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ABSTRACT
Beal MRW, O’Reilly BE, Soley CK, Hietpas KR, Block PJ. 2022. Variability of summer cyanobacteria 
abundance: can season-ahead forecasts improve beach management? Lake Reserv Manage. 
XX:XX–XX.

As anthropogenic eutrophication and the associated increase of cyanobacteria continue to 
plague inland waterbodies, local officials are seeking novel methods to proactively manage 
water resources. Cyanobacteria are of particular concern to health officials due to their ability 
to produce dangerous hepatotoxins and neurotoxins, which can threaten waterbodies for 
recreational and drinking-water purposes. Presently, however, there is no cyanobacteria 
outlook that can provide advance warning of a potential threat at the seasonal time scale. 
In this study, a statistical model is developed utilizing local and global scale season-ahead 
hydroclimatic predictors to evaluate the potential for informative cyanobacteria biomass and 
associated beach closure forecasts across the June–August season for a eutrophic lake in 
Wisconsin (United States). This model is developed as part of a subseasonal to seasonal 
cyanobacteria forecasting system to optimize lake management across the peak cyanobacteria 
season. Model skill is significant in comparison to June–August cyanobacteria observations 
(Pearson correlation coefficient = 0.62, Heidke skill score = 0.38). The modeling framework 
proposed here demonstrates encouraging prediction skill and offers the possibility of 
advanced beach management applications.

Cyanobacteria represent some of the most ancient 
microorganisms on Earth, having appeared 
roughly 2.7 billion yr ago (Schirrmeister et  al. 
2013). In recent decades, accelerated nutrient 
input and widespread land cover change have 
resulted in a rapid expansion of harmful cyano-
bacteria in our coastal waters and inland lakes 
(Taranu et  al. 2015). Cyanobacteria are photo-
synthetic bacteria that thrive in eutrophic water-
bodies characterized by large influxes of nutrients. 
Cyanobacteria can form mats known as harmful 
algal blooms (HABs), triggering concern from 
health officials and water managers given their 
widely identified negative ecological, aesthetic, 
and socioeconomic implications (Dodds et  al. 
2013, Paerl 2017, Huisman et  al. 2018). 
Importantly, common species of cyanobacteria 
(e.g., Microcystis) secrete hepato- and neurotox-
ins, threatening waterbodies used for recreation 
and drinking water (Taranu et  al. 2012, Wynne 

and Stumpf 2015). The negative impacts of HABs 
have received notable attention in larger water-
bodies, such as Lake Erie. In 2014 Toledo, Ohio, 
was forced to issue a “do not drink” advisory 
when dangerous concentrations of cyanobacteria 
produced toxins in the public water supply 
(Bullerjahn et  al. 2016). Widespread eutrophica-
tion, climate change, and an established relation-
ship between algal biomass and nutrient input 
suggest that cyanobacteria pose a significant 
threat to small inland lakes, which have so far 
received less attention (Smith 2003, Paerl and 
Huisman 2008, Huisman et  al. 2018).

Many meteorological, chemical, and biological 
variables influence cyanobacteria abundance, cre-
ating a complex, dynamic ecosystem (Stow et  al. 
1997, Hamilton et  al. 2016). Additionally, each 
cyanobacteria community has its own unique 
characteristics, further complicating the under-
standing of how concurrent drivers collectively 
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impact cyanobacteria population in a lake 
(Soranno 1997, Taranu et  al. 2012). For species 
commonly found in eutrophic dimictic lakes, key 
factors influencing overall abundance include 
temperature, water column stability, wind, nutri-
ent availability, precipitation, atmospheric pres-
sure, light transparency, and predatory grazing 
(Soranno 1997, Paerl 1988, Taranu et  al. 2012, 
Ostfeld et  al. 2015). Cyanobacteria abundance 
expresses notable intraseasonal variability, typi-
cally peaking during the summer season, and 
interannual variability (Lathrop and Carpenter 
1992). Lake and beach managers, however, often 
have limited access to information indicating the 
expected intensity of cyanobacteria abundance 
ahead of the peak season for cyanobacteria pro-
ductivity. Reactive management operations, in 
such cases, are used in determining recreational 
safety and beach closures. Advance notice of 
increased cyanobacteria abundance may allow 
lake and beach managers to alter cyanotoxin test-
ing routines, train and inform lifeguards to watch 
for dangerous algae conditions, and launch public 
awareness campaigns before the high-risk season. 
Seasonal forecasts are intended to work in con-
cert with shorter term forecasts (days to weeks), 
providing managers with information at several 
time scales. Providing decision makers with infor-
mation on cyanobacteria conditions ahead of the 
high-risk season aims to extend an existing sys-
tem of forecasts to improve overall management 
of cyanobacteria.

In recent decades, season-ahead forecasts have 
become a focus of research in many fields, with 
significant effort put toward predicting average 
or extreme precipitation, discharge, and tempera-
ture to inform operations in agriculture and res-
ervoir management (Wood et  al. 2005, Hansen 
et  al. 2011). Forecasts at this scale typically aim 
to provide information characterizing the upcom-
ing season, not a prescription of when events 
will occur. Many important management deci-
sions fall into the gap between short-term and 
long-term forecasts. The development of forecast-
ing systems at monthly and seasonal time scales 
can strengthen disaster preparedness by inform-
ing long-term contingency plans and activating 
short-term early warning systems (Vitart et  al. 
2012). In contrast to water quantity, relatively 

little attention has been devoted to season-ahead 
prediction of water quality.

