uBrain: A Unary Brain Computer Interface

Di Wu, Jingjie Li, Zhewen Pan, Younghyun Kim, and Joshua San Miguel
di.wu@ece.wisc.edu,{jingjie.li,zhewen.pan,younghyun kim,jsanmiguel}@wisc.edu
Department of ECE, University of Wisconsin—-Madison
Madison, WI, USA

ABSTRACT

Brain computer interfaces (BCIs) have been widely adopted to
enhance human perception via brain signals with abundant spatial-
temporal dynamics, such as electroencephalogram (EEG). In recent
years, BCI algorithms are moving from classical feature engineering
to emerging deep neural networks (DNNs), allowing to identify the
spatial-temporal dynamics with improved accuracy. However, ex-
isting BCI architectures are not leveraging such dynamics for hard-
ware efficiency. In this work, we present uBrain, a unary computing
BCI architecture for DNN models with cascaded convolutional and
recurrent neural networks to achieve high task capability and hard-
ware efficiency. uBrain co-designs the algorithm and hardware:
the DNN architecture and the hardware architecture are optimized
with customized unary operations and immediate signal processing
after sensing, respectively. Experiments show that uBrain, with
negligible accuracy loss, surpasses the CPU, systolic array and sto-
chastic computing baselines in on-chip power efficiency by 9.0,
6.2X and 2.0X.

CCS CONCEPTS

« Hardware — Emerging interfaces; Application specific in-
tegrated circuits; « Computing methodologies — Special-
purpose algebraic systems; Artificial intelligence.

KEYWORDS

Unary computing, stochastic computing, temporal computing, brain
computer interface, power efficiency, neural networks

ACM Reference Format:

Di Wu, Jingjie Li, Zhewen Pan, Younghyun Kim, and Joshua San Miguel. 2022.
uBrain: A Unary Brain Computer Interface. In The 49th Annual International
Symposium on Computer Architecture (ISCA °22), June 18-22, 2022, New
York, NY, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3470496.3527401

1 INTRODUCTION

Since the 1920s 79, 83], brain signals have been used to understand
creature behaviors, as they exhibit varying brain dynamics, i.e.,
signal patterns, in both the spatial and temporal dimensions. In
the last 30 years, various brain signal modalities [67] have been
leveraged to capture, analyze and control human brain activities

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA 22, June 18-22, 2022, New York, NY, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-8610-4/22/06...$15.00
https://doi.org/10.1145/3470496.3527401

Table 1: Comparison of BCI hardware in terms of the task
capability and hardware efficiency. L, M and H are short for
low, medium and high, respectively. The diversity column
additionally contains the supported operations.

Task Capability Hardware Efficiency

Platform - .

Accuracy { Diversity | Sense { Store { Compute
CPU 67 ~ 98% H
[41, 81] [25, 97] (All) L L L
HALO 67 ~ 85% | H(SVM,
[29] [97] FFTete) | = | M M
SC-SVM 67 ~ 75% L
[25] [25] (SVM) LM H
uBrain H
(ours) 1 ~95% | onn, RNy | B H H

via brain computer interfaces (BCIs) [1, 47]. In this work, we focus
on electroencephalogram (EEG) signals, which are collected at the
scalp without clinical surgery and dominate over 70% research in the
last decade [22]. Recently, due to the high accuracy in identifying
the spatial-temporal dynamics [70, 80, 97], deep neural networks
(DNN) [34] have attracted research interest in the BCI community
to substitute classical feature engineering.

State-of-the-art BCI hardware is constructed as three stages,
i.e., sense-store-compute, as in Table 1. First, the sense stage utilizes
Analog-to-Digital Converters (ADCs) to transform the sampled
analog EEG signals obtained by the sensor to digital binary data.
Then the store stage uses a digital memory to buffer all the digitized
data within a predefined time window. Finally, the compute stage
interacts with the digital memory and calculates the results. As
most EEG-based BClIs are designed to be lightweight, as well as
responsive in real time to the brain activities [22, 67], they usually
embed general-purpose CPUs or even GPUs [41, 81, 97], which can
flexibly execute both classical feature engineering and emerging
DNNs, offering varying accuracy and high task diversity. Mean-
while, in the computer architecture community, there is a trend
to optimize the hardware efficiency of BCIs, targeting either the
entire system [29, 54] or partial stages [25, 44, 74, 84]. As examples,
Karageorgos et al. manufacture a reconfigurable binary comput-
ing BCI, HALO, with hardware optimized for diverse tasks [29].
Dedicated functional units are assigned to classical algorithms like
Support Vector Machine (SVM) and Fast Fourier Transform (FFT),
etc., while a micro-controller is responsible for extended opera-
tions with lower efficiency. And Han et al. design SC-SVM to use
low-power stochastic computing [19, 91] to implement SVM [25].

Challenges, however, still exist and hinder the implementation
of desirable BCIs with both high task capability and hardware
efficiency as in Table 1. First, the task capability in existing BCIs is
imbalanced in terms of accuracy and diversity, given a reasonable BCI

ISCA 22, June 18-22, 2022, New York, NY, USA

Time

Raw signal m m m @ @
WO -0

Compute

(a) Existing designs sense and store raw signals from multiple
timestamps before compute.

Raw signal ,m !j .E m
Se/l;_;z& @ @ @
Compute Iﬂb i:b i:»

(b) The proposed uBrain computes on sensed samples in bit-
stream format immediately without storing them.

Figure 1: BCI hardware stage. The vertical dashed and solid
lines mark the earliest start and the latest end of the compute
stage.

hardware budget. The accuracy of widely-adopted classical feature
engineering algorithms on HALO and SC-SVM is not comparable
to, e.g., on average 5.4% lower than, that of emerging DNNs running
on CPUs [70]; however, CPUs exhibit significantly lower hardware
efficiency. On the other hand, diverse BCI tasks can be executed
on CPUs and HALO, while only a single task can run on hardware
efficient SC-SVM. Second, existing BCI hardware provides suboptimal
hardware efficiency, due to lacking immediate signal processing after
sensing. Classical feature engineering on CPUs, HALO and SC-
SVM, as well as most emerging DNNs on CPUs, operates on all
binary data within a predefined time window, which need to be
sensed and stored before compute, introducing a delay, i.e., no
overlap, between the sense/store stage and the compute stage in
Figure 1a. Such signal processing lagging behind sensing decreases
the hardware efficiency at all stages. At the sense stage, existing
BCIs require expensive high-resolution ADCs (12 bits or beyond [29,
67]), especially for massive signal channels (256 or 3072 channels
in [8, 54]). At the store stage, a large memory is mandatory, with
the size proportional to the window size. At the compute stage,
the hardware works on a window of data without leveraging the
time at the sense/store stage, increasing the running frequency and
power.

Our proposal to address the above challenges is uBrain, a unary
computing architecture for EEG-based BCIs by co-designing the
DNN algorithm and hardware to achieve high task capability and
hardware efficiency in Table 1. uBrain distinguishes itself from ex-
isting designs in two aspects. First, uBrain executes emerging DNN,
instead of classical feature engineering, with customized unary oper-
ations, and achieves high task accuracy and diversity. uBrain targets
DNN architectures [97] with cascaded convolutional neural net-
works (CNNs) for spatial features and recurrent neural networks
(RNNs5s) for temporal features, naturally offering higher accuracy
than feature engineering. To further guarantee high accuracy, the
DNN is optimized with customized unary operations: 1) no data
overflow beyond the legal unary data range; 2) every operation is
deliberately matched to a highly accurate yet simple unary com-
puting unit. Moreover, uBrain performs multiple BCI tasks using

Wu et al.

DNNs with the same architecture but different weights. Such an
algorithm-based approach requires neither fine-tuned software nor
hardware reconfigurability, unlike with a CPU or HALO. Second,
uBrain enables simultaneous high efficiency in all hardware stages,
due to immediate signal processing after sensing. uBrain targets to
optimize the efficiency for the DNN above, which shows high ac-
curacy in identifying spatial-temporal dynamics, i.e., brain signal
patterns. The adopted DNN allows unary bitstreams to flow eas-
ily from the sensor to unary computing units without complex
interactions [99]. At the sense stage, we propose low-cost Analog-
to-Temporal Conversion (ATC) to directly generate temporal-coded
unary bitstreams from the sample at each timestamp in Figure 1b.
These bitstreams are immediately computed on upon arrival with-
out waiting and storing the entire window, reducing the overhead.
At the compute stage, uBrain applies a hybrid unary binary ar-
chitecture, which pipelines via inter-layer hardware time-division
multiplexing (HTDM) and overlaps with the sense/store stage to
lower the running frequency. The low frequency leads to reduced
dynamic power and enables the use of low-leakage techniques for
power efficiency. The hardware efficiency is further boosted by
intra-layer HTDM, which reuses the computing units. Also, we de-
sign novel unary multipliers to improve the accuracy and efficiency.
To summarize, in the context of DNN-based BClIs, uBrain ensures
simultaneous high accuracy and efficiency, while prior works offer
neither efficient execution, e.g., CPU and HALO, nor basic support,
e.g., SC-SVM.
We list the contributions of this work as follows:

o This work identifies that existing BCIs are of task incapability
and hardware inefficiency due to lacking immediate signal
processing after sensing. We propose a unary computing BCI,
uBrain, with algorithm-hardware co-design to overcome
above deficiencies.

e uBrain optimizes an emerging DNN with customized unary
operations for accurate and efficient execution. It also ex-
hibits high task diversity by performing multiple tasks with
the same DNN architecture, i.e., requiring neither fine-tuned
software nor hardware reconfigurability.

e uBrain’s hybrid unary binary architecture is able to perform
immediate signal processing after sensing, with high hard-
ware efficiency due to reduced running frequency, allowed
by Analog-to-Temporal Conversion, inter-layer hardware
time-division multiplexing (HTDM). The intra-layer HTDM
and unary multiplier innovation further boost the efficiency
by eliminating the hardware bottleneck in existing unary
designs.

The following Section 2 reviews BCI and unary computing. Then
Section 3 and Section 4 introduce uBrain’s DNN and hardware
architectures. Next, Section 5 evaluates the performance. Finally,
Section 6 concludes this work.

2 BACKGROUND

In this section, we review the BCI signal modalities and frameworks,
as well as unary computing concepts.

uBrain: A Unary Brain Computer Interface

() Hardware (__) Classical: separated three stages

Emerging: three stages are merged to a single DNN
—— Mandatory - - - Optional

EEG-based BCI framework

r —L.| Signal |_,[(Preprocessing
acquisition

vy
Feature extract.

. '_ .| Feedback A - o
stimulus

XX
XXX

Figure 2: Classical and emerging EEG-based BCI frameworks.

