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Editor’s notes:

This article presents improved stochastic computing primitives for division
and square root operations. Both are nonlinear functions that cannot be
reduced to additions and multiplications. The authors make use of the
very correlations that are usually considered undesirable in stochastic
computing; their controlled injection into computations leads to good
compromises between convergence time and area requirements.
—Weikang Qian, Shanghai Jiao Tong University

I GAINES INITIALLY PROPOSED stochastic comput-
ing (SC) [1] as a low power solution for applications
requiring massive but often redundant inputs such
as machine learning and pattern recognition. Due
to its extremely simple computing logic, like an AND
gate for multiplication, as shown in Figure 1b, SC has
regained research interest in error-correcting codes
and computer vision in the past decades [2]. More
recently, with the evolution of artificial intelligence,
SC further finds popularity in varying deep learning
models containing heavy matrix operations [2]. Ber-
noulli sequences, containing uniformly distributed 0’s
and 1’s, are usually used as SC data, namely bit stream
(BS). Its value is exclusively determined by the proba-
bility of 1’s in the BS, with precision relying on the BS
length. There are two fundamental SC data representa-
tions, namely unipolar and bipolar. Unipolar data
have the unsigned value, Vy; of range [0,1], equal to
the probability of 1’s in the BS, P;,;, while bipolar data
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have the signed value
Vei = 2 x Py — 1 of range
[-1,1], with Py referring
to the probability of 1’s.
Figure la shows unipolar
SC data representation.
A and B have the same
value of 0.5 despite differ-
ent element orders, while
C has a larger value due
to 4 more 1’s. Thanks to this bitserial representation,
SC is a promising computing paradigm for emerging
deep learning models that are computationally inten-
sive but require extremely low area and power.
Though simple in hardware, SC introduces extra
computation latency and fluctuation in accuracy. For
example, with length-N BSs, unipolar SC multiplica-
tion (Figure 1b) requires N cycles, significantly higher
than that for binary multiplication. Furthermore, with
varying input BSs, the output varies with the stochas-
tic cross correlation [3] between inputs (i.e., how
aligned the 1's and 0’s are). Figure 1c shows how a
high positive correlation affects the output of the AND
gate, and leads to a MIN operation. To achieve high
accuracy, most existing works focus on a vital but
expensive component of SC circuits, BS generation,
which generates the Bernoulli sequence [1] by pro-
ducing a sequence of random numbers (RNs) and
comparing them each to an input value. Conventional
techniques aim to construct zero-correlation BSs using
high-quality RN generators (RNGs), like bit scrambling
[4] and low-discrepancy sequences [5]. Only recently
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Figure 1 Unipolar SC paradigm. (a) Unipolar
representation. (b) Unipolar multiplication (zero
correlation). (c) Unipolar minimum (high positive
correlation).
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Figure 2. Existing SC division and square root. (U
and B represent unipolar and bipolar, respectively; C
stands for comparator; D stands for D-flip-flop; gray
blocks are the BS regeneration logic; dotted blocks
are CORDIV kernel.) (a) U: GDIV. (b) B: GDIV.

(c) U: CORDIV. (d) B: CORDIV. (e) U: GSQRT.

(f) B: GSQRT.

have researchers shown that it is possible to leverage
dedicated correlation [6] to design SC division [7],
[8], instead of viewing it as a detriment to accuracy.
Based on the fact that emerging deep learning mod-
els employ more nonlinear operations besides linear
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multiplication and addition [9], our work leverages
correlation to design in-stream (i.e., do not require
expensive BS regeneration to achieve high accuracy)
SC units (SCUs) for both division and square root,
which target stochastic BSs, instead of deterministic
BSs in [10], the correlation of which is ignored.

