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Abstract—In several machine learning (ML)-based Internet of
Things (IoT) systems, data is captured by IoT devices and then
transmitted over a wireless channel for remote processing. Since
noise often appears on the channel (so causing data corruption and
consequently an incorrect ML result), channel protection must be
provided to guarantee an acceptable error rate for the transmitted
data, especially in safety-critical applications. An often-used
protection technique employs error correction codes (ECCs);
however, even with some improved designs, the power dissipation
required by an ECC implementation may still not meet the strict
requirements of hardware-constrained platforms. To address this
issue, a “joint learning and channel coding” (JLCC) scheme is
proposed in this paper. In such a scheme, the ML model is
retrained using two methods to tolerate some channel errors, such
that the system requires an ECC with significantly lower
protection capability. Since ML training is executed remotely,
JLCC achieves a significant power reduction for ECC without
introducing any additional overhead to the IoT device. An
electrocardiogram (ECG) system is taken as a case study to
illustrate the proposed JLCC scheme and evaluate its
effectiveness. A low-density parity-check (LDPC) code is
employed for protection of the system with/without JLCC; its
analysis and implementation are presented. Simulation results
show that, when employing JLCC with the proposed two
retraining methods, an average reduction of 29.15% and 34.82%
in the dissipated power is achieved for the ECG sensor when
compared to the original system.

Impact Statement—Internet of Things (IoT) are one of the most
promising technology frameworks in today’s digital world; the use
of machine learning (ML) is important for improving the
efficiency of analyzing data transmitted between different IoT
devices. However, recent research has demonstrated that the data
transmitted in an ML-based IoT system can be affected by errors
in the wireless channel, causing an incorrect outcome of the entire
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system; this may lead to a catastrophic consequence in safety-
critical applications, so error protection for data transmission
must be performed to guarantee a reliable result. The joint
learning and channel coding (JLCC) technique proposed in this
paper overcomes the limitation of existing error protection
approaches in terms of hardware overhead (for metrics such as
power dissipation). Therefore, it is very attractive for ML-based
IoT systems implemented in hardware-constrained platforms for
a wide variety of safety-critical applications like smart healthcare
and transportation.

Index Terms—Machine learning, channel coding, error-
tolerance, IoT system, electrocardiogram, low-density parity-
check codes.

I. INTRODUCTION

HE Internet of Things (IoT) combined with advances in

machine learning (ML) techniques is driving the
development of innovative artificial intelligence based systems
for different applications, including the safety-critical domains
such as healthcare [1], [2], transportation [3], driverless
vehicles [4], finance [5], and defense [6]. In these systems, IoT
devices are often utilized to only capture sensor data (e.g., a
wearable biosensor); the data is then transmitted over a wireless
channel and remotely processed by edge or cloud platforms
using software-based ML algorithms. Error-tolerance is usually
provided in ML-based IoT systems for reliable operation in
safety-critical applications [7]; otherwise, errors causing data
corruption may have catastrophic consequences (e.g., potential
life and property loss). Therefore, protection techniques and
strategies targeting different parts of the system, such as the
model computation [8], data transmission [9], memories [10],
ML algorithms [11] and error detection schemes [12], have
been pursued in the technical literature.

As one of the critical components in an [oT system, wireless
communication is prone to be affected by different types of
channel noise that can cause erroneous received data bits [13].
The often-used solution is to employ a channel coding scheme
using error correction codes (ECCs) [14], [15]. In such a
scheme, some parity bits are generated in the encoding process
(prior to transmission) and then for example padded to the data
being protected. If channel errors affect either the original data
being protected, or the parity bits when transmitted, then the
redundancy can be employed to attain an acceptable bit error
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rate (BER) [13] (or symbol error rate (SER) for ternary data [9])
in the decoding process once the data is received.

Therefore, when employing channel coding, additional
hardware must be utilized for the encoding/decoding process as
well as increasing the number of transmitted parity bits,
resulting in an increase of power/energy; this overhead is
significant when an ECC is utilized for error correction of
multiple bits. As IoT devices in many applications face
stringent requirements, there is a need to reduce the power
dissipated by the ECC encoding and data transmission
(decoding complexity is not a primary issue of concern in this
scenario because it is often performed remotely by a host
station), while of course ensuring that errors do not compromise
system performance. This poses a challenge for ECC design in
IoT systems because conventional coding schemes incur a
significant overhead to attain a low error rate for the decoded
data. Therefore, improvements in ECC design with low
hardware overhead have received significant attention in the
technical literature [9], [16].

For example, ternary low-density parity-check (LDPC)
codes [9] have been recently proposed to provide channel
protection for an electrocardiogram (ECG) monitoring and
arrhythmia classification system [17] (which is introduced in
Section II in more detail). LDPC codes are one of the most
widely used ECC types and have been used in various
communication standards (e.g., 5G new radio [18], IEEE
802.11n for wireless local area network (WLAN) [19], IEEE
802.16e for mobile broadband wireless access system [20],
DVB-S2/T2/C2 for digital video broadcasting [21]). However,
LDPC codes with a conventional construction may not be
applicable to IoT systems due to the high hardware complexity.
Therefore, alternative designs, such as that proposed for the
ECG system of [17] must be considered to meet the hardware
requirements. In this application, the IoT device is a wearable
biosensor that converts the input signals to ternary symbol
streams for efficient transmission, so a corresponding ternary
LDPC code with a low complexity encoder is designed [9].
Compared to traditional LDPC codes with binary bits, this
ternary coding scheme provides hardware-efficient encoding
and thus it significantly reduces power dissipation. However,
this scheme still must transmit a considerable number of parity
bits, which increases the power required for data transmission.
Therefore, a more efficient protection scheme, as will be
proposed in is paper, for these IoT systems is of interest.
Although we consider an ECG monitoring system as a case
study, the proposed techniques are widely applicable to general
low power IoT sensing applications.

ML algorithms are known to be resilient to not-critical errors
(e.g., causing only a small deviation from the exact data) [22];
hence this promises the use of less complex coding schemes
with a lower protection capability required for channel
protection in ML-based IoT systems. This occurs because
protection only needs to ensure that there is little or no error on
the final outcome of the ML models (i.e., not for the absence of
errors on the received sensor data). Therefore, it is of interest to
take this consideration one step further by training the ML
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models with inputs affected by the expected error rate. In this
case, the system learns to tolerate these errors and requires less
protection (even no protection in some cases) for data
transmission.

Training ML models with noisy data has been shown to
improve performance because it can mitigate overfitting [23] or
improve the model robustness! when performing regression
tasks [24]. However, to the best of the authors’ knowledge,
training ML classifiers to tolerate transmission/channel errors
for reducing protection overhead has not been considered in the
technical literature. In this paper, we pursue the study of such a
joint scheme and propose a so-called joint learning and channel
coding (JLCC) technique. The main contributions of this paper
are as follows:

* To show that ML models can be trained to tolerate

channel errors (due to transmission) on data;

*  To show that a joint design of ML and channel coding
significantly reduces the protection overhead against
channel errors;

* To demonstrate the benefits of the proposed JLCC
technique in an IoT biomedical application (i.e., an ECG
system).

