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ABSTRACT
Beal MRW, O'Reilly BE, Soley CK, Hietpas KR, Block PJ. 2022. Variability of summer cyanobacteria
abundance: can season-ahead forecasts improve beach management? Lake Reserv Manage.
XXXX-XX.

As anthropogenic eutrophication and the associated increase of cyanobacteria continue to
plague inland waterbodies, local officials are seeking novel methods to proactively manage
water resources. Cyanobacteria are of particular concern to health officials due to their ability
to produce dangerous hepatotoxins and neurotoxins, which can threaten waterbodies for
recreational and drinking-water purposes. Presently, however, there is no cyanobacteria
outlook that can provide advance warning of a potential threat at the seasonal time scale.
In this study, a statistical model is developed utilizing local and global scale season-ahead
hydroclimatic predictors to evaluate the potential for informative cyanobacteria biomass and
associated beach closure forecasts across the June—-August season for a eutrophic lake in
Wisconsin (United States). This model is developed as part of a subseasonal to seasonal
cyanobacteria forecasting system to optimize lake management across the peak cyanobacteria
season. Model skill is significant in comparison to June-August cyanobacteria observations
(Pearson correlation coefficient = 0.62, Heidke skill score = 0.38). The modeling framework
proposed here demonstrates encouraging prediction skill and offers the possibility of
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advanced beach management applications.

Cyanobacteria represent some of the most ancient
microorganisms on Earth, having appeared
roughly 2.7 billion yr ago (Schirrmeister et al.
2013). In recent decades, accelerated nutrient
input and widespread land cover change have
resulted in a rapid expansion of harmful cyano-
bacteria in our coastal waters and inland lakes
(Taranu et al. 2015). Cyanobacteria are photo-
synthetic bacteria that thrive in eutrophic water-
bodies characterized by large influxes of nutrients.
Cyanobacteria can form mats known as harmful
algal blooms (HABs), triggering concern from
health officials and water managers given their
widely identified negative ecological, aesthetic,
and socioeconomic implications (Dodds et al.
2013, Paerl 2017, Huisman et al. 2018).
Importantly, common species of cyanobacteria
(e.g., Microcystis) secrete hepato- and neurotox-
ins, threatening waterbodies used for recreation
and drinking water (Taranu et al. 2012, Wynne

and Stumpf 2015). The negative impacts of HABs
have received notable attention in larger water-
bodies, such as Lake Erie. In 2014 Toledo, Ohio,
was forced to issue a “do not drink” advisory
when dangerous concentrations of cyanobacteria
produced toxins in the public water supply
(Bullerjahn et al. 2016). Widespread eutrophica-
tion, climate change, and an established relation-
ship between algal biomass and nutrient input
suggest that cyanobacteria pose a significant
threat to small inland lakes, which have so far
received less attention (Smith 2003, Paerl and
Huisman 2008, Huisman et al. 2018).

Many meteorological, chemical, and biological
variables influence cyanobacteria abundance, cre-
ating a complex, dynamic ecosystem (Stow et al.
1997, Hamilton et al. 2016). Additionally, each
cyanobacteria community has its own unique
characteristics, further complicating the under-
standing of how concurrent drivers collectively
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impact cyanobacteria population in a lake
(Soranno 1997, Taranu et al. 2012). For species
commonly found in eutrophic dimictic lakes, key
factors influencing overall abundance include
temperature, water column stability, wind, nutri-
ent availability, precipitation, atmospheric pres-
sure, light transparency, and predatory grazing
(Soranno 1997, Paerl 1988, Taranu et al. 2012,
Ostfeld et al. 2015). Cyanobacteria abundance
expresses notable intraseasonal variability, typi-
cally peaking during the summer season, and
interannual variability (Lathrop and Carpenter
1992). Lake and beach managers, however, often
have limited access to information indicating the
expected intensity of cyanobacteria abundance
ahead of the peak season for cyanobacteria pro-
ductivity. Reactive management operations, in
such cases, are used in determining recreational
safety and beach closures. Advance notice of
increased cyanobacteria abundance may allow
lake and beach managers to alter cyanotoxin test-
ing routines, train and inform lifeguards to watch
for dangerous algae conditions, and launch public
awareness campaigns before the high-risk season.
Seasonal forecasts are intended to work in con-
cert with shorter term forecasts (days to weeks),
providing managers with information at several
time scales. Providing decision makers with infor-
mation on cyanobacteria conditions ahead of the
high-risk season aims to extend an existing sys-
tem of forecasts to improve overall management
of cyanobacteria.

