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Abstract: We obtain a comparison formula for integrals of mean curvatures of Riemannian hypersurfaces
via Reilly’s identities. As applications, we derive several geometric inequalities for a convex hypersurface I’
in a Cartan-Hadamard manifold M. In particular, we show that the first mean curvature integral of a convex
hypersurface y nested inside I cannot exceed that of T', which leads to a sharp lower bound for the total first
mean curvature of I in terms of the volume it bounds in M in dimension 3. This monotonicity property is
extended to all mean curvature integrals when y is parallel to I', or M has constant curvature. We also
characterize hyperbolic balls as minimizers of the mean curvature integrals among balls with equal radii in
Cartan-Hadamard manifolds.

Keywords: Reilly’s formulas, quermassintegral, mixed volume, generalized mean curvature, hyperbolic
space, Cartan-Hadamard manifold

MSC 2020: Primary: 53C20, 58]05, Secondary: 52A38, 49Q15

1 Introduction

Total mean curvatures of a hypersurface I' in a Riemannian n-manifold M are integrals of symmetric
functions of its principal curvatures. These quantities are known as quermassintegrals or mixed volumes
whenT is convex and M is the Euclidean space. They are fundamental in geometric variational problems, as
they feature in Steiner’s polynomial, Brunn-Minkowski theory, and Alexandrov-Fenchel inequalities
[11,14,19,20], which were all originally developed in Euclidean space. Extending these notions to Rieman-
nian manifolds has been a major topic of investigation. In particular, total mean curvatures have been
studied extensively in hyperbolic space in recent years [2,22-24]. Here, we study these integrals in the
broader setting of Cartan-Hadamard spaces, i.e., complete simply connected manifolds of nonpositive
curvature and generalize a number of inequalities that had been established in Euclidean or hyperbolic
space.

The main result of this article, Theorem 3.1, expresses the difference between the total rth mean
curvatures of a pair of nested hypersurfaces I and y in a Riemannian manifold M in terms of the sectional
curvatures of M and the principal curvatures of a family of hypersurfaces that fibrate the region between I’
and y. This formula simplifies when r = 1, T and y are parallel, or M has constant curvature, leading to a
number of applications. In particular, we establish the monotonicity property of the total first mean
curvature for nested convex hypersurfaces in Cartan-Hadamard manifolds (Corollary 4.1). This leads to a
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sharp lower bound in dimension 3 for the total first mean curvature in terms of the volume bounded by I’
(Corollary 4.3), which generalizes a result of Gallego-Solanes in hyperbolic 3-space [10, Cor. 3.2]. We also
extend to all mean curvatures some monotonicity results of Schroeder-Strake [21] and Borbely [4] for total
Gauss-Kronecker curvature (Corollaries 4.4 and 4.5). Finally, we include a characterization of hyperbolic
balls as minimizers of total mean curvatures among balls of equal radii in Cartan-Hadamard manifolds
(Corollary 4.7).

Theorem 3.1 is a generalization of the comparison result we had obtained earlier in [13] for the Gauss-
Kronecker curvature, motivated by Kleiner’s approach to the Cartan-Hadamard conjecture on the isoperi-
metric inequality [16]. Similar to [13], our starting point here, in Section 2, will be an identity (Lemma 2.1) for
the divergence of Newton operators, which were developed by Reilly [18,17] to study the invariants of
Hessians of functions on Riemannian manifolds. This formula, together with Stokes’ theorem, leads to
the proof of Theorem 3.1 in Section 3. Then, in Section 4, we develop the applications of that result.

2 Newton operators

Throughout this work, M denotes an n-dimensional Riemannian manifold with metric (-,+) and covariant
derivative V. Furthermore, u is a C»! function on M. In particular, u is twice differentiable at almost every
point p of M, and the computations below take place at such a point. The gradient of u is the tangent vector
Vu € T,M given by (Vu(p), X) = Vxu for all X € T,M. The Hessian operator Viu : .M — T,M is the self-
adjoint linear map given by V2u(X) == Vx(Vu). The symmetric elementary functions g, : R — R, for1 < r <k,
and x = (x, ...,X;) are defined by

)= Y ek
iy <<

We set gy == 1and g, = O forr > k + 1by convention. Let A(V2u) = (A, ...,A,,) denote the eigenvalues of V2u.
Then, we set

(V) = o (A(V2u)).

