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Abstract—In several machine learning (ML)-based Internet of 
Things (IoT) systems, data is captured by IoT devices and then 
transmitted over a wireless channel for remote processing. Since 
noise often appears on the channel (so causing data corruption and 
consequently an incorrect ML result), channel protection must be 
provided to guarantee an acceptable error rate for the transmitted 
data, especially in safety-critical applications. An often-used 
protection technique employs error correction codes (ECCs); 
however, even with some improved designs, the power dissipation 
required by an ECC implementation may still not meet the strict 
requirements of hardware-constrained platforms. To address this 
issue, a “joint learning and channel coding” (JLCC) scheme is 
proposed in this paper. In such a scheme, the ML model is 
retrained using two methods to tolerate some channel errors, such 
that the system requires an ECC with significantly lower 
protection capability. Since ML training is executed remotely, 
JLCC achieves a significant power reduction for ECC without 
introducing any additional overhead to the IoT device. An 
electrocardiogram (ECG) system is taken as a case study to 
illustrate the proposed JLCC scheme and evaluate its 
effectiveness. A low-density parity-check (LDPC) code is 
employed for protection of the system with/without JLCC; its 
analysis and implementation are presented. Simulation results 
show that, when employing JLCC with the proposed two 
retraining methods, an average reduction of 29.15% and 34.82% 
in the dissipated power is achieved for the ECG sensor when 
compared to the original system. 
 
Impact Statement—Internet of Things (IoT) are one of the most 

promising technology frameworks in today’s digital world; the use 
of machine learning (ML) is important for improving the 
efficiency of analyzing data transmitted between different IoT 
devices. However, recent research has demonstrated that the data 
transmitted in an ML-based IoT system can be affected by errors 
in the wireless channel, causing an incorrect outcome of the entire 

system; this may lead to a catastrophic consequence in safety-
critical applications, so error protection for data transmission 
must be performed to guarantee a reliable result. The joint 
learning and channel coding (JLCC) technique proposed in this 
paper overcomes the limitation of existing error protection 
approaches in terms of hardware overhead (for metrics such as 
power dissipation). Therefore, it is very attractive for ML-based 
IoT systems implemented in hardware-constrained platforms for 
a wide variety of safety-critical applications like smart healthcare 
and transportation. 
 
Index Terms—Machine learning, channel coding, error-

tolerance, IoT system, electrocardiogram, low-density parity-
check codes. 
 

I. INTRODUCTION 
HE Internet of Things (IoT) combined with advances in 
machine learning (ML) techniques is driving the 

development of innovative artificial intelligence based systems 
for different applications, including the safety-critical domains 
such as healthcare [1], [2], transportation [3], driverless 
vehicles [4], finance [5], and defense [6]. In these systems, IoT 
devices are often utilized to only capture sensor data (e.g., a 
wearable biosensor); the data is then transmitted over a wireless 
channel and remotely processed by edge or cloud platforms 
using software-based ML algorithms. Error-tolerance is usually 
provided in ML-based IoT systems for reliable operation in 
safety-critical applications [7]; otherwise, errors causing data 
corruption may have catastrophic consequences (e.g., potential 
life and property loss). Therefore, protection techniques and 
strategies targeting different parts of the system, such as the 
model computation [8], data transmission [9], memories [10], 
ML algorithms [11] and error detection schemes [12], have 
been pursued in the technical literature. 
As one of the critical components in an IoT system, wireless 

communication is prone to be affected by different types of 
channel noise that can cause erroneous received data bits [13]. 
The often-used solution is to employ a channel coding scheme 
using error correction codes (ECCs) [14], [15]. In such a 
scheme, some parity bits are generated in the encoding process 
(prior to transmission) and then for example padded to the data 
being protected. If channel errors affect either the original data 
being protected, or the parity bits when transmitted, then the 
redundancy can be employed to attain an acceptable bit error 
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rate (BER) [13] (or symbol error rate (SER) for ternary data [9]) 
in the decoding process once the data is received.  
Therefore, when employing channel coding, additional 

hardware must be utilized for the encoding/decoding process as 
well as increasing the number of transmitted parity bits, 
resulting in an increase of power/energy; this overhead is 
significant when an ECC is utilized for error correction of 
multiple bits. As IoT devices in many applications face 
stringent requirements, there is a need to reduce the power 
dissipated by the ECC encoding and data transmission 
(decoding complexity is not a primary issue of concern in this 
scenario because it is often performed remotely by a host 
station), while of course ensuring that errors do not compromise 
system performance. This poses a challenge for ECC design in 
IoT systems because conventional coding schemes incur a 
significant overhead to attain a low error rate for the decoded 
data. Therefore, improvements in ECC design with low 
hardware overhead have received significant attention in the 
technical literature [9], [16].  
For example, ternary low-density parity-check (LDPC) 

codes [9] have been recently proposed to provide channel 
protection for an electrocardiogram (ECG) monitoring and 
arrhythmia classification system [17] (which is introduced in 
Section II in more detail). LDPC codes are one of the most 
widely used ECC types and have been used in various 
communication standards (e.g., 5G new radio [18], IEEE 
802.11n for wireless local area network (WLAN) [19], IEEE 
802.16e for mobile broadband wireless access system [20], 
DVB-S2/T2/C2 for digital video broadcasting [21]). However, 
LDPC codes with a conventional construction may not be 
applicable to IoT systems due to the high hardware complexity. 
Therefore, alternative designs, such as that proposed for the 
ECG system of [17] must be considered to meet the hardware 
requirements. In this application, the IoT device is a wearable 
biosensor that converts the input signals to ternary symbol 
streams for efficient transmission, so a corresponding ternary 
LDPC code with a low complexity encoder is designed [9]. 
Compared to traditional LDPC codes with binary bits, this 
ternary coding scheme provides hardware-efficient encoding 
and thus it significantly reduces power dissipation. However, 
this scheme still must transmit a considerable number of parity 
bits, which increases the power required for data transmission. 
Therefore, a more efficient protection scheme, as will be 
proposed in is paper, for these IoT systems is of interest. 
Although we consider an ECG monitoring system as a case 
study, the proposed techniques are widely applicable to general 
low power IoT sensing applications. 
 ML algorithms are known to be resilient to not-critical errors 

(e.g., causing only a small deviation from the exact data) [22]; 
hence this promises the use of less complex coding schemes 
with a lower protection capability required for channel 
protection in ML-based IoT systems. This occurs because 
protection only needs to ensure that there is little or no error on 
the final outcome of the ML models (i.e., not for the absence of 
errors on the received sensor data). Therefore, it is of interest to 
take this consideration one step further by training the ML 

models with inputs affected by the expected error rate. In this 
case, the system learns to tolerate these errors and requires less 
protection (even no protection in some cases) for data 
transmission.  
Training ML models with noisy data has been shown to 

improve performance because it can mitigate overfitting [23] or 
improve the model robustness1 when performing regression 
tasks [24]. However, to the best of the authors’ knowledge, 
training ML classifiers to tolerate transmission/channel errors 
for reducing protection overhead has not been considered in the 
technical literature. In this paper, we pursue the study of such a 
joint scheme and propose a so-called joint learning and channel 
coding (JLCC) technique. The main contributions of this paper 
are as follows: 
• To show that ML models can be trained to tolerate 

channel errors (due to transmission) on data; 
• To show that a joint design of ML and channel coding 

significantly reduces the protection overhead against 
channel errors; 

• To demonstrate the benefits of the proposed JLCC 
technique in an IoT biomedical application (i.e., an ECG 
system). 

The rest of this paper is organized as follows. Section II 
reviews the ECG system (used as a case study to analyze the 
proposed scheme) and the associated error protection scheme 
using ternary LDPC codes. Section III presents the proposed 
JLCC scheme and two retraining methods applied to it. The 
JLCC scheme and its required ternary LDPC design are 
implemented in Section IV; its effectiveness is also evaluated 
in terms of the protection overhead introduced by the ternary 
LDPC implementation and compared to the traditional scheme. 
Finally, the paper ends with the conclusion in Section V. 