In this work, our proposed designs, in-stream cor-
relation-based division (ISCBDIV) and bit-inserting
square root (BISQRT) eliminate the fundamental inef-
ficiencies of existing SC division and square root [1]
via low-cost in-stream mechanisms. Furthermore, this
work extends previous designs for unipolar SC in [§]
to bipolar SC. The proposed ISCB-DIV is derived from
the insight that when the dividend is larger than the
divisor, the quotient saturates at 1. ISCBDIV applies a
simple instream mechanism, skewed synchronizer
(S8S), to maximally correlate the dividend BS to the
divisor BS of the existing non-instream correlated
division (CORDIV) [7] for higher instream accuracy
than others. On the other hand, BISQRT leverages the
insight that the result of any SC square root is always
no less than its input to insert extra 1’s into the input
BS to obtain the output. We introduce two low-cost
mechanisms for insertion, namely stochastic inser-
tion [8] and opportunistic insertion, thus eliminating
BS regeneration in the classical Gaines design [1].
The newly designed opportunistic insertion has even
higher accuracy than the previous stochastic insertion
[8], without introducing overhead on top of Gaines’s
designs. Experiments demonstrate that the proposed
designs are more suitable than the state-of-the-art
competitors for emerging deep learning models.

Background

Existing designs on stochastic division and square
root originate from Gaines’ designs [1]. Though later
CORDIV [7] improved the accuracy of SC division,
there is little subsequent work on SC square root,
and our work steps into this rarely explored field.

Gaines division

Gaines division (GDIV) [1] for unipolar and bipolar
SC is shown in Figure 2a and b. In GDIV, a feedback
loop is formed between the quotient and the divisor
to construct an equilibrium between the increments
and decrements (Inc and Dec in the diagram) for the
depth-N (i.e., Nbit) saturating CouNTer (CNT in the
diagram). Extra logic in bipolar GDIV is to stabilize
the fluctuation due to varying value signs. Equilibrium
for unipolar GDIV can be achieved if the increment
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(Ppividena) @nd decrement (Ppiisor X Pquotient) are ena-
bled with equal probabilities. Thereafter, the quotient
is successfully calculated: Pguoicnt = Ppividena/Ppivisor-
The computation can be accelerated by initializing
the saturating counter to half of the maximum count.
However, GDIV has three limitations. First, it requires
the comparison between the counter value and RN,
that is, BS regeneration, incurring high area overhead.
Second, the GDIV precision relies on the counter
depth, resulting in a high area overhead for high pre-
cision. Third, the output accuracy is determined by
the multiplication accuracy via the AND/XNOR gate for
unipolar/bipolar SC. Thus, the stochastic cross cor-
relation [3] between the BSs for divisor and quotient
needs to approach zero for acceptable accuracy. Sto-
chastic cross correlation relates to the count of aligned
I's between two BSs. When the count of aligned 1’s is
maximized, the correlation is maximized to +1; when
minimized, the correlation is also minimized to -1.

Correlated division

CORDIV utilizes maximized stochastic cross cor-
relation between BSs for dividend and divisor [7]
fed into the CORDIV kernel (Figure 2c and d). The
output Poustient = Ppividend”/Ppivisor €quals the ratio of
the one count in the BSs for dividend and divisor:
N'pividena” Npivisor. It hinges on the fact that the uni-
polar quotient saturates at the upper bound of the
legal range, that is, 1, if the dividend is larger than the
divisor for unipolar SC.

The CORDIV architectures for unipolar and bipo-
lar SC are shown in Figure 2c and d, both requiring
static binary inputs stored in the counter. Bipolar
CORDIV actually computes on the absolute values
and converts the result to bipolar format using an XorR
gate. CORDIV is not in-stream, as a counter-RNG-com-
parator organization is mandatory to produce the
maximally correlated BSs for the CORDIV kernel, that
is, whenever the dividend bit is 1, the divisor bit has
to be 1. Thus, the MUX can capture all Np;i4enq Dits,
and output precise quotient bits when divisor bits
are 1. The D-lip-flop (DFF) records those precise
quotient bits, and outputs approximate quotient bits
upon logic 0’s at the divisor. As such, the quotient is
maximally correlated with the dividend. CORDIV has
higher accuracy than GDIV due to leveraging the cor-
relation. Still, there are two limitations for CORDIV.
First, BS regeneration requires long latency to reach
a stable and accurate output in the counter, further
impeding the convergence of quotient BS. Second,
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similar to GDIV, BS regeneration in CORDIV cause
hardware area and power overheads.