The rest of this paper is organized as follows. Section II
reviews the ECG system (used as a case study to analyze the
proposed scheme) and the associated error protection scheme
using ternary LDPC codes. Section III presents the proposed
JLCC scheme and two retraining methods applied to it. The
JLCC scheme and its required ternary LDPC design are
implemented in Section IV; its effectiveness is also evaluated
in terms of the protection overhead introduced by the ternary
LDPC implementation and compared to the traditional scheme.
Finally, the paper ends with the conclusion in Section V.

II. PRELIMINARIES

A. ECG Monitoring and Arrythmia Classification Systems

An ECG monitoring and arrhythmia classification system is
a type of ML-based IoT system for smart medical applications
[25]. A recently presented ECG scheme was shown to be an
attractive candidate for next generation wearable ECG sensor
systems due to its advantages in terms of low power
implementation and continuous real-time ECG monitoring [17].
In such a system, as shown in Fig. 1, a wireless sensor (made of
a ternary delta modulator) and a radio frequency (RF) data
transmitter capture, process, and then transmit human ECG
information. Specifically, the ternary delta modulator converts
the captured analog ECG data into ternary symbol streams
consisting of “1”, “0”, and “-1” symbols that are transmitted
over the wireless channel. Once the ECG data arrives to the
receiver of a remote station, a machine learning algorithm starts
to analyze them and performs the arrhythmia classification; if a
dangerous/abnormal type of heartbeats (e.g., supraventricular
ectopic beat (SVEB) or ventricular ectopic beat (VEB) [17]) is
found, an alert that triggers human diagnosis is generated for

! Robustness refers to the capability of tolerating errors [24]; this is also
applicable in this paper.
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further treatment. This ECG system is considered as a case

study in this paper to analyze and evaluate the proposed scheme.

Due to its low computational complexity but yet with a high
learning performance, a linear-kernel based support vector
machine (SVM) has been proposed in [26] to perform
classification in an ECG system. It will also be considered in
the case study of this paper to investigate the proposed
retraining methods. An SVM model is typically trained by
initially solving (1) to obtain the non-negative value of the
Lagrange multiplier a associated to each of the N training
samples [27], where x and y denotes the feature and class of the
training samples respectively, i.e.,

1
max (Zliv=1 a; — 52?1=1 ?’:1 aiajyiijixj) | 2, ay; = 0. (1)

Once this is completed, the support vectors that belong to the
training dataset, are determined to establish the decision margin
and boundary of an SVM for classification. Finally, the SVM
model is obtained based on the weight w and bias b that are

calculated by w=YN,a;v;x; and b= NLSVZiESV(ti -

Djesv 4 tjxl-T xj), where N, denotes the number of support
vectors (SV), t denotes the target value corresponding to each
training sample and ¢t € {—1,1}. To classify a sample X during
inference using a linear-kernel function (binary classification is
considered in this manuscript), its class Y is predicted as

Y(X) = sign(Z_,(w,X + b)), ()

where f is the number of features of X; the positive and
negative signs refer to the different classes respectively.

To achieve a high classification accuracy in the ECG system,
the SVM model proposed in [26] utilizes two such models with
a constant combination coefficient. Its detailed design can be
found in [26] and will not be presented in this paper.

B. Impact of Channel Errors on Classification

Next, the impact of errors caused by channel errors during
data transmission is initially evaluated to validate the necessity
of employing a protection scheme in the ECG system. A dataset
(#207 patient) of the widely used benchmark MIT-BIH
arrhythmia database [28], including the heartbeat data of 47
patients and each with a few thousand heartbeat signals, is used

% Since the impact on VEB classification is negligible (found in our
simulations), then only the SVEB classification is considered in this paper.
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Fig. 2. Ternary symmetric channel model with error probability p [9].
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Fig. 3. ECG classification accuracy under channel errors at different probability.

to show the impact of channel errors on the ECG classification
accuracy?. To model the channel errors, the widely used ternary
symmetric channel model given in Fig. 2 with error probability
p is considered in this paper for error injection.> As per the
sampling rate of the ECG sensor, a stream consisting of 500
data points (ternary symbols) that reflects a critical waveform
(e.g., a QRS complex) of heartbeats, is transmitted [9].
Therefore, for different p, errors are randomly injected in each
transmitted 500 data points; this is then analyzed by the SVM
classifier to perform the SVEB classification.

Fig. 3 shows the average results of the classification accuracy
by repeating the simulation over 1000 times for different cases
(this number of simulation runs is selected because the results
are consistent with 10000 simulations); it is observed that the
accuracy of 99.24% in the error-free case decreases to 93.63%
when p increases to 0.1. Such accuracy degradation is not
acceptable in practical applications, especially when the ECG
system is applied to some patients with a severe heart disease
(i.e., a correct monitor and classification of heartbeat signals is
essential). Therefore, error protection must be performed to

3 The evaluation approach can also be extended to other types of channel
models, which do not change the qualitative conclusions drawn in this paper.
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handle channel errors. The protection technique is reviewed in
the next subsection.

C. Ternary LDPC Codes

As outlined previously, channel coding is typically utilized
to protect the transmitted data against noise-induced errors [14].
When employing a systematic ECC, the data being protected is
encoded by generating parity bits prior to transmission;
following this, the codeword consisting of the original data
being protected and its parity bits is transmitted. Consider Fig.
1 again, it illustrates an example of an ECC that is employed to
protect the transmitted data in the ECG system. If channel errors
affect any bits of the codeword during transmission, they are
remotely handled in the decoding process. Finally, an outcome
that is error-free, or with an acceptable SER (related to an
acceptable signal to noise ratio of a given application), is
generated.

However, these codes often incur in a significant overhead
when implemented in hardware; so, a hardware efficient ECC
design for data communication has been advocated as
introduced previously. When ECCs are employed in an IoT
system, the incurred overhead mainly includes two parts: 1)
additional data transmission power due to the ECC parity bits
(which must be transmitted along with the data); ii) additional
circuit area and power incurred by the encoder (that is typically
integrated in the IoT devices). The decoding overhead is usually
not an issue in an loT system, because the decoder is
implemented in the remote station that does not have strict
requirements on hardware overhead.