Currently, several short-term cyanobacteria 
forecasts are available through entities such as 
the National Oceanic and Atmospheric 
Administration (NOAA) for the purpose of 
beach management (Kavanaugh et  al. 2013). 
Forecasts are issued up to 5 d out, based on 
lo c a l  mete orolog ic a l  condit ions  and 
high-resolution satellite imagery. A review of 
forecast and predictive models for cyanobacteria 
blooms found that most existing models operate 
on forecast horizons of less than one week, with 
very few extending beyond 30 d (Rousso et  al. 
2020). Existing season-ahead forecasts of cya-
nobacteria abundance have been developed with 
a focus on spring phosphorus loads (e.g., by 
NOAA Great Lakes Environmental Research 
Laboratory) primarily to determine necessary 
nutrient reductions for targeted local manage-
ment plans (Stow et  al. 1997, Obenour et  al. 
2014). Phosphorus is generally accepted as the 
limiting nutrient for cyanobacteria growth in 
freshwater systems and has received significant 
attention in seasonal forecasting due to the 
importance of phosphorus management in many 
watersheds (Schindler 1977, Lathrop et  al. 1998, 
Downing et  al. 2001, Smith 2003). The abun-
dance of cyanobacteria, however, is controlled 
by the dynamic state and reactions of many 
physical, chemical, and biological variables 
during both the prior and concurrent seasons, 
creating a complex array of ecosystem processes 
(Ostfeld et al. 2015, Zhu et al. 2019). Phosphorus 
is widely accepted as a driver of cyanobacteria 
productivity, and strong correlations between 
phosphorus load and cyanobacteria biomass 
have been demonstrated (Smith 1985, Stow 
et  al. 1997, Lathrop et  al. 1998). Local hydro-
climatic processes, such as extreme rain events 
and river discharge, may influence phosphorus 
loading during the spring (Carpenter et  al. 
2018). Spring and summer temperatures may 
also control cyanobacteria productivity through 
direct effects on photosynthetic capacity, influ-
encing competition with other photosynthetic 
organisms (Taranu et  al. 2012). Therefore, con-
sideration of season-ahead, local and large-scale 
hydroclimatic drivers may have potential to 
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improve the skill of season-ahead cyanobacteria 
forecasts.

The application of season-ahead forecasts to 
beach management allows for the investigation 
of season-ahead, nonanthropogenic drivers of 
cyanobacteria abundance. Incorporation of hydro-
climatic (e.g., nonmanageable) variables may 
allow for skillful forecasts of cyanobacteria abun-
dance at seasonal time scales. The focus of this 
article is to build and assess the skill of 
season-ahead cyanobacteria abundance forecasts 
conditioned on local and global scale hydrocli-
matic predictors, and the subsequent ability of 
seasonal forecasts to predict beach closings.

Study site

With the University of Wisconsin–Madison on 
its southern shore, Lake Mendota in Madison, 
Wisconsin (Fig. 1), is one of the most studied 
ecosystems on the planet (Carpenter et  al. 2006, 
Lathrop 2007). The lake covers roughly 40 km2 
and is the first of 4 lakes in the Yahara river 
basin. The 596 km2 Mendota watershed is 21% 

urban and 53% agricultural (Genskow and Betz 
2012). Mendota has a long history of eutrophi-
cation dating back to the 1940s, although anec-
dotal evidence of cyanobacteria blooms can be 
found as early as the 1880s (Lathrop 2007). From 
the 1940s until the 1970s, high nutrient concen-
trations were fueled by municipal wastewater 
discharge; however, Lake Mendota remains highly 
eutrophic to this day due to agricultural and 
urban development (Lathrop et  al. 1998). Today, 
most nutrient conveyance is the result of manure 
application in the upper part of the Yahara water-
shed (Genskow and Betz 2012). Nutrient concen-
trations have been the focus of multiple 
cyanobacteria prediction models on Lake 
Mendota. An existing prediction model, devel-
oped by Stow et  al. (1997), applied spring 
center-of-lake phosphorus to predict summertime 
cyanobacteria biovolume, with some success. 
Additionally, Lake Mendota was included in a 
Bayesian network model developed to assess the 
influence of short-term (1–2 weeks) nutrient con-
centrations (nitrogen and phosphorus) and cli-
matic variables (air temperature, sunlight, and 