II. PRELIMINARIES 

A. ECG Monitoring and Arrythmia Classification Systems 
 An ECG monitoring and arrhythmia classification system is 

a type of ML-based IoT system for smart medical applications 
[25]. A recently presented ECG scheme was shown to be an 
attractive candidate for next generation wearable ECG sensor 
systems due to its advantages in terms of low power 
implementation and continuous real-time ECG monitoring [17]. 
In such a system, as shown in Fig. 1, a wireless sensor (made of 
a ternary delta modulator) and a radio frequency (RF) data 
transmitter capture, process, and then transmit human ECG 
information. Specifically, the ternary delta modulator converts 
the captured analog ECG data into ternary symbol streams 
consisting of “1”, “0”, and “-1” symbols that are transmitted 
over the wireless channel. Once the ECG data arrives to the 
receiver of a remote station, a machine learning algorithm starts 
to analyze them and performs the arrhythmia classification; if a 
dangerous/abnormal type of heartbeats (e.g., supraventricular 
ectopic beat (SVEB) or ventricular ectopic beat (VEB) [17]) is 
found, an alert that triggers human diagnosis is generated for 

1 Robustness refers to the capability of tolerating errors [24]; this is also 
applicable in this paper.  
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further treatment. This ECG system is considered as a case 
study in this paper to analyze and evaluate the proposed scheme. 
Due to its low computational complexity but yet with a high 

learning performance, a linear-kernel based support vector 
machine (SVM) has been proposed in [26] to perform 
classification in an ECG system. It will also be considered in 
the case study of this paper to investigate the proposed 
retraining methods. An SVM model is typically trained by 
initially solving (1) to obtain the non-negative value of the 
Lagrange multiplier a associated to each of the N training 
samples [27], where x and y denotes the feature and class of the 
training samples respectively, i.e., 

𝑚𝑎𝑥 $∑ 𝑎!"
!#$ − $

%
∑ ∑ 𝑎!𝑎&𝑦!𝑦&𝑥!𝑥&"

&#$
"
!#$ ( | ∑ 𝑎!𝑦! = 0"

!#$ .  (1) 

Once this is completed, the support vectors that belong to the 
training dataset, are determined to establish the decision margin 
and boundary of an SVM for classification. Finally, the SVM 
model is obtained based on the weight 𝑤 and bias 𝑏 that are 
calculated by 𝑤 = ∑ 𝑎!𝑦!𝑥!"

!#$  and 𝑏 = $
"!"

∑ .𝑡! −!∈()

∑ 𝑎&𝑡&𝑥!*𝑥&&∈() 0 , where 𝑁()  denotes the number of support 
vectors (𝑆𝑉), 𝑡 denotes the target value corresponding to each 
training sample and 𝑡 ∈ {−1,1}. To classify a sample X during 
inference using a linear-kernel function (binary classification is 
considered in this manuscript), its class 𝑌 is predicted as  

𝑌(𝑋) = 	𝑠𝑖𝑔𝑛.∑ (𝑤!𝑋 + 𝑏!)
+
!#$ 0,                 (2) 

where 𝑓  is the number of features of 𝑋 ; the positive and 
negative signs refer to the different classes respectively. 
To achieve a high classification accuracy in the ECG system, 

the SVM model proposed in [26] utilizes two such models with 
a constant combination coefficient. Its detailed design can be 
found in [26] and will not be presented in this paper. 

B. Impact of Channel Errors on Classification 
 Next, the impact of errors caused by channel errors during 

data transmission is initially evaluated to validate the necessity 
of employing a protection scheme in the ECG system. A dataset 
(#207 patient) of the widely used benchmark MIT-BIH 
arrhythmia database [28], including the heartbeat data of 47 
patients and each with a few thousand heartbeat signals, is used 

to show the impact of channel errors on the ECG classification 
accuracy2. To model the channel errors, the widely used ternary 
symmetric channel model given in Fig. 2 with error probability 
p is considered in this paper for error injection.3 As per the 
sampling rate of the ECG sensor, a stream consisting of 500 
data points (ternary symbols) that reflects a critical waveform 
(e.g., a QRS complex) of heartbeats, is transmitted [9]. 
Therefore, for different p, errors are randomly injected in each 
transmitted 500 data points; this is then analyzed by the SVM 
classifier to perform the SVEB classification. 
Fig. 3 shows the average results of the classification accuracy 

by repeating the simulation over 1000 times for different cases 
(this number of simulation runs is selected because the results 
are consistent with 10000 simulations); it is observed that the 
accuracy of 99.24% in the error-free case decreases to 93.63% 
when p increases to 0.1. Such accuracy degradation is not 
acceptable in practical applications, especially when the ECG 
system is applied to some patients with a severe heart disease 
(i.e., a correct monitor and classification of heartbeat signals is 
essential). Therefore, error protection must be performed to 

3 The evaluation approach can also be extended to other types of channel 
models, which do not change the qualitative conclusions drawn in this paper. 

 

 
Fig. 1.  ECG system: a wireless wearable ECG sensor with remote machine learning-based arrhythmia diagnosis. 
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Fig. 2.  Ternary symmetric channel model with error probability p [9]. 

 
Fig. 3. ECG classification accuracy under channel errors at different probability. 
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2 Since the impact on VEB classification is negligible (found in our 
simulations), then only the SVEB classification is considered in this paper. 
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handle channel errors. The protection technique is reviewed in 
the next subsection. 

C. Ternary LDPC Codes 
 As outlined previously, channel coding is typically utilized 

to protect the transmitted data against noise-induced errors [14]. 
When employing a systematic ECC, the data being protected is 
encoded by generating parity bits prior to transmission; 
following this, the codeword consisting of the original data 
being protected and its parity bits is transmitted. Consider Fig. 
1 again, it illustrates an example of an ECC that is employed to 
protect the transmitted data in the ECG system. If channel errors 
affect any bits of the codeword during transmission, they are 
remotely handled in the decoding process. Finally, an outcome 
that is error-free, or with an acceptable SER (related to an 
acceptable signal to noise ratio of a given application), is 
generated. 
 However, these codes often incur in a significant overhead 

when implemented in hardware; so, a hardware efficient ECC 
design for data communication has been advocated as 
introduced previously. When ECCs are employed in an IoT 
system, the incurred overhead mainly includes two parts: i) 
additional data transmission power due to the ECC parity bits 
(which must be transmitted along with the data); ii) additional 
circuit area and power incurred by the encoder (that is typically 
integrated in the IoT devices). The decoding overhead is usually 
not an issue in an IoT system, because the decoder is 
implemented in the remote station that does not have strict 
requirements on hardware overhead.  
Recently, a class of ternary LDPC codes with low encoding 

complexity [9] have been proposed to provide error correction 
for a ternary symbol stream in the ECG system introduced 
above. Such codes are constructed by forming the parity-check 
matrix H = [H1, H2] with a quasi-cyclic structure based on the 
following two sub-matrices 

𝐇𝟏 =

⎣
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⎡ 𝛿-,-𝐏/
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𝛿32$,-𝐏/
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⎥
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⎥
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             𝐇𝟐 =
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𝛾-𝐈/ 𝐈/ 𝟎/ ⋯ 𝟎/
𝟎/ 𝛾$𝐈/ 𝐈/ ⋯ 𝟎/
⋮ ⋱ ⋱ ⋱ ⋮
𝟎/ ⋯ 𝟎/ 𝛾32%𝐈/ 𝐈/ ⎦

⎥
⎥
⎥
⎤

 .             (4) 

In these two sub-matrices, 𝛿 ∈ 𝐺𝐹(3) = {0, 1, 2}, 𝛾 ∈ 𝐺𝐹(3)\
{0}, 𝐏/ is a 𝑠 × 𝑠 circulant permutation matrix constructed by 
circulantly shifting the rows of the 𝑠 × 𝑠  identity matrix Is 
with	𝑏 ∈ {1, 2, … , 𝑠} positions to the left.  𝐏/$R  is given by (5) 
and is constructed by removing the right corner “1” in 𝐏/$, i.e., 

                          𝐏/𝟏R =

⎣
⎢
⎢
⎢
⎡
0 0 ⋯ 0 0
1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋱ ⋱ ⋮ ⋮
0 ⋯ 0 1 0⎦

⎥
⎥
⎥
⎤
.                          (5) 

With the parity-check matrix H, the code requires 𝐾 = 𝑘 ∙ 𝑠 
ternary parity symbols to protect 𝑀 = 𝑚 ∙ 𝑠 data symbols. This 
results in a code rate of 𝑀/(𝑀 + 𝐾). When employing these 
ternary LDPC codes in the ECG system, the ternary data “-1” 
can be considered as “2” in the encoding process; moreover, 
since the ECG sensor operates at a low sampling rate and is 
hardware constrained, an efficient encoding approach is also 
designed in [9] to meet these requirements. As per the quasi-
cyclic structure of H, the encoding can be designed to execute 
on a serial fashion (which is acceptable considering the 
sampling rate of ECG data). Consider an error-free codeword 
of the ternary LDPC code 𝐯 = [𝑑-, 𝑑$, … , 𝑑52$, 𝑝-, 𝑝$, …	, 
𝑝62$]  (which consists of 𝑀  data symbols 𝑑  and 𝐾  parity 
symbols 𝑝) and the parity check rule 𝐯 ∙ 𝐇* = 0 [14]. (6) is 
obtained because the first row of H2, given by (4), has only the 
first element as “1”. Therefore, the first parity symbol 	𝑝- can 
be calculated as 

𝛿-,- ∙ 𝑑/20#,# + 𝛿-,$ ∙ 𝑑%/20#,% +⋯+ 𝛿-,12$ ∙ 𝑑3∙/20#,&'% 
																																																																				+𝑝- ≡ 0,                (6) 

where all operations are computed over 𝐺𝐹(3).	Once 𝑝-  is 
generated, 𝑝/ can be subsequently obtained in the same way by 
considering the (𝑠 + 1)th row, because all elements in this row 
are “0”s except the first and the (𝑠 + 1)th elements, i.e., only 𝑝/ 
is unknown in the following expression 