In recent decades, season-ahead forecasts have
become a focus of research in many fields, with
significant effort put toward predicting average
or extreme precipitation, discharge, and tempera-
ture to inform operations in agriculture and res-
ervoir management (Wood et al. 2005, Hansen
et al. 2011). Forecasts at this scale typically aim
to provide information characterizing the upcom-
ing season, not a prescription of when events
will occur. Many important management deci-
sions fall into the gap between short-term and
long-term forecasts. The development of forecast-
ing systems at monthly and seasonal time scales
can strengthen disaster preparedness by inform-
ing long-term contingency plans and activating
short-term early warning systems (Vitart et al.
2012). In contrast to water quantity, relatively

little attention has been devoted to season-ahead
prediction of water quality.

Currently, several short-term cyanobacteria
forecasts are available through entities such as
the National Oceanic and Atmospheric
Administration (NOAA) for the purpose of
beach management (Kavanaugh et al. 2013).
Forecasts are issued up to 5d out, based on
local meteorological conditions and
high-resolution satellite imagery. A review of
forecast and predictive models for cyanobacteria
blooms found that most existing models operate
on forecast horizons of less than one week, with
very few extending beyond 30d (Rousso et al.
2020). Existing season-ahead forecasts of cya-
nobacteria abundance have been developed with
a focus on spring phosphorus loads (e.g., by
NOAA Great Lakes Environmental Research
Laboratory) primarily to determine necessary
nutrient reductions for targeted local manage-
ment plans (Stow et al. 1997, Obenour et al.
2014). Phosphorus is generally accepted as the
limiting nutrient for cyanobacteria growth in
freshwater systems and has received significant
attention in seasonal forecasting due to the
importance of phosphorus management in many
watersheds (Schindler 1977, Lathrop et al. 1998,
Downing et al. 2001, Smith 2003). The abun-
dance of cyanobacteria, however, is controlled
by the dynamic state and reactions of many
physical, chemical, and biological variables
during both the prior and concurrent seasons,
creating a complex array of ecosystem processes
(Ostfeld et al. 2015, Zhu et al. 2019). Phosphorus
is widely accepted as a driver of cyanobacteria
productivity, and strong correlations between
phosphorus load and cyanobacteria biomass
have been demonstrated (Smith 1985, Stow
et al. 1997, Lathrop et al. 1998). Local hydro-
climatic processes, such as extreme rain events
and river discharge, may influence phosphorus
loading during the spring (Carpenter et al.
2018). Spring and summer temperatures may
also control cyanobacteria productivity through
direct effects on photosynthetic capacity, influ-
encing competition with other photosynthetic
organisms (Taranu et al. 2012). Therefore, con-
sideration of season-ahead, local and large-scale
hydroclimatic drivers may have potential to



improve the skill of season-ahead cyanobacteria
forecasts.

The application of season-ahead forecasts to
beach management allows for the investigation
of season-ahead, nonanthropogenic drivers of
cyanobacteria abundance. Incorporation of hydro-
climatic (e.g., nonmanageable) variables may
allow for skillful forecasts of cyanobacteria abun-
dance at seasonal time scales. The focus of this
article is to build and assess the skill of
season-ahead cyanobacteria abundance forecasts
conditioned on local and global scale hydrocli-
matic predictors, and the subsequent ability of
seasonal forecasts to predict beach closings.