Figure 1.  Lake Mendota and the Mendota watershed with select beaches, USGS gauges, and the North Temperate Lakes 
Long-Term Ecological Research (NTL-LTER) data buoy indicated (base map: Carto, watershed: WI DNR 2020, lake: City of Madison 
2019).
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wind speed) on the probability of cyanobacteria 
blooms (Rigosi et  al. 2015). To build on these 
efforts, the forecast presented here investigates 
the influence of local and global hydrologic and 
climatic drivers of cyanobacteria biomass at a 
seasonal time scale and creates a tool for proac-
tive lake and beach management. This forecast 
works in concert with a subseasonal forecasting 
model for July–August cyanobacteria abundance, 
developed by Beal et  al. (2021). Cyanobacteria 
prediction modeling at both the seasonal and 
subseasonal time scale allows for the consider-
ation of both preseason (Mar–May) and 
within-season (Jun) drivers of productivity and 
provides lake managers with 2 opportunities to 
adjust management strategies before cyanobacte-
ria abundances peak for the summer. As the lake 
is a cornerstone of the Madison community, mil-
lions of dollars have been invested in water qual-
ity monitoring, offering a uniquely rich dataset. 
Mendota is therefore well suited as a test case 
for the development, evaluation, and implemen-
tation of a season-ahead cyanobacteria forecasting 
system. Water quality data are available through 
the Northern Temperate Lakes Long-Term 
Ecological Research (NTL-LTER) database 
(Magnuson et  al. 2020), and beach-closing data 
are available by request from the Madison–Dane 
County Public Health department (PHMDC 
2020). Cyanobacteria abundance and associated 
beach closings typically peak across the June–
August (JJA) summer season, with the greatest 
abundances typically occurring between July and 

August. The forecast developed here addresses 
average summertime (Jun–Aug) cyanobacteria 
biomass to inform lake and beach management 
decisions at the beginning of the peak season for 
cyanobacteria productivity (Fig. 2).

Materials and methods

Forecasting models for July–August cyanobacteria 
biomass and beach closings are built and vali-
dated from 1995 to 2018 (24 yr) and 2005 to 
2020 (16 yr), respectively. In the following Local 
scale and Global scale subsections, a literature 
review is conducted to identify potential presea-
son drivers of summertime cyanobacteria abun-
dance. Predictors should be based on readily 
available preseason (Mar–May, MAM) observa-
tions to facilitate real-time predictions and must 
be significantly correlated (95% confidence level) 
with June–August (JJA) cyanobacteria biomass 
and beach closings. The subsection Model con-
struction describes a principal component regres-
sion modeling approach, and metrics to quantify 
model skill are defined in the subsection Model 
performance metrics.

To compute biomass, biovolume was initially 
calculated for each species by multiplying the 
average cell volume for the geometric solid by 
the cell density in the water sample and then 
converting mm3/mL of biovolume to mg/L of 
biomass. To describe seasonal beach closings, 2 
separate metrics were developed: beach days 
closed (number of days a beach is closed during 

Figure 2.  June–Aug (JJA) average cyanobacteria biomass for 1995–2018 measured at the NTL-LTER buoy in Lake Mendota (see 
Fig. 1 for location).
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a single JJA season due to cyanobacteria; Fig.  3), 
and beach periods closed (number of periods 
a beach is closed during a single JJA season, 
defined as one or more consecutive days closed, 
Fig. 4). Together, these 2 metrics better define 
the distribution of beach closings across the 
season by detailing the total number of days 
closed and how those days are grouped through-
out the season. The suite of potential predictors 
includes persistent large-scale climate variables 

and local spring drivers of cyanobacteria. 
Similar predictors were assessed for the cyano-
bacteria biomass model and beach closing 
model; however, both models were not required 
to retain the same set of predictors. Expanding 
the suite of predictors beyond springtime phos-
phorus allows for evaluation against a previous 
season-ahead prediction cyanobacteria predic-
tion model on Lake Mendota developed by Stow 
et  al. (1997).

Figure 3.  Jun–Aug (JJA) beach days closed due to cyanobacteria abundance (data courtesy of Madison–Dane County Public 
Health) for 2005–2020.

Figure 4.  Jun–Aug (JJA) beach periods closed due to cyanobacteria abundance (data courtesy of Madison–Dane County Public 
Health) for 2005–2020.
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Local scale

Prospective local-scale spring drivers include 
residual (legacy) and external phosphorus load-
ings and meteorological variables, such as tem-
perature and precipitation. Phosphorus is 
recognized as the driving nutrient for primary 
production in many lake ecosystems (Bennett 
et  al. 1999, Paerl 2017), and the relationship 
between algal biomass and total phosphorus in 
the growing season is well established 
(Vollenweider 1970, Smith 1982). Specifically, 
existing prediction models for Lake Mendota have 
illustrated the predictive power of spring phos-
phorus concentrations on summer algae abun-
dance (Stow et  al. 1997, Lathrop et  al. 1998). 
Spring phosphorus concentrations have also been 
used to predict algae abundance in other tem-
perate waterbodies (Dillon and Rigler 1974, 
Stumpf et  al. 2012, Obenour et  al. 2014, Stumpf 
et  al. 2016) Additionally, researchers have noted 
the influence of meteorological variables on cya-
nobacteria abundance, including springtime tem-
perature and precipitation (Paerl and Huisman 
2008, Reichwaldt and Ghadouani 2012, Stow 
et  al. 2015).