Recently, a class of ternary LDPC codes with low encoding
complexity [9] have been proposed to provide error correction
for a ternary symbol stream in the ECG system introduced
above. Such codes are constructed by forming the parity-check
matrix H = [Hi, Hz] with a quasi-cyclic structure based on the
following two sub-matrices

bom-1
60,m—1P

bo,1
60,1Ps s

by
61'1 PS

bo,0
80,0P

b bym—
H, = 51,0[.’5 e 51,m—1?s v ,3)

bk-1,0 bg-1,1 bk-1,m-1
6k—1,0Ps 6k—1,1P5 6k—1,m—1Ps

ls 0s Vk—ll,)sT
Yo Is Is Os o Os
H, = 0, wnl I 0, : (4)
0s o Os Yik—2 ls ls

In these two sub-matrices, § € GF(3) ={0,1,2}, y € GF(3)\
{0}, P is a s X s circulant permutation matrix constructed by
circulantly shifting the rows of the s X s identity matrix I
with b € {1, 2, ..., s} positions to the left. l”} is given by (5)
and is constructed by removing the right corner “1” in PZ, i.e.,

0 0 - 0 0

|1 oo 0 0

Pl=f0 1 - 0 of (5)
0 - 0 1 0
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With the parity-check matrix H, the code requires K = k - s
ternary parity symbols to protect M = m - s data symbols. This
results in a code rate of M/(M + K). When employing these
ternary LDPC codes in the ECG system, the ternary data “-1”
can be considered as “2” in the encoding process; moreover,
since the ECG sensor operates at a low sampling rate and is
hardware constrained, an efficient encoding approach is also
designed in [9] to meet these requirements. As per the quasi-
cyclic structure of H, the encoding can be designed to execute
on a serial fashion (which is acceptable considering the
sampling rate of ECG data). Consider an error-free codeword
of the ternary LDPC code v = [dy,dy, ..., dpy—1, Do) P1s - »
Px—1] (which consists of M data symbols d and K parity
symbols p) and the parity check rule v-HT = 0 [14]. (6) is
obtained because the first row of Hz, given by (4), has only the
first element as “1”. Therefore, the first parity symbol p, can
be calculated as

80,0 " ds—boy 801" das—pyy T+ Som-1" Aics—bom_s
+p0 = O’ (6)

where all operations are computed over GF(3). Once p, is
generated, p, can be subsequently obtained in the same way by
considering the (s + 1) row, because all elements in this row
are “0”’s except the first and the (s + 1)" elements, i.e., only p;
is unknown in the following expression

810 dsopygt 811 dosp, +o 8 me1 dies by,
+Yopo t0s =0.  (7)

By repeating this procedure as per the quasi-cyclic structure of
H, all parity symbols can be generated serially to complete
encoding (i.e., establishing a relationship similar to (6) and (7)
each time, in which only one parity symbol is calculated).*
However, even though this encoding process enables a small
encoder circuit implemented in the ECG sensor, the ternary
LDPC codes still require a considerable number of parity bits
(e.g., the same as the number of ECG symbols being protected
if the code rate is 1/2) to achieve small error rates [9]; this incurs
in a significant power dissipation for data transmission, because
all required parity bits need to be transmitted together with the
original data. Therefore, a scheme that can further reduce the
LDPC protection overhead by achieving higher code rates
while still meeting the required protection is necessary when an
IoT system is implemented on power-constrained platforms.

III. PrROPOSED JLCC SCHEME

In this section, a method referred to as joint learning and
channel coding (JLCC) is proposed to improve the error-
tolerance of ML-based IoT systems with low hardware
overhead. The details of JLCC are first presented; then, two
retraining methods are discussed as employed in such a scheme.

A. Joint Learning and Channel Coding

The proposed JLCC scheme relies on making the ML
algorithm robust by learning channel errors, so that the burden

* For more details of the encoding/decoding process of this ternary LDPC
codes, please refer to [9].
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Fig. 4. ML-based IoT system: (a) traditional scheme without JLCC; (b)
proposed scheme with JLCC (differences from (a) are marked in red).

of error protection for the wireless channel can be reduced. The
framework of an ML-based IoT system employing the JLCC
scheme is illustrated in Fig. 4. In the traditional scheme (Fig.
4(a)), the IoT biosensor device captures data and converts it to
a digital bit-stream that is protected by ECC when transmitting
in the wireless channel; once data is obtained by the remote ML
part, the model trained by using an existing database performs
inference on the received data to make a classification. This
predicted classification result is error-free (or with an
acceptable accuracy loss due to errors), because an ECC has
been employed for error-tolerance by introducing additional
hardware. When utilizing JLCC (Fig. 4(b)), the result is still
error-free, but the ECC protection overhead is reduced. This is
achieved by using a database that is pre-corrupted with errors
(related to the channel properties) to retrain the ML model.

Consider the SVM model used in an ECG system as an
example. As shown in Fig. 5, an error-free sample X can be
correctly classified as Class A by both models. However, its
classification result changes to B if X has been corrupted by
channel errors during transmission (denoted as X,,,.) in the
traditional scheme, i.e., Y(X,,) # Y(X) . This issue is
addressed in the proposed scheme; in JLCC, the ML model is
retrained by introducing additional C pre-corrupted samples
(that present the features of channel errors) to solve

1
max( o a —;Z?:lc g aiajyiijixj) | 25 agy; = 0.(8)
Therefore, the SVM model (i.e., the decision boundary) is
modified based on the retrained support vectors as shown in Fig.

5; this achieves the following

Y(Xerr) ng?l(Z{:l (W;X" + b: ))
= sign(T/_,(w/X + b)) = Y(X), 9)

where w' and b’ are the weight and bias values based on the
retrained support vectors. Therefore, X,,,. will also be classified
as Class A by using the retrained model.

By introducing a number of sufficient pre-corrupted samples
to retrain, the obtained model can tolerate at least some channel
errors on the received samples during inference. Therefore,
compared to the traditional scheme, an ECC with a lower
protection capability (or even no ECC) requiring less additional
hardware can be used in the proposed scheme to handle the
remaining errors and provide an error-free result. Note that even
though the original training dataset may also include some noise
(caused for example by an inexact feature extraction), this noise
has different properties from the channel errors; this makes the
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Fig. 5 Examples of SVM inference for binary classification: sample X, that
contains channel errors is incorrectly (correctly) classified as Class B (A) by the
original (retrained) model.

original model less robust than the retrained model in the
presence of channel errors.

Since the ML algorithm executes remotely, JLCC does not
introduce any overhead during data sensing or data
transmission. Even though in some applications in which the
ML is implemented remotely on a hardware-constrained
platform (such as an embedded system or edge device), only
inference (e.g., an ML accelerator) is implemented, while
training is executed off-line; thus, JLCC also incurs in no
overhead for the hardware platform because it only focuses on
training.

The process described above implies that the most critical
step of JLCC is the retraining process. Since the ML model is
modified after retraining, it is important to ensure that the
retrained model does not degrade the classification performance
in the error-free case when compared to the original model. This
can be achieved by using the proposed retraining methods
discussed in the next subsection. The effectiveness of the
proposed JLCC scheme is evaluated in Section IV by
considering the ECG system as a case study.