Gaines square root

Gaines square root (GSQRT) is the classic, yet
the only, SC square root design [1] before this work.
As shown in Figure 2e and f, GSQRT can be directly
derived from GDIV. They differ from the decrement
signal for the depth-/Vsaturating counter: GSQRT dec-
rements the counter based on the square of the output.
Note that bipolar GSQRT does not need the stabiliza-
tion logic in bipolar GDIV as legal values are always
positive. At equilibrium, the counter increments (P;,)
and decrements (Pp,?) with an equal probability,
resulting in square root: Py, = \/Pm . GSQRT has the
same limitations as GDIV, except that stochastic auto
correlation [4], the correlation of the output BS and
its shifted version, now limits the accuracy.

BS generation and regeneration

Although different techniques are proposed to
increase accuracy, they give rise to extra costs of
latency and hardware. As BSs from BS generation [1],
which are uncorrelated, flow through concatenated
SCUs, the intermediate BSs might become correlated
again, leading to lower accuracy and longer latency.
As salvation, BS regeneration is applied to the inter-
mediate BSs in existing works [6]. BS regeneration
has a similar process to BS generation: they both com-
pare the buffered binary data values to RNG outputs.
However, BS regeneration utilized saturating counters
to dynamically update BS values before comparison,
while the comparison in BS generation is between
static prestored values and the RNs. We name the
SCUs requiring no organization of counter-RNG-com-
parator for BS regeneration as in-stream, SCUs, and
they are more hardware-friendly in general.

In-stream correlation-based division
Our ISCBDIV is inspired by CORDIV [7], which
applies an expensive counter-RNG-comparator organiza-
tion to regenerate correlated BSs for the CORDIV kernel
in Figure 2c and d. To mitigate such incurred overheads,
an instream mechanism (i.e., without BS regeneration)
for maximal BS correlation is proposed here.
Synchronizer [6] is a recent technique for increas-
ing stochastic cross correlation of two input BSs by
reordering the bits to favor 1-1 pairs and suppress 1-0
or 0-1 pairs. Synchronizer considers symmetric bit
pairing for both input [8], ignoring the fact that only
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Figure 3. Proposed in-stream SC division. (a)

U: ISCBDIV. (b) B: ISCBDIV. (c) SS FSM. (d) Abs/Sign.

(e) B2U. (f) U2B.
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the dividend needs to be synchronized to the divisor
in CORDIV. Leveraging such fact, we design an SS for
the maximum correlation requirement of CORDIV
kernel, with the finite state machine (FSM) given in
Figure 3c, where {a, b} represents the {dividend, divi-
sor} pair. The SS employs one depth-NV (N-bit), N=2
in Figure 3c, counter to record the 1’s in the dividend
when the divisor bit is 0, and then matches the saved
I’s with later 1’s in the divisor BS [8].

The hardware architecture of the proposed unipo-
lar ISCBDIV is presented in Figure 3a, consisting of the
SS and the CORDIV kermnel as in Figure 2c and d. The
SS first converts input BSs with arbitrary correlation to
those with maximal correlation. The resultant divisor
BS remains identical, but the dividend BS is shuffled.
Then the CORDIV kernel performs the actual division.
The D-FF in the CORDIV kernel is replaced by a depth-V
shift register (SR) to improve accuracy, that is, intro-
ducing higher randomness to better track the quotient
value. The SR values go to the MUX and are indexed by
an RN, where usually one bit satisfies, leading to depth-2
SR. ISCBDIV is significantly more hardware-efficient
than CORDIV, whose overhead from regenerating BSs
includes the registers to store the binary numbers, the
RNG and the two comparators. For bipolar ISCBDIV in
Figure 3b, we first obtain the sign and absolute value
of each BS as in Figure 3d. This unit records the BS his-
tory using a saturating counter, initialized to half of the
maximum, and sets the sign to 1 if the counter value is
less than half, that is, more 0’s than 1’s. The absolute
BS is simply obtained by xOring the sign BS with the
original BS [7]. Then the absolute value of bipolar BS
is converted to unipolar BS using bipolar-to-unipolar