𝛿$,- ∙ 𝑑/20%,# + 𝛿$,$ ∙ 𝑑%/20%,% +⋯+ 𝛿$,12$ ∙ 𝑑3∙/20%,&'% 
																																																																				+𝛾-𝑝- + 𝑝/ ≡ 0.         (7) 

By repeating this procedure as per the quasi-cyclic structure of 
H, all parity symbols can be generated serially to complete 
encoding (i.e., establishing a relationship similar to (6) and (7) 
each time, in which only one parity symbol is calculated).4 
However, even though this encoding process enables a small 

encoder circuit implemented in the ECG sensor, the ternary 
LDPC codes still require a considerable number of parity bits 
(e.g., the same as the number of ECG symbols being protected 
if the code rate is 1/2) to achieve small error rates [9]; this incurs 
in a significant power dissipation for data transmission, because 
all required parity bits need to be transmitted together with the 
original data. Therefore, a scheme that can further reduce the 
LDPC protection overhead by achieving higher code rates 
while still meeting the required protection is necessary when an 
IoT system is implemented on power-constrained platforms. 

III. PROPOSED JLCC SCHEME 
In this section, a method referred to as joint learning and 

channel coding (JLCC) is proposed to improve the error-
tolerance of ML-based IoT systems with low hardware 
overhead. The details of JLCC are first presented; then, two 
retraining methods are discussed as employed in such a scheme. 

A. Joint Learning and Channel Coding 
The proposed JLCC scheme relies on making the ML 

algorithm robust by learning channel errors, so that the burden 
4 For more details of the encoding/decoding process of this ternary LDPC 

codes, please refer to [9]. 
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of err or pr ot e cti o n f or t h e wir el ess c h a n n el c a n b e  r e d u c ed . T h e 
fr a m e w or k  of  a n  M L-b as e d  I o T  s yst e m  e m pl o yi n g  t h e  J L C C 
s c h e m e is ill ustr at e d i n Fi g.  4. I n t h e tr a diti o n al s c h e m e ( Fi g.  
4( a)), t h e I o T bi o s e nsor  d e vi c e c a pt ur es d at a a n d c o n v erts it t o 
a di git al bit -str e a m t h at is pr ot e ct e d b y E C C w h e n tr a ns mitti n g 
i n t h e wir el ess c h a n n el; o n c e d at a is o bt ai n e d b y t h e r e m ot e M L 
p art, t h e m o d el tr ai n e d b y usi n g a n e xisti n g d at a b as e p erf or ms 
i nf er e n c e  o n  t h e  r e c ei v e d  d at a  t o  m a k e  a  cl assifi c ati o n. T his  
pr e di ct e d  cl ass ifi c ati o n r es ult  is  err or-fr e e  ( or  wit h  a n 
a c c e pt a bl e  a c c ur a c y  l oss  d u e  t o  err ors ),  b e c a us e  a n  E C C  h as 
b e e n  e m pl o y e d  f or  err or -t ol er a n c e  b y  i ntr o d uci n g a d diti o n al  
h ar d w ar e.  W h e n  utili zi n g  J L C C  ( Fi g.  4( b)),  t h e  r es ult  is  still 
err or -fr e e, b ut t h e E C C pr ot e cti o n o v er h e a d is r e d u c e d. T his is 
a c hi e v e d b y usi n g a d at a b as e t h at is pr e -c orr u pt e d wit h  err ors 
(r el at e d t o t h e c h a n n el pr o p erti es) t o r etr ai n t h e M L m o d el .  

C o nsi d er  t h e  S V M  m o d el  us e d  i n  a n  E C G  s yst e m  as  a n 
e x a m pl e.  As  s h o w n  i n Fi g.  5 , a n  err or -fr e e  s a m pl e 𝑋  c a n  b e 
c orr e ctl y  cl assifi e d as  Cl ass  A  b y  b ot h  m o d els . H o w e v er,  its 
cl assifi c ati o n  r es ult  c h a n g es t o  B if 𝑋  h as  b e e n  c orr u pt e d  b y  
c h a n n el  err ors  d uri n g  tr a ns missi o n  ( d e n ot e d  as 𝑋 8 9 9 ) i n  t h e 
tr a diti o n al  s c h e m e,  i. e., 𝑌 ( 𝑋 8 9 9 ) ≠ 𝑌 ( 𝑋 ) . T his  iss u e is 
a d dr ess e d i n t h e pr o p os e d  s c h e m e ; in J L C C, t h e M L  m o d el is 
r etr ai n e d  b y  i ntr o d u ci n g a d diti o n al 𝐶  pr e -c orr u pt e d  s a m pl es  
(t h at pr es e nt t h e f e at ur es of c h a n n el err ors) t o s ol v e  

𝑚 𝑎 𝑥 $ ∑ 𝑎 !
" : ;
! # $ −

$

%
∑ ∑ 𝑎 ! 𝑎 & 𝑦 ! 𝑦 & 𝑥 ! 𝑥 &

" : ;
& # $

" : ;
! # $ ( | ∑ 𝑎 ! 𝑦 ! = 0 ." : ;

! # $  (8 ) 

T h er ef or e , t h e S V M m o d el (i. e., t h e d e cisi o n  b o u n d ar y) is 
m o difi e d b as e d o n t h e r etr ai n e d  s u p p ort v e ct ors  as s h o w n i n Fi g.  
5 ; t his a c hi e v e s t h e f oll o wi n g  

𝑌 ( 𝑋 8 9 9 ) = 𝑠𝑖 𝑔 𝑛 . ∑ ( 𝑤 !
< 𝑋 < + 𝑏 !

< )+
!# $ 0   

= 𝑠𝑖 𝑔 𝑛 . ∑ ( 𝑤 !
< 𝑋 + 𝑏 !

< )+
!# $ 0 = 𝑌 ( 𝑋 ) ,            (9 )  

w h er e  𝑤 ′ a n d 𝑏 ′ ar e  t h e  w ei g ht  a n d  bi as  v al u es b as e d  o n  t h e 
r etr ai n e d s u p p ort v e ct ors.  T h er ef or e, 𝑋 8 9 9  will als o b e cl assifi e d 
as Cl ass A b y usi n g t h e r etr ai n e d m o d el.  

B y  i ntr o d u ci n g a n u m b er of s uffi ci e nt pr e -c orr u pt e d s a m pl es 
t o r etr ai n, th e o bt ai n e d m o d el  c a n t ol er at e at l e ast s o m e c h a n n el 
err ors  o n  t h e  r e c ei v e d  s a m pl es  d uri n g  i nf er e n c e . T h er ef or e,  
c o m p ar e d  t o  t h e  tr a diti o n al  s c h e m e,  a n  E C C  wit h  a  l o w er 
pr ot e cti o n c a p a bilit y ( or e v e n n o E C C) r e q uiri n g less a d diti o n al 
h ar d w ar e  c a n  b e  us e d  i n  t h e  pr o p os e d  s c h e m e t o h a n dl e  t h e 
r e m ai ni n g err ors  a n d pr o vi d e a n err or -fr e e r es ult. N ot e t h at e v e n 
t h o u g h t h e ori gi n al tr ai ni n g d at as et m a y als o i n cl u d e s o m e n ois e 
(c a us e d  f or e x a m pl e b y  a n i n e x a ct f e at ur e e xtr a cti o n), t his n ois e  
h a s diff er e nt pr o p erti es fr o m t h e c h a n n el err ors; t his m a k es t h e 

ori gi n al  m o d el l ess  r o b ust t h a n  t h e  r etr ai n e d  m o d el  i n  t h e 
pr es e n c e of c h a n n el err ors.  

Si n c e t h e M L al g orit h m e x e c ut es  r e m ot el y, J L C C d o es n ot 
i ntr o d u c e  a n y  o v er h e a d  d uri n g  d at a  s e nsi n g  or  d at a 
tr a ns missi o n. E v e n  t h o u g h  i n  s o m e  a p pli c ati o ns i n  w hi c h t h e 
M L  is  i m pl e m e nt e d r e m ot el y o n  a  h ar d w ar e -c o nstr ai n e d 
pl atf or m (s u c h  as a n  e m b e d d e d  s yst e m  or  e d g e  d e vi c e ),  o nl y 
i nf er e n c e  ( e. g.,  a n  M L  a c c el er at or)  is  i m pl e m e nt e d, w hil e 
tr ai ni n g  is  e x e c ut e d  off-li n e; t h us, J L C C  als o  i n c ur s i n n o  
o v er h e a d f or t h e h ar d w ar e pl atf or m b e ca us e it o nl y f o c us es o n 
tr ai ni n g. 