B. Retraining Method

Fig. 6 illustrates the proposed retraining schemes for JLCC.
Consider a given channel error probability p, the original
training dataset is first injected by random errors with a
probability ps» for generating a noisy/corrupted copy; both the
original and the noisy datasets are then combined and used to
retrain the model. In particular, two retraining methods are
considered:

1) Method I: generate the noisy dataset by injecting errors
with pi = p; this is performed to let the model learn and
tolerate errors with the given channel error probability.

2) Method 2: generate the noisy dataset by injecting errors
with p» < p, i.e., allowing all possible errors with a
several pre-defined probability values up to the given
value. By doing this, the model learns more types of
errors (i.e., those with different probabilities) and thus is
expected to be more robust.

These two initial methods are investigated in this paper to
show the effectiveness of the proposed JLCC scheme; however,
other extended/improved solutions (e.g., with p» > p) that may
achieve a better training performance could be explored. This
is left for future work.

Next, in both cases, the ML model is retrained by using the
same method as for training the original model. Once an
initially retrained model is obtained, inference is executed to
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Fig. 6. Retraining Process (Accan is the classification accuracy of the original
model in the error-free case, r is the number of repeated retraining runs, and n
is the size of the noisy training dataset).

check its classification accuracy on the original error-free
testing dataset; if the result is the same or better than the error-
free accuracy of the original model (denoted to as Accor), the
expected retrained model is obtained, and retraining completes.
Note that the reasons for probably achieving a better accuracy

than Accorn in the retrained model are (i) the increased size of

the training dataset; (ii) the introduction of noisy data, which
mitigates overfitting. However, since the pre-corrupted samples
added in the proposed retraining method present the properties
of channel errors that usually have a limited error probability,
they are likely to be similar to the error-free samples; hence, the
retrained model is not expected to provide a major improvement
in accuracy in the error-free case (as verified by the evaluation
results presented in Section IV). To obtain a retrained model for
other figures of merit, more constraints can be included (i.e., in

addition to the comparison with Accon) in the last step of

retraining; this is discussed in detail in Section I'V.

If the initially retrained model is not acceptable (i.e., its
classification accuracy is smaller than Accor in the error-free
case), the entire process as discussed above is repeated until the
expected model is found. Since the erroneous data samples in
the noisy training dataset are randomly generated, repeating the
process is likely to generate a model that learns about the errors
and then can tolerate similar ones when p is small. For a larger
value of p, more data samples are corrupted and thus the number
of considered error patterns increases. As a consequence, this
makes the model incapable to learn the errors using only a small
noisy training dataset. Therefore, if the retraining process is
repeated r times but a good model is not obtained yet, an
additional noisy dataset (using the same error injection method
as in the first step) is generated and both noisy datasets
participate in retraining. This is illustrated in Fig. 6. Let the size
of the noisy dataset be n times (i.e., n =1, 2, ...) the size of the
original error-free dataset. If # is too large, then the complexity
of training is unacceptable for the remote ML station and the
proposed retraining process ends/fails. However, this case is
unlikely to occur because, in practice, the value of p is limited.
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TABLEI
DESCRIPTION OF DIFFERENT DATASETS

Dataset™® Number of data samples Classification accuracy
#207 2704 99.24%
#209 3009 97.85%
#232 1786 96.50%

*Since the classification of SVEB and not-SVEB is considered in this paper,
few datasets from the MIT-BIH database [28] with a larger number of SVEB
data samples are selected.

Compared to the first retraining scheme, the second scheme
tends to require a larger value of n but it generates a more robust
model because more error patterns are taken into account. Note
that the size of the retraining dataset used to achieve the given
constraints has no impact on the hardware overhead of the
wireless devices, because retraining is performed off-line.

IV. EVALUATION

A. Setup

The ECG system introduced in Section II-A is taken as a
case study to evaluate the effectiveness of the proposed JLCC
scheme. The same SVM model of [26] is used as the ML
classifier. A few datasets of the MIT-BIH arrhythmia database
[28], including patient #207, patient #209, and patient #232, are
used to check the impact of channel errors on the ML results
(i.e., the classification accuracy in this case study). Table I
shows the description of each dataset and their classification
accuracy of the original ML model (pretrained in [26]) in the
error-free case. To also assess the proposed JLCC scheme in
terms of hardware efficiency at an acceptable error-tolerance,
the ECG system protected using the ternary LDPC code from
[9] is evaluated and compared as a baseline.

The error injection process is conducted by using the same
method as the one described in Section II-B and the ternary
symmetric channel model of Fig. 2. The averaged SVEB
classification accuracy among 1000 simulations is evaluated in
the presence of errors, each with error probability p (varying
from 0.002 to 0.100). For the parameters r (the number of
repeated retraining runs) and # (the size of noisy training dataset)
used in the retraining process, exemplary values of 7= 1000 and
nmax = 200 are considered. Next, the robustness of the retrained
model obtained using the proposed JLCC scheme is evaluated;
then the associated LDPC codes are implemented and
compared with the baseline in terms of hardware overhead.

B. Robustness of Retrained Model

As illustrated in Fig. 6, to achieve no degradation of
performance in the retrained model, retraining is performed by
increasing the value of n (for each », the simulation is repeated
r= 1000 times) and completes once a model with the same or
larger classification accuracy compared to the error-free result
given in Table I is found. Table II shows the value of n required
for the considered datasets using different retraining methods.
As expected, the value of n increases for a larger error
probability in both retraining schemes because the learning is
harder for the model in the presence of a larger number of the
errors. Hence, in such cases, more training data samples are
required to provide a better classification performance. This is
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TABLETI
REQUIRED SI1ZE OF NOISE TRAINING DATA N UNDER ERRORS FOR DIFFERENT P
Channel error probability p 0.002 | 0.004 | 0.006 | 0.008 | 0.010 | 0.020 | 0.025 | 0.030 | 0.050 | 0.100
407 | Method 1 1 1 1 2 2 4 40 60 100 200
Method 2 1 2 2 3 3 5 50 80 120 200
Required | o | Method | 1 1 1 2 2 3 40 60 90 170
n Method 2 1 1 1 2 2 4 50 70 120 200
43y | Method 1 1 1 1 1 2 2 40 60 90 160
Method 2 1 1 1 2 2 2 40 70 120 190
99.25% as shown in Table II, the value of n for method 2 is equal to or
= 06.20% Target accuracy larger than for method 1 in all cases; moreover, the difference
§ e of n tends to become larger for a larger value of p, because in
S 99.15% such a case, the model retrained using method 2 must learn a
5 larger number of error patterns.
8 99.10% A second experiment performed is to evaluate the robustness
2 J of the retrained models in the presence of errors. Once the
O 99.05% [ retrained models are obtained, their classification accuracy on
the testing dataset injected by errors with different p is checked.
99'0%4 6 s 10 20 40 60 In each case, the accuracy of the original model is also

Size of noisy dataset n

Fig. 7. Classification accuracy of the retrained model for dataset #207 at
different sizes of noisy retraining data (under p = 0.03).

verified in the example plotted in Fig. 7 for dataset #207 and p
= 0.03, where a higher classification accuracy is achieved when
the size of the retraining dataset is increased.