2.1 Brain Computer Interface

BCl is defined as a complete software-hardware system to manip-
ulate brain signals with distinguished modalities to control com-
puters for communication, classification, prediction, control and
beyond in real time [14, 22, 51, 67, 73].

2.1.1 BCI Signal Modality. Depending on the electrode location,
brain signals have varying modalities [23, 43, 49, 53, 67, 76], e.g.,
Electroencephalogram (EEG), ECoG and SNA signals, etc., which
are collected at scalp, arachnoid or dura and cerebral cortex using
non-, semi- and fully-invasive electrodes. More invasiveness im-
poses better signal quality [39] but growing BCI power restrictions
(tens of milliwatts) [29]. Among those, EEG signals attract most
research interests [22] with applications in motor imagery [28, 77],
seizure prediction [4, 48], emotion recognition [2, 86], sleep moni-
toring [72, 80], speech synthesis [6, 88], odor memorization [66],
etc. In this work, we choose EEG signals to prove uBrain’s task
diversity using motor imagery and seizure prediction tasks, which
are also present in HALO [29].

2.1.2 EEG-Based BCI Framework. Classical BCI frameworks for
EEG signals based on feature engineering consist of five stages [5,
15, 36, 65, 67-69] in Figure 2, formulating a closed-loop system.
The signal acquisition and feedback stimulus stages involve hard-
ware electrodes, while others utilize either general-purpose soft-
ware [41, 81] or specialized hardware [29]. Raw signals are sam-
pled by sensors at 10 ~ 5000Hz [87] and later digitized by ADCs
with 12 ~ 16 bits [29, 67]. Then the digital data are sliced into
windows and denoised in the pre-processing stage. Next, useful
features for the target task are extracted from the denoised signals.
The following stage performs classification via classical machine
learning algorithms to determine the proper action. According to
the task purpose, the optional feedback electrodes will send out
the expected stimulus back to the subject. Also, adjacent stages
require communication if not integrated together. The latency
of BCIs ranges from tens of milliseconds [29, 89] to several sec-
onds [4, 10, 18, 31, 37, 64, 88] according to the task. However, hu-
man reaction and movement time! to events is usually between
200 ~ 400ms [11, 27, 33]. Therefore, we bound the BCI latency
budget to 250ms in this work.

The reaction and movement time are the elapsed time from the event occurrence
to the event realization and from the event realization to the event reaction for a
subject [11, 27, 33], respectively.

ISCA 22, June 18-22, 2022, New York, NY, USA

0 0 0 0 s? s¥ s
0 0 0 ‘,"3 26 2

43 8 44
S T L S, K
ME= T s s i
0 s s 0
0 0 0 0
0 0 0 0
0 0 0 0
Inion
Electrode placement Positional mapping
Mc; MGy MCraw-y
/ Conv \ / Conv \ m
CNN: extract
o oy m spatial features
LSTM: extract
LST™™ ﬂ/ LST™™ temporal features

@ O@ @@ @ @ F Fc:c;?ls‘;ilfly‘ﬁnal

Eyeclosed Bothfeet Both fists Left fist Right fist

Figure 3: DNN with a cascaded CNN-LSTM architecture to
classify motor imagery based on EEG signals. Positional map-
ping maintains the relative position among electrodes in the
mesh clip at timestamp ¢ (MC;).

As EEG signals vary according to location, and also fluctuate
through time, both spatial and temporal features exist in EEG sig-
nals, for which DNNs like convolutional neural networks (CNNs) [20,
36, 40] and recurrent neural networks (RNNs) [6, 42, 56, 80] are
leveraged, achieving 5.4% accuracy boost on average [70]. Besides
the accuracy benefit, DNNs can further merge multiple stages in
classical frameworks, including pre-processing, feature extraction
and classification, into a single stage in Figure 2, lowering the com-
plexity.

Zhang et al. [97] introduce a DNN architecture in Figure 3 with
cascaded CNN and Long Short-Term Memory (LSTM) [26] to si-
multaneously learn the spatial and temporal features for motor
imagery, i.e., classifying which motor is imagined in the brain. The
brain signals are collected at 128Hz by 64 electrodes spreading
out the scalp. Signals at timestamp t are organized as a mesh clip,
MC;, where the relative location among the electrodes is preserved
with positional mapping to extract the spatial features with matrix
convolution (Conv) and fully connected matrix multiplication (FC).
Next, the cascaded LSTM layers extract the temporal features from
the spatial features at total W timestamps. The spatial features at
different timestamps can be extracted in parallel, while the adjacent
temporal feature extraction is sequential. At the output, a head, i.e.,
a FC layer, is applied for final classification among five categories.
In this work, uBrain uses a similar but lightweight DNN, compared
to the original design from Zhang et al. [97]. The DNN is optimized
with unary computing specific operations for hardware accuracy
and efficiency, and trained on separate datasets for different tasks
for high task diversity. As DNNs have been widely used in various

ISCA 22, June 18-22, 2022, New York, NY, USA

Rate coding (random bits) 1100101010100110 (P=8/16, Viypi=0.5, Vp;=0.0)

Temporal coding (deterministic bits) 000000001 TTTTT11 (P=8/16, V;pi=0.5, V,;=0.0)

Figure 4: Unary bitstreams with varying codings.

human signals [16], it is possible to extend uBrain to non-EEG
signals with proper training, which is beyond the scope of this
work.

One appeal in DNN-based BClIs is in-situ training for optimal
personalization. However, Zhang et al. [97] showcase that their
human test accuracy surpasses best classical accuracy by 8%, i.e.,
non-optimal yet accurate enough for personal use. As such, we
leave in-situ training to future work.

Another important aspect of BCIs is power consumption. Com-
mercial BCI systems [24, 58, 59] can have around 200mW total
power [58]. They spend 50 ~ 100mW on signal acquisition, prepro-
cessing and/or communication, but support no compute. uBrain is
envisioned as the compute engine in HALO-like BCI systems, cov-
ering the signal acquisition to classification stages. uBrain imposes
no changes to the interfaces of the communication and feedback
stimulus modules and can be plugged into commercial BCI systems
with minimal added complexity, classification error and power over-
head (around 30mW as evaluated in Section 5.5). On-chip compute
in uBrain further saves power in communication.

2.2 Unary Computing

Unary computing works on serial bitstreams with extremely simple
logic [91]. The bitstreams can be either rate- or temporal-coded in
stochastic [19] or temporal computing [45], with applications in
image processing [3], low-density parity-check [82, 90], DNN [50,
75], DNA sequencing [45], etc.

2.2.1 Data Representation. The rate- and temporal-coded bitstreams
relate the data value to the ratio of bit 1s, but are featured with
different bit distributions in Figure 4, i.e., random and deterministic
distributions, respectively. The deterministic distribution requires
all bit 1s ahead of all bit 0s, or vice versa. The bitstream value
depends on not only the ratio of bit 1s, but also the polarity. The
unipolar and bipolar bitstreams refer to unsigned and sign data with
the legal value range of [0, 1] and [—1, 1], respectively. Given N-bit
binary value P as the ratio of bit 1s, unipolar and bipolar bitstreams
of length 2N are valued V,n; = P and Vj; = 2P — 1. uBrain applies
both codings for high task accuracy and hardware efficiency.

2.2.2 Analog-to-Stochastic Conversion. Conventionally, rate- or
temporal-coded bitstreams are generated by comparing the buffered
source data with a random number generator or counter output in
the digital domain in Figure 5a. However, the digital units to gener-
ate unary bitstreams are more expensive compared to the analog
counterparts. There exist explorations into the low-cost conversion
of analog signals into rate-coded bitstreams for image process-
ing applications [3, 17, 30, 38, 63], i.e., analog-to-stochastic con-
version. Onizawa et al. leverage Magnetic-Tunnel Junction (MT])
devices [63], whose state switching is probabilistic. With proper
configurations, a rate-coded bitstream with its value linear to the
analog input amplitude can be generated, eliminating the need for

Wu et al.

input

Neo
D
RNG
[RNG | w} S

Unipolar

(a) Static multiplier. The RNG for A is only updated by input
bit 0 continuously, and such conditional weight bitstream
generation also applies to the RNG for B.

carry

(b) Scaled adder.

(c) Non-scaled adder.

Figure 5: Bipolar unary computing units. Thin and thick
lines represent unary and binary connections. RNG: random
number generator; CMP: comparator; PC: parallel counter;
ACC: accumulator. Logic to generate input bitstreams is not
shown.

digital hardware. Khatamifard et al. further connect the MT]J de-
vices in the design of Onizawa et al. [63] with the analog memory
to produce rate-coded bitstreams for image processing [30]. On
the contrary, these works [3, 17, 38] leverage analog comparators
for bitstream generation. The sensed raw data is compared to an
analog reference signal, which can be produced by either feeding
a digital RNG output to a Digital-Analog Converter [3] or a linear
ramp generator [17].

In this work, instead of leveraging rate-coded bitstreams from
analog-to-stochastic conversion, we propose to generate temporal-
coded bitstreams in unary computing with the help of Analog-to-
Temporal Conversion (ATC) and achieve immediate signal process-
ing after sensing. The temporal-coded bitstreams from ATC are
directly consumed by the following compute units, overlapping
the sense and compute stages. Such a behaviour is similar to the
voltage-to-time conversion in time-based ADCs [52, 57, 96], which
simply accumulates the bitstreams towards the final voltage with
4-11 bits [57] and exhibits orders of power reduction for data resolu-
tion higher than 8 bits [57]. The interaction between the sensor and
the computing units is also simpler in uBrain via directly streaming
than in a CPU via acknowledgement protocols [99].

2.2.3 Unary Multiplier and Adder. Working on bitstreams, unary
computing units like the multiplier and adder can be extremely sim-
ple. Figure 5 presents the bipolar multiplier and adders to compose
a highly accurate unary computing architecture for general matrix
multiply (GEMM) in uGEMM [91, 92], which is a fully streaming
design [93], requiring no interconversion between unary bitstreams
and binary data before the final output. The static multiplier, with
the weight statically buffered, accepts an arbitrary input bitstream
and a rate-coded weight bitstream. AND gate A and B with the
corresponding CMP and RNG act as unipolar multipliers and are re-
sponsible for input bit 0 and 1. The RNGs for A and B are separately
updated by the input bit 0 and 1 continuously for high accuracy,

uBrain: A Unary Brain Computer Interface

Table 2: uBrain DNN configuration.