These functions form the coefficients of the characteristic polynomial

n

PQ) = det(Al — V2u) = ) (-1)'oi(Vu)A™.

i=0
Let 6;:;: be the generalized Kronecker tensor, which is equal to 1 (1) if iy, ..., iy are distinct and (jy, ...,j,) is
an even (odd) permutation of (i, ...,i,); otherwise, it is equal to 0. Then [18, Prop. 1.2(a)],

1 . .
0,(VPu) = ;5}:12};1&1;“ e Ui, (48]

where u; = Vju denote the second partial derivatives of u with respect to an orthonormal frame E; € T,M,
which we extend to an open neighborhood of p by parallel translation along geodesics. So Vg E; = Oat p. We
call E; a local parallel frame centered at p and set V; == Vg, V; == V;Vj. Each of the indices in (1) ranges from 1
to n, and we employ Einstein’s convention by summing over repeated indices throughout the article. The
Newton operators T : T,M — T,M [17,18] are defined recursively by setting 75 = I, the identity map, and
forr=1,

r
T4 = 0(VAl — TH g o Vau = ) (—1)io(Vau)(Va)' . ()
i=0
Thus, 7% is the truncation of the polynomial P(V?u) obtained by removing the terms of order higher thanr.
In particular, 7% = P(V2u). So, by the Cayley-Hamilton theorem, 7% = 0. Consequently, when V2u is non-
degenerate, (2) yields that
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U= (Vi) (Vi) = det(VZu)(Vaw) 1 = 7Y, 3)

where 7% is the Hessian cofactor operator discussed in [13, Sec. 4]. See [18, Prop. 1.2] for other basic identities
that relate 0 and 7. In particular, by [18, Prop. 1.2(c)], we have Trace(7%-VZ) = (r + 1)0;.1(V2u). So, by
Euler’s identity for homogeneous polynomials,

a V2
(T Diuy = Trace(T¥ o V2u) = (r + 1oy.1(Vu) = %uﬁ. (%)
ij
Thus, it follows from (1) that
a0,,1(V-u 1
(Tu)l} % " 6;;: j,ulljl uirj-,. (5)
ij

Furthermore, by [17, Prop. 1(11)] (note that the sign of the Riemann tensor R in [17] is opposite to the one in
this article), we have

. 1 .
(d-lv((r:-())j = -1 6;;;;:“1111 uir_lfr-lRi'J}irkuk’ (6)

where Ry = R(E;, Ej, Ei, Ee) = (ViV;Ex — V;ViEx, E¢). Another useful identity [17, p. 462] is
div(74(Vu)) = (7%, V2u) + (div(7TY), Vu), (7

where (-,-) here indicates the Frobenius inner product (i.e., (4, B) == A;B;; for any pair of matrices of the
same dimension). The divergence of 7% may be defined by virtually the same argument used for 7% in [13,
Sec. 4] to yield the following generalization of [13, (14)]:

(div(77); = W(T Py (8

Recall that 7% = 7 4_; by (3). Furthermore, 7 5 = 0 as we mentioned earlier. Thus, the following observation
generalizes [13, Lem. 4.2].

Lemma 2.1.

vu B (‘T“(Vu) vu)
dw( (w |D_< div(7r-, |v r >+ T

Proof. By Leibniz rule and (8), we have

Vu . Ujj UiUgUg;
div T = ( div(7TY), + (T )| —— - r2 ,
( (IV ur ]] (( Wup ] < 7 |v r > o ‘)“[ Vup vup?
where the computation to obtain the second term on the right is identical to the one performed earlier in [13,