T h e pr o c ess  d es cri b e d  a b o v e i m pli es t h at  t h e  m ost  criti c al 
st e p of J L C C is t h e r etr ai ni n g pr o c ess. S i n c e t h e M L m o d el is 
m o difi e d  aft er  r etr ai ni n g,  it  is  i m p ort a nt  t o e n s ur e  t h at  t h e 
r etr ai n e d m o d el d o es n ot d e gr a d e t h e cl assifi c ati o n p erf or m a n c e 
i n t h e err or-fr e e c as e w h e n c o m p ar e d t o t h e ori gi n al m o d el. T his 
c a n  b e  a c hi e v e d  b y  usi n g  t h e  pr o p os e d  r etr ai ni n g  m et h o ds 
dis c uss e d  i n t h e n e xt  s u bs e cti o n. T h e  eff e cti v e n ess  of  t h e 
pr o p os e d  J L C C  s c h e m e is e v al u at e d  i n  S e cti o n  I V  b y 
c o nsi d eri n g t h e E C G s yst e m as a c as e st u d y.  

B.  R etr ai ni n g M et h o d  

Fi g.  6  ill ustr at es t h e pr o p os e d r etr ai ni n g s c h e m es f or J L C C. 
C o nsi d er  a  gi v e n  c h a n n el  err or  pr o b a bilit y p ,  t h e  ori gi n al 
tr ai ni n g  d at as et  is first  i nj e ct e d  b y  r a n d o m  err ors  wit h  a 
pr o b a bilit y p tr f or g e n er ati n g  a n ois y / c orr u pt e d c o p y; b ot h t h e 
ori gi n al a n d t h e n ois y d at as ets ar e t h e n c o m bi n e d a n d us e d t o 
r etr ai n  t h e  m o d el. I n  p arti c ul ar,  tw o  r etr ai ni n g m et h o d s  ar e 
c o nsi d er e d : 

1)  M et h o d 1 : g e n er at e t h e n ois y d at as et b y i nj e cti n g err ors 
wit h  p tr = p ; t his is p erf or m e d t o l et t h e m o d el l e ar n a n d 
t ol er at e err ors wit h t h e gi v e n c h a n n el err or pr o b a bilit y. 

2)  M et h o d 2 : g e n er at e t h e n ois y d at as et b y i nj e cti n g err ors 
wit h p tr ≤ p ,  i. e., all o wi n g  all  p ossi bl e  err ors wit h  a 
s e v er al  pr e -d efi n e d pr o b a bilit y v al u es  u p  t o  t h e  gi v e n 
v al u e.  B y  d oi n g t his,  t h e  m o d el  l e ar ns m or e  t y p es  of 
err ors ( i. e., t h os e wit h diff er e nt pr o b a biliti es) a n d t h us is 
e x p e ct e d t o b e m or e r o b ust.  

T h es e  t w o i niti al m et h o ds  ar e  i n v esti g at e d  i n  t his  p a p er  t o 
s h o w t h e eff e cti v e n ess of t h e pr o p os e d J L C C s c h e m e ; h o w e v er, 
ot h er e xt e n d e d/i m pr o v e d  s ol uti o ns ( e. g., wit h p tr ≥  p ) t h at m a y 
a c hi e v e  a b ett er tr ai ni n g p erf or m a n c e c o ul d b e e x pl or e d. T his 
is l eft f or f ut ur e w or k. 

N e xt , i n b ot h c as es, t h e M L m o d el is r etr ai n e d b y usi n g t h e 
s a m e  m et h o d  as  f or  tr ai ni n g  t h e  ori gi n al  m o d el.  O n c e a n 
i niti all y r etr ai n e d m o d el  is  o bt ai n e d,  i nf er e n c e  is e x e c ut e d  t o 

 
Fi g.  4.   M L -b a s e d  I o T  s y st e m:  ( a) tr a diti o n al s c h e m e  wit h o ut  J L C C;  ( b) 
pr o p o s e d s c h e m e wit h J L C C ( diff er e n c e s fr o m ( a) ar e m ar k e d i n r e d) . 
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F i g. 5 E x a m pl e s of S V M i nf er e n c e f or bi n ar y cl a s sifi c ati o n: s a m pl e 𝑋 ! " "  t h at 
c o nt ai n s c h a n n el err or s is i n c orr e ctl y ( c orr e ctl y) cl a s sifi e d a s Cl a s s B ( A) b y t h e 
ori gi n al (r etr ai n e d) m o d el.  
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6  

c h e c k  its cl assifi c ati o n  a c c ur a c y  o n  t h e  ori gi n al  err or -fr e e 
t esti n g d at as et; if t h e r es ult is t h e s a m e or b ett er t h a n t h e err or-
fr e e a c c ur a c y of t h e ori gi n al m o d el ( d en ot e d t o  as A c c ori ), t h e 
e x p e ct e d r etr ai n e d m o d el is o bt ai n e d,  a n d r etr ai ni n g c o m pl et e s. 
N ot e t h at  t h e r e as o ns f or pr o b a bl y a c hi e vi n g  a b ett er a c c ur a c y 
t ha n A c c ori  i n t h e r etr ai n e d m o d el ar e  (i) t h e i n cr e as ed si z e  of 
t h e tr ai ni n g d at as et; (ii) t h e i ntr o d u cti o n of n ois y d at a , w hi c h  
miti g at e s o v erfitti n g. H o w e v er, si n c e t h e pr e -c orr u pt e d s a m pl es 
a d d e d i n t h e pr o p os e d r etr ai ni n g m et h o d pr es e nt t h e pr o p erti es 
of c h a n n el err ors t h at us u all y h a v e a li mit e d err or pr o b a bilit y, 
t h e y ar e li k el y t o b e si mil ar t o t h e err or -fr e e s a m pl es; h e n c e, t h e 
r etr ai n e d m o d el is n ot e x p e ct e d t o pr o vi d e a m aj or i m pr o v e m e nt 
in a c c ur a c y i n t h e err or -fr e e c as e ( as v erifi e d b y  t h e e v al u ati o n 
r es ults pr es e nt e d i n S e cti o n I V). T o o bt ai n a r etr ai n e d m o d el f or 
ot h er fi g ur es of m erit, mor e c o nstr ai nts c a n b e i n cl u d e d (i. e., i n 
a d diti o n  t o t h e c o m p ari s o n wit h A c c ori ) i n  t h e  l ast  st e p  of 
r etr ai ni n g; t his is dis c uss e d i n d et ail i n S e cti o n I V.  

If  t h e i niti all y r etr ai n e d  m o d el  is  n ot  a c c e pt a bl e  (i. e.,  its 
cl assifi c ati o n  a c c ur a c y  is  s m all er  t h a n A c c ori  i n  t h e  err or-fr e e 
c as e ), t h e e ntir e  pr o c ess as dis c uss e d a b o v e  is r e p e at e d u ntil t h e 
e x p e ct e d m o d el is f o u n d. Si n c e t h e err o n e o us d at a s a m pl es i n 
t h e n ois y tr ai ni n g d at as et ar e r a n d o ml y g e n er at e d, r e p e ati n g t h e 
pr o c ess is li k el y t o g e n er at e  a m o d el t h at l e ar ns a b o ut t h e err ors 
a n d t h e n c a n t ol er at e si mil ar o n es w h e n p  is s m all. F or a l ar g er 
v al u e of p , m or e d at a s a m pl es ar e c orr u pt e d a n d t h us t h e n um b er 
of c o nsi d er e d err or p att er ns i n cr e as es . As a c o ns e q u e n c e, t his 
m a k es t h e m o d el  i n c a p a bl e t o l e ar n t h e err ors usi n g o nl y a s m all 
n ois y  tr ai ni n g  d at as et.  T h er ef or e,  if  t h e  r etr ai ni n g  pr o c ess is 
r e p e at e d r ti m es  b ut  a  g o o d  m o d el is n ot  o bt ai n e d  y et,  a n 
a d diti o n al  n ois y d at as et ( usi n g t h e s a m e err or i nj e cti o n m et h o d 
as i n t h e  first  st e p)  is  g e n er at e d  a n d b ot h  n ois y  d at as ets 
p arti ci p at e i n r etr ai ni n g . T his is ill ustr at e d i n Fi g.  6 . L et  t h e si z e 
of t h e n ois y d at as et b e  n  ti m es (i. e., n  = 1, 2, ...) t h e si z e of t h e 
ori gi n al err or -fr e e d at as et. If n  is t o o l ar g e, t h e n t h e c o m pl e xit y 
of tr ai ni n g is u n a c c e pt a bl e f or t h e r e m ot e M L st ati o n a n d  t h e 
pr o p os e d  r etr ai n i n g pr o c ess  e n ds/f ails.  H o w e v er,  t his  c as e  is 
u nli k el y t o o c c ur b e c a us e , i n pr a cti c e, t h e v al u e of p  is li mit e d. 