Layer Taput Shaﬁ)e Output Activation
Convl | (10,1,10,11) | (10,16,10,11) | HardReLU

CNN | Conv2 | (10,16,10,11) | (10,32,10,11) | HardReLU
FC3 | (10,32 % 10 * 11) (10, 256) HardReLU
HardSigmoid

RNN | MGU4 (10, 256) (10, 64) HardTanh
Head FC5 64 5 HardTanh
FCé6 64 2 HardTanh

i.e., the weight applies conditional bitstream generation [91]. Also,
RNGs can be shared by weights with an identical input, as those
RNGs are always synchronously updated by that input. On the
other hand, the bipolar adders accept rate-coded bitstreams for
accuracy. The scaled adder averages the input by first summing all
input bits, and then accumulating the sum, whose carry bit is the
output bit. The non-scaled adder calculates the sum of inputs by
first summing all inputs, and then clipping the sum when the sum
exceeds the legal bipolar data range. In this work, above designs
will be uBrain subunits. In addition, we design novel multipliers
for both rate and temporal coding for high task accuracy and hard-
ware efficiency, by eliminating the hardware bottleneck to generate
bitstreams from the costly RNG and CMP.

3 CUSTOMIZED DNN FOR UNARY
COMPUTING

uBrain adopts the DNN in Table 2, which is similar to that in Fig-
ure 3 but lightweight: 1) it works on 10 samples as a window, and
2) it contains a CNN and RNN for spatial and temporal features,
and two classification heads, one each per task. It is optimized
with customized unary operations for high accuracy: 1) DNN data
are constrained to [—1, 1] to avoid compute overflow; 2) all oper-
ations match highly accurate yet simple unary computing units.
The weight constraint is achieved using weight decay [35] during
training, while the layer input/output constraint is illustrated as
follows.

3.1 Convolutional Neural Network for Spatial
Features

The CNN includes two Conv layers and one FC layer in Table 2.
Conv layers have the kernel size of (3, 3) and the stride size of 1.
The shape parameters in (10, ¢, 10, 11) from left to right represent
that 1) the window size is 10, 2) the channel number is ¢, 3) the mesh
clip size is 10-by-11 in Figure 3. For FC layers, the first parameter
10 is the window size, and the second is the input/output size. The
activation function is HardReLU, instead of ReLU [55] in Equation 1.
The HardReLU clips the output at 1, constraining it to [—1, 1].

ReLU(x) = max(0, x)
HardReLU(x) = max(0, min(1, x))

ISCA 22, June 18-22, 2022, New York, NY, USA

3.2 Recurrent Neural Network for Temporal
Features

The RNN applies Minimal Gated Unit (MGU), which has only half
the weights yet similar accuracy [98] to LSTM in Figure 3. The
original MGU is formulated in Equation 2, where ¢ is the timestamp,
x and h are the input and output vectors, f is the forget gate vector,
n is the new gate vector, and w is the weight matrix. * is matrix
multiplication, © is elementwise multiplication, and [,] is vector
concatenation.

fi = Sigmoid(wy * [ht—1,%:])
ny = Tanh(wy * [f; © he=1,x¢]) 2
hh=(1-f)onm+fi ©h_

However, this standard MGU yields neither high unary accuracy
nor hardware area and power efficiency. We first replace Sigmoid
and Tanh with HardSigmoid and HardTanh, which are initially
proposed for binary neural networks with data limited to —1 and
+1 [13]. HardSigmoid and HardTanh are formulated in Equation 3.
They approximate Sigmoid and Tanh with piecewise linear func-
tions and significantly simplify the unary hardware design. More
specifically, HardSigmoid can be implemented with a two-input
scaled adder in Figure 5b with high accuracy [91]. On the other
hand, HardTanh means to directly forward the bitstream. For ex-
ample, if multiple input bitstreams are added with the non-scaled
unary adder in Figure 5¢, HardTanh naturally exists at the output.

HardSigmoid(x) = max(0, min(1, (x + 1)/2))
HardTanh(x) = max(—1, min(1, x))

Our MGU architecture with customized unary operations is
shown in Equation 4, where all additions, i.e., the accumulation in
matrix multiplication and conventional addition, are non-scaled
additions, which naturally invoke HardTanh.

fi = HardSigmoid(HardTanh(wp = [ht-1,%¢]))
n; = HardTanh(wy, * [f; © hy—1,x¢]) (4)
h; = HardTanh((1 — f;) O ny + f; © hy—1)

3.3 Head for Multiple Tasks

To reuse the same DNN architecture for different tasks, i.e., motor
imagery and seizure prediction, we assign one head to each task.
The head input, of size 64, is the MGU output in the last times-
tamp. On the other hand, the head output is of size 5 for motor
imagery and 2 for seizure prediction. These head layers, i.e., FC5
and FC6, apply the non-scaled adder for accumulation, equivalent
to appending HardTanh.

The above operations are low cost yet yield high accuracy in
unary computing. Together with the multiplier innovation in the
next section, all uBrain operations match high-quality, i.e., accurate
and efficient, unary computing units.

4 UBRAIN ARCHITECTURE

Our uBrain architecture, which operates on bipolar unary bit-
streams, proposes fundamental improvements in Analog-to-Temporal
Conversion, inter-layer and intra-layer hardware time-division mul-
tiplexing (HTDM) and unary multipliers. With these innovations,

ISCA 22, June 18-22, 2022, New York, NY, USA

Brain
signal Analog

memory

l_ Analog Temporal-coded
L Sensor LRG CMP. bitstream

Figure 6: Analog-to-temporal conversion built on analog
memory and comparator (CMP), and linear ramp genera-
tor (LRG).

Input Weight

Block coding coding Timestamp
ATC Temporal t
Convl Temporal Rate t
Conv2 Rate Temporal t-1
FC3 Rate Temporal -2

MGU4 % Rate Rate t-3
FC5 &
FC6 Rate Temporal t-4
Figure 7: Hybrid unary binary architecture in uBrain. The
dashed lines separate the hardware into blocks. Each block
is standalone hardware, corresponding to one layer in Ta-
ble 2 and having binary output calculated by internal unary
computing units. Each arrow, except the one from ATC to

Convl, represents a double buffer connecting adjacent hard-
ware blocks.

uBrain achieves immediate signal processing after sensing for high
hardware efficiency.

4.1 Analog-to-Temporal Conversion

The proposed low-cost Analog-to-Temporal Conversion (ATC),
which is based on simple off-the-shelf subunits, is shown in Fig-
ure 6. The sensor samples the brain signals. At each timestamp, one
sample is stored and compared to a ramp signal to obtain a temporal-
coded bitstream in Figure 4, which offers better accuracy control
than a rate-coded bitstream in existing designs [3, 17, 30, 38, 63],
due to less randomness. These bitstreams are then directly con-
sumed by the Conv1 layer without costly digital buffers. Moreover,
ATC naturally allows Conv1 to utilize our proposed static multiplier
for temporal coding so as to save more hardware.

4.2 Inter-Layer Hardware Time-Division
Multiplexing

Unlike prior fully streaming unary computing architectures [91],
uBrain is a hybrid unary binary architecture [93] (shown in Figure 7)
where interconversion between unary bitstreams and binary data is
mandatory before the final output. uBrain separates the hardware
into blocks with equal runtime, bounded by the inverse of the
input sampling rate. Such separation using double buffering enables
both easy accuracy control and hardware pipelining, which further
allows layerwise bitstream coding and inter-layer HTDM. As in

Wu et al.

78.125 109.375 250

Time(ms)0 - : .
o D - DD DEDE - E
ATC ' :
Convl &i

Conv2 [0}

FC3 \o]

MGU4

FC5 &
FCo6

Figure 8: uBrain spatial-temporal dataflow with inter-layer
hardware time-division multiplexing. Each number is a
timestamp. Data from each timestamp proceed through the
hardware, except that FC5 and FC6 compute on last times-
tamp results. In other words, a single layer maps to only one
hardware block.

Figure 7, uBrain uses temporal coding for Conv1 inputs and all
weights in layers other than Convl and MGU4. Weights, whose
amount is higher than input, applying temporal coding reduces
the hardware cost as temporal coding using counters is generally
cheaper than rate coding using RNGs. Then CNN blocks always
pass the output to the next block, while the RNN (MGU4) block
feeds the output to both itself and two head blocks, i.e., FC5 and FCé.
At a timestamp ¢, the data timestamps of different hardware blocks
are labelled in Figure 7. In total, data from 5 consecutive timestamps
can co-exist simultaneously. uBrain’s spatial-temporal dataflow is
presented in Figure 8. Each block labelled with the timestamp is
multiplexed at each timestamp, i.e., inter-layer HTDM. With input
sampling frequency f; = 128Hz and window size W = 10, total
T = 14/128 % 1000 = 109.375ms is required for computation, less
than half of the 250ms time budget in Section 2.1.2. Overlapping
the sense/store and compute stages drops the running frequency,
decreases the dynamic power and enables low-leakage techniques
for power efficiency.

4.3 Conv and FC Layers

All Conv and FC layers in the CNN and heads are GEMM oper-
ations followed by hard activations, i.e., HardReLU or HardTanh,
and consist of both rate and temporal coding for unary computing.
The input and weight bitstreams participate in unary computing
and are finally converted back to binary outputs, followed by the
correspondent activation functions. Examples for those layers are
drawn in Figure 9.

4.3.1 Static Multiplier for Temporal Coding. The inputs in all layers
are rate-coded by comparing the input and the RNG output, except
those in the Conv1 layer, which are temporal-coded bitstreams from
ATC. The proposed static multiplier for temporal coding, which has
a statically buffered source data applying temporal coding, is shown
in Figure 10. This design implicitly forces conditional bitstream
generation [91]. More specifically, in Figure 5a, continuous logic
1s first update the bottom RNG with the top RNG disabled, then

uBrain: A Unary Brain Computer Interface

@ W o

Round 1 Round 2

afisisysiags

(b) Intra-layer HTDM.

Figure 9: Conv and FC architecture without and with intra-
layer hardware time-division multiplexing (HTDM). Thin
and thick lines represent unary and binary connections.
(a) Disabling intra-layer HTDM means an equal number of
unary computing units in circle and double buffered outputs
in rectangle; (b) intra-layer HTDM by halving the computing
units once needs two rounds of compute, with each for half
outputs. Intra-layer HTDM increases the running frequency
to maintain runtime.