Numerous studies have demonstrated that 
phosphorus and nitrogen are major limiting 
nutrients for algal growth in inland lake ecosys-
tems (Edmondson and Lehman 1981, Carey et  al. 
2012, Paerl 2017); thus, springtime phosphorus 
and nitrogen loads were evaluated as potential 
predictors of summertime cyanobacteria abun-
dance. Precipitation and discharge during the 
spring season are thought to impact cyanobacte-
ria abundance through the conveyance of nutri-
ents from the watershed. Large precipitation 
events can flush high concentrations of nutrients 
into lakes, spurring algae growth (Schueler 1987, 
Carpenter et  al. 2018). Higher intensity storms 
increase discharge, and tend to transfer higher 
concentrations of nutrients than lower intensity 
storms and their associated flows (Reichwaldt and 
Ghadouani 2012). The intensity and frequency 
of springtime precipitation events affect the dis-
charge loading concentration, distribution, and 
residence time of phosphorus within a lake, and 
further influence the overall availability of nutri-
ents to cyanobacteria in the summer season 
(Reichwaldt and Ghadouani 2012, Stow et  al. 

2015, Paerl and Otten 2016). Therefore, total pre-
cipitation, extreme precipitation events 
(>40 mm/d), and discharge from March to May 
were considered as potential predictors of sum-
mertime cyanobacteria abundance. While total 
precipitation and number of extreme events are 
similar predictors, they represent distinct hydro-
logic phenomena. Total precipitation may better 
represent moisture conditions in the watershed 
compared to extreme precipitation, which may 
lead to large runoff and nutrient loading events. 
Precipitation data are taken from the Midwest 
Regional Climate Center, and phosphorus and 
discharge data are taken from the US Geological 
Survey (USGS gauges 05427718 and 05427850; 
Wuertz et  al. 2018, USGS 2021a, 2021b).

Global scale

Large-scale atmospheric-oceanic climate variables 
may influence local cyanobacteria abundance 
through atmospheric teleconnections, which 
influence meteorological conditions over the 
watershed from year to year. Global sea surface 
temperatures (SST) and sea-level pressures (SLP) 
are representative of these teleconnections and 
are well established as drivers of precipitation 
and temperature on seasonal time scales by alter-
ing atmospheric flow (Trenberth and Caron 2000, 
Markowski and North 2003). Therefore, regions 
of SSTs and SLPs are examined as potential pre-
dictors. The El Niño Southern Oscillation 
(ENSO), an anomalous warming or cooling of 
SST in the equatorial Pacific Ocean, is perhaps 
the most well known and most studied 
oceanic-atmospheric climate phenomenon with 
global impacts (Ropelewski and Halpert 1986, 
Ropelewski and Halpert 1987, Sarachik and Cane 
2010). In the upper Midwest, ENSO is associated 
with warmer and drier winters during El Niño 
phases (Legler et  al. 1999, Smith et  al. 1999, 
WICCI 2011, Midwestern Regional Climate 
Center 2016), contributing to lower antecedent 
soil moisture conditions. Although the summer-
time influence of ENSO in the Midwest is less 
pronounced, early summer months have been 
characterized as cooler and wetter than normal 
in El Niño years (Midwestern Regional Climate 
Center 2016), establishing conditions for higher 
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runoff and nutrient transport potential. Both 
global and ENSO-related SST predictors were 
therefore considered as predictors and were iden-
tified using gridded correlation maps. SST data 
are retrieved from the NCEP/NCAR reanalysis 
(NCEP/NWS/NOAA/USDC 1994). In addition to 
selecting regions that meet the 95% statistical 
significance level requirement, distinct telecon-
nections between oceanic-atmospheric regions 
and the upper Midwest United States must also 
exist. SSTs are particularly advantageous from a 
prediction perspective as they fluctuate slowly 
over time, often allowing anomalies to persist 
across seasons. Similarly, sea-level pressure is also 
evaluated globally.

Model construction

A principal component analysis (PCA) and 
regression modeling approach was selected to 
predict cyanobacteria abundance and beach clos-
ings. PCA decomposes a space–time random 
field—all potential season-ahead predictors in this 
case—and produces a set of orthogonal time pat-
terns that include the dominant signals, or prin-
cipal components (PCs), stemming from the 
original set of predictors (Von Storch and Zweirs 
1999, Block et  al. 2009). Additionally, PCA effi-
ciently accounts for multicollinearity that may be 
present in the predictors, a common problem in 
linear regression. Typically, the first few PCs 
explain the majority of variance in the data. 
Kaiser’s rule was adopted, which specifies retain-
ing all PCs with eigenvalues greater than one 
(Kaiser 1960). The retained PCs are then applied 
as predictors in a multiple linear regression 
model to predict JJA average cyanobacteria bio-
mass and beach closings (independently). 
Leave-one-out cross-validation was applied for a 
hindcast assessment across 1995–2017 to evaluate 
model ski l l .  This PCA leave-one-out 
cross-validation model takes the general form of 
equation 1:

	 Y PC PC j PCji i i i i i i i

�
� � � ��� � � �1 1 2 2 	 (1)

where αi is a fitted value, PCji  represents the jth 
principal component calculated with the -th year 
dropped, βji is the fitted coefficient for the jth 

principal component, and Y i
�

 represents the pre-
dicted value for the ith year. To account for 
uncertainty, random deviates from the standard 
deviation of the prediction error are added to 
the model (median) prediction (Helsel and 
Hirsch 1995).