C o m p ar e d  t o  t h e  first  r etr ai ni n g  s c h e m e,  t h e  s e c o n d  s c h e m e 
t e n ds t o r e q uir e a l ar g er v al u e of n  b ut it g e n er at es a m or e r o b ust 
m o d el b e c a us e m or e err or p att er ns ar e t a k e n i nt o a c c o u nt.  N ot e 
t h at t h e si z e of t h e r etr ai ni n g d at as et us e d t o a c hi e v e t h e gi v e n 
c o nstr ai nts  h as  n o  i m p a ct  o n  t h e  h ar d w ar e  o v er h e a d  of  t h e 
wir el ess d e vi c es, b e c a us e r etr ai ni n g is p erf or m e d off -li n e.  

I V. E V A L U A TI O N  

A.  S et u p  

 T h e  E C G  s yst e m  i ntr o d u c e d  i n  S e cti o n  II -A  is  t a k e n  as  a 
c as e st u d y t o e v al u at e t h e eff e cti v e n ess of t h e pr o p os e d J L C C 
s c h e m e. T h e  s a m e  S V M  m o d el  of [ 2 6] is  us e d  as  t h e  M L 
cl assifi er.  A f e w d at as ets of t h e MI T -BI H arr h yt h mi a d at a b as e 
[ 2 8], i n cl u di n g p ati e nt # 2 0 7 , p ati e nt # 2 0 9 , a n d p ati e nt  # 2 3 2 , ar e 
us e d t o c h e c k t h e i m p a ct of c h a n n el err ors o n t h e M L r es ults 
(i. e., t h e cl assifi c ati o n  a c c ur a c y  i n  t his  c as e  st u d y). T a bl e  I 
s h o ws  t h e  d es cri pti o n  of  e a c h  d at as et  a n d  t h eir  cl assifi c ati o n 
a c c ur a c y of t h e ori gi n al M L m o d el ( pr etr ai n e d i n  [ 2 6]) i n t h e 
err or -fr e e  c as e. T o als o ass ess  t h e pr o p os e d  J L C C  s c h e m e  i n 
t er ms of h ar d w ar e effi ci e n c y at  a n a c c e pt a bl e err or -t ol er a nc e , 
t h e E C G s yst e m pr ot e ct e d usi n g t h e t er n ar y L D P C c o d e fr o m  
[9]  is e v al u at e d a n d c o m p ar e d as  a  b as eli n e . 

T h e err or i nj e cti o n pr o c ess is c o n d u ct e d b y usi n g t h e s a m e 
m et h o d  as  t h e  o n e  d es cri b e d  i n S e cti o n  II -B  a n d  t h e  t er n ar y 
s y m m etri c c h a n n el  m o d el  of Fi g.  2 . T h e  a v er a g e d  S V E B 
cl assifi c ati o n a c c ur a c y a m o n g 1 0 0 0 si m ul ati o ns is e v al u at e d  i n 
t h e  pr es e n c e  of  err ors, e a c h wit h  err or  pr o b a bilit y p  ( v ar yi n g 
fr o m  0. 0 0 2  t o  0. 10 0 ).  F or  t h e  p ar a m et ers r (t h e  n u m b er  of 
r e p e at e d r etr ai ni n g r u ns) a n d n  (t h e si z e of n ois y tr aini n g d at as et) 
us e d i n t h e r etr ai ni n g pr o c ess, e x e m pl ar y v al u es of  r = 1 0 0 0 a n d 
n m a x  = 2 0 0 ar e  c o nsi d er e d. N e xt, t h e r o b ust n ess of t h e r etr ai n e d 
m o d el o bt ai n e d usi n g  t h e pr o p os e d  J L C C s c h e m e is e v al u at e d ; 
t h e n t h e  ass o ci at e d  L D P C c o d es  ar e  i m pl e m e nt e d  a n d 
c o m p ar e d wit h t h e b as eli n e i n t er ms of h ar d w ar e o v er h e a d.  

B.  R o b ust n ess of R etr ai n e d M o d el  

As  ill ustr at e d  i n Fi g.  6 , t o  a c hi e v e n o  d e gr a d ati o n  of 
p erf or m a n c e i n t h e r etr ai n e d m o d el, r etr ai ni n g is p erf or m e d  b y 
i n cr e asi n g t h e v al u e of n  (f or e ac h n , t h e si m ul ati o n is r e p e at e d 
r = 1 0 0 0 ti m es) a n d c o m pl et es o n c e a m o d el wit h  t h e s a m e or 
l ar g er cl assifi c ati o n a c c ur a c y c o m p ar e d t o t h e err or-fr e e r es ult 
gi v e n i n T a bl e I  is f o u n d. T a bl e II s h o ws t h e v al u e of n  r e q uir e d 
f or t h e c o nsi d er e d d at as ets usi n g diff er e nt r etr ai ni n g m et h o ds . 
A s  e x p e ct e d, t h e  v al u e  of n  i n cr e as es  f or  a  l ar g er  err or 
pr o b a bilit y i n b ot h r etr ai ni n g s c h e m es b e c a us e t h e l e ar ni n g is 
h ar d er f or t h e m o d el i n t h e pr es e n c e of a l ar g er n u m b er of t h e 
err ors .  H e n c e,  i n  s u c h  c as es, m or e  tr ai ni n g  d at a  s a m pl es  ar e 
r e q uir e d t o pr o vi d e a b ett er cl assifi c ati o n p erf or m a n c e. T his is 

T A B L E  I 
D E S C RI P TI O N O F D I F F E R E N T D A T A S E T S  

D at a s et *  N u m b er of d at a s a m pl e s  Cl a s sifi c ati o n a c c ur a c y  

# 2 0 7  2 7 0 4  9 9. 2 4 %  
# 2 0 9  3 0 0 9  9 7. 8 5 %  
# 2 3 2  1 7 8 6  9 6. 5 0 %  

* Si n c e t h e cl a s sifi c ati o n of S V E B a n d n ot -S V E B i s c o n si d er e d i n t hi s p a p er, 
f e w d at a s ets fr o m t h e MI T-BI H d at a b a s e  [ 2 8] wit h a l ar g er n u m b er of S V E B 
d at a s a m pl e s ar e s el e ct e d . 
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verified in the example plotted in Fig. 7 for dataset #207 and p 
= 0.03, where a higher classification accuracy is achieved when 
the size of the retraining dataset is increased. 
 As seen from Table II, the increase of n tends to be 

exponential with p, especially for values of p larger than 0.02. 
This is likely because the number of error patterns increases 
exponentially, and a corresponding larger number of data 
samples are required for learning. This also applies to the 
difference between the results using different retraining 
methods. In method 2, errors with different probabilities (≤ p) 
are injected in the training dataset and consequently the number 
of realized error patterns is larger than for method 1 (that 
considers errors with only the fixed probability p). Therefore, 

as shown in Table II, the value of n for method 2 is equal to or 
larger than for method 1 in all cases; moreover, the difference 
of n tends to become larger for a larger value of p, because in 
such a case, the model retrained using method 2 must learn a 
larger number of error patterns. 
 A second experiment performed is to evaluate the robustness 

of the retrained models in the presence of errors. Once the 
retrained models are obtained, their classification accuracy on 
the testing dataset injected by errors with different p is checked. 
In each case, the accuracy of the original model is also 
evaluated for comparison. Table III reports the results for 
dataset #207. Since it is of interest to show the robustness of a 
model retrained by targeting p with fewer errors (i.e., the 
occurrence of errors with probability p is considered as the 
worst case of the channel), the accuracy of the retrained models 
for an error probability smaller than p is also checked. As per 
Table III, the classification accuracy results are shown to have 
the following trends: 
• In the error-free case, the retrained models using both 

proposed methods maintain the same or a slightly higher 
classification accuracy compared to the original model. 
This is expected because at least the same accuracy (as 
for the original model) is the constraint when retraining. 
A possible reason for obtaining a slightly higher 
accuracy seems to be that a scheme by which training 
ML models introduces noise to the input variables is 

TABLE II 
REQUIRED SIZE OF NOISE TRAINING DATA N UNDER ERRORS FOR DIFFERENT P 

Channel error probability p 0.002 0.004 0.006 0.008 0.010 0.020 0.025 0.030 0.050 0.100 

Required 
n 

#207 Method 1 1 1 1 2 2 4 40 60 100 200 
Method 2 1 2 2 3 3 5 50 80 120 200 

#209 Method 1 1 1 1 2 2 3 40 60 90 170 
Method 2 1 1 1 2 2 4 50 70 120 200 

#232 Method 1 1 1 1 1 2 2 40 60 90 160 
Method 2 1 1 1 2 2 2 40 70 120 190 

 
 

 
Fig. 7. Classification accuracy of the retrained model for dataset #207 at 
different sizes of noisy retraining data (under p = 0.03). 
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TABLE III 
CLASSIFICATION ACCURACY OF DIFFERENT MODELS FOR DATASET #207  

Classifier model Classification accuracy on testing data with different p 
Error-free 0.002 0.004 0.006 0.008 0.010 0.020 0.025 0.030 0.050 0.100 