CNT
input/weight

weight/input

w--.l-d

Figure 10: Static multiplier for temporal coding. By hybridiz-
ing rate and temporal coding, conditional bitstream genera-
tion is enforced implicitly at lower cost than that in Figure 5a.

continuous logic 0s update the top RNG with the bottom RNG
disabled. This is is equivalent to one RNG used first by logic 1s and
then by logic 0s with an implicit always-on enable, which is exactly
the case in Figure 10. As such, our design offers identical accuracy
and half cost compared to that in Figure 5a. Considering the large
portion of multiplication in DNNG, this design significantly reduces
the total hardware area and power. Moreover, a single RNG and
CNT can be aggressively shared by all multipliers, further reducing
the hardware ratio of RNG and CNT to almost zero, i.e., eliminating
the hardware bottleneck for bitstream generation in existing unary
designs [30, 91, 93]. This is achieved by that 1) for all rate-coded
bitstreams, given identical initial RNG states, continuously updated
RNGs, i.e., with an implicit always-on enable, always have identical
outputs, and 2) all temporal-coded bitstreams are generated using
counters, which are always identical. Note that such hybrid coding
for static binary data is symmetric, i.e., the coding for inputs and
weights can be exchanged with each other without accuracy drop.
Considering practical hardware implementations with a limited
fanout, the less expensive temporal coding favors whichever with
a higher quantity for more savings. As such, we assign temporal
coding to weights, except those in Conv1.

4.3.2 Binary Accumulation. The unary products are accumulated
to binary data using the parallel counter logic followed by an accu-
mulator in Figure 5c. Then the binary outputs are processed with
the activation functions. With double buffering, the computation
of adjacent layers can be pipelined and overlapped. For example, in
Figure 9a, the red buffers collect the binary results from the current

ISCA 22, June 18-22, 2022, New York, NY, USA

layer, while the gray buffers generate rate-coded input bitstreams
for the next layer.

4.3.3 Intra-Layer Hardware Time-Division Multiplexing. As each
output operates on the same inputs but different weights, a fully
parallel design in Figure 9a is a SIMD architecture via broadcast-
ing, and the SIMD degree is the output count. Therefore, HTDM
allows trade-offs among area, frequency and power. For example,
in Figure 9a, there are 4 outputs calculated from identical inputs.
Given target input sampling frequency f;, the maximum runtime
of each layer block is t;, = 1/f;. With data resolution of ny, the
bitstream length is [, = 2">. When disabling intra-layer HDTM, all
outputs are simultaneously calculated, and the running frequency
of this layer block is f;, = fs * I, = f; = 2. If we halve the number
of computing units once in Figure 9b, Hj, = 1, instead of H, = 0
in Figure 9a, the running frequency is f; = f; * 21, In general,
halving the hardware Hj, times leads to the running frequency
fi = fs # 2™+Hb_Such a trade-off offers more opportunities to meet
the power budget. Moreover, scheduling the halved computing units
according to the output is done with a state machine, significantly
cheaper than the micro-controller used in existing designs [29].

uBrain applies varying levels of intra-layer HTDM to different
layers, based on their weight count. The Conv1 and Conv2 layers
have much less weights than the computing units, and aggres-
sive intra-layer HTDM is applied to the computing units, with all
weights stored on-chip. The FC3 layer with total 256 outputs has
over 0.9M weights, and the computing units must be multiplexed
to reduce the cost. We halve the computing units log, 256 = 8 times
and compute only 1 output at a time. Additionally, all weights are
stored in an off-chip DRAM, and double buffering is applied to the
weights to hidden the latency. uBrain requires much lower DRAM
bandwidth than existing designs, exhibiting higher efficiency at
the store stage in spite of this additional DRAM to store the DNN
model. For the final head layers, i.e., FC5 and FC6, due to their small
size, no intra-layer HTDM is employed.

4.4 MGU Layer

The MGU4 layer in RNN applies rate coding for all inputs and
weights, leading to a fully streaming, thus fully parallel, architec-
ture with no interconversion between unary bitstreams and binary
data before the final output, as shown in Figure 11. The rate-coded
input bitstream x; is generated from the double buffer in the pre-
vious FC3 layer. The concatenation of x; and other bitstreams is
in unary domain and requires no hardware. The two matrix mul-
tiplications (MatMul) are both implemented with bipolar static
multiplier in Figure 5a with the non-scaled adder in Figure 5c for
accumulation, so that each MatMul naturally has a HardTanh fol-
lowed. Then a HardSigmoid, implemented as the scaled adder in
Figure 5b, generates f; after MatMul-w . The final non-scaled adder
also has a subsequent, yet inherent, HardTanh. The input to this
adder is separated into three parts. The first part is n;, the output
of MatMul-wy,. The second part is f; © h;_1, generated by the static
multiplier from Figure 5a, as now the h;_; acts as the statically
buffered weight. This product is then concatenated with x; as the
input to MatMul-wy,. The third part is —f; © n;, which is imple-
mented by inverting the bipolar elementwise product of f; © n;
calculated in the proposed in-stream multiplier painted with green.

ISCA 22, June 18-22, 2022, New York, NY, USA

MatMul-w,,
Concat
HardTanh

it

MatMul»Wf
HardTanh @@ Non-scaled add
HardTanh
Fg ,*‘

h,

Scaled add 5 Tn-stream "
[HardSigmoid] Statie m“l] I mul o
|2 t }

Figure 11: MGU4 architecture in Equation 4. Rounded rectan-
gles are unary computing units, while rectangles are binary
memory units with double buffering. Thin and thick lines
represent unary and binary connections, respectively. The
concatenation (Concat) in unary domain requires no hard-
ware. MatMul-w; and -w;, are two matrix multiplications for
weight wy and wp.

Here the in-stream [94, 95] multiplier refers to that both input and
output are arbitrarily rate-coded bitstreams with arbitrary correla-
tion. Eventually, the sum are converted back to the binary domain
as h;. The h;_1 is double buffered and converted to the unary do-
main, acting as both the output to the heads, i.e., FC5 and FC6, and
the feedback to the MGU4 itself.

In this architecture, the fully streaming behavior is enabled by
double buffering, while the accuracy is determined by the com-
puting units. Though the static multiplier, scaled and non-scaled
adders from [91] are proved to be highly accurate, the elementwise
in-stream multiplier in green, which takes arbitrarily rate-coded in-
put bitstreams may not offer high accuracy, if implemented naively.
Here, the two bitstreams are f; from HardSigmoid and n; from
MatMul-wy, and no explicit conditional bitstream generation in
Figure 5a can be enforced for high accuracy. To address this, we
propose an in-stream multiplier with approximate conditional bit-
stream generation in Figure 12. This in-stream multiplier differs
from the static multiplier in that the static multiplier has a statically
buffered binary data, while our in-stream multiplier has an approx-
imated binary data using a shift register and a parallel counter.
One of the two input bitstreams remains unchanged, e.g., input
0, while the other input bitstream, e.g., input 1, is fed to the shift
register, which keeps a record of the recent history. Then the paral-
lel counter accumulates the bits in the shift register and uses the
sum as an approximate value of the expected binary data. Based on
the approximate value, a new rate-coded bitstream for input 1 is
generated conditionally based on input 0.

5 EVALUATION

In this section, uBrain is evaluated against existing designs based on
CPU or accelerators, with respect to application accuracy, hardware
area, frequency, latency, power and energy.

Wu et al.

Y

input 0

RNG
input 1 > ©
oH -
||

Figure 12: In-stream multiplier for rate coding. The shift
register (SR) and parallel counter (PC) approximate one input
to achieve approximate conditional bitstream generation.

5.1 Experimental Setup

5.1.1 DNN Training and Inference. We use dataset [21, 71] for mo-
tor imagery and [78] for seizure prediction, with sampling frequen-
cies of 128Hz and 8Hz. The motor imagery dataset contains five
categories, i.e., eye closed, both feet, both fists, left fist and right
fist, with 468024 training and 156235 testing samples. The seizure
prediction dataset contains two categories, i.e., onset or no onset,
with 117265 training and 39263 testing samples. All samples have
an equally sized window, including the mesh clips from 10 consec-
utive timestamps. The training and inference with post-training
quantization are done using an open-source unary computing sim-
ulator, UnarySim [91, 92]. We use cross entropy loss and Adam
optimizer with 0.00005 weight decay and 0.001 initial learning rate.
The learning rate scheduler is CosineAnnealingWarmRestarts with
50 restart epochs out of 900 total epochs.

5.1.2 Evaluation Methodology. Given highly diverse BCI platforms,
the evaluation requires fairness with respect to functionality, la-
tency, and power, etc. We ensure that 1) all BCIs cover identical
functionalities from signal acquisition to classification, 2) all BCIs
reach a similar level of accuracy, even with sensor errors consid-
ered, 3) all BCIs meet the real-time requirement, indicated by the
human reaction and movement time, and 4) all BCIs run at the
frequency constrained by the real-time requirement under an iden-
tical technology node for each stage to avoid power consumption
more-than-necessary. However, we believe that fairness is still a
long-term goal for architecting BCIs, due to 1) inaccurate error
modelling, and 2) inaccurate performance modelling, etc.

5.1.3 BCl Hardware. We evaluate the hardware sense, store and
compute stages of uBrain against three baselines, including CPU,
systolic array and stochastic computing BCIs. Among all stages,
the sense stage results of all designs are analytically modelled from
existing literature and scaled to 65nm technology. The sense stages
in three baselines are based on neural ADCs [32], while the subunits
in uBrain ATC are taken from prior works [30, 46, 85]. The results
for the store and compute stages in the CPU and systolic baselines
are reported by analyzing the DNN execution results with built-in
tools [61] and by an open-source systolic array simulator [93], while
those in the stochastic baseline and uBrain are both obtained by
synthesizing the RTL using Synopsys Design Compiler with TSMC
32nm technology. The synthesis frequencies are as follows: 1) the
frequency of the systolic baseline is 400MHz; 2) the frequency
of FC3 in the stochastic baseline and uBrain is 33.6MHz. 3) the
frequency of all rest layers in the stochastic baseline and uBrain

uBrain: A Unary Brain Computer Interface

is 4.2MHz. Those are selected to meet the latency requirement: 1)
the systolic baseline does not process signals right after sensing
and has significantly high frequency; 2) the stochastic baseline and
uBrain both immediately process signals after sensing to utilize low
frequency and low-leakage techniques, including high threshold
voltage and low supply voltage, which are not applicable to the
systolic array at 400MHz. The DRAM results in non-CPU designs
are reported by CACTI [9] at 22nm technology.

CPU Baseline. The CPU baseline is the NVIDIA Jetson Nano
Developer Kit [60], which has a quad-core ARM A57 [7] with a
maximum frequency of 1479MHz and a 4GB LPDDR4 [62], as well
as a GPU. The CPU and DRAM area numbers are scaled to 32nm
and 22nm technology for fair comparison. And we enable only one
out of four cores in ARM A57 and exclude the GPU to retrieve
the power consumption without technology scaling. The real-time
requirement is T < W/f;, where T is the total runtime of the
computing stage, W and f; are the total timestamps in a window
and the sampling frequency at the sense stage. The CPU running
frequency is tuned to satisfy the real-time requirement, i.e., the
computation for the current W timestamps is always completed
before the data collection of the next W timestamps is done. For
example, in Figure 1a, the computation of the first 10 timestamps
starts at the tenth timestamp and must end before the twentieth
timestamp, as the data from the next window are ready.