Lem. 4.2]. To develop this term further, note that by (2)
(T Dyue = 0,(VU)Sg; — (T Py

which in turn yields

u U;U;
Te Dijlei—— v | = Ur(vzu) (TH)U l j
Hence,
Uil pUp; 1o, (Vzu) r ( Uillj
T - r2 = - (V) — (T =r(T )
( ’"])"{Wu l, |Vu lr+2] |VI'.I |r |Vu | k 4% ) ( )i,l' |V |2 =17 )i,l' |Vu |r+2

which completes the proof. O
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Below we assume, as was the case in [13, Sec. 4], that all local computations take place with respecttoa
principal curvature frame E; € T,M of u, which is defined as follows. Assuming [Vu(p)| + 0, we set
E, = Vu(p)/|Vu(p)|, and let Ej,..., E,_; be the principal directions of the level set of u passing through
p. Then, we extend E; to a local parallel frame near p. The first partial derivatives of u with respect to E;,
u; = Viu, satisfy

ui=0;fori#n, and u,=|Vul. (9)

Furthermore, for the second partial derivatives, w; = V;u, we have

u; =0, fori#j<n-1, and 3—’;:«;‘, for i+ n, (10)

where k7, ..., kX are the principal curvatures of level sets of u with respect to E,, i.e., they are eigenvalues
corresponding to Ej,..., E,_1 of the shape operator X — Vyv on the tangent space of level sets of u, where
V= Vu/|Vu|. We set k, = (x{', ...,kr1). So 0,(x%) is the rth mean curvature of the level set of u at p. In
particular, g,_1(x*) is the Gauss-Kronecker curvature of the level sets. The next observation generalizes [13,
Lem. 4.1].

Lemma 2.2.

w (T (Vw), Vu)
Ur(K ) |VI‘J Ir+2

Proof. (5) together with (9) and (10) yields that
Uil 3 i Ul
(T?)ﬁm = B, - b o T

1 iy, Wiy Wiy Up

r My jr |Vu Ir |VH |2
1 niy -+ ipy .U u
= ;5},1{1“_4-"1(!-! e Kl-'. D

3 Comparison formula

Here, we establish the main result of this work. For a C%! hypersurface T in a Riemannian n-manifold M,
oriented by a choice of normal vector field v, and 0 < r < n - 1, we let

M = [ox)

r

be the total rth mean curvature of T', where x = (1, ...,k,_1) denotes principal curvatures of I' with respect to
v. Note that M o(T') = |I'], the volume of T, since gy = 1, and M,,_(T) is the total Gauss-Kronecker curvature of
T (denoted by G(T') in [13]). A domain Q c M is an open set with a compact closure cl(Q). If T bounds a
domain Q, then by convention we set M _4(I') = |Q|, the volume of Q. The following theorem generalizes [13,
Thm. 4.7], where this result had been established forr = n — 1. It also uses less regularity than was required
in [13, Thm. 4.7].

Theorem 3.1. Let T and y be closed C*! hypersurfaces in a Riemannian n-manifold M bounding domains Q
and D, respectively, with cl(D) c Q. Suppose there exists a C*! function u on cl(Q\D) with Vu # 0, which is
constant on T and y. Let x* = (x{,, ...,k,_1) be the principal curvatures of level sets of u with respect to
E, = Vu/|Vul, and let E,,..., E,_; be the corresponding principal directions. Then, for0 <r <n -1,
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MT) - M (y)=(r+1) J- Or1(k™) + J. (_in?[ - K ,Klrn Vu |ZK;: K,-]:_JVH |ir—lRiﬂ.f_|irﬂ]!

Q\D Q\D

where |Vu |; = Vg|Vul, Rju = R(E;, Ej, Ex, Ei) are components of the Riemann curvature tensor of M, Kij = Ry
is the sectional curvature, and the summations take place over distinct values of 1 < iy,...,1, < n — 1, with
iy <---< i,_q in the first sum and i <---< i,_; in the second sum.

Proof. By Lemmas 2.1 and 2.2,

N \'%
dw(‘r'{lv o ]] = (r + Dopa(x¥) + <d1v(‘7"'§), #> (11)

By Stokes’ theorem and Lemma 2.2,

. Vu _ u Vu ﬂ — —
J dw('T, e ]] = rJ <Tr[_|Vu |”1]’ qu|> MA(T) — M(y)-
vy

Q\D

So integrating both sides of (11) yields
M@ - M) =0+D [ o0+ | <dw(¢“>, T >
Q\D Q\D

Using (6) and (9), we have

1 fiy...1r Ul
<le(‘r") |V |r+1 > _ 1)! 511'11 ulu’l ' ui}_ljr_1RﬁrLkW
- 1 fy...0r uilfﬁ uir—ljr—l
(r—Dt v v