Original of [26] 99.24% 99.10% 98.94% 98.83% 98.68% 98.53% 97.66% 97.12% 96.80% 95.29% 93.63% 

Retrained 
with* 

ptr = 0.002 99.24% 99.12% - - - - - - - - - 
ptr ≤ 0.002 99.24% 99.12% - - - - - - - - - 
ptr = 0.004 99.24% 99.14% 99.05% - - - - - - - - 
ptr ≤ 0.004 99.24% 99.21% 99.18% - - - - - - - - 
ptr = 0.006 99.24% 99.23% 99.21% 99.13% - - - - - - - 
ptr ≤ 0.006 99.24% 99.22% 99.21% 99.15% - - - - - - - 
ptr = 0.008 99.24% 99.24% 99.20% 99.13% 99.11% - - - - - - 
ptr ≤ 0.008 99.24% 99.24% 99.23% 99.20% 99.17% - - - - - - 
ptr = 0.010 99.24% 99.23% 99.20% 99.18% 99.10% 99.02% - - - - - 
ptr ≤ 0.010 99.24% 99.24% 99.24% 99.21% 99.18% 99.11% - - - - - 
ptr = 0.020 99.24% 99.23% 99.23% 99.23% 99.22% 99.21% 98.86% - - - - 
ptr ≤ 0.020 99.24% 99.24% 99.24% 99.24% 99.23% 99.18% 98.72% - - - - 
ptr = 0.025 99.24% 99.25% 99.25% 99.24% 99.24% 99.24% 99.24% 99.20% - - - 
ptr ≤ 0.025 99.24% 99.25% 99.25% 99.24% 99.24% 99.24% 99.24% 99.21% - - - 
ptr = 0.030 99.25% 99.25% 99.24% 99.24% 99.24% 99.24% 99.24% 99.21% 99.07% - - 
ptr ≤ 0.030 99.25% 99.25% 99.25% 99.24% 99.24% 99.24% 99.24% 99.22% 99.09% - - 
ptr = 0.050 99.24% 99.24% 99.24% 99.24% 99.24% 99.24% 99.24% 99.24% 99.11% 98.93% - 
ptr ≤ 0.050 99.24% 99.24% 99.24% 99.24% 99.24% 99.24% 99.24% 99.24% 99.12% 99.01% - 
ptr = 0.100 99.24% 99.24% 99.24% 99.24% 99.24% 99.24% 99.24% 99.24% 99.18% 99.09% 98.89% 
ptr ≤ 0.100 99.24% 99.24% 99.24% 99.24% 99.24% 99.24% 99.24% 99.24% 99.22% 99.15% 98.92% 

*ptr = p refers to retraining method 1 and ptr ≤ p refers to retraining method 2. 
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helpful for reducing overfitting, which improves the 
model performance (as indicated in [23]); 

• In the presence of errors, the retrained models using both 
proposed methods achieve a higher accuracy compared 
to the original model in all cases. Moreover, the second 
retraining method (i.e., ptr ≤ p) performs better because 
it enables the model to learn a larger number of error 
patterns as discussed previously; 

• In both schemes, the model retrained with a larger error 
probability tends to be more robust (i.e., achieving a 
higher accuracy). This is observed in each column of 
Table III; for example, when p = 0.002, the model 
retrained with ptr = 0.006 offers a higher accuracy 

(99.23%) than the model retrained with ptr = 0.004 
(99.14%), followed by the one using ptr = 0.002 
(99.12%). This again is expected because the model 
retrained targeting a larger p learns more errors, so 
achieves a better error-tolerance. 

These trends are also the case for the results of the other two 
datasets (#209 and #232) reported in Tables IV and V. 
Next, the case for dataset #207 is taken as an example to 

discuss the protection technique in more detail (i.e., the ternary 
LDPC codes) required in two different scenarios:  
• The first scenario considers an unprotected system that 

can tolerate a given SER, for which the loss in ML 
accuracy for this SER is acceptable at system level;  

TABLE V 
CLASSIFICATION ACCURACY OF DIFFERENT MODELS FOR DATASET #232  

Classifier model Classification accuracy on testing data with different p 
Error-free 0.002 0.004 0.006 0.008 0.010 0.020 0.025 0.030 0.050 0.100 

Original of [26] 96.50% 96.08% 95.64% 95.21% 94.88% 94.60% 93.08% 92.36% 91.75% 89.59% 86.36% 

Retrained 
with * 

ptr = 0.002 96.50% 96.21% - - - - - - - - - 
ptr ≤ 0.002 96.50% 96.21% - - - - - - - - - 
ptr = 0.004 96.50% 96.21% 96.13% - - - - - - - - 
ptr ≤ 0.004 96.50% 96.21% 96.15% - - - - - - - - 
ptr = 0.006 96.50% 96.23% 96.17% 95.78% - - - - - - - 
ptr ≤ 0.006 96.50% 96.24% 96.19% 95.88% - - - - - - - 
ptr = 0.008 96.50% 96.26% 96.15% 95.87% 95.62% - - - - - - 
ptr ≤ 0.008 96.50% 96.30% 96.19% 95.93% 95.77% - - - - - - 
ptr = 0.010 96.50% 96.34% 96.15% 95.90% 95.56% 95.27% - - - - - 
ptr ≤ 0.010 96.50% 96.38% 96.20% 95.93% 95.80% 95.29% - - - - - 
ptr = 0.020 96.50% 96.36% 96.19% 95.96% 95.77% 95.24% 95.10% - - - - 
ptr ≤ 0.020 96.50% 96.40% 96.22% 96.05% 95.85% 95.38% 95.19% - - - - 
ptr = 0.025 96.50% 96.41% 96.24% 96.05% 95.89% 95.42% 95.17% 94.77% - - - 
ptr ≤ 0.025 96.50% 96.44% 96.26% 96.09% 95.90% 95.45% 95.19% 94.79% - - - 
ptr = 0.030 96.50% 96.41% 96.27% 96.15% 96.00% 95.56% 95.30% 95.18% 94.62% - - 
ptr ≤ 0.030 96.50% 96.41% 96.27% 96.18% 96.01% 95.45% 95.32% 95.20% 94.67% - - 
ptr = 0.050 96.50% 96.45% 96.32% 96.30% 96.11% 95.79% 95.45% 95.25% 95.12% 94.60% - 
ptr ≤ 0.050 96.50% 96.47% 96.35% 96.30% 96.15% 95.83% 95.50% 95.29% 95.16% 94.62% - 
ptr = 0.100 96.50% 96.50% 96.44% 96.33% 96.24% 95.97% 95.69% 95.36% 95.20% 94.88% 94.57% 
ptr ≤ 0.100 96.50% 96.50% 96.47% 96.35% 96.29% 96.03% 95.77% 95.42% 95.21% 94.91% 94.60% 

*ptr = p refers to retraining method 1 and ptr ≤ p refers to retraining method 2. 
 

TABLE IV 
CLASSIFICATION ACCURACY OF DIFFERENT MODELS FOR DATASET #209 

Classifier model Classification accuracy on testing data with different p 
Error-free 0.002 0.004 0.006 0.008 0.010 0.020 0.025 0.030 0.050 0.100 

Original of [26] 97.85% 97.78% 97.69% 97.61% 97.52% 97.42% 96.85% 96.52% 96.24% 94.88% 91.41% 

Retrained 
with* 

ptr = 0.002 97.85% 97.81% - - - - - - - - - 
ptr ≤ 0.002 97.85% 97.81% - - - - - - - - - 
ptr = 0.004 97.85% 97.82% 97.76% - - - - - - - - 
ptr ≤ 0.004 97.85% 97.83% 97.76% - - - - - - - - 
ptr = 0.006 97.85% 97.83% 97.75% 97.65% - - - - - - - 
ptr ≤ 0.006 97.85% 97.85% 97.82% 97.76% - - - - - - - 
ptr = 0.008 97.85% 97.83% 97.82% 97.72% 97.65% - - - - - - 
ptr ≤ 0.008 97.85% 97.85% 97.82% 97.78% 97.73% - - - - - - 
ptr = 0.010 97.85% 97.85% 97.83% 97.76% 97.69% 97.59% - - - - - 
ptr ≤ 0.010 97.85% 97.85% 97.83% 97.76% 97.69% 97.64% - - - - - 
ptr = 0.020 97.85% 97.85% 97.83% 97.82% 97.79% 97.77% 97.66% - - - - 
ptr ≤ 0.020 97.85% 97.85% 97.85% 97.83% 97.82% 97.81% 97.66% - - - - 
ptr = 0.025 97.85% 97.85% 97.85% 97.83% 97.79% 97.77% 97.74% 97.68% - - - 
ptr ≤ 0.025 97.85% 97.85% 97.85% 97.84% 97.79% 97.77% 97.76% 97.70% - - - 
ptr = 0.030 97.85% 97.85% 97.85% 97.83% 97.82% 97.80% 97.78% 97.72% 97.62% - - 
ptr ≤ 0.030 97.85% 97.85% 97.85% 97.85% 97.83% 97.80% 97.78% 97.73% 97.64% - - 
ptr = 0.050 97.85% 97.85% 97.85% 97.85% 97.85% 97.80% 97.78% 97.75% 97.66% 97.62% - 
ptr ≤ 0.050 97.85% 97.85% 97.85% 97.85% 97.85% 97.83% 97.80% 97.78% 97.73% 97.62% - 
ptr = 0.100 97.85% 97.85% 97.85% 97.85% 97.85% 97.85% 97.85% 97.82% 97.77% 97.70% 97.60% 
ptr ≤ 0.100 97.85% 97.85% 97.85% 97.85% 97.85% 97.85% 97.85% 97.83% 97.80% 97.76% 97.59% 

*ptr = p refers to retraining method 1 and ptr ≤ p refers to retraining method 2. 
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• The second scenario considers a system that can tolerate 
a margin for degradation on the error-free ML accuracy.  

