

The remainder of this section is organized as follows. In Section 4.1, we introduce the Weighted Latest Arrival Processor
Sharing algorithm. Then, we define our potential function in Section 4.2 and give some intuition in Section 4.3. Finally, we
give the analysis in Section 4.4.

4.1. WLAPS algorithm

The algorithm we use is called Weighted Latest Arrival Processor Sharing (WLAPS for short), which is proposed by
[12]. We consider the resource-augmented setting. That is, the algorithm is given m machines with (1 + 10ǫ)-speed, while
the optimal solution only has m machines with 1 speed. Here 0 < ǫ < 1

10 is a fixed constant. To formally describe the
algorithm, we introduce some notation. Let Na(t) be the set of released jobs that are not yet completed. For each job i, let
w i(t) = k(t − ri)

k−1 be its weight at the time t . Let N ′
a(t) ⊆ Na(t) be the set of jobs in Na(t) with the latest arrival times

27

B. Moselely, R. Zhang and S. Zhao Theoretical Computer Science 938 (2022) 24–38

such that
∑

i∈N ′
a(t)

w i(t) = β
∑

i∈Na(t)
w i(t), where β is the parameter chosen by the algorithm. In this work, we set β = ǫk .

At each time point t , the algorithm WLAPS will share its machines among the jobs in N ′
a(t) according to the proportion of

their weights. Formally, for an arbitrary job j ∈ N ′
a(t), the algorithm will assign m · w i(t)

β
∑

i∈Na(t) w i(t)
machines to the job.

Note that the WLAPS algorithm requires that there always exists a set of jobs whose weights are exactly β
∑

i∈Na(t)
w i(t).

Otherwise, the WLAPS algorithm will process the set of minimal latest arriving jobs whose weights exceed β
∑

i∈Na(t)
w i(t).

Let N ′
a(t) be such a job set. Let j be the job in N ′

a(t) with the earliest arrival time. Then, for every job i in N ′
a(t) \ { j },

the number of assigned machines is the same as before except for job j. For job j, the number of assigned machines is

proportional to its weight which overlaps the β fraction of the total weight, i.e., m · (1 −
∑

i∈N′
a(t)\{ j } w i(t)

β
∑

i∈Na (t) w i(t)
). In the remainder

of this work, we assume that a set of the latest arriving jobs whose total weight is exactly β
∑

i∈Na(t)
w i(t) always exists.

The assumption has no impact on the analysis but simplifies the proof.

4.2. Potential function

We re-index the jobs by their arrival time. Break ties arbitrarily if jobs have the same arrival time. Recall that ri is the
release time of job i. We define Na(t) as the set of released yet unfinished jobs in the algorithm ALG. Let S A

i (t) and SO
i (t)

be the amount of work remaining for job i in ALG and OPT at time point t , respectively. Then we define Z i(t) be the lag of
job i at time point t , i.e., Z i(t) := max

{

S A
i
(t) − SO

i
(t),0

}

. Let w i(t) := k(t − ri)
k−1 be the weight of job i at time point t . It

is worth noticing the following well-known observation:

ALG =
∞

∫

0

(

d

dt
ALG(t)

)

dt =
∑

i∈[n]
(D i − ri) =

∞
∫

0

∑

i∈Na(t)

w i(t)dt, (1)

where D i is the completion time of job i in ALG’s schedule. Let ci(t) be the remaining length of the critical path of job i in
ALG at time t . Adopting ideas from [9], we define the potential function as follows:

�(t) :=
∑

i∈Na(t)

⎛

⎝t − ri +
1

mǫ

∑

r j≥ri , j∈Na(t)

Z j(t)

⎞

⎠

k

+
(

2

ǫ

)2k+1
∑

i∈Na(t)

w i(t)ci(t).

For the sake of analysis, let �1(t) and �2(t) be the first term and the second term of �(t), respectively.

4.3. Intuition

In this section, we briefly introduce the intuition behind the potential function �(t) = �1(t) + �2(t). To show the
competitive ratio, we need to show that at each time t , the total agek−1 of the alive jobs is at most some constant times
the corresponding value for those under the optimal schedule. Fortunately, we can utilize the potential function to make an
amortized comparison between the algorithm and the optimal schedule. In the potential function analysis framework, the
potential function is considered a bank. At any time t , the algorithm can store its cost when the algorithm’s cost is smaller
than the optimal schedule’s cost. And the algorithm can withdraw these reserves when its cost is higher than the optimal
solution.

Our potential function contains two terms: �1(t) and �2(t). The sum of the two is an estimate of the algorithm’s
remaining cost for the remaining incomplete jobs assuming no more jobs arrive. Intuitively, the derivation of �1(t) ap-
proximates the remaining cost jobs will pay in the ALG’s schedule during times jobs are in their parallel phases. That is,
if the jobs are fully parallelizable, this estimates the difference in the algorithm’s remaining cost compared to the optimal
remaining cost. Notice that (t − ri) is the flow time of job i at time t . The term 1

mǫ

∑

r j≥ri , j∈Na(t)
Z j(t) is an estimate of the

remaining waiting time of job i in the WLAPS algorithm, assuming no more jobs arrive.
Recall that WLAPS will first process jobs in Na(t) with the latest arrival times. This estimate assumes the jobs are

completed in the reverse arrival order, each job j’s size is Z j(t), and jobs can be fully parallelized on m machines. Of course,
these assumptions may not hold, but this is an estimate. An estimate of i’s completion time is t − ri + 1

mǫ

∑

r j≥ri , j∈Na(t)
Z j(t).