Study site

With the University of Wisconsin-Madison on
its southern shore, Lake Mendota in Madison,
Wisconsin (Fig. 1), is one of the most studied
ecosystems on the planet (Carpenter et al. 2006,
Lathrop 2007). The lake covers roughly 40km?
and is the first of 4 lakes in the Yahara river
basin. The 596km? Mendota watershed is 21%

O Beaches
»i\ Dane County Regional Airport
4 USGS Gauges
® Data Buoy
I Lake Mendota
[ Contributing Watersheds
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urban and 53% agricultural (Genskow and Betz
2012). Mendota has a long history of eutrophi-
cation dating back to the 1940s, although anec-
dotal evidence of cyanobacteria blooms can be
found as early as the 1880s (Lathrop 2007). From
the 1940s until the 1970s, high nutrient concen-
trations were fueled by municipal wastewater
discharge; however, Lake Mendota remains highly
eutrophic to this day due to agricultural and
urban development (Lathrop et al. 1998). Today,
most nutrient conveyance is the result of manure
application in the upper part of the Yahara water-
shed (Genskow and Betz 2012). Nutrient concen-
trations have been the focus of multiple
cyanobacteria prediction models on Lake
Mendota. An existing prediction model, devel-
oped by Stow et al. (1997), applied spring
center-of-lake phosphorus to predict summertime
cyanobacteria biovolume, with some success.
Additionally, Lake Mendota was included in a
Bayesian network model developed to assess the
influence of short-term (1-2weeks) nutrient con-
centrations (nitrogen and phosphorus) and cli-
matic variables (air temperature, sunlight, and

1
’054 27718

James Madison

Figure 1. Lake Mendota and the Mendota watershed with select beaches, USGS gauges, and the North Temperate Lakes
Long-Term Ecological Research (NTL-LTER) data buoy indicated (base map: Carto, watershed: WI DNR 2020, lake: City of Madison

2019).
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Figure 2. June-Aug (JJA) average cyanobacteria biomass for 1995-2018 measured at the NTL-LTER buoy in Lake Mendota (see

Fig. 1 for location).

wind speed) on the probability of cyanobacteria
blooms (Rigosi et al. 2015). To build on these
efforts, the forecast presented here investigates
the influence of local and global hydrologic and
climatic drivers of cyanobacteria biomass at a
seasonal time scale and creates a tool for proac-
tive lake and beach management. This forecast
works in concert with a subseasonal forecasting
model for July-August cyanobacteria abundance,
developed by Beal et al. (2021). Cyanobacteria
prediction modeling at both the seasonal and
subseasonal time scale allows for the consider-
ation of both preseason (Mar-May) and
within-season (Jun) drivers of productivity and
provides lake managers with 2 opportunities to
adjust management strategies before cyanobacte-
ria abundances peak for the summer. As the lake
is a cornerstone of the Madison community, mil-
lions of dollars have been invested in water qual-
ity monitoring, offering a uniquely rich dataset.
Mendota is therefore well suited as a test case
for the development, evaluation, and implemen-
tation of a season-ahead cyanobacteria forecasting
system. Water quality data are available through
the Northern Temperate Lakes Long-Term
Ecological Research (NTL-LTER) database
(Magnuson et al. 2020), and beach-closing data
are available by request from the Madison-Dane
County Public Health department (PHMDC
2020). Cyanobacteria abundance and associated
beach closings typically peak across the June-
August (JJA) summer season, with the greatest
abundances typically occurring between July and

August. The forecast developed here addresses
average summertime (Jun-Aug) cyanobacteria
biomass to inform lake and beach management
decisions at the beginning of the peak season for
cyanobacteria productivity (Fig. 2).

Materials and methods

Forecasting models for July-August cyanobacteria
biomass and beach closings are built and vali-
dated from 1995 to 2018 (24yr) and 2005 to
2020 (16yr), respectively. In the following Local
scale and Global scale subsections, a literature
review is conducted to identify potential presea-
son drivers of summertime cyanobacteria abun-
dance. Predictors should be based on readily
available preseason (Mar-May, MAM) observa-
tions to facilitate real-time predictions and must
be significantly correlated (95% confidence level)
with June-August (JJA) cyanobacteria biomass
and beach closings. The subsection Model con-
struction describes a principal component regres-
sion modeling approach, and metrics to quantify
model skill are defined in the subsection Model
performance metrics.