In both cases, the goal is to achieve a target ML accuracy for 
the entire system that is specified as (i) a target SER (SERtarget) 
in the unprotected system, or (ii) a margin over the error-free 
ML accuracy that is denoted as a target accuracy degradation 
(ADtarget). These two error-tolerant metrics define the limitation 
of performance degradation that the IoT application permits. 
The values of SERtarget or ADtarget considered next are just 
examples, which do not affect the qualitative conclusion; they 
can be determined as per the requirement of practical 
applications. 
Achieving an SERtarget: this scenario refers to the case in 

which the system tolerates an SER that is equal to SERtarget 
when not protected; moreover, the SERtarget can be converted to 
a target ML performance of the unprotected system under 
channel errors with p = SERtarget. For example, in the ECG 
system, an SERtarget of 0.002 refers to a classification accuracy 
of 99.10% in the original unprotected model (shown in Table 
III); this value indicates that the models must achieve such an 
accuracy in the presence of errors. Therefore, in this scenario, 
ternary LDPC codes with different protection capabilities are 
employed to protect different models (including the original 
model of [26], and the retrained models using methods 1 and 2) 
to achieve a satisfactory classification accuracy (≥ 99.10%).  
Table VI (left part) gives the ternary LDPC code required for 

different models to meet SERtarget = 0.002. When the channel 
error probability p is 0.002, no protection is required for all 
models, because it is equal to SERtarget (i.e., these errors can be 
accepted). When p increases, the original model must be 
protected by employing a ternary LDPC code that achieves an 
SER of 0.002. This is required because, as shown in Table III, 
errors degrade the model accuracy to less than 99.10% (that is 
related to the SERtarget of 0.002 as discussed previously). 
However, for the retrained models obtained in the proposed 
JLCC scheme, ternary LDPC codes with a larger SER than for 
the original model are allowed; moreover, there is no need to 
employ LDPC coding in some cases. For example, when p = 
0.010, the original model requires a ternary LDPC code with 
SER = 0.002 to achieve the target accuracy of 99.10%, while 

the retrained model 1 (with ptr = 0.010) requires a ternary LDPC 
code with SER = 0.008, and the retrained model 2 (with ptr ≤ 
0.010) does not require any protection. This occurs because, as 
shown in Table III, the retrained model 1 (2) has a classification 
accuracy of 99.10% (99.11%) under errors with p = 0.008 
(0.010). Hence, these two models are more robust, so require 
less or no protection. 
Next, consider a larger value of SERtarget, such as 0.004 that 

refers to a target classification accuracy of 98.94% as per Table 
III (i.e., more errors can be accepted). The required ternary 
LDPC code for different cases is also given in Table VI (middle 
part). Compared to the results for SERtarget of 0.002, the required 
LDPC code tends to have a larger SER (less protection), and no 
protection is required in more cases; this is as expected, because 
the requirement of error-tolerance in the system is reduced.  
Achieving an ADtarget: this scenario refers to the case when 

the IoT application accepts a specific degradation ADtarget in the 
error-free classification accuracy, such as 0.5% (i.e., one 
additional incorrect result is allowed among 1000 
classifications). In this case, the SVM classifier that has an 
accuracy of 99.24% in the error-free case must achieve an 
accuracy of at least 98.74% in the presence of errors. As per the 
model robustness shown in Table III, the ternary LDPC code 
required for different models is also given and compared in 
Table VI (right part). Only the original model requires the 
protection of the LDPC code with an SER of 0.006 when the 
error probability is equal to or larger than 0.008. This occurs 
because the model still provides an accuracy of at least 98.83% 
for errors with a smaller probability. For the retrained models, 
no protection is required in all cases because their accuracy 
results are better than 98.74% under all errors. 
As expected, when considering the robustness of a model 

under errors with different probabilities, it should become 
weaker (or at least remain the same) under more errors, and thus 
requires more powerful/stronger (or at least the same) 
protection. However, this is only the case for the original model 
as shown in Table VI, but not for both retrained models. For 
example, the results for retrained model 1 with ptr = p of 0.004, 
0.010, and 0.020 seem to intuitively be “No need” (because a 
protection can even be not needed for larger p). As introduced 

TABLE VI 
PROTECTION OF TERNARY LDPC CODES REQUIRED FOR MODELS WITH A GIVEN SERTARGET OR ADTARGET  

Channel 
error 

probability 

Protection capability of ternary LDPC codes required for different models* 
With an SERtarget of 0.002 With an SERtarget of 0.004 With an ADtarget of 0.5% 

Original model 
of [26] 

Retrained 
model 1 of 
JLCC 

Retrained 
model 2 of 
JLCC 

Original model 
of [26] 

Retrained 
model 1 of 
JLCC 

Retrained 
model 2 of 
JLCC 

Original model 
of [26] 

Retrained 
model 1 of 
JLCC 

Retrained 
model 2 of 
JLCC 

p = 0.002 No need No need No need No need No need No need No need No need No need 
p = 0.004 SER = 0.002 SER = 0.002 No need No need No need No need No need No need No need 
p = 0.006 SER = 0.002 No need No need SER = 0.004 No need No need No need No need No need 
p = 0.008 SER = 0.002 No need No need SER = 0.004 No need No need SER = 0.006 No need No need 
p = 0.010 SER = 0.002 SER = 0.008 No need SER = 0.004 No need No need SER = 0.006 No need No need 
p = 0.020 SER = 0.002 SER = 0.010 SER = 0.010 SER = 0.004 SER = 0.010 No need SER = 0.006 No need No need 
p = 0.025 SER = 0.002 No need No need SER = 0.004 No need No need SER = 0.006 No need No need 
p = 0.030 SER = 0.002 SER = 0.025 SER = 0.025 SER = 0.004 No need No need SER = 0.006 No need No need 
p = 0.050 SER = 0.002 SER = 0.030 SER = 0.030 SER = 0.004 SER = 0.030 No need SER = 0.006 No need No need 
p = 0.100 SER = 0.002 SER = 0.030 SER = 0.050 SER = 0.004 SER = 0.050 SER = 0.050 SER = 0.006 No need No need 

* The retrained models obtained in the proposed JLCC scheme are different for each p; they are retrained using the retraining method 1 or 2 with ptr = p or ptr ≤ p, 
respectively. 
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previously (Fig. 6), the retrained model is obtained once its 
accuracy in the error-free case is equal to or larger than the 
original model (i.e., with such a single constraint) and a 
different model can be obtained if the retraining process is 
executed again. Therefore, under errors with a given p, the 
model retrained with a larger ptr may not always be more robust 
than the one with a smaller ptr. 
As explained in the discussion of Fig. 6, additional 

constraints can be included during the retraining process. 
Therefore, a third investigation is pursued to retrain some 
models again by introducing more constraints to show that they 
may offer a higher robustness. The three retrained models 
mentioned above (i.e., using method 1 with ptr = p of 0.004, 
0.010, and 0.020, respectively) and the case of a target SER of 
0.002 are considered; the goal is to retrain them again to achieve 
the target SER with no LDPC code protection (i.e., their results 
are expected as ”No need” in Table VI (left)). Hence, in 
addition to the initial constraint, the constraint of achieving an 
accuracy larger than or equal to 99.10% under errors (which 
relates to the SERtarget = 0.002 as discussed previously) is also 
included in the retraining process. 
Table VII shows the classification accuracy of the new 

retrained models (named as retrained model 1’) for dataset #207 
under different errors and their required protection scheme. For 
comparison, some results for the initial version of these three 
models (named as retrained model 1) previously reported in 
Tables II, III, and VI are given again in this table. More robust 
models are obtained in all cases when considering two 
constrains using the same or larger size of noisy training data 
(i.e., n). 
Overall, in the proposed JLCC scheme, the retrained model 

can tolerate some errors, so the required protection capability 
of the ternary LDPC code is lower than for the original model. 
This typically leads to a higher code rate (i.e., smaller number 
of parity bits to be transmitted). The hardware overhead 
required for protection is evaluated in the next subsection. 