The ǫ is added for technical reasons.
Of course, the jobs are not fully parallelizable. This is where the �2(t) is needed. Intuitively, the �2(t) approximates the

remaining cost that jobs will pay in the ALG’s schedule due to not being fully parallelizable since the length of the critical
path lower bounds the cost of any algorithm for the time it takes to complete a job.

4.4. Analysis

In the following, we will find suitable parameters α, β, γ such that the algorithm WLAPS satisfies the above four con-
ditions. We will begin with the easy conditions, i.e., boundary, arrival, and completion condition. We will show that these

28

B. Moselely, R. Zhang and S. Zhao Theoretical Computer Science 938 (2022) 24–38

three conditions will not increase the potential function. Basically, these properties follow directly from the definition of the
potential function. For the running condition, we bound the increase of the potential function in three scenarios: (1) Time
Elapse: the change in �(t) due to the change in time; (2) OPT’s Processing: the change in �(t) due to the processing of the
optimal solution; (3) WLAPS’s Processing: the change in �(t) due to the processing of the algorithm. Finally, we integrate
all the conditions and obtain the competitive ratio.

Boundary condition At time 0 and ∞, we have no jobs; therefore, set Na(t) is empty, which implies �(0) = �(∞) = 0.

Completion condition Completing job j by OPT does not affect the critical path and the Z j term. When WLAPS completes a
job j, it is removed immediately from Na(t), so both Z j and C j are zero. Therefore, the completion of jobs in both OPT and
WLAPS does not increase the value of the potential function.

Arrival condition Since t − ri and Z i are both zero, the arrival of jobs does not increase the �1(t). For the �2(t), since
w i(t) = k(t − ri)

k−1 = 0 when job i just arrived, �2(t) does not increase when new jobs arrive either.

Time elapse Note that, in the potential function, both t and Z j(t) change over time. Here we only bound the change of t
and analyze the change of Z j(t) later together with OPT and ALG’s processing. Taking the derivatives, the change in our
potential function due to time elapse for the first term �1(t) is

d

dt
�1(t) =

∑

i∈Na(t)

k

⎛

⎝t − ri +
1

mǫ

∑

r j≥ri , j∈Na(t)

Z j(t)

⎞

⎠

k−1

. (2)

For notation convenience, we define

W i(t) := k

⎛

⎝t − ri +
1

mǫ

∑

r j≥ri , j∈Na(t)

Z j(t)

⎞

⎠

k−1

.

Note that d
dt

�1(t) =
∑

i∈Na(t)
W i(t). For �2(t), the increment is

d

dt
�2(t) =

(

2

ǫ

)2k+1
∑

i∈Na(t)

k(k − 1)(t − ri)
k−2ci(t).

Let C i be the length of the critical path of job i. To bound d
dt

�2(t), we partition the job set Na(t) into two subsets: old
job set O(t) and young job set Y(t), where jobs in O(t) have been alive for more than k(2

ǫ)2k+1C i ; otherwise, in Y(t), i.e.,
O(t) = { i ∈ Na(t) | (t − ri) ≥ k(2

ǫ)2k+1C i } and Y(t) = Na(t) \O(t). Then the change of potential in �2(t) due to old jobs can
be bounded by:

d

dt
�2(t) =

(

2

ǫ

)2k+1
∑

i∈O(t)

k(k − 1)(t − ri)
k−2ci(t)

≤
∑

i∈O(t)

k(t − ri)
k−1

≤
∑

i∈Na(t)

w i(t)

≤
∑

i∈Na(t)

W i(t).

(3)

In total, the amount of increase in �(t) by old jobs due to the change in time can be bounded by 2
∑

i∈Na
W i(t). On the

other hand, for the total change of potential in �2(t) due to young jobs, we will charge it later to the cost of the optimal
solution. We first give Lemma 1.

Lemma 1.
(

2
ǫ

)2k+1
∫ ∞
0

∑

i∈Y(t) k(k − 1)(t − ri)
k−2ci(t)dt ≤ kk(2

ǫ)2k(2k+1)OPT.

Proof. We have the following inequalities:

(

2

ǫ

)2k+1
∞

∫

0

∑

i∈Y(t)

k(k − 1)(t − ri)
k−2ci(t)dt

29

B. Moselely, R. Zhang and S. Zhao Theoretical Computer Science 938 (2022) 24–38

≤
(

2

ǫ

)2k+1
∞

∫

0

∑

i∈Y(t)

k(k − 1)

(

k

(

2

ǫ

)2k+1

C i

)k−2

C idt

=
(

2

ǫ

)2(k−2)(2k+1)

kk−1(k − 1)

∞
∫

0

∑

i∈Y(t)

Ck−1
i

dt

≤ kk
(

2

ǫ

)2k(2k+1)

OPT,

where the first inequality is due to the definition of the job set Y(t) and ci(t) ≤ C i holds for all jobs, and the last inequality
is due to

∫ ∞
0

∑

i∈[n] C
k−1
i

≤ OPT. �

OPT’s processing Since OPT’s processing does not change the critical path in the schedule returned by the algorithm for any
jobs, we only have to worry about the first term of our potential function, i.e., �2(t) remains the same during the OPT’s
processing. Observe that the worst-case scenario is when the optimal solution processes the job with the latest arrival time.
Let this be job k. Since Zk = S A

k
− SO

k
and optimal solution has speed 1, processing job k at speed 1 increases Zk by m.