Systolic Baseline. The systolic baseline is a binary computing
systolic array for edge computing from [12, 93]. It has 12-row-by-
14-column of processing elements, 192KB on-chip SRAM and a
16MB off-chip DDR3 with 22nm technology. Its running frequency
is also tuned to meet the real-time requirement in a similar manner
to the CPU baseline.

Stochastic Baseline. This baseline is a stochastic computing ver-
sion of uBrain, already benefiting from customized unary opera-
tions and immediate signal processing after sensing. All data apply
rate coding and all multipliers follow that from uGEMM [91] in
Figure 5a, identical to uBrain. However, as there exists no prior
in-stream multiplier for rate coding, i.e., accurate unary multiplier
with arbitrary input correlation, the stochastic baseline needs unary-
binary interconversion followed by static multipliers to replace the
in-stream multiplier in MGU4. The layerwise real-time requirement
is given by Equation 5, where 1y, f3, I, np and H, are per block
runtime, frequency, bitstream length, binary data resolution and the
count of logic halving. And the resultant total runtime is T =)} t;,.

ty =1l =2t fy = omb sl fi = omtHe g = 1/f0 (5)

Note for the MGU4 layer with data interconversion, its actual [, i.e.,
computing cycles, doubles compared to that in the uBrain MGU4
layer, thus doubling the running frequency compared to that in
uBrain. Both inter- and intra-layer HTDM are applied to CNN
layers. The Conv1 and Conv2 layers traverse all possible intra-layer
HTDM to find different implementations. The FC3 layer is halved 8
times to improve on-chip hardware efficiency; otherwise, an extra
on-chip SRAM of size 1.25MB is necessary to store the weight,
introducing about 4.5mm? area and 340mW power overheads. And
this holds for both the stochastic baseline and uBrain. We choose

ISCA 22, June 18-22, 2022, New York, NY, USA

three different implementations for comparison, namely SC, SC-
A and SC-P. SC is an implementation with no intra-layer HTDM
for both Conv1l and Conv2, which exhibits the largest area and
power. Then SC-A has the minimum area, i.e., the most aggressive
intra-layer HTDM for both Conv1 and Conv2. This implementation
always computes a single output at a time for both Conv1 and
Conv2. Finally, SC-P exhibits the minimum power by individually
selecting the configurations for Conv1 and Conv2 for minimized
power. The configurations in SC-P do not necessarily correspond
to those in SC-A, as though the SC-A has a smaller area, thus
smaller leakage power, the running frequency increases to raise the
dynamic power. Though the configuration differs from each other,
those implementations have identical accuracy.

uBrain. For the proposed uBrain architecture, we also have three
different implementations with identical accuracy, i.e., uBrain, uBrain-
A and uBrain-P. Similar to the stochastic baseline, uBrain has no
intra-layer HTDM in Conv1 and Conv2, while uBrain-A and uBrain-
P have the best area and power by varying intra-layer HTDM. The
layerwise real-time requirement is also given by Equation 5.

5.2 Accuracy

We examine both the overall classification accuracy for both mo-
tor imagery and seizure prediction and the layerwise numerical
accuracy according to the layer type in Figure 13.

5.2.1 Task Accuracy. The trained DNNs for motor imagery and
seizure prediction only have 0.002% and 0.001% weights beyond
[-1,1] due to weight decay, achieving 95.1% and 91.3% FP32 ac-
curacy, respectively, with the corresponding accuracy comparison
shown in Figure 13a and Figure 13b. We observe that higher data
resolution, i.e., larger bitwidth and bitstream length, yields higher
accuracy for both tasks. When the binary data resolution is N = 10,
the inference accuracy drop of uBrain, compared to FP32 for motor
imagery and seizure prediction, is about 1.0% and 3.2%, demon-
strating that uBrain provides high task capability in terms of both
accuracy and diversity. Note that training the DNN will even mit-
igate such accuracy drop. Additionally, to model the inaccuracy
of non-conventional ATC, we deliberately inject 0 ~ 5% random
uniform errors to each input bitstream, i.e., reaching down to 4.3-bit
resolution, even though there exists extensive research on ATC-
like circuits [52, 57] with up to 11-bit resolution [57]. Overlapped
accuracy in Figure 13, i.e., no accuracy drop, indicates that uBrain
is robust enough under modelled errors.

5.22 Accuracy of Conv and FC Layers. Figure 13c draws the accu-
racy of different layers in CNN and heads for the systolic baseline
and uBrain. The SC result is ignored, as the stochastic baseline has
identical accuracy to uBrain for those layers. The input to each layer
is randomly generated but identical for different designs, and the
resultant error is averaged across multiple runs. It is observed that
uBrain layers have similar accuracy to the others at high data reso-
lution. The systolic results show lower errors than uBrain, due to 1)
the deterministic computation and 2) higher output resolution [93],
i.e., two N-bit inputs produce a 2N-bit product. Furthermore, as
the bitstream length grows, the error of those layers gradually de-
creases, though the decrease rate becomes more trivial with a larger
bitstream length.

ISCA 22, June 18-22, 2022, New York, NY, USA

9 100 ——
S 50 /‘/»7/‘*
g 60 < CPU sC uBrain w/ E
:_5; 40 —+— Systolic uBrain
2 20 1
T T T T T T T T T T
4 5 6 7 8 9 10 11 12 FP32
(a) Classification accuracy of motor imagery task.
S 90 4 ==
< 80
Q 70 — < CPU Ne uBrain w/ E
=1 . .
§ 60 = —+— Systolic uBrain
< %0 T T T T T T T T T T
4 5 6 7 8 9 10 11 12 FP32
(b) Classification accuracy of seizure prediction task.
a 0.4 o . .
; 03 - —+— Systolic uBrain
o 0.2
122}
0.1 4
;:Eﬁ 0 - ‘/\H #% L8 N e seses se

T T T T T T T T T
4 5 6 7 8 9 10 11 12
(c) RMSE and STD of the Conv and FC layers. For each curve, the data points
from left to right represent Conv1, Conv2, FC3, FC5 and FCé6.

—+— Systolic Ne uBrain

oo
ok ovoe
| T T |

el S O

T T T T T T T T T

4 5 6 7 8 9 10 11 12
(d) RMSE and STD of the MGU4 layer. For each curve, the data points from

left to right represent the output RMSE from timestamp 0 to 9.

RMSE-STD

Figure 13: Accuracy comparison. The accuracy of 32-bit
floating-point CPU, fixed-point systolic array, stochastic
computing baselines and uBrain are denoted as FP32, Sys-
tolic, SC and uBrain, respectively. The horizontal axis refers
to binary data resolution. The binary data resolution, N, rep-
resents N-bit binary data for the systolic baseline and 2V -bit
unary bitstream for the systolic baseline and uBrain. The
vertical axis refers to classification accuracy in (a) and (b),
and root mean square error (RMSE) compared to FP32 in (c)
and (d). The dashed lines in (a) and (b) are uBrain results with
injected errors. The shadow in (c) and (d) is error standard
deviation (STD).

5.2.3 Accuracy of MGU Layer. Due to the iterative computation
in the MGU4 layer, i.e., current output is fed back to itself as input
at the next timestamp, we examine the output accuracy after each
iteration from total 10 iterations, corresponding to the window
size of 10 in the adopted DNN. The accuracy results are shown in
Figure 13d. With more iterations, more errors are accumulated in
all designs. For this layer, uBrain has worse accuracy than both
systolic and stochastic baselines, as the uBrain MGU4 layer have a
fully streaming architecture internally. Then, identical to the Conv
and FC layers, longer bitstreams lead to lower errors in the MGU4
layer.

Above results demonstrate that optimizing DNNs with customized
unary operations, i.e., 1) constraining DNN data to legal unary data
range and 2) matching operations to accurate unary computing units,
guarantees simultaneous high task accuracy and diversity. For the
following hardware evaluation, we focus on motor imagery, as the
insights are qualitatively applicable to seizure prediction. The eval-
uated systolic array has 8-bit data, while the stochastic baseline and
uBrain have 10-bit data to provide similar accuracy as in Figure 13a

Wu et al.
- Store

Waddiii

CPU Systolic SC-A SC-P uBrain uBrain-A uBrain-P

(a) Total BCI area breakdown in log scale. All baselines have the same
sensing ADC, and non-CPU designs have the same off-chip DRAM.

2

Area (mm")

BUF RNG N CONT s CMmP N PC REST
Convl Conv2
41 I 100
2 50 4
FERNE _ -
R O—T—T7T—T1 71T 71 0T
«C

DX DS
EVCN O g™

Area (mm")

FC3 MGU4 FCs FCo6

I 0.15 —.
0.10 o
L[
0.05

0 - T 0 - — 0.00 -t — 0.00 = T
EN¥ ¥ EN¥ ¥

IS
)
1

S}

& & & &

(b) Layerwise area of the stochastic baseline and uBrain. Decomposed sub-
units include input and weight buffer (BUF), random number generator
(RNG), counter (CNT), comparator (CMP) and parallel counter for accumu-
lation (PC), while the rest logic contains activation function units, AND
and XNOR gates in unary multipliers, multiplexers and demultiplexers for
intra-layer HTDM, etc. As FC3, MGU4, FC5 and FC6 have fixed intra-layer
HTDM, only the SC and uBrain results for those are shown.

Figure 14: Area comparison.

and Figure 13b. Note that 7-bit systolic array is the smallest to of-
fer higher accuracy than 10-bit uBrain, but introduces fractional
accesses to byte-addressable memories with insignificant hardware
savings; therefore, it is not selected as the baseline.

5.3 Area

5.3.1 Total Area. The total BCI area breakdown is given in Fig-
ure 14a, including sense, store and compute stages. For the sense
stage, the ADC area in all baselines is identical, 12.3% larger than the
ATC area in uBrain. For the store stage, CPU, systolic and stochastic
baselines store inputs in off-chip DRAM, as well as DNN weights.
On the contrary, uBrain only stores DNN weights in DRAM, as the
input temporal-coded bitstreams from ATC directly participate in
computation. As the FC3 weights actually occupies 95.1% of total
DNN weights, we use identical DRAM size in systolic and stochastic
baselines and uBrain to ensure identical capability on diverse tasks.
For the compute stage, SC with no intra-layer HTDM for Conv1 and
Conv2 has the largest area, and the CPU baseline ranks the second.
SC-A has the best area among all stochastic baseline implemen-
tations, as it halves the computing kernel most aggressively, but

uBrain: A Unary Brain Computer Interface

—_ Area Dynamic N Leakage —
“g 15 L1s %
: :
§ 1.0 H ~ 1.0 ;
< 0.5 o5 &
0 —T T T T T 0
HO H1 H2 H3 H4
(a) The Conv1 layer.
<220 - 20 §
g
£ g
s 10 l - 10 g
< H ol o= B
0 —T T T T 0
HO H1 H2 H3 H4 H5

(b) The Conv2 layer.