Model performance measures

To assess model performance, model results were 
compared with observations of cyanobacteria bio-
mass and beach closings using 3 performance 
measures: Heidke skill score (HSS), ranked prob-
ability skill score (RPSS), and a hit–miss matrix. 
Pearson and Spearman correlation coefficients, 
forecast bias, and false alarm ratio (FAR) were 
also calculated for the cyanobacteria biomass 
forecast. Forecast bias is the ratio of how often 
a specific category is forecasted to how often the 
specific category is observed, with a value equal 
to one indicating an unbiased forecast and values 
greater than and less than one indicating over-
forecasting and underforecasting, respectively 
(Dee and Da Silva 1998). FAR is a simple ratio 
of the number of nonoccurrence forecasts of a 
specific category and the total number of times 
the specific category is forecasted. Values for this 
metric range from 0 to 1, where 0 indicates a 
perfect score (Schaefer 1990).

Both HSS (equation 1) and RPSS (equation 2) 
report the model’s ability to predict categorical 
outputs (e.g., high vs. low) compared to a refer-
ence forecast, typically based on observed data 
(climatology). For hydroclimate prediction, a 
3-category division is often adopted, with the 
reference forecast based on equal probability of 
categories (33% each; Block et  al. 2009, Alexander 
et  al. 2019, Lala et  al. 2020). This approach was 
applied to the JJA average cyanobacteria biomass 
prediction for below normal, near normal, and 
above normal conditions, denoted as [B N A]. 
For beach days closed and beach periods closed, 
a 2-category division with normal (x(i) ≤  mean(-
closed)) and above normal (x(i) > mean(closed)) 
was adopted and denoted as [N A], where x(i) 
represents the observed number of beach days 
closed in the ith year. The observational proba-
bilities of each category are not equal in this case 
and are unique to each beach location.
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The HSS takes the general form of equation 2:

	
HSS �

� � � � � � �
� � � � �

� �
�

i i j i i i

i i i

P F O P F P O

P F P O

,

1
	 (2)

which describes forecast skill in terms of i,j = 
[B N A]. The joint distribution of forecasts and 
observations is described by P(Fi,Oj) while the 
marginal distributions of forecasts and observa-
tions are described by P(Fi) and P(Oj), respec-
tively (Wilks 2011). HSS values range from –∞ 
to 1, where 0 represents no improvement over 
the reference forecast (climatology) and 1 rep-
resents a perfect forecast.

The RPSS measures forecast skill by account-
ing for the magnitude of error in the forecast, 
differentiating from HSS (Wilks 2011). For exam-
ple, in the case of a [B N A] category forecast, 
if the above normal category is observed, RPSS 
would penalize a forecast that predicts below 
normal conditions more than a forecast that pre-
dicts near normal conditions. First, the ranked 
probability score (RPS) is calculated according 
to equation 3:

	
RPS

n
Pcumfct Pcumobs

cat i

n

i i
cat

cat

cat c t
�

�
��1

1
2( )

a

	 (3)

where ncat is the number of forecast categories 
and icat is the category number. Pcumfcticat and 
Pcumobsicat are the cumulative probability vectors 
of the forecast and observation, respectively, for 
the specific category of interest. RPSS then com-
pares the RPS of the forecast, RPSfct, to the RPS 
of climatology, RPSclim, using equation 4:

	
RPSS � �1

RPS
RPS

fct

clim 	 (4)

As with HSS, RPSS values range from –∞ to 
1, where 0 represents no skill and 1 represents 
a perfect forecast.

Results

Cyanobacteria biomass model

Both local and global scale variables are consid-
ered as potential predictors for JJA average cya-
nobacteria biomass. Local scale predictor variables 
meeting the established criteria include phospho-
rus loadings and discharge from the Yahara River 
at the mouth of Lake Mendota, total April pre-
cipitation, and precipitation events exceeding 
40 mm/d from the Madison–Dane County 
regional airport (Table 1).

SST in the equatorial Pacific Ocean correlate 
strongly with Mendota’s summertime (JJA) cya-
nobacteria biomass (Fig. 5), a region typically 
associated with ENSO. Xiao et  al. (2019) found 
evidence for synchronization between phytoplank-
ton dynamics and ENSO in northern Wisconsin 
lakes, suggesting that ENSO has some influence 
on local climatic conditions. Although other oce-
anic regions of statistically significant correlation 
between SST and summertime cyanobacteria 
abundance exist (Fig. 5), teleconnections between 
these regions and the upper Midwest are not 
overly apparent; therefore, the selection of SST 
is restricted to the equatorial Pacific Ocean.