As seen from Table II, the increase of n tends to be
exponential with p, especially for values of p larger than 0.02.
This is likely because the number of error patterns increases
exponentially, and a corresponding larger number of data
samples are required for learning. This also applies to the
difference between the results using different retraining
methods. In method 2, errors with different probabilities (< p)
are injected in the training dataset and consequently the number
of realized error patterns is larger than for method 1 (that
considers errors with only the fixed probability p). Therefore,

evaluated for comparison. Table III reports the results for
dataset #207. Since it is of interest to show the robustness of a
model retrained by targeting p with fewer errors (i.e., the
occurrence of errors with probability p is considered as the
worst case of the channel), the accuracy of the retrained models
for an error probability smaller than p is also checked. As per
Table II1, the classification accuracy results are shown to have
the following trends:

* In the error-free case, the retrained models using both
proposed methods maintain the same or a slightly higher
classification accuracy compared to the original model.
This is expected because at least the same accuracy (as
for the original model) is the constraint when retraining.
A possible reason for obtaining a slightly higher
accuracy seems to be that a scheme by which training
ML models introduces noise to the input variables is

TABLE III
CLASSIFICATION ACCURACY OF DIFFERENT MODELS FOR DATASET #207
Classifier model Classification accuracy on testing data with different p
Error-free | 0.002 0.004 0.006 0.008 0.010 0.020 0.025 0.030 0.050 0.100
Original of [26] 99.24% 99.10% | 98.94% | 98.83% | 98.68% | 98.53% | 97.66% | 97.12% | 96.80% | 95.29% | 93.63%
pr=0.002 99.24% 99.12% - - - - - - - - -
pr=<0.002 99.24% 99.12% - - - - - - - - -
pr=0.004 99.24% 99.14% | 99.05% - - - - - - - -
p»<0.004 99.24% 99.21% | 99.18% - - - - - - - -
pr=0.006 99.24% 99.23% | 99.21% | 99.13% - - - - - - -
p»<0.006 99.24% 99.22% | 99.21% | 99.15% - - - - - - -
pr=0.008 99.24% 99.24% | 99.20% | 99.13% | 99.11% - - - - - -
P <0.008 99.24% 99.24% | 99.23% | 99.20% | 99.17% - - - - - -
p»=0.010 99.24% 99.23% | 99.20% | 99.18% | 99.10% | 99.02% - - - - -
Retrained | p»<0.010 99.24% 99.24% | 99.24% | 99.21% | 99.18% | 99.11% - - - - -
with* pr=10.020 99.24% 99.23% | 99.23% | 99.23% | 99.22% | 99.21% | 98.86% - - - -
P <0.020 99.24% 99.24% | 99.24% | 99.24% | 99.23% | 99.18% | 98.72% - - - -
pr=0.025 99.24% 99.25% | 99.25% | 99.24% | 99.24% | 99.24% | 99.24% | 99.20% - - -
P <0.025 99.24% 99.25% | 99.25% | 99.24% | 99.24% | 99.24% | 99.24% | 99.21% - - -
pr=10.030 99.25% 99.25% | 99.24% | 99.24% | 99.24% | 99.24% | 99.24% | 99.21% | 99.07% - -
P <0.030 99.25% 99.25% | 99.25% | 99.24% | 99.24% | 99.24% | 99.24% | 99.22% | 99.09% - -
pr=0.050 99.24% 99.24% | 99.24% | 99.24% | 99.24% | 99.24% | 99.24% | 99.24% | 99.11% | 98.93% -
P <0.050 99.24% 99.24% | 99.24% | 99.24% | 99.24% | 99.24% | 99.24% | 99.24% | 99.12% | 99.01% -
pr=0.100 99.24% 99.24% | 99.24% | 99.24% | 99.24% | 99.24% | 99.24% | 99.24% | 99.18% | 99.09% | 98.89%
P <0.100 99.24% 99.24% | 99.24% | 99.24% | 99.24% | 99.24% | 99.24% | 99.24% | 99.22% | 99.15% | 98.92%

*pir = p refers to retraining method 1 and p. < p refers to retraining method 2.
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TABLE IV
CLASSIFICATION ACCURACY OF DIFFERENT MODELS FOR DATASET #209

Classification accuracy on testing data with different p

Error-free | 0.002 0.004 0.006 0.008 0.010 0.020 0.025 0.030 0.050 0.100
Original of [26] 97.85% 97.78% | 97.69% | 97.61% | 97.52% | 97.42% | 96.85% | 96.52% | 96.24% | 94.88% | 91.41%
pr=0.002 97.85% 97.81% - - - - - - - - -
2 <0.002 97.85% 97.81% - - - - - - - - -
pr=0.004 97.85% 97.82% | 97.76% - - - - - - - -
pr<0.004 97.85% 97.83% | 97.76% - - - - - - - -
pr=0.006 97.85% 97.83% | 97.75% | 97.65% - - - - - - -
pr<0.006 97.85% 97.85% | 97.82% | 97.76% - - - - - - -
pr=0.008 97.85% 97.83% | 97.82% | 97.72% | 97.65% - - - - - -
p»<0.008 97.85% 97.85% | 97.82% | 97.78% | 97.73% - - - - - -
pr=0.010 97.85% 97.85% | 97.83% | 97.76% | 97.69% | 97.59% - - - - -
Retrained | p»<0.010 97.85% 97.85% | 97.83% | 97.76% | 97.69% | 97.64% - - - - -

with* pr=0.020 97.85% 97.85% | 97.83% | 97.82% | 97.79% | 97.77% | 97.66% - - - -
P <0.020 97.85% 97.85% | 97.85% | 97.83% | 97.82% | 97.81% | 97.66% - - - -
pr=0.025 97.85% 97.85% | 97.85% | 97.83% | 97.79% | 97.77% | 97.74% | 97.68% - - -
pr<0.025 97.85% 97.85% | 97.85% | 97.84% | 97.79% | 97.77% | 97.76% | 97.70% - - -
pr=10.030 97.85% 97.85% | 97.85% | 97.83% | 97.82% | 97.80% | 97.78% | 97.72% | 97.62% - -
P <0.030 97.85% 97.85% | 97.85% | 97.85% | 97.83% | 97.80% | 97.78% | 97.73% | 97.64% - -
pr=10.050 97.85% 97.85% | 97.85% | 97.85% | 97.85% | 97.80% | 97.78% | 97.75% | 97.66% | 97.62% -
P <0.050 97.85% 97.85% | 97.85% | 97.85% | 97.85% | 97.83% | 97.80% | 97.78% | 97.73% | 97.62% -
p»=0.100 97.85% 97.85% | 97.85% | 97.85% | 97.85% | 97.85% | 97.85% | 97.82% | 97.77% | 97.70% | 97.60%
pr<0.100 97.85% 97.85% | 97.85% | 97.85% | 97.85% | 97.85% | 97.85% | 97.83% | 97.80% | 97.76% | 97.59%