Therefore, we have

d

dt
�(t) ≤

1

ǫ

∑

i∈Na(t)

k

⎛

⎝t − ri +
1

mǫ

∑

r j≥ri , j∈Na(t)

Z j(t)

⎞

⎠

k−1

=
1

ǫ

∑

i∈Na(t)

W i(t). (4)

ALG’s processing We first bound the change of �1(t) due to the algorithm’s processing. For the change of �2(t), we will
directly charge it to the OPT. Recall that N ′

a(t) is the job set that WLAPS chooses to process at time t . Then, we have the
following lemma.

Lemma 2. The change of the �1(t) due to WLAPS’s processing can be bounded by the following term:

d

dt
�1(t) ≤ −

1

mǫ

⎛

⎝

∑

j∈N ′
a(t)\No(t)

m
w j(t)

βw(t)

⎞

⎠ ·

⎛

⎝

∑

i∈Na(t)\N ′
a(t)

W i(t)

⎞

⎠ ,

where w(t) =
∑

i∈Na(t)
w i(t).

Proof. Consider any job j ∈ N ′
a(t) \ No(t), Z j(t) is the remaining work to be processed by WLAPS since OPT would have

completed the job j. Thus, Z j(t) will be decreased by m w i(t)
βw(t)

by definition of the algorithm. Since all jobs in N ′
a(t) have a

larger arrival time than all jobs in Na(t) \ N ′
a(t), Z j(t) will decrease by the above term for all jobs in Na(t) \ N ′

a(t). Thus,
Lemma 2 directly follows. �

Observe that the change of the potential function due to OPT’s processing and the change in time can be bounded by
some factor multiplying

∑

i∈Na(t)
W i(t). In order to integrate all the conditions, we need to obtain another upper bound of

d
dt�1(t) that is related to

∑

i∈Na(t)
W i(t). This can be captured by Lemma 3.

Lemma 3. For any subset of jobs N ′′
a (t) such that

∑

i∈N ′′
a (t) w i = β

∑

i∈Na(t)
w i(t), we have:

∑

i∈Na(t)\N ′′
a (t)

W i(t) ≥
(

1− β(1+
1

ǫ
)k−1

)

∑

i∈Na(t)

W i(t).

Proof. We have the following inequalities:
∑

i∈Na(t)\N ′′
a (t)

W i(t) =
∑

i∈Na(t)

W i(t) −
∑

i∈N ′′
a (t)

W i(t)

≥
∑

i∈Na(t)

W i(t) − (1 +
1

ǫ
)k−1

∑

i∈N ′′
a (t)

w i(t)

=
∑

i∈Na(t)

W i(t) − β(1 +
1

ǫ
)k−1

∑

i∈Na(t)

w i(t)

30

B. Moselely, R. Zhang and S. Zhao Theoretical Computer Science 938 (2022) 24–38

≥
(

1− β(1+
1

ǫ
)k−1

)

∑

i∈Na(t)

W i(t). �

Combining Lemma 2 and Lemma 3, we have:

d

dt
�1(t) ≤ −

1

mǫ
·
(

1− β(1+
1

ǫ
)k−1

)

·

⎛

⎝

∑

j∈N ′
a(t)\No(t)

m
w j(t)

βw(t)

⎞

⎠ ·
∑

i∈Na(t)

W i(t). (5)

Integrating the conditions To obtain the competitive ratio, we will integrate over the above changes in the potential. Recall
that in Lemma 1, we have bounded the total change due to time elapse for the young jobs. Let �′(t) be the total increase
in �(t) after excluding the young jobs. Then, we have the following inequalities:

WLAPS =
∞

∫

0

(

d

dt
WLAPS(t)

)

dt

=
∞

∫

0

(

d

dt
WLAPS(t) +

d

dt
�(t)

)

dt

≤
∞

∫

0

(

d

dt
WLAPS(t) +

d

dt
�′(t)

)

dt+ kk(
2

ǫ
)2k(2k+1) · OPT.

(6)

Now, it remains to bound d
dt
WLAPS(t) + d

dt
�′(t) by OPT. After integrating Equation (4), Equation (2), Equation (3) and

Equation (5), we have:

d

dt
WLAPS(t) +

d

dt
�′(t)

= (2+ ǫ)
∑

i∈Na(t)

W i(t) −
1

ǫ
·
(

1− β(1+
1

ǫ
)k−1

)

·

⎛

⎝

∑

j∈N ′
a(t)\No(t)

w j(t)

βw(t)

⎞

⎠ ·
∑

i∈Na(t)

W i(t).

(7)

In the following, we mainly show Lemma 4.

Lemma 4. d
dt
WLAPS(t) + d

dt
�′(t) ≤ (1

ǫ)k+1(2 + 1
ǫ)(1 + 1

ǫ)k−1 d
dt
OPT(t).

Combining Equation (6) and Lemma 4, Theorem 2 directly follows.

Proof of Theorem 2. Combining Equation (6) and Lemma 4, we have the competitive ratio of WLAPS as follows:

WLAPS ≤
∞

∫

0

(

d

dt
WLAPS(t) +

d

dt
�′(t)

)

dt+ kk(
2

ǫ
)2k(2k+1) · OPT

≤
(

(
1

ǫ
)k+1(2 +

1

ǫ
)(1 +

1

ǫ
)k−1 + kk(

2

ǫ
)2k(2k+1)

)

· OPT. �

(8)

Now, it remains to show Lemma 4. Before giving the proof, we first provide the following two lemmas, which help show
Lemma 4.