Figure 15: Impact of intra-layer HTDM on the area and power
of the Conv1l and Conv2 layers in uBrain. Hx means the
computing units are halved x times. xpqx = log, co, where ¢,
is the output count, e.g., 16 for Conv1 and 32 for Conv2.

this does not leads to the best power in SC-P. Similar comparison
can be found among uBrain implementations. The systolic baseline
has the lowest on-chip area, as it is designed for reconfigurable
execution based on a partially parallel architecture, which comes
at the cost of high running frequency. In terms of the on-chip area,
uBrain-A exhibits 2.0, 0.1x and 1.3X improvements over CPU,
systolic and SC-A designs. Area is the main price uBrain needs to
pay for performance, as each DNN layer has dedicated hardware.

5.3.2 Layerwise Area. The detail layerwise area is in Figure 14b.
Such layerwise comparison between the stochastic baseline and
uBrain emphasizes the advantages of our multiplier innovation.
First, we observe that stochastic implementations, i.e., SC, SC-A
and SC-P, always have a higher area than the corresponding uBrain
implementations. The largest area reduction across all implementa-
tions is 30.7X, occurring in Conv2 from SC to uBrain-A. The largest
area reduction across all best-area implementations is 2.9x in FC6
from SC-A to uBrain-A. Second, in all layers, except MGU4, the
area ratio of the bottleneck in existing designs, i.e., the bitstream
generation logic with RNG and CMP, is reduced tremendously due
to the aggressive sharing, effectively demonstrating the advantage
of the proposed static multiplier for temporal coding in Figure 10
over the existing design in Figure 5a. The cost of buffers almost
maintains constant in each layer, as intra-layer HTDM only re-
duces the number of the computing units. For the MGU4 layer, the
proposed in-stream multiplier introduces negligible overheads to
the overall area, as the MatMul in Figure 11 dominates the area.
Figure 15 demonstrates that intra-layer HTDM reduces the area sig-
nificantly, especially when the data reuse is high, e.g., Conv2 area
ratio reduction is more significant than that in Convl.

5.4 Frequency and Latency

The real-time requirement needs the current data window to be
processed before the next window is ready. With 128Hz sampling
frequency, the CPU and systolic baselines have a tunable latency de-
pending on the running frequency, but exhibit an upper bound of 20
timestamps, as in Figure 1a. Further considering the max frequency
of the CPU and systolic baselines, the correspondent minimum

ISCA 22, June 18-22, 2022, New York, NY, USA

3x10° 1
~ 2x10° 1
% CPU o SC-A uBrain-A
E 100 1 Systolic » SC-P uBrain-P
H] e SC uBrain
& 6x10°]
o
) .
4x10 T T T T T T T
80 90 100 110 120 130 140 150 160
Latency (ms)
(a) Total BCI power.
£ 50 4
E 200
5
£ 100
~

0 T T T T T T T T
CPU Systolic SC SC-A SC-pP uBrain uBrain-A uBrain-P

(b) On-chip BCI power. CPU and systolic baselines run at the best power.

BUF RNG N CNT s cMP I prC REST
Convl Conv2
4 - 100
2 4 I - 50
[| =
| | -
CE R .
2 O-—F—T—T T 711 O-—F—T—T T 711
E C P o oD’ C DS o™ D
é S el &«:&&\‘:&@o S e &«’g“\\ R
< FC3 MGU4 FC5 FCé
30 . 0.15 .
10 -I I 0.075 —.
20 0.10
0.050
> 0.05 . -
10 . - 0.025
0 15 T 0 15 — 0.00 15 — 0.000 1 T
¢ A «C A «C O ¢ A
& & & &

(c) Layerwise power.

Figure 16: Power comparison.

latencies are 98.166ms at 1479MHz and 78.960ms at 400MHz, re-
spectively. On the contrary, the stochastic baseline and uBrain
(except FC3) run below 4.2MHz with a fixed latency of 14 times-
tamps, i.e., 109.375ms, as in Figure 8. All those latencies satisfy
the requirement of the human reaction and movement time in Sec-
tion 2.1.2, i.e., 250ms for total 32 timestamps. The iso-task-latency
frequency decrease over CPU and systolic baselines are 219.4X and
18.6%, demonstrating that uBrain’s immediate signal processing af-
ter sensing lowers the running frequency significantly by exploiting
the sense/store time for compute.

5.5 Power

5.5.1 Total Power. The overall BCI power is presented in Figure 16a.
uBrain-P outperforms all the rest, even uBrain-A, as more intra-
layer HTDM decreases the area but increases the dynamic power
due to higher frequency, e.g., in Figure 15a, H4 for Conv1 with
the smallest area has higher dynamic power than H3. For the iso-
task-latency total power, uBrain outperforms CPU and systolic

ISCA 22, June 18-22, 2022, New York, NY, USA

baselines by 5.5 and 1.6X. For the iso-task-latency DRAM dynamic
power, uBrain outperforms the systolic baseline by 2.8X%, as uBrain’s
bandwidth, 0.14GB/s, is 2.1x lower. For the sense power, uBrain
outperforms others by 2.6X. Above facts prove that uBrain offers
high power efficiency at all hardware stages.

5.5.2 On-chip Power. The on-chip power is in Figure 16b. uBrain-P
exhibits 9.0%, 6.2x and 2.0% higher power efficiency compared to
CPU, systolic and SC-P designs. The fact that uBrain-P has a higher
on-chip area but lower power than the systolic baseline confirms the
key insight that immediate signal processing after sensing achieves
high power efficiency by exploiting low dynamic power under low
running frequency and low-leakage techniques.

5.5.3 Layerwise Power. The layerwise power is given in Figure 16¢c.
The subunit power ratios of all layers are similar to their area ra-
tios, except the RNG in SC FC3. This is because one input merely
controls one weight here, i.e., no RNG sharing for conditional bit-
stream generation leads to higher dynamic power. The highest
power reduction across all implementations and all best-power
implementations is 15.2X in Conv2 from SC to uBrain-P and 3.1x
in FC3 from SC to uBrain, proving that intra-layer HTDM opens
opportunities to explore desirable trade-offs between area and power.

5.6 Energy

When running at the best power, all designs have an identical
effective compute period of 10 timestamps, i.e., computations of the
current window in baselines are done just before the next window
is ready. Then, the comparison of energy, energy efficiency and
energy delay product rolls back to comparing the best power, and
uBrain-P ranks the first.

6 CONCLUSION

In this work, we recognize that the existing brain computer in-
terfaces lack immediate signal processing after sensing, providing
low task capability and suboptimal hardware efficiency at all hard-
ware stages. To address this, we propose a unary computing brain
computer interface, uBrain, with algorithm-hardware co-design.
uBrain leverages emerging deep neural networks to offer high task
accuracy and diversity with customized unary operations. Its hard-
ware is optimized with immediate signal processing after sensing
to boost the hardware efficiency. Overall, uBrain exhibits 9.0, 6.2X
and 2.0x higher on-chip power efficiency over the CPU, systolic
array, and stochastic computing baselines.

ACKNOWLEDGMENTS

We thank our reviewers for their valuable feedback. This work is
supported by the Wisconsin Alumni Research Foundation and NSF
under award No. CNS-2045985, CNS-1845469 and CNS-2112562.

REFERENCES

[1] Sarah N. Abdulkader, Ayman Atia, and Mostafa Sami M. Mostafa. 2015. Brain
Computer Interfacing: Applications and Challenges. Egyptian Informatics Journal
16, 2 (2015), 213-230.

Abeer Al-Nafjan, Manar Hosny, Yousef Al-Ohali, and Areej Al-Wabil. 2017. Re-
view and Classification of Emotion Recognition Based on EEG Brain-Computer
Interface System Research: A Systematic Review. Applied Sciences 7, 12 (2017),
1239.

[2

—_
)

=
=

—
jan

[12

[13

[14

[15

(17]

[18

[19]

[20

[21

[22

[23

[24]

[25

[26

[27

(28]

Wu et al.

A. Alaghi, C. Li, and J. P. Hayes. 2013. Stochastic Circuits for Real-Time Image-
Processing Applications. In Design Automation Conference.

Turky N. Alotaiby, Saleh A. Alshebeili, Faisal M. Alotaibi, and Saud R. Alrshoud.
2017. Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals.
Computational Intelligence and Neuroscience (2017).

Maria Karoline Andrade, Maira Aratjo de Santana, Giselle Moreno, Igor Oliveira,
Jhonnatan Santos, Marcelo Cairrao Araudjo Rodrigues, and Wellington Pinheiro
dos Santos. 2020. An EEG Brain-Computer Interface to Classify Motor Imagery
Signals. Biomedical Signal Processing: Advances in Theory, Algorithms and Appli-
cations (2020), 83-98.

Gopala K. Anumanchipalli, Josh Chartier, and Edward F. Chang. 2019. Speech
Synthesis from Neural Decoding of Spoken Sentences. Nature 568, 7753 (2019),
493-498.

ARM. 2021. Cortex-A57. Retrieved 2021-11-16 from https://en.wikichip.org/wiki/
arm_holdings/microarchitectures/cortex-a57

J Aziz, R Genov, M Derchansky, B Bardakjian, and P Carlen. 2007. 256-Channel
Neural Recording Microsystem with On-Chip 3D Electrodes. In International
Solid-State Circuits Conference.

Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories. ACM Transactions on Architecture and Code
Optimization 14, 2 (2017), 1-25.

Mojtaba Bandarabadi, César A. Teixeira, Jalil Rasekhi, and Anténio Dourado. 2015.
Epileptic Seizure Prediction Using Relative Spectral Power Features. Clinical
Neurophysiology 126, 2 (2015), 237-248.

Sebastien Barthelemy and Philippe Boulinguez. 2001. Manual Reaction Time
Asymmetries in Human Subjects: The Role of Movement Planning and Attention.
Neuroscience Letters 315, 1-2 (2001), 41-44.

Yu Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127-138.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. BinaryCon-
nect: Training Deep Neural Networks with Binary Weights during Propagations.
In International Conference on Neural Information Processing Systems.