Although phosphorus load meets the inclusion 
criteria for model development (correlation at the 
95% confidence level), higher forecast skill is 
achieved without including phosphorus in the 
final suite of predictors. Thus, the final suite of 
season-ahead (Mar–May) predictors includes 
average discharge, the number of extreme pre-
cipitation events, total April precipitation, and 

Table 1.  Pearson and Spearman correlation coefficients between June and August 
(JJA) average cyanobacteria biomass and Mar–May (MAM) potential predictor variables 
(1995–1996, 1998–2017); asterisks indicate statistical significance at the 95% level 
(1 = 1995–2002 interpolated from upstream USGS station 05427718; 2 = 1995–2008 
interpolated from upstream USGS station 05427718).
Cyanobacteria biomass predictors Pearson Spearman

MAM precipitation events >40 mm/d (MRCC) 0.58* 0.56*
Apr total precipitation (MRCC) 0.46* 0.44*
MAM average discharge (USGS Station 05427850)1 0.42* 0.39
MAM average SST in Equatorial Pacific (NOAA) –0.44* –0.45*
MAM average external phosphorus load (USGS Station 05427850)2 0.38 0.48*
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average SST in the equatorial Pacific Ocean. 
According to Kaiser’s rule, only the first PC, 
explaining approximately 45% of the variance, is 
retained for inclusion in the prediction model. 
A cross-validated hindcast produces a Pearson 
correlation coefficient of 0.62 between median 
model outputs and observed cyanobacteria bio-
mass, indicating moderate predictive skill (Fig.  6). 
This marks an improvement on previous Lake 
Mendota models. For example, the model devel-
oped by Stow et  al. (1997) using spring 

center-of-lake phosphorous as a predictor of sum-
mertime cyanobacteria—with the addition of data 
from 1995 to 2017—has a cross-validated Pearson 
correlation coefficient of 0.46.

The RPSS and HSS values based on categories 
of equal probability are 0.60 and 0.38, respec-
tively, indicating improvement over climatology, 
and model ability to generally shift toward the 
appropriate category. The hit–miss matrix 
(Table  2) based on the [B N A] categorical divi-
sions demonstrates high agreement; however, 

Figure 5.  Correlation map of Mar–May (MAM) average SSTs and Jun–Aug (JJA) average cyanobacteria biomass; MAM average 
SSTs in the box (190W–120W, 0–20S) are selected as a potential predictor.

Figure 6. T ime series of Jun–Aug (JJA) average cyanobacteria biomass observations (solid line) and predictions (boxes), with 
categories separated by horizontal black lines.
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there is a slight propensity toward predicting near 
normal conditions when above and below normal 
conditions are observed. Additionally, the hit–
miss matrix (Table 2) and FAR and forecast bias 
(Table 3) all suggest that the model is slightly 
biased toward the near normal category. The 
model’s ability to skillfully predict the above nor-
mal category—when cyanobacteria is most abun-
dant and managers most concerned—is highly 
advantageous; however, the cyanobacteria peaks 
in 2008 and 2017 are clearly underpredicted. 
Both underpredictions may be related to the dis-
tribution of precipitation throughout the spring. 
While both 2008 and 2017 had high overall pre-
cipitation, many days did not actually surpass the 
40 mm/d threshold and were thus not counted. 
Additionally, cyanobacteria biomass is substan-
tially overpredicted in 2009 and 2013 even though 
the model average prediction is still in the appro-
priate category. Both years saw a relatively high 
number of extreme precipitation events and 

increased streamflow. Furthermore, a limitation 
of the hydroclimatic forecasting approach for 
water quality variables is the difficulty in captur-
ing food web dynamics, which play a significant 
role in structuring cyanobacteria communities in 
Lake Mendota (Kasprzak and Lathrop 1997, 
Walsh et  al. 2017). Shifts in food web dynamics 
may have an influence on summertime cyano-
bacteria abundance that is not captured in 
the model.

Beach closings

Categorical forecast models for beach days closed 
and periods closed are developed for 3 beaches 
located along the eastern side of Lake Mendota 
(Fig. 1). Selected season-ahead predictors mirror 
those included in the cyanobacteria biomass 
model, including average discharge, P loading, 
the number of extreme precipitation events, and 
Pacific Ocean SST; however, positive correlations 
between number of days or periods closed and 
average discharge and extreme precipitation 
events were the only significant correlations at 
any of the beaches (Table 4). As with the cya-
nobacteria biomass model, only the first PC is 
retained for inclusion in each of the beach pre-
diction models. Cross-validated hindcast model 
results for days and periods closed at each beach 
indicate moderate to strong model skill and an 
improvement over climatology in most metrics 
(Tables 5 and 6 for James Madison only).

Beach days closed tends to be more skillful 
than beach periods closed; however, performance 
metrics are highly sensitive to the short hindcast 
period and strongly influenced by data in single 
years. This limited number of data points is 

Table 2.  Hit–miss matrix for categorical Jun–Aug 
(JJA) average cyanobacteria biomass prediction and 
observations.

Forecast

B N A

Observed B 5 3 0
N 2 4 2
A 0 3 5

B = below normal, N = normal, A = above normal.

Table 3.  Forecast bias and false alarm ratios for cat-
egorical JJA average cyanobacteria biomass 
predictions.

Category Forecast bias
False alarm ratio 

(FAR)

B 0.88 0.29
N 1.25 0.6
A 0.88 0.29

B = below normal, N = normal, A = above normal.

Table 4.  Pearson correlation coefficients between Jun–Aug (JJA) beach days/periods closed and 
Mar–May (MAM) potential predictor variables; asterisks indicate statistical significance at the 95% 
confidence level.