Lemma 5. For any job i,
∑

r j≥ri ,r j∈Na(t)
Z i ≤m(t − ri).

Proof. Notice that m(t − ri) is the amount of time job i has been alive and
∑

r j≥ri ,r j∈Na(t)
Z i is the amount of work that

WLAPS is lagging compared to OPT for jobs that arrived after job i. Since OPT processes at speed 1, the largest amount that
WLAPS is lagging can only be m(t − ri). �

Lemma 6.
∑

i∈Na(t)
k
(

t − ri + 1
mǫ

∑

r j≥ri , j∈Na(t)
Z j(t)

)k−1
≤ (1 + 1

ǫ)k−1 d
dt
WLAPS(t).

31

B. Moselely, R. Zhang and S. Zhao Theoretical Computer Science 938 (2022) 24–38

Proof. We have the following inequalities:

∑

i∈Na(t)

k

⎛

⎝t − ri +
1

mǫ

∑

r j≥ri , j∈Na(t)

Z j(t)

⎞

⎠

k−1

≤
∑

i∈Na(t)

k

(

t − ri +
1

mǫ
m(t − ri)

)k−1

=
∑

i∈Na(t)

(1+
1

ǫ
)k−1k(t − ri)

k−1

=
∑

i∈Na(t)

(1+
1

ǫ
)k−1w i

= (1 +
1

ǫ
)k−1 d

dt
WLAPS(t),

where the first equality is due to Lemma 5 and the second equality is due to Equation (1). �

Proof of Lemma 4. To bound d
dtWLAPS(t) + d

dt�
′(t) by OPT, we distinguish three cases.

Case I. There are at least ǫβw(t) total weight of jobs in ALG’s schedule that are also in OPT. In this case, we have
∑

i∈No(t)
w i(t) ≥

ǫβ
∑

i∈Na(t)
w i(t). We can charge the increase in cost directly to the increase in the optimal cost. Considering the amount of

increase caused by OPT’s processing and time elapse, we know that the total increase of potential is (2 + 1
ǫ)

∑

i∈Na(t)
W i(t).

Lemma 6 bounds the
∑

i∈Na(t)
W i(t) by d

dt
WLAPS(t). The condition of the current case provides the relationship between

d
dt
WLAPS(t) and d

dt
OPT(t).

Thus we have the following inequalities:

d

dt
WLAPS(t) +

d

dt
�′(t) ≤ (2+

1

ǫ
)
∑

i∈Na

W i ≤ (2+
1

ǫ
)(1+

1

ǫ
)k−1 d

dt
WLAPS(t)

≤
(2 + 1

ǫ)(1 + 1
ǫ)k−1

ǫβ

d

dt
OPT(t),

(9)

where the last equality is due to the condition of the current case.

Case II. There are at least ǫ2w(t) weights of jobs in ALG whose critical paths are decreased. In this case, the decrease of the critical
path in �2(t) can pay for the increase elsewhere. Since the algorithm has speed augmentation for (1 + 10ǫ), �2(t) will

be decreased by
(

2
ǫ

)2k+1
(1 + 10ǫ)ǫ2w(t). Now we are ready to bound d

dt
WLAPS(t) + d

dt
�′(t) in this case. Observe that

d
dt
WLAPS(t) + d

dt
�′(t) ≤ (2 + 1

ǫ)
∑

i∈Na
W i(t). Thus, we charge the decrease of the critical path to (2 + 1

ǫ)
∑

i∈Na
W i(t). Then,

we have

(2 +
1

ǫ
)

∑

i∈Na(t)

W i(t) −
(

2

ǫ

)2k+1

(1 + 10ǫ)ǫ2
∑

i∈Na(t)

w i(t)

≤ (2 +
1

ǫ
)(1 +

1

ǫ
)k−1 d

dt
WLAPS(t) −

(

2

ǫ

)2k+1

(1+ 10ǫ)ǫ2 d

dt
WLAPS(t)

≤ 0,

(10)

where the first inequality is due to Lemma 6 and Equation (1). Thus, we have d
dt
WLAPS(t) + d

dt
�′(t) ≤ 0 in Case II.

Case III. There are less than ǫ2w(t) weights of jobs whose critical paths decrease and less than ǫβw(t) weights of jobs are also in
OPT. Recall that we need to bound d

dt
WLAPS(t) + d

dt
�′(t) in this case. We first bound the second term of Equation (7).