The last expression may be written as the sum of two components, A and B, which consist of terms with
i =nandi # n, respectively. Note that we may assume j,..., j, # n, for otherwise 6“1 = 0. To compute A,
note that if i = n, then for 6’ ’1 " " not to vanish, we must have i, ..., i # n. Then, hy (10), Usj, = O unless
Ik = ji» which yields that

1 niy ...ip Wiy Ui, i, IR
A= (f — 1)] 5ni1,.,l':rlvu| T |V | m,—l,n = th e 1:1 irm

where the sum ranges over all distinct values of 1 < ij,..., i <n — 1, with ij <-:-< i,_; as desired. To find B
note that if i # n, then for 6;:'{‘_“}:" not to vanish, we must have iy = n for some 1 <k<r. If k=r, then
Ry in = Rjnn = 0. In particular, B =0 when r = 1. Now assume that r > 2. Then, we may assume that
k +r, or ir # n. Then, by (10), u;j, = O unless i, = j,. So, we may assume that i, = j, for r # k, which in
turn implies that j, = i. Thus, B = ';:IB;(, where

B = 1 ify...ik_yiksy...dr Uijj, Ui sixy Uni Uipign Ui, i,y
- By oo dp gl Qppy.-.d tirirn
(r— 11 Ml el gy [Vul |Vu| |Vu| [Vyl
-1 u u |VI‘1 |i u u
) DR K val Ky -+ Ky Riirns
since u, = |Vu|. Here, the sum ranges over all distinct indices 1<i,1iy,..., ik_1, iky.-., Ir < n — 1, with
if << Qg1 < lgs1 <*--< Ip_1. Note that By =---= B,_y. Thus,

1
B=(r-1B, = Vil Kiy - K VU iRyins

which completes the proof (after renaming i to i,_1). a
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4 Applications

Here, we develop some consequences of Theorem 3.1. A subset of a Cartan-Hadamard manifold M is convex
if it contains the (unique) geodesic segment connecting every pair of its points. A convex hypersurfaceT ¢ M
is the boundary of a compact convex set with interior points. If T is of class C¥!, then its principal curvatures
are nonnegative at all twice differentiable points with respect to the outward normal. Conversely, if the
principal curvatures of a closed hypersurface I' ¢ M are all nonnegative, then I’ is convex [1]. See [13, Sec. 2
and 3] for the basic properties of convex sets in Cartan-Hadamard manifolds. A set is nested inside T if it lies
in the convex domain bounded by I.

Corollary 4.1. Let T and y be C"! convex hypersurfaces in a Cartan-Hadamard n-manifold. Suppose that y is
nested inside T'. Then, My(T) > M(y).

Proof. Setting r = 1 in the comparison formula of Theorem 3.1 yields

AMD—MMszmw%-JM{Wj. (12)

[Vul
a\D a\D

where Ric stands for Ricci curvature; more explicitly, in a principal curvature frame where E, = Vu/|Vu,
Ric(E,) is the sum of sectional curvatures Ki,, for1 <i < n — 1. So Ric(E,) < 0. If T and y are smooth (C*®)
and strictly convex, we may let u in Theorem 3.1 be a function with convex level sets [4, Lem. 1]. Then,
o2(x*) > 0, which yields My(T') > M;y(y) as desired. This completes the proof since we may approximate I'
and y by smooth strictly convex hypersurfaces, e.g., by applying the Greene-Wu convolution to their
distance functions, see [12, Lem. 3.3]; furthermore, total mean curvatures will converge here since they
constitute “valuations” in the sense of integral geometry, see [13, Note 3.7] or [3, Prop. 3.8]. O

Dekster [9] constructed examples of nested convex hypersurfaces in Cartan-Hadamard manifolds
where the monotonicity property in the last result does not hold for Gauss-Kronecker curvature. So the
aforementioned corollary cannot be extended to all mean curvatures without further assumptions, which
we will discuss below. First, we need to record the following observation.

Lemma 4.2. Let S, be a geodesic sphere of radius p centered at a point in a Riemannian manifold. As p — 0,
M(S,) converges to O forr < n —2 and to |S™ Y| forr=n - 1.