John P Donoghue. 2002. Connecting Cortex to Machines: Recent Advances in
Brain Interfaces. Nature neuroscience 5, 11 (2002), 1085-1088.

Nelly Elsayed, Zaghloul Saad, and Magdy Bayoumi. 2017. Brain Computer
Interface: EEG Signal Preprocessing Issues and Solutions. International Journal
of Computer Applications 169, 3 (2017), 975-8887.

Oliver Faust, Yuki Hagiwara, Tan Jen Hong, Oh Shu Lih, and U Rajendra Acharya.
2018. Deep Learning for Healthcare Applications Based on Physiological Signals:
A Review. Computer Methods and Programs in Biomedicine 161 (2018), 1-13.
David Fick, Gyouho Kim, Allan Wang, David Blaauw, and Dennis Sylvester. 2014.
Mixed-Signal Stochastic Computation Demonstrated in An Image Sensor with
Integrated 2D Edge Detection and Noise Filtering. In Custom Integrated Circuits
Conference.

Kosuke Fukumori, Hoang Thien Thu Nguyen, Noboru Yoshida, and Toshihisa
Tanaka. 2019. Fully Data-driven Convolutional Filters with Deep Learning Models
for Epileptic Spike Detection. In International Conference on Acoustics, Speech
and Signal Processing.

B. R. Gaines. 1969. Stochastic Computing Systems. Advances in Information
Systems Science (1969), 37-172.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Conference on Computer Vision and Pattern Recognition.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch
Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and
H Eugene Stanley. 2000. PhysioBank, PhysioToolkit, and PhysioNet: Components
of a New Research Resource for Complex Physiologic Signals. Circulation 101,
23 (2000), 215-220.

Christoph Guger, Brendan Z. Allison, and Natalie Mrachacz-Kersting. 2017. Brain-
Computer Interface Research: A State-of-the-Art Summary 7. In SpringerBriefs
in Electrical and Computer Engineering.

Hayrettin Giirkok, Bram van de Laar, Danny Plass-Oude Bos, Mannes Poel, and
Anton Nijholt. 2014. Players’ Opinions on Control and Playability of a BCI Game.
In International Conference on Universal Access in Human-Computer Interaction.
EEG Hacker. 2022. Estimating OpenBCI Battery Life. Retrieved 2022-02-14 from
https://eeghacker.blogspot.com/2015/01/estimating-openbci-battery-life.html
Kaining Han, Junchao Wang, Xingliang Xiong, Qiang Fang, and N. G. David. 2020.
A Low Complexity SVM Classifier for EEG Based Gesture Recognition Using
Stochastic Computing. In International Symposium on Circuits and Systems.
Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (Nov. 1997), 1735-1780.

Arthur R. Jensen and Ella Munro. 1979. Reaction Time, Movement Time, and
Intelligence. Intelligence 3, 2 (1979), 121-126.

B Kamousi, Zhongming Liu, and Bin He. 2005. Classification of Motor Imagery
Tasks for Brain-Computer Interface Applications by Means of Two Equivalent

uBrain: A Unary Brain Computer Interface

[29]

[30]

(31

[32]

[33]

[34

[35]

[36]

[37]

[38

[39]

[40

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49

[50]

[51

[52]

Dipoles Analysis. IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering 13, 2 (2005), 166—-171.

1. Karageorgos, K. Sriram, J. Vesely, M. Wu, M. Powell, D. Borton, R. Manohar,
and A. Bhattacharjee. 2020. Hardware-Software Co-Design for Brain-Computer
Interfaces. In International Symposium on Computer Architecture.

S. Karen Khatamifard, M. Hassan Najafi, Ali Ghoreyshi, Ulya R. Karpuzcu, and
David J. Lilja. 2018. On Memory System Design for Stochastic Computing. IEEE
Computer Architecture Letters 17, 2 (2018), 117-121.

Haidar Khan, Lara Marcuse, Madeline Fields, Kalina Swann, and Biilent Yener.
2018. Focal Onset Seizure Prediction Using Convolutional Networks. IEEE
Transactions on Biomedical Engineering 65, 9 (2018), 2109-2118.

Chul Kim, Siddharth Joshi, Hristos Courellis, Jun Wang, Cory Miller, and Gert
Cauwenberghs. 2018. Sub-f1 V}.;,s-Noise Sub- ¢ W/Channel ADC-Direct Neural
Recording With 200-mV/ms Transient Recovery Through Predictive Digital
Autoranging. Journal of Solid-State Circuits 53, 11 (2018), 3101-3110.

Stuart T. Klapp. 2003. Reaction Time Analysis of Two Types of Motor Preparation
for Speech Articulation: Action as A Sequence of Chunks. Journal of Motor
Behavior 35, 2 (2003), 135-150.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In International Conference on
Neural Information Processing Systems.

Anders Krogh and John A. Hertz. 1991. A Simple Weight Decay Can Improve
Generalization. In International Conference on Neural Information Processing
Systems.

Vernon J. Lawhern, Amelia J. Solon, Nicholas R. Waytowich, Stephen M. Gordon,
Chou P. Hung, and Brent J. Lance. 2018. EEGNet: A Compact Convolutional
Neural Network for EEG-Based Brain-Computer Interfaces. Journal of Neural
Engineering 15, 5 (2018), 056013.

J.E. Le Douget, A. Fouad, M. Maskani Filali, J. Pyrzowski, and M. Le Van Quyen.
2017. Surface and Intracranial EEG Spike Detection Based on Discrete Wavelet
Decomposition and Random Forest Classification. In International Conference of
the IEEE Engineering in Medicine and Biology Society.

Vincent T. Lee, Armin Alaghi, John P. Hayes, Visvesh Sathe, and Luis Ceze. 2017.
Energy-Efficient Hybrid Stochastic-Binary Neural Networks for Near-Sensor
Computing. In Design, Automation & Test in Europe Conference & Exhibition.
Eric C. Leuthardt, Gerwin Schalk, Jonathan R. Wolpaw, Jeffrey G. Ojemann, and
Daniel W. Moran. 2004. A Brain-Computer Interface Using Electrocorticographic
Signals in Humans. Journal of Neural Engineering 1, 2 (2004), 63-71.

Qi Lian, Yu Qi, Gang Pan, and Yueming Wang. 2020. Learning Graph in Graph
Convolutional Neural Networks for Robust Seizure Prediction. Journal of Neural
Engineering 17, 3 (2020), 035004.

Chin Teng Lin, Che Jui Chang, Bor Shyh Lin, Shao Hang Hung, Chih Feng Chao,
and I Jan Wang. 2010. A Real-Time Wireless Brain-Computer Interface System
for Drowsiness Detection. IEEE Transactions on Biomedical Circuits and Systems
4,4 (2010), 214-222.

Pengfei Liu, Xipeng Qiu, and Huang Xuanjing. 2016. Recurrent Neural Network
for Text Classification with Multi-Task Learning. In International Joint Conference
on Artificial Intelligence.

Chi Chun Lo, Tsung Yi Chien, Yu Chun Chen, Shang Ho Tsai, Wai Chi Fang,
and Bor Shyh Lin. 2016. A Wearable Channel Selection-Based Brain-Computer
Interface for Motor Imagery Detection. Sensors 16, 2 (2016), 213.

Qian Lou, Wenyang Liu, Weichen Liu, Feng Guo, and Lei Jiang. 2020. MindRead-
ing: An Ultra-Low-Power Photonic Accelerator for EEG-Based Human Intention
Recognition. In Asia and South Pacific Design Automation Conference.

A. Madhavan, T. Sherwood, and D. Strukov. 2014. Race Logic: A Hardware
Acceleration for Dynamic Programming Algorithms. In International Symposium
on Computer Architecture.

Alak Majumder, Monalisa Das, Bipasha Nath, Abir J Mondal, and Bidyut K
Bhattacharyya. 2016. Design of Low Noise High Speed Novel Dynamic Analog
Comparator in 65nm Technology. In International Conference Radioelektronika.
Joseph N Mak and Jonathan R Wolpaw. 2009. Clinical Applications of Brain-
Computer Interfaces: Current State and Future Prospects. IEEE Reviews in Biomed-
ical Engineering 2 (2009), 187-199.

Vladimir A. Maksimenko, Sabrina Van Heukelum, Vladimir V. Makarov, Janita
Kelderhuis, Annika Liittjohann, Alexey A. Koronovskii, Alexander E. Hramov,
and Gilles Van Luijtelaar. 2017. Absence Seizure Control by a Brain Computer
Interface. Scientific Reports 7, 1 (2017), 1-8.

Malik M.Naeem Mannan, Shinjung Kim, Myung Yung Jeong, and M. Ahmad
Kamran. 2016. Hybrid EEG-Eye Tracker: Automatic Identification and Removal of
Eye Movement and Blink Artifacts from Electroencephalographic Signal. Sensors
16, 2 (2016), 241.

G. Maor, X. Zeng, Z. Wang, and Y. Hu. 2019. An FPGA Implementation of
Stochastic Computing-Based LSTM. In International Conference on Computer
Design. 38-46.

Dennis J. McFarland and Jonathan R. Wolpaw. 2011. Brain-Computer Interfaces
for Communication and Control. Commun. ACM 54, 5 (2011), 767-791.

Hassan Mostafa and Yehea L. Ismail. 2013. Highly-Linear Voltage-to-Time Con-
verter (VTC) Circuit for Time-Based Analog-to-Digital Converters (T-ADCs). In

[53

[54

[55]

[56

[57

[58

[59

[60

[61

[62

[63]

[64]

[65

=
2

[67

[68]

[69

<
=

71

[72]

(73

[74

[77]

(78]

ISCA 22, June 18-22, 2022, New York, NY, USA

International Conference on Electronics, Circuits, and Systems.

Angel Mur, Raquel Dormido, Jests Vega, Natividad Duro, and Sebastian Dormido-
Canto. 2016. Unsupervised Event Characterization and Detection in Multichannel
Signals: An EEG Application. Sensors 16, 4 (2016), 590.

Elon Musk. 2019. An Integrated Brain-Machine Interface Platform With Thou-
sands of Channels. Journal of Medical Internet Research 21, 10 (2019), e16194.
Vinod Nair and Geoffrey E Hinton. 2010. Rectified Linear Units Improve Restricted
Boltzmann Machines. In International Conference on International Conference on
Machine Learning.

Sho Nakagome, Trieu Phat Luu, Yongtian He, Akshay Sujatha Ravindran, and
Jose L. Contreras-Vidal. 2020. An Empirical Comparison of Neural Networks and
Machine Learning Algorithms for EEG Gait Decoding. Scientific Reports 10, 1
(2020), 1-17.