conversion (B2U) logic, which is a nonscaled addition
performing Py, = 2 x Pg; — 1. Next, normal unipolar
ISCBDIV is performed. The resultant unipolar quotient
is converted back to bipolar with unipolarto-bipolar
conversion (U2B), a scaled addition performing
Pgi = (Pyy + /2. This quotient is xOred with two signs
to get the final signed quotient. Note that two unipolar/
bipolar interconversions maintain the BS values, but
change the data polarity. To ensure the accuracy, the
bipolar nonscaled and unipolar scaled adders in [2]
are used for B2U in Figure 3e and U2B in Figure 3f.
The B2U calculates the output based on the difference
between the expected and actual output one count
[2], here dictated by the register (Reg). The U2B accu-
mulates the sum of input and 1 among multiple cycles
in register, and overflows the carry bit as the output [2].

Bit-inserting square root

To alleviate the overhead of BS regeneration in
GSQRT, we propose SC square root via correlation.
Our BISQRT is based on the observation that the out-
put of SC square root is always greater than or equal
to the input. Thus, to produce the expected result,
it is sufficient to intelligently insert 1’s into the input
BS. We propose two mechanisms to insert 1’s prop-
erly, including stochastic insertion and opportunis-
tic insertion. Stochastic insertion randomly replaces
input bits, even input 1’s, with extra 1's [8] while
the opportunistic insertion merely replaces input 0’s
with expected 1’s, leading to the maximum correla-
tion between input and output.

Stochastic insertion mechanism

The stochastic insertion mechanism is derived
from Figure 4a. The multiplexer (MUX) selectively
inserts 1’s according to the trace block output prob-
ability, Pr.,c., Which is formulated in (1). The out-
put BS probability P, is represented by Pr.. and
Pj, in the first line. In the second and third lines, the
probability of 1’s in the input BS, Fj,, is expressed as
a function of the BS value, V;, = m x Fj, — k, where
m =1, k=0 for unipolar SC and m=2, k=1 for bipo-
lar SC, respectively. This Vi, is then transformed
into V', in the fourth line. Finally, in the fifth line,
the equation formulates the relationship between
Proce and Py, Solve it and obtain Py, as in (2)

POut =IxF +PIn X(I_PTrace)

Trace
mxP_ —k)+k
%X(l_f)ﬂ'ace)

=P +

— * Trace

IEEE Design&Test

Authorized licensed use limited to: University of Wisconsin. Downloaded on December 09,2021 at 01:54:17 UTC from IEEE Xplore. Restrictions apply.



Vi, +k

= PTrace n,m X (1 - PTrace ) (1)
V2, +k
= ‘PTracc + Ol# X (1 - ‘PTrace )
2
mxPy  —k) +k
= PTrace + ( Qut ) X (1 - PTrace )

(% Py )

mxP, —k

P. = Out .

Trace (m x Py — k) +1 @)
Thus, with an MUX and a divider, we can con-

struct stochastic BISQRT (BISQRT-S) for both unipo-

lar and bipolar SC, and we introduce two possible

architectures for stochastic BISQRT.

JKDIV-based trace block

JKAlipflop naturally performs P, = P; /(P; + Pp),
denoted as JK Division (JK-DIV) [1]. Thus, setting
port J to m x Py, — kand port K to 1 results in correct
Pr,.e- Based on this, we build BISQRT-S-JK, shown in
Figure 4c, and d. The unipolar BISQRT-S-JK in Figure 4c
directly connects the output to port J as Py, = Vi,
while the bipolar version requires to send a BS of value
2 x Py, — 1 to port J, essentially the function of B2U.

ISCBDIV-based trace block

The P, division can be alternatively imple-
mented with simplified ISCBDIV. This architecture,
BISQRT-S-IS, is shown in Figure 4e and f. Similar to
BISQRT-S-JK, bipolar implementation also has a
B2U logic. BISQRT-S-IS further simplifies the SS to
one AND gate and one OR gate. The dividend (MUX
input port 1 in CORDIV kernel) is (m x P, — k)/2,
half of the output BS in unipolar SC, or the BS from
the B2U in bipolar SC, achieved by an AND gate
and a periodic BS of probability 0.5 generated by
the D-FF and inverter. The divisor ((m x Py, — k) +
1)/2 (MUX select port in CORDIV kernel) is gener-
ated via correlation with the simplified SS using an
OR gate.