To compute biomass, biovolume was initially
calculated for each species by multiplying the
average cell volume for the geometric solid by
the cell density in the water sample and then
converting mm?®*/mL of biovolume to mg/L of
biomass. To describe seasonal beach closings, 2
separate metrics were developed: beach days
closed (number of days a beach is closed during



a single JJA season due to cyanobacteria; Fig. 3),
and beach periods closed (number of periods
a beach is closed during a single JJA season,
defined as one or more consecutive days closed,
Fig. 4). Together, these 2 metrics better define
the distribution of beach closings across the
season by detailing the total number of days
closed and how those days are grouped through-
out the season. The suite of potential predictors
includes persistent large-scale climate variables

201

Days Closed

| !
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and local spring drivers of cyanobacteria.
Similar predictors were assessed for the cyano-
bacteria biomass model and beach closing
model; however, both models were not required
to retain the same set of predictors. Expanding
the suite of predictors beyond springtime phos-
phorus allows for evaluation against a previous
season-ahead prediction cyanobacteria predic-
tion model on Lake Mendota developed by Stow
et al. (1997).
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Figure 3. Jun-Aug (JJA) beach days closed due to cyanobacteria abundance (data courtesy of Madison-Dane County Public

Health) for 2005-2020.

Periods Closed
N

Beach
. James Madison
Tenney Park

Warner

2
O
S

N

©
S
P

®
§
®

S
O
oS

S
N
P

P

N

\Z
N
®

]
N
o

Q
N
S

P

N

P

2o

&
N
P

o
N
P

P

Q
N

a
N
® S

Figure 4. Jun—Aug (JJA) beach periods closed due to cyanobacteria abundance (data courtesy of Madison-Dane County Public

Health) for 2005-2020.
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Local scale

Prospective local-scale spring drivers include
residual (legacy) and external phosphorus load-
ings and meteorological variables, such as tem-
perature and precipitation. Phosphorus is
recognized as the driving nutrient for primary
production in many lake ecosystems (Bennett
et al. 1999, Paerl 2017), and the relationship
between algal biomass and total phosphorus in
the growing season is well established
(Vollenweider 1970, Smith 1982). Specifically,
existing prediction models for Lake Mendota have
illustrated the predictive power of spring phos-
phorus concentrations on summer algae abun-
dance (Stow et al. 1997, Lathrop et al. 1998).
Spring phosphorus concentrations have also been
used to predict algae abundance in other tem-
perate waterbodies (Dillon and Rigler 1974,
Stumpf et al. 2012, Obenour et al. 2014, Stumpf
et al. 2016) Additionally, researchers have noted
the influence of meteorological variables on cya-
nobacteria abundance, including springtime tem-
perature and precipitation (Paerl and Huisman
2008, Reichwaldt and Ghadouani 2012, Stow
et al. 2015).

Numerous studies have demonstrated that
phosphorus and nitrogen are major limiting
nutrients for algal growth in inland lake ecosys-
tems (Edmondson and Lehman 1981, Carey et al.
2012, Paerl 2017); thus, springtime phosphorus
and nitrogen loads were evaluated as potential
predictors of summertime cyanobacteria abun-
dance. Precipitation and discharge during the
spring season are thought to impact cyanobacte-
ria abundance through the conveyance of nutri-
ents from the watershed. Large precipitation
events can flush high concentrations of nutrients
into lakes, spurring algae growth (Schueler 1987,
Carpenter et al. 2018). Higher intensity storms
increase discharge, and tend to transfer higher
concentrations of nutrients than lower intensity
storms and their associated flows (Reichwaldt and
Ghadouani 2012). The intensity and frequency
of springtime precipitation events affect the dis-
charge loading concentration, distribution, and
residence time of phosphorus within a lake, and
further influence the overall availability of nutri-
ents to cyanobacteria in the summer season
(Reichwaldt and Ghadouani 2012, Stow et al.

2015, Paerl and Otten 2016). Therefore, total pre-
cipitation, extreme precipitation events
(>40mm/d), and discharge from March to May
were considered as potential predictors of sum-
mertime cyanobacteria abundance. While total
precipitation and number of extreme events are
similar predictors, they represent distinct hydro-
logic phenomena. Total precipitation may better
represent moisture conditions in the watershed
compared to extreme precipitation, which may
lead to large runoff and nutrient loading events.
Precipitation data are taken from the Midwest
Regional Climate Center, and phosphorus and
discharge data are taken from the US Geological
Survey (USGS gauges 05427718 and 05427850;
Wuertz et al. 2018, USGS 2021a, 2021b).