−
1

ǫ
·
(

1− β(1+
1

ǫ
)k−1

)

·

⎛

⎝

∑

j∈N ′
a(t)\No(t)

w j(t)

βw(t)

⎞

⎠ ·
∑

i∈Na(t)

W i(t)

= −
1

ǫβw(t)

(

1− β(1 +
1

ǫ
)k−1

)

·

⎛

⎝

∑

j∈N ′
a(t)\No(t)

w j(t)

⎞

⎠ ·
∑

i∈Na(t)

W i(t)

≤ −
1

ǫβ
(1− ǫβ)

(

1− β(1+
1

ǫ
)k−1

)

·
∑

i∈Na(t)

W i(t),

(11)

32

B. Moselely, R. Zhang and S. Zhao Theoretical Computer Science 938 (2022) 24–38

Fig. 1. Illustration for Observation 1. The processing time p j = 8 and the speed-up function Ŵ j(x) =
√
x. In schedule S1 , the completion time of job j is 2

and, therefore 16 machines are needed. In schedule S2 , the completion time of job j is 4, and therefore only 4 machines are needed. The occupied machine
time in S1 is larger than S2 .

where the last inequality is due to the condition of the current case. Combining Equation (7) and Equation (11), setting
β = ǫk , we can bound the d

dtWLAPS(t) + d
dt�

′(t) as follows:

d

dt
WLAPS(t) +

d

dt
�′(t)

= (2+ ǫ)
∑

i∈Na(t)

W i(t) −
1

ǫ
·
(

1− β(1+
1

ǫ
)k−1

)

·

⎛

⎝

∑

j∈N ′
a(t)\No(t)

w j(t)

βw(t)

⎞

⎠ ·
∑

i∈Na(t)

W i(t)

≤
(

2+
1

ǫ
−

1

ǫβ
(1 − ǫβ)

(

1− β(1 +
1

ǫ
)k−1

))

·
∑

i∈Na(t)

W i(t)

≤ 0.

(12)

Combining Equation (9), Equation (10) and Equation (12), we have:

d

dt
WLAPS(t) +

d

dt
�′(t) ≤

(2 + 1
ǫ)(1 + 1

ǫ)k−1

ǫβ

d

dt
OPT(t) = (

1

ǫ
)k+1(2+

1

ǫ
)(1+

1

ǫ
)k−1 d

dt
OPT(t). �

5. Speed-up curves model

In this section, we give an O (1)-competitive algorithm for maximum flow time objective in the speed-up curves model.
Before introducing the algorithm, we first introduce some notations and give the following simple observation (Observa-
tion 1). Consider an arbitrary schedule S and a job set J ′ . Let Are(S, J ′) be the total machine time occupied by the jobs in
J ′ in the schedule S . The total machine time is defined to be the summation over machines of the total number of time steps
devoted to jobs in J ′ . Let Com(S, j) be the completion time of job j in the schedule S . Observation 1 fundamentally relies
on the fact that the speed-up function is concave.

Observation 1. Consider a job j with release time 0 and processing time p j . Let S1 and S2 be two schedules where
Com(S1, j) ≤ Com(S2, j). Then, we have Are(S1, j) ≥ Are(S1, j). A simple example can be found in Fig. 1.

Now, we are ready to give the algorithm. Our algorithm is First In First Out (FIFO), and we first assume that we know
an upper bound κ of the optimum value OPT. The standard doubling algorithm can remove the above assumption (see
Observation 2). Consider jobs in FIFO order. When considering j, let m j be the number of machines such that

p j

Ŵ j(m j)
= κ .

Note that m j may not be an integer. Let I(t) be the number of idle machines currently at time t . Our algorithm assigns

33

B. Moselely, R. Zhang and S. Zhao Theoretical Computer Science 938 (2022) 24–38

Fig. 2. Illustration for the proof of Lemma 7. The yellow area is the total machine time occupied by jobs that arrived before t′ , i.e., T1 . The blue area
(Are(S, J ′)) is the total machine time occupied by the jobs in J ′ . The green area (T3) is the machine time occupied by job j, and the gray area (T2) is
the idle machine time. The optimal solution has to finish all jobs in J ′ by t′′ . However, it is impossible if job j cannot be completed by time t due to
Observation 1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

min{I(t), m j} machines to job j, decreases I(t), and considers the next job in FIFO order. This continues until all machines
are non-idling or there are no more jobs left to consider.

Lemma 7. Let ALG be the solution returned by the algorithm. Then, we have ALG ≤ (4 + ǫ) · κ , where ǫ > 0 can be sufficiently small,
and κ ≥ OPT is an upper bound of the optimum value.

Proof. Let S be the schedule returned by the algorithm. Let S ′ be the optimal schedule. We only need to show that every
job j can be completed by r j + (3 + ǫ) · κ . For the sake of contradiction, we assume that there exists a job j such that the
job cannot be completed by r j + (3 + ǫ) ·κ . For convenience, let t = r j + (3 + ǫ) ·κ . Let t′ be the earliest time before r j such
that all machines are occupied by some jobs in schedule S . Let J ′ be the set of jobs that are released between t′ and r j in
the schedule S , i.e., J ′ = { i ∈ J | t′ ≤ ri ≤ r j }. Note that all jobs in J ′ will be completed by r j + OPT in the optimal schedule
S ′ . Note that we do not care about the jobs released after r j since our algorithm is FIFO. The jobs with a larger release
time will never delay job j. Observe that if we can show that Are(S, J ′) > (r j − t′) ·m +m · OPT, then the optimal solution
cannot complete J ′ by r j + OPT since Are(S ′, J ′) ≥ Are(S, J ′) due to Observation 1. Thus, in the following, we mainly show
the inequality above by using our assumption: job j cannot be completed by time t .