Opportunistic insertion mechanism

The opportunistic insertion mechanism is derived
from Figure 4b, where extra 1’s are only inserted when
input bit is 0 according to the emit block. The function-
ality is formulated in (3), where the involved symbols
are identical to those in stochastic insertion mecha-
nism. This formulation is essentially a nonscaled addi-
tion (NS Add) for unipolar SC. The P, in the first line
indicates that the input BS is kept unchanged, thus
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Figure 4. Proposed in-stream SC square root.

(a) Stochastic insertion. (b) Opportunistic insertion.

(c) U: BISQRT-S-JK. (d) B: BISQRT-S-JK.(e)

U: BISQRT-S-IS. (f) B: BISQRT-S-IS. (g) U: BISQRT-O.

(h) B: BISQRT-O.

input BS and output BS are maximally correlated. The
Prmie represents the BS of extra 1’s to be emitted into
the input BS. The solution for unipolar and bipolar SC
is presented as in (4), implying that it can be imple-
mented with an SC multiplication

POut = })In + PEmit
(m x P - k) +k
= I;n + PEmit
Vi, +k
= + PEmit
m
V2. +k
= 08— 4 P
m 2
_(mx Py —k) koL 3
- Emit
m
PEmit :(mXPOut _k)x(l_POut)' (4)
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Though the formulation in (4) is concise, a naive
implementation will be problematic due to correla-
tion. For unipolar SC, Pgii = Pouw X (1 = Poy), where
bits in the BS for 1 — P, are the inversion of bits in
the BS for Py,. Thus, the BSs for Py, and 1 — Py,
have a minimal stochastic cross correlation of -1,
that is, no 1-1 pair exists, leading to incorrect mul-
tiplication. Similar correlation variation will happen
to bipolar SC, significantly damaging the accuracy.

To mitigate the deviation from optimal zero
correlation for SC multiplication, we introduce a
decorrelation approach based on SR. The unipolar
and bipolar versions of the proposed opportunistic
BISQRT (BISQRT-O) are depicted in Figure 4g and h,
where NS Add refers to the nonscaled addition for
unipolar SC. For both designs, we rerandomize the
BS for 1 — Py, with a depth-N SR, whose output is
indexed by an evenly distributed RN sequence. This
method is similar to the decorrelator in [6] to cre-
ate near zero correlation, but only scrambles one BS
instead of two as in decorrelator. Then, the scram-
bled BS for 1 - Py, and the BS for m x Py, — & are
multiplied using an AND gate to generate an emit bit
for nonscaled addition. The unipolar BS for m x P,
-k is directly the BISQRT-O output, while the bipolar
BS requires a B2U, similar to the situation in bipolar
BISQRT-S. Lastly, the nonscaled addition also adopts
the design in [2] to guarantee accuracy.

Table 1. Implementation results with 8-bit binary inputs and RNGs, that is, 256 cycles for SC BS; thus iso-
latency comparison: all designs have the same throughput of 1.5625M operations per second. The best
number of each column is highlighted. Notation: SS refers to the skewed synchronizer; Abs refers to the unit
to retrieve the absolute value of a bipolar BS; B2U and U2B refer to the BS converters between bipolar and
unipolar SC; RMSE is the root mean square error; MAE is the mean absolute error; Bias is the sum of error.
All data in this table, as well as walkthrough examples, are available in UnarySim [11].

Implementation and analysis

Hardware implementation

As prior research [12] indicates that SC energy effi-
ciency often falls short of the binary counterpart when
data are beyond 8 bits, we focus on designs with 8-bit
inputs and synthesize them using Synopsys Design
Compiler at 400 MHz with TSMC 45-nm technology.
The result is presented in Table 1. GDIV and GSQRT are
both depth-5 [1]. ISCBDIV has depth-2 SS and depth-2
CORDIV kernel SR. BISQRT-O has depth-4 SR.

Accuracy simulation

All accuracy simulations are performed with our
open-source UnarySim [2]. For both division and
square root, the &bit binary input data traverse the
entire legal range. For division, the dividend ranges
within [0,1] for unipolar and [-1,1] for bipolar, while
the divisor excludes 0. For square root, both unipo-
lar and bipolar inputs range within [0,1]. Further-
more, to generate different input BSs, we apply 100
high-quality Sobol RNGs [5] and 100 conventional
LFSR RNGs, with results on the right side of Table 1.