Global scale

Large-scale atmospheric-oceanic climate variables
may influence local cyanobacteria abundance
through atmospheric teleconnections, which
influence meteorological conditions over the
watershed from year to year. Global sea surface
temperatures (SST) and sea-level pressures (SLP)
are representative of these teleconnections and
are well established as drivers of precipitation
and temperature on seasonal time scales by alter-
ing atmospheric flow (Trenberth and Caron 2000,
Markowski and North 2003). Therefore, regions
of SSTs and SLPs are examined as potential pre-
dictors. The El Nifo Southern Oscillation
(ENSO), an anomalous warming or cooling of
SST in the equatorial Pacific Ocean, is perhaps
the most well known and most studied
oceanic-atmospheric climate phenomenon with
global impacts (Ropelewski and Halpert 1986,
Ropelewski and Halpert 1987, Sarachik and Cane
2010). In the upper Midwest, ENSO is associated
with warmer and drier winters during El Nifio
phases (Legler et al. 1999, Smith et al. 1999,
WICCI 2011, Midwestern Regional Climate
Center 2016), contributing to lower antecedent
soil moisture conditions. Although the summer-
time influence of ENSO in the Midwest is less
pronounced, early summer months have been
characterized as cooler and wetter than normal
in El Nifo years (Midwestern Regional Climate
Center 2016), establishing conditions for higher



runoff and nutrient transport potential. Both
global and ENSO-related SST predictors were
therefore considered as predictors and were iden-
tified using gridded correlation maps. SST data
are retrieved from the NCEP/NCAR reanalysis
(NCEP/NWS/NOAA/USDC 1994). In addition to
selecting regions that meet the 95% statistical
significance level requirement, distinct telecon-
nections between oceanic-atmospheric regions
and the upper Midwest United States must also
exist. SSTs are particularly advantageous from a
prediction perspective as they fluctuate slowly
over time, often allowing anomalies to persist
across seasons. Similarly, sea-level pressure is also
evaluated globally.

Model construction

A principal component analysis (PCA) and
regression modeling approach was selected to
predict cyanobacteria abundance and beach clos-
ings. PCA decomposes a space-time random
tield—all potential season-ahead predictors in this
case—and produces a set of orthogonal time pat-
terns that include the dominant signals, or prin-
cipal components (PCs), stemming from the
original set of predictors (Von Storch and Zweirs
1999, Block et al. 2009). Additionally, PCA effi-
ciently accounts for multicollinearity that may be
present in the predictors, a common problem in
linear regression. Typically, the first few PCs
explain the majority of variance in the data.
Kaiser’s rule was adopted, which specifies retain-
ing all PCs with eigenvalues greater than one
(Kaiser 1960). The retained PCs are then applied
as predictors in a multiple linear regression
model to predict JJA average cyanobacteria bio-
mass and beach closings (independently).
Leave-one-out cross-validation was applied for a
hindcast assessment across 1995-2017 to evaluate
model skill. This PCA
cross-validation model takes the general form of
equation 1:

leave-one-out

Yi=a;+ B1,PCl, + B2,PC2,...+ Bj,PCj, 1)

where a; is a fitted value, PCj, represents the jth
principal component calculated with the -th year
dropped, Bj; is the fitted coefficient for the jth

LAKE AND RESERVOIR MANAGEMENT . 7

principal component, and Y: represents the pre-
dicted value for the ith year. To account for
uncertainty, random deviates from the standard
deviation of the prediction error are added to
the model (median) prediction (Helsel and
Hirsch 1995).

Model performance measures

To assess model performance, model results were
compared with observations of cyanobacteria bio-
mass and beach closings using 3 performance
measures: Heidke skill score (HSS), ranked prob-
ability skill score (RPSS), and a hit-miss matrix.
Pearson and Spearman correlation coefficients,
forecast bias, and false alarm ratio (FAR) were
also calculated for the cyanobacteria biomass
forecast. Forecast bias is the ratio of how often
a specific category is forecasted to how often the
specific category is observed, with a value equal
to one indicating an unbiased forecast and values
greater than and less than one indicating over-
forecasting and underforecasting, respectively
(Dee and Da Silva 1998). FAR is a simple ratio
of the number of nonoccurrence forecasts of a
specific category and the total number of times
the specific category is forecasted. Values for this
metric range from 0 to 1, where 0 indicates a
perfect score (Schaefer 1990).