Classifier model

*pi = p refers to retraining method 1 and p. < p refers to retraining method 2.

helpful for reducing overfitting, which improves the (99.23%) than the model retrained with p, = 0.004
model performance (as indicated in [23]); (99.14%), followed by the one using p» = 0.002
* Inthe presence of errors, the retrained models using both (99.12%). This again is expected because the model
proposed methods achieve a higher accuracy compared retrained targeting a larger p learns more errors, so
to the original model in all cases. Moreover, the second achieves a better error-tolerance.
retraining method (i.e., p» < p) performs better because These trends are also the case for the results of the other two
it enables the model to learn a larger number of error  datasets (#209 and #232) reported in Tables IV and V.
patterns as discussed previously; Next, the case for dataset #207 is taken as an example to

*  In both schemes, the model retrained with a larger error  discuss the protection technique in more detail (i.e., the ternary
probability tends to be more robust (i.e., achieving a  LDPC codes) required in two different scenarios:

higher accuracy). This is observed in each column of »  The first scenario considers an unprotected system that

Table III; for example, when p = 0.002, the model can tolerate a given SER, for which the loss in ML

retrained with p, = 0.006 offers a higher accuracy accuracy for this SER is acceptable at system level;
TABLE V

CLASSIFICATION ACCURACY OF DIFFERENT MODELS FOR DATASET #232

Classification accuracy on testing data with different p

Error-free 0.002 0.004 0.006 0.008 0.010 0.020 0.025 0.030 0.050 0.100
Original of [26] 96.50% 96.08% | 95.64% | 95.21% | 94.88% | 94.60% | 93.08% | 92.36% | 91.75% | 89.59% | 86.36%
pr=0.002 96.50% 96.21% - - - - - - - - -
2 <0.002 96.50% 96.21% - - - - - - - - -
pr=0.004 96.50% 96.21% | 96.13% - - - - - - - -
p»<0.004 96.50% 96.21% | 96.15% - - - - - - - -
pr=0.006 96.50% 96.23% | 96.17% | 95.78% - - - - - - -
p»=0.006 96.50% 96.24% | 96.19% | 95.88% - - - - - - -
pr=0.008 96.50% 96.26% | 96.15% | 95.87% | 95.62% - - - - - -
2+ <0.008 96.50% 96.30% | 96.19% | 95.93% | 95.77% - - - - - -
p»=0.010 96.50% 96.34% | 96.15% | 95.90% | 95.56% | 95.27% - - - - -
Retrained | p»<0.010 96.50% 96.38% | 96.20% | 95.93% | 95.80% | 95.29% - - - - -

with * pr=0.020 96.50% 96.36% | 96.19% | 95.96% | 95.77% | 95.24% | 95.10% - - - -
P <0.020 96.50% 96.40% | 96.22% | 96.05% | 95.85% | 95.38% | 95.19% - - - -
pr=0.025 96.50% 96.41% | 96.24% | 96.05% | 95.89% | 95.42% | 95.17% | 94.77% - - -
P <0.025 96.50% 96.44% | 96.26% | 96.09% | 95.90% | 95.45% | 95.19% | 94.79% - - -
p»=0.030 96.50% 96.41% | 96.27% | 96.15% | 96.00% | 95.56% | 95.30% | 95.18% | 94.62% - -
P <0.030 96.50% 96.41% | 96.27% | 96.18% | 96.01% | 95.45% | 95.32% | 95.20% | 94.67% - -
pr=10.050 96.50% 96.45% | 96.32% | 96.30% | 96.11% | 95.79% | 95.45% | 95.25% | 95.12% | 94.60% -
P <0.050 96.50% 96.47% | 96.35% | 96.30% | 96.15% | 95.83% | 95.50% | 95.29% | 95.16% | 94.62% -
pr=0.100 96.50% 96.50% | 96.44% | 96.33% | 96.24% | 95.97% | 95.69% | 95.36% | 95.20% | 94.88% | 94.57%
P <0.100 96.50% 96.50% | 96.47% | 96.35% | 96.29% | 96.03% | 95.77% | 95.42% | 95.21% | 94.91% | 94.60%

Classifier model

*pi = p refers to retraining method 1 and p. < p refers to retraining method 2.
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TABLE VI
PROTECTION OF TERNARY LDPC CODES REQUIRED FOR MODELS WITH A GIVEN SERarcer OR ADarger
Protection capability of ternary LDPC codes required for different models*
Channel With an SERurger 0f 0.002 With an SERareer 0f 0.004 With an ADuarget 0f 0.5%
error . Retrained Retrained . Retrained Retrained .. Retrained Retrained
e Original model Original model Original model
probability of [26] model 1 of model 2 of of [26] model 1 of model 2 of of [26] model 1 of model 2 of
JLCC JLCC JLCC JLCC JLCC JLCC

p=0.002 No need No need No need No need No need No need No need No need No need
p=0.004 SER =0.002 | SER =0.002 No need No need No need No need No need No need No need
p =0.006 SER = 0.002 No need No need SER = 0.004 No need No need No need No need No need
p=0.008 SER = 0.002 No need No need SER = 0.004 No need No need SER = 0.006 No need No need
p=0.010 SER =0.002 | SER =0.008 No need SER = 0.004 No need No need SER = 0.006 No need No need
p=0.020 SER =0.002 | SER=0.010 | SER=0.010 | SER=0.004 | SER=0.010 No need SER = 0.006 No need No need
p=0.025 SER = 0.002 No need No need SER = 0.004 No need No need SER = 0.006 No need No need
p=0.030 SER =0.002 | SER =0.025 | SER =0.025 | SER =0.004 No need No need SER = 0.006 No need No need
p=0.050 SER =0.002 | SER=0.030 | SER=0.030 | SER=0.004 | SER =0.030 No need SER = 0.006 No need No need
p=0.100 SER =0.002 | SER =0.030 | SER =0.050 | SER=0.004 | SER=0.050 | SER=0.050 | SER =0.006 No need No need

* The retrained models obtained in the proposed JLCC scheme are different for each p; they are retrained using the retraining method 1 or 2 with pi+ = p or p» <p,

respectively.

*  The second scenario considers a system that can tolerate
a margin for degradation on the error-free ML accuracy.