C. LDPC Hardware Overhead 
As per the design method of [9], ternary LDPC codes with 

three code rates (including R = 2/3, 1/2, and 1/3) are designed 
to protect the ECG data made of 500 symbols per transmission. 
It should be noted that these codes are just taken as examples to 
illustrate the effectiveness of the proposed scheme; any 
additional improvement for a better decoding process is beyond 
the scope of this paper and is left for future work. Fig. 8 plots 
the error correction capability for different cases. The smallest 

code rate (i.e., R = 1/3) provides the highest protection as 
expected, because the corresponding code possesses the largest 
proportion of parity symbols that also need to be transmitted. 
Considering both Tables VI and Fig. 8, ternary LDPC codes 
with the largest code rate that can achieve SERtarget or ADtarget 
for different error probabilities, can be employed for different 
models to provide sufficient protection while incur smallest 
overhead. For example, when SERtarget = 0.002 and p = 0.030, 
the original model of [26] requires a code with R = 1/2, while a 
code with R = 2/3 is sufficient for protecting the retrained 
models of the proposed JLCC scheme. 
As shown in Fig. 1, the hardware implementation of an ECG 

sensor includes a ternary Delta modulator and a RF data 
transmitter in the unprotected case. When using LDPC 
protection, an encoder is also required to generate the parity 
symbols and the RF data transmitter dissipates additional power 
to transmit them. As indicated in [9], the area overhead and 
latency introduced by the encoder are not an issue for the ECG 
system because the circuit is small, and the sensor operates at a 
low frequency. Therefore, only the power dissipation required 
for the ECG sensor in the original scheme and the proposed 
JLCC scheme are evaluated and compared next. 
The evaluation results of our previous ECG system design 

show that the ternary Delta modulator dissipates a power of 302 
nW at a sampling rate of 1 kHz [2] and the RF transmitter 
consumes an energy of 1.156 nJ for each bit [29]. Since two 
channels are utilized to transmit the ternary symbols, the entire 
data transmission power is 2.312 μW (i.e., 1.156 nJ × 2 × 1 
kHz) in the unprotected case; due to the transmitted parity data, 
this number increases to 3.468 μW, 4.624 μW, and 6.936 μW 

TABLE VII 
DIFFERENT MODELS RETRAINED WITH DIFFERENT CONSTRAINTS FOR THE #207 DATASET 

Classifier model* Classification accuracy on testing data with different p Required n Required ternary 
LDPC when ptr = p Error-free 0.002 0.004 0.006 0.008 0.010 0.020 

Ptr = 0.004 
Retrained model 1 99.24% 99.14% 99.05% - - - - 1 SER = 0.002 
Retrained model 1’ 99.24% 99.15% 99.11% - - - - 1 No need 

Ptr = 0.010 
Retrained model 1 99.24% 99.23% 99.20% 99.18% 99.10% 99.02% - 2 SER = 0.008 
Retrained model 1’ 99.24% 99.23% 99.23% 99.21% 99.13% 99.10% - 2 No need 

Ptr = 0.020 
Retrained model 1 99.24% 99.23% 99.23% 99.23% 99.22% 99.21% 98.86% 4 SER = 0.010 
Retrained model 1’ 99.24% 99.23% 99.23% 99.23% 99.23% 99.23% 99.10% 6 No need 

* Retrained model 1 is obtained with the initial constraint of achieving an accuracy larger than or equal to Accori in the error-free case, while retrained model 
1’ is obtained with an additional constraint of achieving an accuracy larger than or equal to 99.10% under errors. 
 

 
Fig. 8. Error correction of ternary LDPC code at different code rate in the 
presence of channel errors for different probability. 

 
 
 

00.050.10.150.2
Error probability p

10-5

10-4

10-3

10-2

10-1

S
ym

bo
l e

rr
or

 ra
te

 (S
E

R
)

R = 1/3
R = 1/2
R = 2/3

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3235778

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New Mexico State University. Downloaded on January 31,2023 at 23:40:50 UTC from IEEE Xplore.  Restrictions apply. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
 

11 

when using the ternary LDPC codes with a code rate of 2/3, 1/2, 
and 1/3, respectively. The encoders for the different codes are 
implemented using VHDL and the designs are synthesized 
using Synopsys Design Compiler by mapping to a 65 nm 
technology library at a frequency of 2 kHz (which is sufficiently 
high to support the sensor). Table VIII gives the synthesis 
results of different encoders as well as the power results of other 
components of the ECG sensor. The ternary LDPC protection 
with a larger code rate is shown to incur a significantly lower 
power dissipation for error protection and for the entire ECG 
sensor. This indicates that the proposed JLCC scheme can 
achieve a power reduction compared to the original scheme. 
Again, in the example when SERtarget = 0.002 and p = 0.030, the 
protection power dissipation for the retrained models (using a 
code with R = 2/3) is 2.098 μW while that for the original model 
(using a code with R = 1/2) is 3.568 μW; this leads to a power 
reduction of 41.20% for error protection and 23.78% for the 
entire system (as per Table VIII). 
To show the advantage of the proposed JLCC scheme in 

terms of hardware overhead, the power dissipation of the entire 
ECG sensor is utilized as evaluation metric (which is more 
reasonable than considering the protection power only); dataset 
#207 is again considered as an example to compare the power 
results of different schemes. Fig. 9 plots the power saving of the 
ECG sensor achieved by the retrained models of the proposed 
JLCC scheme compared to the original model of [26]. A 
reduction of more than 40% is shown in many cases, because 
no protection is required by the retrained models as per Table 
VI. Moreover, an average saving of 29.15% is achieved by the 
retained model 1 and 34.82% is achieved by the retrained model 
2; this is also expected because the retrained model 2 with more 
constraints during retraining is more robust as discussed 

previously. Fig. 9 also shows no power saving for some error 
probabilities; this occurs because, when p is very small, both 
the original and retrained models do not need error protection 
(i.e., the systems dissipate the same power). This can also 
happen in more cases when SERtarget/ADtarget is larger, as 
verified in Fig. 9. For the results when p = 0.050 in Fig. 9(a) or 
p = 0.100 in Fig. 9(b), no power saving is shown due to the 
limited choice of the ternary LDPC codes considered in this 
paper; here, even though the retrained models for these error 
probabilities allow a lower protection capability (shown in 
Table VI), they need to use the same code as in the original 
model (with R = 1/2 as per Fig. 8).   
Again, note that the proposed JLCC scheme only needs to 

remotely retrain the ML model, which is often executed off-line 
and prior to applying the entire system for classification. Hence, 
the significant power saved by the proposed JLCC scheme is 
achieved without introducing any additional hardware overhead 
on the wireless devices (e.g., the ECG sensor). 

V. CONCLUSION 
In this paper, a joint learning and channel coding (JLCC) 

scheme has been proposed to address the issue of power 
dissipation posed by error correction codes (ECCs) when they 
are employed for channel protection in ML-based IoT systems. 
By remotely retraining the ML model to learn errors using two 
proposed methods in the JLCC scheme, the requirement of ECC 
protection and the overhead introduced in the IoT devices have 
been considerably reduced.  
An existing electrocardiogram (ECG) monitoring and 

arrhythmia classification system protected using ternary low-
density parity-check (LDPC) codes has been considered as an 
example as application of JLCC. Its performance has also been 
evaluated (note that JLCC is also applicable to other systems 
with other ECC techniques). When targeting different error-
tolerant scenarios for the ECG system, the LDPC codes 
required in different schemes to achieve the same ML 
classification performance have been analyzed and 
implemented. The simulation results show that by employing 
JLCC, an average power saving of 29.15% and 34.82% of the 
ECG sensor can be achieved by using the proposed two 
retraining methods when compared to the original system. 
Therefore, the proposed JLCC scheme is very attractive for 

TABLE VIII  
EVALUATED POWER RESULTS OF THE ECG SENSOR IN DIFFERENT SCHEMES 

Scheme 

Power Dissipation (μW) 

Ternary 
Delta 

modulator 

RF data 
transmitter Encoder 

Entire 
ECG 
sensor Original 

data 
Parity 
data 

Unprotected 0.302 2.312 0 0 2.614 
Protected 
by ternary 
LDPC 

R = 2/3 0.302 2.312 1.156 0.942 4.712 
R = 1/2 0.302 2.312 2.312 1.256 6.182 
R = 1/3 0.302 2.312 4.624 1.884 9.122 

 
 
 

   
(a)                                                                                  (b)                                                                                  (c)   

Fig. 9. Power saving of the ternary ECG sensor achieved by the retrained models of the proposed JLCC scheme compared to the original model of [26] for dataset 
#207: (a) results for SERtarget = 0.002; (b) results for SERtarget = 0.004; (c) results for ADtarget = 0.5%. 
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ML-based IoT systems that are implemented in hardware-
constrained platforms and used in safety-critical applications. 
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