Note that there may exist some jobs that arrived before the time t′ but are still alive in the interval [r j, t]. There may
also exist some jobs that arrived before the time t′ and are completed in the interval (t′, r j). By definition of the algorithm,
the total machine time occupied by these jobs is at most m · κ . Let T1 be the total machine time in [t′, t] occupied by
these jobs, i.e., T1 ≤ m · κ . Since job j cannot be completed by t , the total idle machine time in the interval [t j, t] is at
most m j · κ ≤m · κ by the algorithm. Let T2 be such machine time, i.e., T2 ≤m · κ . Note that part of job j may be finished
by t , and this part is also at most m j · κ ≤ m · κ . Let T3 be such machine time, i.e., T3 ≤ m · κ . Thus, the total machine
time in the interval [r j, t] that is occupied by the jobs in J ′ is at least (t − t′) ·m − T1 − T2 − T3 = (t − t′) ·m − 3mκ , i.e.,
Are(S, J ′) ≥ (t − t′) ·m − 3mκ . An example can be found in Fig. 2.

Note that (t − t′) ·m = (r j − t′) ·m + (t − r j) ·m. Since t = r j + (4 + ǫ) · κ , we have (t − r j) ·m > 4 ·mκ . Thus, we have
(t − t′) · m > (r j − t′) · m + m · κ ≥ (r j − t′) · m + m · OPT. Thus, the optimal solution cannot finish J ′ by r j + OPT, which
contradicts our assumption. �

Observation 2. Given an initial guess κ0 of the optimum value OPT and an online algorithm ALG′ such that ALG′ ≤ α · κ ,
there is an online algorithm ALG such that ALG ≤ 4α · OPT, where κ0 ∈ (0, OPT] and κ ≥ OPT.

Proof. Observation 2 is a simple application of the well-known doubling strategy. The doubling algorithm ALG starts from
the initial guess κ0 of the optimum value. If algorithm ALG′ cannot schedule all jobs using the bound κi , then ALG will run
ALG′ with the new bound κi+1 = 2κi . For every computation with the new bound, ALG will ignore all the decisions made

34

B. Moselely, R. Zhang and S. Zhao Theoretical Computer Science 938 (2022) 24–38

Fig. 3. Illustration for Observation 3. If all jobs are fully parallel, the optimal solution will distribute each job equally to m machines in every 1
m

time points.

so far but keep the cost of the previous decision. One can imagine that the release time of every job will be added by κi at
the beginning of the iteration with bound κi+1 . Assume that, after (k − 1)-iteration, ALG finds the first upper bound of OPT,
i.e., κk ≥ OPT. Then, we have the following inequality:

ALG ≤
k

∑

i=0

α · κi = α · (2k+1 − 1) · κ0 ≤ α · 4 · κk−1 ≤ α · 4 · OPT,

where the second inequality is due to 2k−1κ0 = κk−1 , and the last inequality is due to κk−1 ≤ OPT. �

By Lemma 7 and Observation 2, Theorem 3 directly follows.

6. Lower bound for DAG model

In this section, we give an �(m)-lower bound for the DAG model without resource augmentation for the average flow
time objective. To show the lower bound, we give a hard instance in the proof of Theorem 1. The hard instance contains
two rounds of jobs. The first round of jobs is described in Observation 4 and the second round of jobs is stated in Observa-
tion 5. Intuitively, for an algorithm to be O (m)-competitive, the algorithm has to schedule the first round’s job in a similar
manner described in Fig. 4 (Lemma 8). In this case, the adversary will release the second round’s jobs. Lemma 9 shows that
any O (m)-competitive algorithm cannot delay the second round’s jobs too much. This will contradict the claim stated in
Lemma 8.

Before giving the proofs, we first provide the following simple observation.

Observation 3. Let J be a job set consisting of m fully parallel jobs of size 1, where m is the number of machines. All jobs
in J are released at time 1. Then, the optimal solution will schedule them in a fully parallel way. An example can be found
in Fig. 3. Then, the optimal solution has value OPT(J) = m+1

2 .

Observation 4. Let J = J1 ∪ J2 be a job set, where J1 is a sequential job set, and J2 is a parallel job set. There are m
2

sequential jobs in J1 = { j11, . . . , j
1
m }. All jobs in J1 are released at time point 0 with the size L. Let J2 = { j21, . . . }, where

there are mL
2 parallel jobs. Job j2

i
is released at time point i−1

m
. All jobs in J2 have the same size 1. Then, the value of the

optimal solution is at most O (mL). A possible O (mL) schedule can be found Fig. 4.

Lemma 8. Consider the instance stated in Observation 4, an O (m)-approximation solution can schedule at most m√
L
proportion of the

total volume of the sequential jobs in [0, L2].

Proof. Note that the total volume of the sequential jobs is mL
2 . Assume that there are 1

x
proportion of the total volume of

the sequential jobs scheduled in [0, L2], where x ≥ 1. Then, at least mL
2x volume of parallel jobs is scheduled after time L

2 .
Since each parallel job has a size of 1, at least mL

2x parallel jobs have completion time larger than L
2 . Then, comparing the

schedule stated in Observation 4, the total increase delay of these mL
2x parallel jobs is at least (1

m
+ L

2x) ·
L
4x , i.e., the latest

mL
2x parallel jobs complete at the time L

2 + 1
m
. The total cost of the delay has to be bounded by O (mL) for an algorithm to

be O (m)-competitive. This yields the following claim: (1
m

+ L
2x) ·

L
4x is O (m2L). Thus, x ≥

√
L

m
. Note that m√

L
is small when

L ≫m. �

35

B. Moselely, R. Zhang and S. Zhao Theoretical Computer Science 938 (2022) 24–38

Fig. 4. Illustration for an O (mL) solution described in Observation 4. The solution will first process the parallel jobs as long as it arrives using m machines
and schedule them in a way stated in Observation 3. This will take L

2 times. Then, the solution will schedule the m
2 sequential jobs using m

2 machines.
Clearly, the total flow time of the jobs in J1 is 3mL

4 and the total flow time of the jobs in J2 is L
2 .