In both cases, the goal is to achieve a target ML accuracy for
the entire system that is specified as (i) a target SER (SERtarget)
in the unprotected system, or (ii) a margin over the error-free
ML accuracy that is denoted as a target accuracy degradation
(ADtarget). These two error-tolerant metrics define the limitation
of performance degradation that the IoT application permits.
The values of SERrget or ADrarget considered next are just
examples, which do not affect the qualitative conclusion; they
can be determined as per the requirement of practical
applications.

Achieving an SERurge: this scenario refers to the case in
which the system tolerates an SER that is equal to SERtrget
when not protected; moreover, the SERtarget can be converted to
a target ML performance of the unprotected system under
channel errors with p = SERurget. For example, in the ECG
system, an SERurget of 0.002 refers to a classification accuracy
of 99.10% in the original unprotected model (shown in Table
[IT); this value indicates that the models must achieve such an
accuracy in the presence of errors. Therefore, in this scenario,
ternary LDPC codes with different protection capabilities are
employed to protect different models (including the original
model of [26], and the retrained models using methods 1 and 2)
to achieve a satisfactory classification accuracy (= 99.10%).

Table VI (left part) gives the ternary LDPC code required for
different models to meet SERurget = 0.002. When the channel
error probability p is 0.002, no protection is required for all
models, because it is equal to SERrget (i.€., these errors can be
accepted). When p increases, the original model must be
protected by employing a ternary LDPC code that achieves an
SER of 0.002. This is required because, as shown in Table III,
errors degrade the model accuracy to less than 99.10% (that is
related to the SERtarger of 0.002 as discussed previously).
However, for the retrained models obtained in the proposed
JLCC scheme, ternary LDPC codes with a larger SER than for
the original model are allowed; moreover, there is no need to
employ LDPC coding in some cases. For example, when p =
0.010, the original model requires a ternary LDPC code with
SER = 0.002 to achieve the target accuracy of 99.10%, while

© 2023 IEEE. Personal use is
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the retrained model 1 (with p»-=0.010) requires a ternary LDPC
code with SER = 0.008, and the retrained model 2 (with p» <
0.010) does not require any protection. This occurs because, as
shown in Table III, the retrained model 1 (2) has a classification
accuracy of 99.10% (99.11%) under errors with p = 0.008
(0.010). Hence, these two models are more robust, so require
less or no protection.

Next, consider a larger value of SERtarget, such as 0.004 that
refers to a target classification accuracy of 98.94% as per Table
III (i.e., more errors can be accepted). The required ternary
LDPC code for different cases is also given in Table VI (middle
part). Compared to the results for SERrget 0f 0.002, the required
LDPC code tends to have a larger SER (less protection), and no
protection is required in more cases; this is as expected, because
the requirement of error-tolerance in the system is reduced.

Achieving an AD.uger: this scenario refers to the case when
the IoT application accepts a specific degradation ADtarget in the
error-free classification accuracy, such as 0.5% (i.e., one
additional incorrect result is allowed among 1000
classifications). In this case, the SVM classifier that has an
accuracy of 99.24% in the error-free case must achieve an
accuracy of at least 98.74% in the presence of errors. As per the
model robustness shown in Table III, the ternary LDPC code
required for different models is also given and compared in
Table VI (right part). Only the original model requires the
protection of the LDPC code with an SER of 0.006 when the
error probability is equal to or larger than 0.008. This occurs
because the model still provides an accuracy of at least 98.83%
for errors with a smaller probability. For the retrained models,
no protection is required in all cases because their accuracy
results are better than 98.74% under all errors.

As expected, when considering the robustness of a model
under errors with different probabilities, it should become
weaker (or at least remain the same) under more errors, and thus
requires more powerful/stronger (or at least the same)
protection. However, this is only the case for the original model
as shown in Table VI, but not for both retrained models. For
example, the results for retrained model 1 with p,- = p of 0.004,
0.010, and 0.020 seem to intuitively be “No need” (because a
protection can even be not needed for larger p). As introduced
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TABLE VII
DIFFERENT MODELS RETRAINED WITH DIFFERENT CONSTRAINTS FOR THE #207 DATASET
. Classification accuracy on testing data with different p . Required ternary
*
Classifier model Error-free | 0.002 0.004 0.006 0.008 0.010 0.020 | Reauired 7|y bo e when py = p

P, =0.004 Retrained model 1 99.24% 99.14% 99.05% - - - 1 SER =0.002

T Retrained model 1’ 99.24% 99.15% 99.11% - - - 1 No need
P.=0.010 Retrained model 1 99.24% 99.23% 99.20% 99.18% 99.10% 99.02% - 2 SER = 0.008

T Retrained model 1’ 99.24% 99.23% 99.23% 99.21% 99.13% 99.10% - 2 No need
P.=0.020 Retrained model 1 99.24% 99.23% 99.23% 99.23% 99.22% 99.21% 98.86% 4 SER =0.010

o Retrained model 1’ 99.24% 99.23% 99.23% 99.23% 99.23% 99.23% 99.10% 6 No need

* Retrained model 1 is obtained with the initial constraint of achieving an accuracy larger than or equal to Acc. in the error-free case, while retrained model
1’ is obtained with an additional constraint of achieving an accuracy larger than or equal to 99.10% under errors.

previously (Fig. 6), the retrained model is obtained once its
accuracy in the error-free case is equal to or larger than the
original model (i.e., with such a single constraint) and a
different model can be obtained if the retraining process is
executed again. Therefore, under errors with a given p, the
model retrained with a larger p, may not always be more robust
than the one with a smaller py.

As explained in the discussion of Fig. 6, additional
constraints can be included during the retraining process.
Therefore, a third investigation is pursued to retrain some
models again by introducing more constraints to show that they
may offer a higher robustness. The three retrained models
mentioned above (i.e., using method 1 with p, = p of 0.004,
0.010, and 0.020, respectively) and the case of a target SER of
0.002 are considered; the goal is to retrain them again to achieve
the target SER with no LDPC code protection (i.e., their results
are expected as "No need” in Table VI (left)). Hence, in
addition to the initial constraint, the constraint of achieving an
accuracy larger than or equal to 99.10% under errors (which
relates to the SERarget = 0.002 as discussed previously) is also
included in the retraining process.

Table VII shows the classification accuracy of the new
retrained models (named as retrained model 1°) for dataset #207
under different errors and their required protection scheme. For
comparison, some results for the initial version of these three
models (named as retrained model 1) previously reported in
Tables II, III, and VI are given again in this table. More robust
models are obtained in all cases when considering two
constrains using the same or larger size of noisy training data
(i.e., n).

Overall, in the proposed JLCC scheme, the retrained model
can tolerate some errors, so the required protection capability
of the ternary LDPC code is lower than for the original model.
This typically leads to a higher code rate (i.e., smaller number
of parity bits to be transmitted). The hardware overhead
required for protection is evaluated in the next subsection.