Beach closing predictors
Characteristic 

predicted
James 

Madison Tenney Warner

MAM precipitation events >40 mm/d (MRCC) Days closed 0.75* 0.70* 0.69*
Apr precipitation (MRCC) 0.21 0.41 0.37
MAM average discharge (USGS Station 05427850) 0.65* 0.47 0.3
MAM average SST in Equatorial Pacific (NOAA) −0.42 −0.43 −0.46
MAM average external phosphorus load (USGS Station 05427850) 0.39 0.32 0.39
MAM precipitation events > 40 mm/d (MRCC) Periods closed 0.69* 0.87* 0.81*
Apr precipitation (MRCC) 0.29 0.42 0.26
MAM average discharge (USGS Station 05427850) 0.37 0.44 0.57*
MAM average SST in Equatorial Pacific (NOAA) −0.42 −0.45 −0.36
MAM average external phosphorus load (USGS Station 05427850) 0.16 0.39 0.36
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especially problematic for prediction in extreme 
years (e.g., 2013, Fig. 7). In the case of James 
Madison beach, predictors covary closely with 
the number of beach days closed except for 
2013–2014 (Fig. 8). The days closed forecast 
results mirror the cyanobacteria abundance pre-
diction in 2013, in that both were overpredicted, 
potentially resulting from changes in the food 
web not captured by the model. The model also 
overpredicts 2014, likely due to the elevated 
phosphorus levels; however, this may not have 
materialized in beach closures due to abnormally 
low discharge. Additionally, 2015 and 2017 
above-average cyanobacteria abundance did not 
directly translate into above-average beach 

Table 5.  Ranked probability skill scores (RPSS), Heidke skill 
scores (HSS), and Pearson correlations for beach days and 
periods closed prediction models for 3 Lake Mendota beaches.

Beach days closed Beach periods closed

Beach
Median 

RPSS HSS
Pearson 

correlation
Median 

RPSS HSS
Pearson 

correlation

James Madison 0.81 0.49 0.65 0.25 0.35 0.36
Tenney 0.08 0.13 0.58 0.38 0.35 0.64
Warner −0.01 0.21 0.31 0.69 0.49 0.66

Table 6.  Hit–miss matrix for categorical 
beach days closed predictions and observa-
tions at James Madison beach.

Forecast

N A

Observed N 6 3
A 3 4

N = normal, A = above normal.

Figure 7.  Bar chart representing probabilistic predictions of beach days closed at James Madison beach. Normal category includes 
2 or fewer days closed; above normal refers to more than 2 d closed per summer. The observed category is illustrated with a 
white star.

Figure 8. T ime series of normalized predictors and beach days closed for James Madison beach.
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closures. There are several factors that may be 
at play in this disconnect. Wind conditions, for 
example, have been shown to influence horizon-
tal movement of surface algae (Deng et  al. 2016), 
which may cause blooms to concentrate away 
from beaches, allowing them to stay open. In 
looking at specific years, there is expected vari-
ability due to the complex dynamics of this 
lacustrine ecosystem.

Discussion

The development and evaluation of prospective 
season-ahead prediction models for cyanobacteria 
biomass and beach closures, based on local and 
global scale predictors, are presented. The model 
is developed as part of a subseasonal to seasonal 
cyanobacteria forecasting system for Lake Mendota. 
Previous season-ahead prediction models have 
utilized phosphorus as the primary predictor vari-
able, given its influence on cyanobacteria abun-
dance and ability to be managed. Here, alternative 
predictors are also evaluated to better understand 
their potential contribution to prediction skill and 
ability to represent signals of phosphorus convey-
ance and distribution. In addition, models con-
tingent solely on phosphorus data collection are 
subject to continuous sampling and processing lag 
times—often well beyond one season—which may 
serve as a major lake management disincentive. 
The modeling framework proposed here alleviates 
such dependence, demonstrating strong prediction 
skill. The proposed framework incorporates a 
larger suite of predictor variables than utilized in 
previous forecasts; however, the modeling approach 
remains straightforward—a clear strength for 
future applications. It should be noted that Lake 
Mendota has a wealth of high-quality, long-term 
data, which is uncommon among similar small 
inland lakes. Development of season-ahead fore-
casts for algae may benefit management practices 
in other lakes. While it is unlikely that nutrient 
loading and within-lake predictors will be as well 
characterized for other lakes, the hydroclimatic 
drivers evaluated here (e.g., precipitation, extreme 
precipitation events, air temperature, and sea sur-
face temperatures) are widely available across the 
United States and may be used for forecasting 
applications in other lakes.

Although model performance exhibits predic-
tive skill for cyanobacteria biomass, beach days 
closed, and beach periods closed, there are sev-
eral noteworthy challenges. The statistical fore-
cast models developed here are limited by the 
short time series available, with some inconsis-
tencies in the ability to predict extremes. This 
may be addressed through calibrated physically 
based lake process models run in a predictive 
mode, potentially capturing complex dynamics 
across biological, chemical, and environmental 
processes; however, preliminary exploration has 
indicated poor to marginal skill for Lake 
Mendota. Another remaining challenge is when 
one category is predicted with high probability 
(confidence), yet observations fall in a different 
category (e.g., 2013, Fig. 7). This is different 
from moderate probability of being in the unob-
served category and may be a challenge to 
resource managers. Relatedly, the thresholds 
between categories utilized here are subjective; 
however, selection does impact model perfor-
mance. Individual managers are likely to have 
their own preferred thresholds, warranting fur-
ther evaluation into model performance for spe-
cific choices.