Proof. A power series expansion [6, Thm. 3.1] of the second fundamental form of S, in normal coordinates
shows that the principal curvatures of S, are given by k” = (1 + 0(p)/p. So

o) = ("} 1)&(1 + 0(p).

Another power series expansion [15, Thm. 3.1] yields
I1Spl = 18" Mp™1(1 + O(p?)).

So, it follows that
M) = ("5 1)ismHpmtor + 0o,
which completes the proof. O

Gallego and Solanes showed [10, Cor. 3.2] that if " is a convex hypersurface bounding a domain Q ina
hyperbolic n-space of constant curvature a < 0, then

M) > —(n — 1)2a|Q)].
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When comparing formulas, note that in [10], mean curvature is defined as the average of x;, as opposed to
the sum of k;, which is our convention. Large balls show that the above inequality is sharp. Here, we extend
this inequality to Cartan-Hadamard 3-manifolds as follows:

Corollary 4.3. Let T be a CY! convex hypersurface in a Cartan-Hadamard n-manifold M bounding a domain Q.
Suppose that curvature of M is bounded above by a < 0. Then,

M) > —(n - DalQ].

Furthermore, if n = 3, then
M(T) > —4alQ).

Proof. Let y = Y, in (12) be a geodesic sphere of radius p. By Lemma 4.2, Ml(yp) — 0 as p — 0, which yields

My(T) = 2Jaz(x") - '[Ric(lz—;) > —(n - 1alq],
0

o
as desired. When n = 3, Gauss’ equation states that
o,() = K¥ - K,

where K" is the sectional curvature of level sets of u and Kj; is the sectional curvature of M with respect to
tangent planes to level sets of u. Thus,

My(T) = 2JK“ - zjK;:, - J-Ric[Ig—ul] > —4alQ)],
Q Q 0 "

which completes the proof. O

We say I is an outer parallel hypersurface of a convex hypersurface y if all points of I’ are at a constant
distance A > O from the convex domain bounded by y. Since the distance function of a convex set in a
Cartan-Hadamard manifold is convex [5, Prop. 2.4], T is convex. Furthermore, T is C»! for A > 0 [13, Lem.
2.6]. The following corollary generalizes [13, Cor. 5.3] and a theorem of Schroeder-Strake [21, Thm. 3], where
this result was established for Gauss-Kronecker curvature; see also [13, Note 6.9].

Corollary 4.4. Let M be a Cartan-Hadamard n-manifold, and T and y be C%! convex hypersurfaces in M.
Suppose that T is an outer parallel hypersurface of y. Then, M(T) > M, (y) for1<r<n-1.

Proof. We may let u in Theorem 3.1 be the distance function of the convex domain bounded by I'. Then, |Vu|
is constant on level sets of u. So, |[Vu |; = 0 for 1 < i < n — 1, which yields

M = M) > 0+ D) [ 009 - atn=1) [ 010,
0\D Q\D
where a < 0 is the upper bound for sectional curvatures of M. Since u is convex, g,(k*) > 0, which com-

pletes the proof. O

The next result generalizes [13, Cor. 5.2] and observation of Borbely [4, Thm. 1] for Gauss-Kronecker
curvature.

Corollary 4.5. Let M be a Cartan-Hadamard n-manifold with constant curvature, and T and y be C%! convex
hypersurfaces in M, with y nested inside T. Then, M(T') > M,(y), forl<r<n-1

Proof. Again we may assume that the function u in Theorem 3.1 is convex [4, Lem. 1]. If M has constant
curvature a, then Rjze = a(6ybje — 6:8j). Thus, Theorem 3.1 yields
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Mr(r) = Mr(y) == (T + 1) J. UH—I(KH) = a(n iE T) J Ur—l(xu)- (13)
Q\D a\D
By assumption a < 0, and since U is convex, o,(x*) = 0, which completes the proof. O

The above result had been observed earlier by Solanes [22, Cor. 9]. It is due to the integral formula for
quermassintegrals [22, Def. 2.1], which immediately yields that quermassintegrals of convex domains are
increasing with respect to inclusion. Monotonicity of total mean curvatures follows due to a formula [22,
Prop. 7] relating quermassintegrals to total mean curvatures. As an application of the last corollary, one
may extend the definition of total mean curvatures to non-regular convex hypersurfaces as follows. If T is a
convex hypersurface in a Cartan-Hadamard manifold, then its outer parallel hypersurface at distance &,
denoted by I?, is CV! for all € > 0 [13, Lem. 2.6]. So M(T®) is well defined. By Corollary 4.4, M,(T®) is
decreasing in €. Hence, its limit as £ — 0 exists, and we may set M,(T) = lim._oM,(T%).