C. LDPC Hardware Overhead

As per the design method of [9], ternary LDPC codes with
three code rates (including R = 2/3, 1/2, and 1/3) are designed
to protect the ECG data made of 500 symbols per transmission.
It should be noted that these codes are just taken as examples to
illustrate the effectiveness of the proposed scheme; any
additional improvement for a better decoding process is beyond
the scope of this paper and is left for future work. Fig. 8 plots
the error correction capability for different cases. The smallest
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Fig. 8. Error correction of ternary LDPC code at different code rate in the
presence of channel errors for different probability.

code rate (i.e., R = 1/3) provides the highest protection as
expected, because the corresponding code possesses the largest
proportion of parity symbols that also need to be transmitted.
Considering both Tables VI and Fig. 8, ternary LDPC codes
with the largest code rate that can achieve SERtarget O ADrarget
for different error probabilities, can be employed for different
models to provide sufficient protection while incur smallest
overhead. For example, when SERtarget = 0.002 and p = 0.030,
the original model of [26] requires a code with R = 1/2, while a
code with R = 2/3 is sufficient for protecting the retrained
models of the proposed JLCC scheme.

As shown in Fig. 1, the hardware implementation of an ECG
sensor includes a ternary Delta modulator and a RF data
transmitter in the unprotected case. When using LDPC
protection, an encoder is also required to generate the parity
symbols and the RF data transmitter dissipates additional power
to transmit them. As indicated in [9], the area overhead and
latency introduced by the encoder are not an issue for the ECG
system because the circuit is small, and the sensor operates at a
low frequency. Therefore, only the power dissipation required
for the ECG sensor in the original scheme and the proposed
JLCC scheme are evaluated and compared next.

The evaluation results of our previous ECG system design
show that the ternary Delta modulator dissipates a power of 302
nW at a sampling rate of 1 kHz [2] and the RF transmitter
consumes an energy of 1.156 nJ for each bit [29]. Since two
channels are utilized to transmit the ternary symbols, the entire
data transmission power is 2.312 uW (i.e., 1.156 n] X 2 X 1
kHz) in the unprotected case; due to the transmitted parity data,
this number increases to 3.468 uW, 4.624 uW, and 6.936 uW
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Fig. 9. Power saving of the ternary ECG sensor achieved by the retrained models of the proposed JLCC scheme compared to the original model of [26] for dataset
#207: (a) results for SERurget = 0.002; (b) results for SERurger = 0.004; (c) results for ADuarget = 0.5%.

TABLE VIII
EVALUATED POWER RESULTS OF THE ECG SENSOR IN DIFFERENT SCHEMES
Power Dissipation («W)
RF data .
Scheme Ternary transmitter Entire
Delta — - Encoder | ECG
Original | Parity
modulator sensor
data data
Unprotected 0.302 2312 0 0 2.614
Protected | R =2/3 0.302 2312 1.156 0.942 | 4.712
by ternary | R=1/2 0.302 2312 2312 1.256 | 6.182
LDPC | R=1/3 0.302 2312 4.624 1.884 | 9.122

when using the ternary LDPC codes with a code rate of 2/3, 1/2,
and 1/3, respectively. The encoders for the different codes are
implemented using VHDL and the designs are synthesized
using Synopsys Design Compiler by mapping to a 65 nm
technology library at a frequency of 2 kHz (which is sufficiently
high to support the sensor). Table VIII gives the synthesis
results of different encoders as well as the power results of other
components of the ECG sensor. The ternary LDPC protection
with a larger code rate is shown to incur a significantly lower
power dissipation for error protection and for the entire ECG
sensor. This indicates that the proposed JLCC scheme can
achieve a power reduction compared to the original scheme.
Again, in the example when SERtarget = 0.002 and p = 0.030, the
protection power dissipation for the retrained models (using a
code with R =2/3) is 2.098 W while that for the original model
(using a code with R = 1/2) is 3.568 ;W this leads to a power
reduction of 41.20% for error protection and 23.78% for the
entire system (as per Table VIII).

To show the advantage of the proposed JLCC scheme in
terms of hardware overhead, the power dissipation of the entire
ECG sensor is utilized as evaluation metric (which is more
reasonable than considering the protection power only); dataset
#207 is again considered as an example to compare the power
results of different schemes. Fig. 9 plots the power saving of the
ECG sensor achieved by the retrained models of the proposed
JLCC scheme compared to the original model of [26]. A
reduction of more than 40% is shown in many cases, because
no protection is required by the retrained models as per Table
VI. Moreover, an average saving of 29.15% is achieved by the
retained model 1 and 34.82% is achieved by the retrained model
2; this is also expected because the retrained model 2 with more
constraints during retraining is more robust as discussed
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previously. Fig. 9 also shows no power saving for some error
probabilities; this occurs because, when p is very small, both
the original and retrained models do not need error protection
(i.e., the systems dissipate the same power). This can also
happen in more cases when SERtarget/ADrarget is larger, as
verified in Fig. 9. For the results when p = 0.050 in Fig. 9(a) or
p = 0.100 in Fig. 9(b), no power saving is shown due to the
limited choice of the ternary LDPC codes considered in this
paper; here, even though the retrained models for these error
probabilities allow a lower protection capability (shown in
Table VI), they need to use the same code as in the original
model (with R = 1/2 as per Fig. 8).

Again, note that the proposed JLCC scheme only needs to
remotely retrain the ML model, which is often executed off-line
and prior to applying the entire system for classification. Hence,
the significant power saved by the proposed JLCC scheme is
achieved without introducing any additional hardware overhead
on the wireless devices (e.g., the ECG sensor).

V. CONCLUSION

In this paper, a joint learning and channel coding (JLCC)
scheme has been proposed to address the issue of power
dissipation posed by error correction codes (ECCs) when they
are employed for channel protection in ML-based IoT systems.
By remotely retraining the ML model to learn errors using two
proposed methods in the JLCC scheme, the requirement of ECC
protection and the overhead introduced in the IoT devices have
been considerably reduced.

An existing electrocardiogram (ECG) monitoring and
arrhythmia classification system protected using ternary low-
density parity-check (LDPC) codes has been considered as an
example as application of JLCC. Its performance has also been
evaluated (note that JLCC is also applicable to other systems
with other ECC techniques). When targeting different error-
tolerant scenarios for the ECG system, the LDPC codes
required in different schemes to achieve the same ML
classification performance have been analyzed and
implemented. The simulation results show that by employing
JLCC, an average power saving of 29.15% and 34.82% of the
ECG sensor can be achieved by using the proposed two
retraining methods when compared to the original system.
Therefore, the proposed JLCC scheme is very attractive for
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ML-based IoT systems that are implemented in hardware-
constrained platforms and used in safety-critical applications.
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