As discussed previously, both temperature and 
phosphorus load are well established as drivers 
of cyanobacteria productivity; however, neither 
variable added predictive power at the seasonal 
scale. The Stow et  al. (1997) prediction model 
uses April within-lake phosphorus concentrations 
to predict July–September cyanobacteria abun-
dance with notable skill. Additionally, in the 
complementary subseasonal forecasting model 
for cyanobacteria abundance, June external phos-
phorus loads were highly correlated with July–
August cyanobacteria abundance (Beal et  al. 
2021). It is possible that the temporal difference 
between the phosphorus predictor and summer-
time cyanobacteria biomass is responsible for 
this difference in skill. Internal phosphorus load-
ing is also a significant source of phosphorus 
for Lake Mendota during the summer and is not 
accounted for in this set of predictors (Soranno 
et  al. 1997).

Spring air temperatures have been shown to 
influence water temperature and summertime 
bloom onset (Zhang et  al. 2016), prompting the 
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inclusion of spring air temperature as a potential 
predictor of summertime cyanobacteria biomass. 
Air temperature may have direct and indirect 
impacts on cyanobacteria abundance (Taranu 
et  al. 2012). High temperatures (above 25 C) 
during the growing season generally promote 
cyanobacteria growth over phytoplankton species 
such as diatoms and green algae (Paerl and 
Huisman 2008). Higher air temperatures may 
indirectly favor cyanobacteria, given that increased 
temperatures promote stratification strength, 
allowing cyanobacteria to outcompete other algal 
groups by using specialized gas vacuoles to adjust 
their position in the water column (Jöhnk et  al. 
2008, Paerl and Huisman 2008). Additionally, 
water temperatures have been shown to control 
summertime cyanobacteria productivity in Lake 
Mendota (Konopka and Brock 1978); however, 
none of the temperature-based predictors inves-
tigated correlate at a statistically significant level 
with biomass. There may be several explanations 
for this: Researchers have noted that higher tem-
peratures have a direct effect on the timing and 
proportional dominance of cyanobacteria, but not 
the amount of annual biomass (Wagner and 
Adrian 2009, Elliott 2012). While a causal rela-
tionship has been demonstrated between spring 
air temperatures and summertime cyanobacteria 
abundance in subtropical regions (Paerl and 
Huisman 2008, Deng et  al. 2014, Zhang et  al. 
2016), that same relationship has not been shown 
to exist in the northern temperate climate of the 
study site. This could be due to the temporal 
mismatch of seasonal abundance with spring tem-
peratures. While high spring temperatures may 
encourage cyanobacteria dominance, this does 
not necessarily imply long-term abundance 
(Anneville et  al. 2015, Persaud et  al. 2015, Zhang 
et  al. 2016). Additionally, temperature fluctuations 
occurring in the spring are accompanied by a 
variety of additional environmental changes, com-
plicating the direct cyanobacteria response to 
temperature (Konopka and Brock 1978). The sim-
plicity of the temperature-based predictors pro-
posed may not be capable of fully capturing the 
summer cyanobacteria biomass response to tem-
perature nuances occurring throughout the sea-
son. Clearly, the predictor variables considered 
in this study may impact individual cyanobacteria 

communities differently; however, average cyano-
bacteria biomass across all communities is spe-
cifically addressed here, as current management 
practices do not consider the presence of indi-
vidual communities. Still, there is clear merit in 
the consideration of individual cyanobacteria 
communities that pose a greater toxicity risk, 
specifically those that have the potential to pro-
duce toxins, for future prediction efforts.

For this analysis, predictions are issued at the 
end of the spring season (beginning of June). 
This advance notice of summertime cyanobac-
teria conditions provides lake and beach man-
agers with information necessary for making 
proactive management decisions ahead of the 
peak season for cyanobacteria productivity. These 
decisions may include changing the frequency 
of water quality testing, altering training and 
scheduling for lifeguards, tailoring public engage-
ment strategies, and preparing emergency 
resources for recreators. Working with the sub-
seasonal forecast developed by Beal et  al. (2021), 
preseason and within-season (summer) predic-
tions are issued for cyanobacteria abundance, 
allowing decision makers to adapt and optimize 
management strategies across the peak season 
for cyanobacteria productivity. The model devel-
oped here is a key component of this forecasting 
system, providing information on expected cya-
nobacteria abundances before recreational use of 
Lake Mendota begins to increase and toxin pro-
duction becomes a potential public health threat. 
Linking seasonal and subseasonal cyanobacteria 
forecasts informs decisions at multiple time 
scales, allowing for an optimized approach to 
cyanobacteria management. Effectively imple-
menting this forecasting system requires improved 
understanding of manager needs, key decisions 
dates, and available actions, all themes of ongo-
ing research to facilitate how forecasts can better 
be integrated into lake and beach management.
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