Fig. 5. Illustration for an O (mL2 + T) schedule stated in Observation 5. The solution will first process the sequential jobs as long as they arrive using m
2

machines and schedule the parallel jobs in J2 in [0, L] using m2 machines. Then, the solution will schedule the parallel jobs in J3 using m machines. The
total flow time of the jobs in J1 , J2 , and J3 is mL

2 , O (mL2), and T , respectively.

Observation 5. Let J = J1 ∪ J2 ∪ J3 be a job set, where J1 and J2 are the job sets stated in Observation 4. J3 =
{ j31, . . . , j

3
i
, . . . } contains Tmp parallel jobs of size 1

p
, where j3

i
is released at time point L + i−1

mp
. Then, the value of the

optimal solution is at most O (mL2 + T). A possible O (mL2 + T) schedule can be found in Fig. 5.

36

B. Moselely, R. Zhang and S. Zhao Theoretical Computer Science 938 (2022) 24–38

Lemma 9. Considering the job set J3 stated in Observation 5, an O (m)-competitive algorithm can schedule at most (mL2+T
TpL−T 2p

)-

proportion of the total volume of the jobs in J3 after time 32 L.

Proof. Note that the total volume of the jobs in J3 is Tm, and the first job in J3 is released at time point L. Assume
that a 1

x
proportion of the total volume of the jobs in J3 are scheduled after the time 3L

2 . Since the size of each job in

J3 is 1
p
, at least Tmp

x
jobs in J3 are completed after 3L

2 . Then, comparing the schedule stated in Observation 5, the total

increased delay of these Tmp
x

jobs is at least TmpL
x

− T 2mp
x

. The delay is bounded by O (m2L2 + mT). This implies that:
TmpL

x
− T 2mp

x
≤m2L2 + Tm. Thus, we have 1

x
≤ mL2+T

TpL−T 2p
. �

Now, we are ready to prove the first part of Theorem 1. Namely, any online algorithm has a competitive ratio of �(m)

for average flow time in the DAG model.

Proof of the first part of Theorem 1. Consider the hard instance described in Observation 4 and Observation 5. By Lemma 8,
we know that any O (m)-competitive algorithm will schedule at most m√

L
proportion of the total volume of the sequential

jobs in [0, L2]. Thus, in the best case, the total volume mL
2 −ǫ of the sequential jobs will be scheduled in [L

2 , 3L2] when L ≫m.
This implies that at least the volume mL

4 − ǫ of the sequential jobs will be scheduled in [L, 3L2]. By Lemma 9, we know that

at most the volume Tm · (mL2+T
TpL−T 2p

) of jobs in J3 can be scheduled after time 3L2 . Observe that if Tm · (mL2+T
TpL−T 2p

) < mL
4 , then

the lower bound �(m) directly follows. Clearly, setting the parameters L > T 2 and p >m2 , then the inequality above always
holds. �

It is worth noting that the hard instance stated in Observation 4 and Observation 5 implies a lower bound of the speed-
up curves model with the objective of the ℓ1-norm on flow times. Namely, any online algorithm has a competitive ratio of
at least �(m) for average flow time in the speed-up curves model.

Proof of the second part of Theorem 1. Each job in the DAG instance in the proof the first part of Theorem 1 has a corre-
sponding job in the speed-up curve instance. The parallelism of the jobs will behave identically between the two models.
Thus, the lower bound extends to the speed-up curves model.

For every job in DAG model we create one job in the speed-up curves model with the same processing time. We define
an appropriate concave speed-up function for the sequential jobs and parallel jobs, respectively. For every parallel job i, the
speed-up function is defined as the inverse proportional function of the number of machines, i.e., Ŵi(m

′) = pi
m′ . For every

sequential job j, the speed-up function is defined as the as a constant function, i.e., Ŵ j(m
′) = p j . Clearly, both the inverse

proportional function (m′ > 0) and the constant function are concave. Thus, the constructed instance is a valid instance for
the speed-up curves model. This instance is equivalent to the instance created in the lower bound for the DAG model. �

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

Benjamin Moseley was supported in part by a Google Research Award, an Infor Research Award, a Carnegie-Bosch en-
dowed chair, and NSF grants CCF-1824303, CCF-1845146, CCF-2121744, and CMMI-1938909. This work was done when
Ruilong Zhang visited professor Benjamin Moseley at Carnegie Mellon University. The authors thank two anonymous re-
viewers for their comments.

References

[1] Kunal Agrawal, I-Ting Angelina Lee, Jing Li, Kefu Lu, Benjamin Moseley, Practically efficient scheduler for minimizing average flow time of parallel jobs,
in: IPDPS, IEEE, 2019, pp. 134–144.

[2] Kunal Agrawal, Jing Li, Kefu Lu, Benjamin Moseley, Scheduling parallel DAG jobs online to minimize average flow time, in: SODA, SIAM, 2016,
pp. 176–189.