Next, we derive a formula that appears in Solanes [22, (1) and (2)] and follows from Gauss-Bonnet-
Chern theorems [8,7]; see also [22, Cor. 8]. Here k!!, when k is a positive integer, stands for the product of all
positive odd (even) integers up to k, when k is odd (even). For k < 0, we set k!l = 1.

Corollary 4.6. Let T be a closed C! hypersurface in an n-manifold M bounding a domain Q. Suppose that M
has constant curvature a, and cl(Q) is diffeomorphic to a ball. Then,

n—(n mod 2)

2 . "
_|en-1j _ @i-Ditn-2i -1 , _
Mp () = |8" :; TR @M _zi_1(T).

Proof. Let ¢ : cl(Q) — B" be a diffeomorphism to the unit ball in R” and set u(x) = |¢p(x)]’. All regular level
sets y of u satisfy (13). Furthermore, these level sets are convex near the minimum point x; of i, since u has
positive definite Hessian at xy. So by Corollary 4.5, for these small level sets,

M(S) < Miy) < MA(S"),

where S and S’ are geodesic spheres centered at x; such that S is nested inside y and y is nested inside S'.
Consequently, by Lemma 4.2, as y shrinks to xp, M,_{(y) converges to |S*1|, while M (y) vanishes for
r < n — 2. Thus, since g,(x%) = 0, (13) yields

M) = |87 — ajon_z(x“)

Q
and
1 an-r+1
[ = Iy, sy + L2120 [, 0
a Q
for r < n — 2. Using these expressions iteratively completes the proof. O

Finally, we include a characterization for hyperbolic balls, which extends to all mean curvatures a
previous result of the authors on Gauss-Kronecker curvature [13, Cor. 5.5].

Corollary 4.7. Let M be a Cartan-Hadamard n-manifold with curvature <a < 0, and B, be a ball of radius p in
M. Then, forl<r<n-1,
M,(3B,) > M,(3By),

where Bg denotes a ball of radius p in a manifold of constant curvature a. Equality holds only if B, is isometric
to BS.
1]
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Proof. For r = n — 1, the desired inequality has already been established [13, Cor. 5.5]. Suppose then that
r < n — 2. We will show that

Mr(aBp) = (;" + I)J.UHI(KM) - ﬂ(ﬂ & l")-|.'-':'rr—l(xu) = Mr(aBpﬂ)' (1[‘)
B, B,

Letting u be the distance squared function from the center o of B,, and y shrink to o in Theorem 3.1, yields
the first inequality in (14) via Lemma 4.2. The principal curvatures of 0B, are bounded below by
/—a coth(y=ap) [16, p. 184], which are the principal curvatures of 0Bg. Hence, the mean curvatures of
0B, satisfy

G (k) > (" g 1)(@ coth(~=ap))" = o2(x¥),

where o/ (x*) are the mean curvatures of dB;. Furthermore, if A(p, 6)d6 denotes the volume element of 3B,
in geodesic spherical coordinates, then by [16, (1.5.4)],

. n-1
A, 6) > (S“’hj__@) _ 4(p, 0),

where A%(p, #)d@ is the volume element of aBg; see [13, Cor. 5.5]. Thus,

Ja,(xu) > T I oS (x¥)Aa(t, 0)d0dt = Jo,“(x“),
B, 0 s™! By

which yields the second inequality in (14). If M,(3B,) = M(8B;), then equality holds in the first inequality
of (14). So K, = a, i.e., the radial sectional curvatures of B, are constant, which forces B, to have constant
curvature a [13, Lem. 5.4]. Hence, B, is isometric to By. O
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