Overall evaluation

According to Table 1, our designs simultaneously
achieve less area, less power and higher accuracy in
most cases. It is important to note that all of our designs,
except bipolar ISCBDIV, are effectively “plug-and-play”
on most stochastic systems, since the choice of RNG has

Design Area Breakdown (%) Area Power | AreaxDelay Error-Sobol RNG (%) Error-LFSR RNG (%)

SS [ Abs | B2U [ U2B [ other | (um?) | (uW) | (um*-uS) | RMSE | MAE | Bias | RMSE | MAE | Bias
U:GDIV - - - - 100 70.6 18.2 452 8.6 7.0 -4.5 9.8 7.8 -4.7
U:CORDIV - - - - 100 209.6 62.2 134.1 7.2 3.8 3.0 9.2 4.6 2.2
U: ISCBDIV 63.9 - - - 36.1 379 144 24.3 4.9 1.9 -1.9 10.8 6.2 -5.8
B:GDIV - - - - 100 85.7 26.4 54.8 64.5 37.8 -25.6 53.7 424 -1.6
B:CORDIV - - - - 100 254.0 72.0 162.6 15.8 10.6 6.9 54.7 40.1 26.2
B: ISCBDIV 15.8 | 36.1 | 31.1 8.0 8.9 152.8 61.4 97.8 8.5 39 -0.0 48.4 34.6 0.0
U:GSQRT - - - - 100 80.3 233 514 10.7 73 52 5.9 54 | 5.1
U: BISQRT-S-JK - - - - 100 11.3 6.3 7.2 8.7 6.9 -1.9 10.8 8.8 -8.8
U: BISQRT-S-1S - - - - 100 233 12.5 14.9 10.8 8.3 -8.0 12.4 10.5 -10.5
U: BISQRT-O - - - - 100 52.6 19.0 33.7 33 2.2 0.2 52 24 -1.7
B:GSQRT - 100 84.0 249 53.8 11.7 8.8 1.5 51.4 419 -41.9
B: BISORT-S-JK 72.9 - 27.1 323 15.0 20.7 72 4.8 -2.8 11.4 9.9 -9.8
B: BISORT-S-IS 56.6 434 40.0 19.2 25.6 72 4.8 -2.8 12.1 10.1 9.4
B: BISORT-O 36.6 63.4 74.0 28.1 474 44 2.8 -1.2 10.1 8.3 -8.2
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minimal impact on the accuracy. Bipolar ISCBDIV is less
“plug-and-play” due to the preceding absolute and B2U
units, without which the unipolar ISCBDIV first maxi-
mizes input correlation and incurs limited accuracy loss
when concatenating unipolar ISCBDIV with other SCUs.

In terms of division, CORDIV always has the larg-
est area and power due to regenerating both divi-
dend and divisor BSs, while GDIV costs less with BS
regeneration for the only quotient. ISCBDIV totally
substitutes such bottleneck components with lost-
cost in-stream SS and achieves the highest accuracy
for both unipolar and bipolar SC. However, bipolar
ISCBDIV consumes medium area and power due to
the extra absolute unit and polarity conversion units.

For square root, BISQRT-S-JK consistently has the
smallest area and power due to its ultrasimple archi-
tecture. BISQRT-S-IS increases the hardware cost due
to simplified ISCB-DIV. BISQRT-S has medium accu-
racy compared with others. Though consuming more
area and power than BISQRT-S, BISQRT-O has less
area and power compared to GSQRT. Moreover, it
has the best accuracy of all, mitigating the correlation
problem by rerandomizing the BS.

IN THIS ARTICLE, we identify the overheads in existing
hardware of two nonlinear SC operations—division
and square root, required by emerging deep learmning
models—and propose more efficient designs—ISCB-
DIV and BISQRT—that leverage correlation. We evalu-
ate the proposed designs and observe that our ISCBDIV
and BISQRT achieve higher accuracy with less area and
power, compared against existing work, making them bet-
ter candidates for future deep learning applications. ®
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