[3] Kunal Agrawal, Jing Li, Kefu Lu, Benjamin Moseley, Scheduling parallelizable jobs online to maximize throughput, in: LATIN, in: Lecture Notes in
Computer Science, vol. 10807, Springer, 2018, pp. 755–776.

[4] Krishna P. Belkhale, Prithviraj Banerjee, An approximate algorithm for the partitionable independent task scheduling problem, in: Benjamin W. Wah
(Ed.), Proceedings of the 1990 International Conference on Parallel Processing, Urbana-Champaign, IL, USA, August 1990. Vol. 1: Architecture, Pennsyl-
vania State University Press, 1990, pp. 72–75.

[5] Jacek Blazewicz, Mikhail Y. Kovalyov, Maciej Machowiak, Denis Trystram, Jan Weglarz, Preemptable malleable task scheduling problem, IEEE Trans.
Comput. 55 (4) (2006) 486–490.

37

B. Moselely, R. Zhang and S. Zhao Theoretical Computer Science 938 (2022) 24–38

[6] Maciej Drozdowski, Wieslaw Kubiak, Scheduling parallel tasks with sequential heads and tails, Ann. Oper. Res. 90 (1999) 221–246.
[7] Jianzhong Du, Joseph Y.-T. Leung, Complexity of scheduling parallel task systems, SIAM J. Discrete Math. 2 (4) (1989) 473–487.
[8] Pierre-François Dutot, Grégory Mounié, Denis Trystram, Scheduling parallel tasks approximation algorithms, in: Handbook of Scheduling, Chapman and

Hall/CRC, 2004.
[9] Jeff Edmonds, Sungjin Im, Benjamin Moseley, Online scalable scheduling for the ℓk-norms of flow time without conservation of work, in: SODA, SIAM,

2011, pp. 109–119.
[10] Jeff Edmonds, Kirk Pruhs, Scalably scheduling processes with arbitrary speedup curves, ACM Trans. Algorithms 8 (3) (2012) 28.
[11] Dimitris Fotakis, Jannik Matuschke, Orestis Papadigenopoulos, Malleable scheduling beyond identical machines, in: Dimitris Achlioptas, László A. Végh

(Eds.), Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019, September 20-22, 2019,
Massachusetts Institute of Technology, Cambridge, MA, USA, in: LIPIcs, vol. 145, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 17.

[12] Anupam Gupta, Sungjin Im, Ravishankar Krishnaswamy, Benjamin Moseley, Kirk Pruhs, Scheduling jobs with varying parallelizability to reduce variance,
in: SPAA, ACM, 2010, pp. 11–20.

[13] Sungjin Im, Benjamin Moseley, Kirk Pruhs, A tutorial on amortized local competitiveness in online scheduling, SIGACT News 42 (2) (2011) 83–97.
[14] Sungjin Im, Benjamin Moseley, Kirk Pruhs, Eric Torng, Competitively scheduling tasks with intermediate parallelizability, ACM Trans. Parallel Comput.

3 (1) (2016) 4.
[15] Klaus Jansen, Scheduling malleable parallel tasks: an asymptotic fully polynomial time approximation scheme, Algorithmica 39 (1) (2004) 59–81.
[16] Klaus Jansen, Ralf Thöle, Approximation algorithms for scheduling parallel jobs, SIAM J. Comput. 39 (8) (2010) 3571–3615.
[17] Klaus Jansen, Hu Zhang, An approximation algorithm for scheduling malleable tasks under general precedence constraints, ACM Trans. Algorithms 2 (3)

(2006) 416–434.
[18] Konstantin Makarychev, Debmalya Panigrahi, Precedence-constrained scheduling of malleable jobs with preemption, in: Javier Esparza, Pierre Fraig-

niaud, Thore Husfeldt, Elias Koutsoupias (Eds.), Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part I, in: Lecture Notes in Computer Science, vol. 8572, Springer, 2014, pp. 823–834.

[19] Gregory Mounie, Christophe Rapine, Denis Trystram, A 3/2-approximation algorithm for scheduling independent monotonic malleable tasks, SIAM J.
Comput. 37 (2) (2007) 401–412.

[20] Kirk Pruhs, Julien Robert, Nicolas Schabanel, Minimizing maximum flowtime of jobs with arbitrary parallelizability, in: WAOA, in: Lecture Notes in
Computer Science, vol. 6534, Springer, 2010, pp. 237–248.

[21] John Turek, Joel L. Wolf, Philip S. Yu, Approximate algorithms scheduling parallelizable tasks, in: Lawrence Snyder (Ed.), Proceedings of the 4th Annual
ACM Symposium on Parallel Algorithms and Architectures, SPAA ’92, San Diego, CA, USA, June 29 - July 1, 1992, ACM, 1992, pp. 323–332.

[22] Deshi Ye, Danny Z. Chen, Guochuan Zhang, Online scheduling of moldable parallel tasks, J. Sched. 21 (6) (2018) 647–654.

38

	Online scheduling of parallelizable jobs in the directed acyclic graphs and speed-up curves models
	1 Introduction
	1.1 Problems considered
	1.2 Our results

	2 Other related work
	3 Problem formulations
	3.1 Speed-up curves model
	3.2 Directed acyclic graph model

	4 Upper bound for the DAG model
	4.1 WLAPS algorithm
	4.2 Potential function
	4.3 Intuition
	4.4 Analysis

	5 Speed-up curves model
	6 Lower bound for DAG model
	Declaration of competing interest
	Acknowledgements
	References