Shahrzad Naraghi. 2009. Time-Based Analog to Digital Converters. Ph.D. Disser-
tation. University of Michigan.

NeuroBB. 2022. Muse battery replacement. Retrieved 2022-02-14 from https:
//neurobb.com/t/muse-battery-replacement/665

NeuroSky. 2022. TGAT1/TGAM]I. Retrieved 2022-02-14 from http://neurosky.
com/biosensors/eeg-sensor/

Nvidia. 2021. Jetson Nano Developer Kit. Retrieved 2021-10-14 from https:
//developer.nvidia.com/embedded/jetson-nano-developer-kit

Nvidia. 2021. NVIDIA Jetson Linux Driver Package Software Features. Retrieved
2021-10-14 from https://docs.nvidia.com/jetson/14t/index.html

Tae Young Oh, Hoeju Chung, Jun Young Park, Ki Won Lee, Seunghoon Oh,
Su Yeon Doo, Hyoung Joo Kim, ChangYong Lee, Hye Ran Kim, Jong Ho Lee,
Jin Il Lee, Kyung Soo Ha, YoungRyeol Choi, Young Chul Cho, Yong Cheol Bae,
Taeseong Jang, Chulsung Park, Kwangil Park, SeongJin Jang, and Joo Sun Choi.
2015. A 3.2 Gbps/pin 8 Gbit 1.0 V LPDDR4 SDRAM With Integrated ECC Engine
for Sub-1 V DRAM Core Operation. IEEE Journal of Solid-State Circuits 50, 1
(2015), 178-190.

N Onizawa, D Katagiri, W J Gross, and T Hanyu. 2014. Analog-to-Stochastic
Converter Using Magnetic-Tunnel Junction Devices. In International Symposium
on Nanoscale Architectures.

Ahmet Remzi Ozcan and Sarp Erturk. 2019. Seizure Prediction in Scalp EEG
Using 3D Convolutional Neural Networks with an Image-Based Approach. IEEE
Transactions on Neural Systems and Rehabilitation Engineering 27, 11 (2019), 2284~
2293.

Natasha Padfield, Jaime Zabalza, Huimin Zhao, Valentin Masero, and Jinchang
Ren. 2019. EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Tech-
niques and Challenges. Sensors 19, 6 (2019), 1423.

Giuseppe Placidi, Danilo Avola, Andrea Petracca, Fiorella Sgallari, and Matteo
Spezialetti. 2015. Basis for the Implementation of an EEG-Based Single-Trial
Binary Brain Computer Interface through the Disgust Produced by Remembering
Unpleasant Odors. Neurocomputing 160 (2015), 308-318.

Rabie A. Ramadan and Athanasios V. Vasilakos. 2017. Brain Computer Interface:
Control Signals Review. Neurocomputing 223 (2017), 26-44.

Mamunur Rashid, Norizam Sulaiman, Anwar P. P. Abdul Majeed, Rabiu Muazu
Musa, Ahmad Fakhri Ahmad, Bifta Sama Bari, and Sabira Khatun. 2020. Cur-
rent Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer
Interface: A Comprehensive Review. Frontiers in Neurorobotics 14 (2020), 25.
Seyed Navid Resalat and Valiallah Saba. 2016. A Study of Various Feature Extrac-
tion Methods on a Motor Imagery Based Brain Computer Interface System. Basic
and Clinical Neuroscience 7, 1 (2016), 13.

Yannick Roy, Hubert Banville, Isabela Albuquerque, Alexandre Gramfort, Tiago H.
Falk, and Jocelyn Faubert. 2019. Deep Learning-Based Electroencephalography
Analysis: A Systematic Review. Journal of Neural Engineering 16, 5 (2019), 051001.
G. Schalk, D.J. McFarland, T. Hinterberger, N. Birbaumer, and J.R. Wolpaw. 2004.
BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE
Transactions on Biomedical Engineering 51, 6 (2004), 1034-1043.

M. Schénauer, S. Alizadeh, H. Jamalabadi, A. Abraham, A. Pawlizki, and S. Gais.
2017. Decoding Material-Specific Memory Reprocessing During Sleep in Humans.
Nature Communications 8 (2017), 1-9.

Andrew B Schwartz. 2004. Cortical Neural Prosthetics. Annual Review of Neuro-
science 27 (2004), 487-507.

Mohammed Shoaib, Niraj Jha, and Naveen Verma. 2011. A Low-Energy Compu-
tation Platform for Data-Driven Biomedical Monitoring Algorithms. In Design
Automation Conference.

Hyeonuk Sim and Jongeun Lee. 2017. A New Stochastic Computing Multiplier
with Application to Deep Convolutional Neural Networks. In Design Automation
Conference.

Ranganatha Sitaram, Andrea Caria, and Niels Birbaumer. 2009. Hemodynamic
Brain—Computer Interfaces for Communication and Rehabilitation. Neural Net-
works 22, 9 (2009), 1320 - 1328.

S.R. Sreeja and Debasis Samanta. 2019. Classification of Multiclass Motor Imagery
EEG Signal Using Sparsity Approach. Neurocomputing 368 (2019), 133-145.

N. J. Stevenson, K. Tapani, L. Lauronen, and S. Vanhatalo. 2019. A Dataset of
Neonatal EEG Recordings with Seizure Annotations. Scientific Data 6 (2019),
1-8.

ISCA 22, June 18-22, 2022, New York, NY, USA

[79] James L Stone and John R Hughes. 2013. Early History of Electroencephalography
and Establishment of the American Clinical Neurophysiology Society. Journal of
Clinical Neurophysiology 30, 1 (2013), 191-212.

[80] Akara Supratak, Hao Dong, Chao Wu, and Yike Guo. 2017. DeepSleepNet: A
Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.
IEEE Transactions on Neural Systems and Rehabilitation Engineering 25, 11 (2017),
81-91.

[81] Arwa M. Taqi, Fadwa Al-Azzo, M. Mariofanna, and Jassim M. Al-Saadi. 2017.
Classification and Discrimination of Focal and Non-Focal EEG Signals Based
on Deep Neural Network. In International Conference on Current Research in
Computer Science and Information Technology.

[82] S Sharifi Tehrani, Warren J Gross, and Shie Mannor. 2006. Stochastic Decoding
of LDPC Codes. IEEE Communications Letters 10, 10 (2006), 716-718.

[83] Mario Tudor, Lorainne Tudor, and Katarina Ivana Tudor. 2005. Hans Berger (1873-
1941)-the History of Electroencephalography. Acta Medica Croatica : Casopis
Hravatske Akademije Medicinskih Znanosti 59, 4 (2005), 307-313.

[84] Aosen Wang, Zhanpeng Jin, Chen Song, and Wenyao Xu. 2015. Adaptive Com-
pressed Sensing Architecture in Wireless Brain-Computer Interface. In Design
Automation Conference.

[85] Jing Wang, E. Sanchez-Sinencio, and F. Maloberti. 2000. Very Linear Ramp-
Generators for High Resolution ADC BIST and Calibration. In Midwest Sympo-
sium on Circuits and Systems.

[86] Xiao Wei Wang, Dan Nie, and Bao Liang Lu. 2014. Emotional State Classification
from EEG Data Using Machine Learning Approach. Neurocomputing 129 (2014),
94-106.

[87] Marco Weiergriber, Anna Papazoglou, Karl Broich, and Ralf Miiller. 2016. Sam-

pling Rate, Signal Bandwidth and Related Pitfalls in EEG Analysis. Journal of

Neuroscience Methods 268 (2016), 53-55.

Francis R. Willett, Donald T. Avansino, Leigh R. Hochberg, Jaimie M. Henderson,

and Krishna V. Shenoy. 2021. High-Performance Brain-to-Text Communication

via Handwriting. Nature 593, 7858 (2021), 249-254.

[88

(89]

[90]

[o1]

[93

[94

[95]

[96

o
=}

[98

[99]

Wu et al.

Thomas A. Wozny, Witold J. Lipski, Ahmad Alhourani, Efstathios D. Kondylis,
Arun Antony, and R. Mark Richardson. 2017. Effects of Hippocampal Low-
Frequency Stimulation in Idiopathic Non-Human Primate Epilepsy Assessed via
A Remote-Sensing-Enabled Neurostimulator. Experimental Neurology 294 (2017),
68-77.

Di Wu, Yun Chen, Qichen Zhang, Yeong-Luh Ueng, and Xiaoyang Zeng. 2016.
Strategies for Reducing Decoding Cycles in Stochastic LDPC Decoders. IEEE
Transactions on Circuits and Systems II: Express Briefs 63, 9 (2016), 873-877.

Di Wu, Jingjie Li, Ruokai Yin, Hsuan Hsiao, Younghyun Kim, and Joshua San
Miguel. 2020. uGEMM: Unary Computing Architecture for GEMM Applications.
In International Symposium on Computer Architecture.

Di Wu, Jingjie Li, Ruokai Yin, Hsuan Hsiao, Younghyun Kim, and Joshua San
Miguel. 2021. uGEMM: Unary Computing for GEMM Applications. IEEE Micro
41, 3 (2021), 50-56.

Di Wu and Joshua San Miguel. 2022. uSystolic: Byte-Crawling Unary Systolic
Array. In International Symposium on High-Performance Computer Architecture.
Di Wu and Joshua San Miguel. 2019. In-Stream Stochastic Division and Square
Root via Correlation. In Design Automation Conference.

Di Wu, Ruokai Yin, and Joshua San Miguel. 2021. In-Stream Correlation-Based
Division and Bit-Inserting Square Root in Stochastic Computing. IEEE Design &
Test 38, 6 (2021), 53-59.

Il Min Yi, Naoki Miura, and Hideyuki Nosaka. 2021. A 4-GS/s 11.3-mW 7-bit
Time-Based ADC With Folding Voltage-to-Time Converter and Pipelined TDC
in 65-nm CMOS. IEEE Journal of Solid-State Circuits 56, 2 (2021), 465-475.
Dalin Zhang, Lina Yao, Xiang Zhang, Sen Wang, Weitong Chen, and Robert
Boots. 2018. Cascade and Parallel Convolutional Recurrent Neural Networks on
EEG-Based Intention Recognition for Brain Computer Interface. In Conference
on Artificial Intelligence.

Guo Bing Zhou, Jianxin Wu, Chen Lin Zhang, and Zhi Hua Zhou. 2016. Minimal
Gated Unit for Recurrent Neural Networks. International Journal of Automation
and Computing 13, 3 (2016), 226-234.

Junwei Zhou and Andrew Mason. 2002. Communication Buses and Protocols for
Sensor Networks. Sensors 2, 7 (2002), 244-257.