Both HSS (equation 1) and RPSS (equation 2)
report the model’s ability to predict categorical
outputs (e.g., high vs. low) compared to a refer-
ence forecast, typically based on observed data
(climatology). For hydroclimate prediction, a
3-category division is often adopted, with the
reference forecast based on equal probability of
categories (33% each; Block et al. 2009, Alexander
et al. 2019, Lala et al. 2020). This approach was
applied to the JJA average cyanobacteria biomass
prediction for below normal, near normal, and
above normal conditions, denoted as [B N A]J.
For beach days closed and beach periods closed,
a 2-category division with normal (x(i) < mean(-
closed)) and above normal (x(i) > mean(closed))
was adopted and denoted as [N A], where x(i)
represents the observed number of beach days
closed in the ith year. The observational proba-
bilities of each category are not equal in this case
and are unique to each beach location.
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The HSS takes the general form of equation 2:

> P(E:0,)- 3 P(E)P(0)

HSS =

which describes forecast skill in terms of ij =
[B N A]. The joint distribution of forecasts and
observations is described by P(F,0,) while the
marginal distributions of forecasts and observa-
tions are described by P(F,) and P(Oj), respec-
tively (Wilks 2011). HSS values range from —eo
to 1, where 0 represents no improvement over
the reference forecast (climatology) and 1 rep-
resents a perfect forecast.

The RPSS measures forecast skill by account-
ing for the magnitude of error in the forecast,
differentiating from HSS (Wilks 2011). For exam-
ple, in the case of a [B N A] category forecast,
if the above normal category is observed, RPSS
would penalize a forecast that predicts below
normal conditions more than a forecast that pre-
dicts near normal conditions. First, the ranked
probability score (RPS) is calculated according
to equation 3:

RPS = !

! Z(Pcumfctiw — Pcumobs, )

“” (3)
where n_, is the number of forecast categories
and i, is the category number. Pcumfct, , and
Pcumobs, ,, are the cumulative probability vectors
of the forecast and observation, respectively, for
the specific category of interest. RPSS then com-
pares the RPS of the forecast, RPS;, to the RPS

of climatology, RPS,,, using equation 4:

clim,

RPS,,
RPSS=1-
Psclim (4)

As with HSS, RPSS values range from -oo to
1, where 0 represents no skill and 1 represents
a perfect forecast.

Results
Cyanobacteria biomass model

Both local and global scale variables are consid-
ered as potential predictors for JJA average cya-
nobacteria biomass. Local scale predictor variables
meeting the established criteria include phospho-
rus loadings and discharge from the Yahara River
at the mouth of Lake Mendota, total April pre-
cipitation, and precipitation events exceeding
40 mm/d from the Madison-Dane County
regional airport (Table 1).

SST in the equatorial Pacific Ocean correlate
strongly with Mendota’s summertime (JJA) cya-
nobacteria biomass (Fig. 5), a region typically
associated with ENSO. Xiao et al. (2019) found
evidence for synchronization between phytoplank-
ton dynamics and ENSO in northern Wisconsin
lakes, suggesting that ENSO has some influence
on local climatic conditions. Although other oce-
anic regions of statistically significant correlation
between SST and summertime cyanobacteria
abundance exist (Fig. 5), teleconnections between
these regions and the upper Midwest are not
overly apparent; therefore, the selection of SST
is restricted to the equatorial Pacific Ocean.

Although phosphorus load meets the inclusion
criteria for model development (correlation at the
95% confidence level), higher forecast skill is
achieved without including phosphorus in the
final suite of predictors. Thus, the final suite of
season-ahead (Mar-May) predictors includes
average discharge, the number of extreme pre-
cipitation events, total April precipitation, and

Table 1. Pearson and Spearman correlation coefficients between June and August
(JJA) average cyanobacteria biomass and Mar—May (MAM) potential predictor variables
(1995-1996, 1998-2017); asterisks indicate statistical significance at the 95% level
(1=1995-2002 interpolated from upstream USGS station 05427718; 2=1995-2008
interpolated from upstream USGS station 05427718).

Cyanobacteria biomass predictors Pearson Spearman
MAM precipitation events >40 mm/d (MRCC) 0.58* 0.56*
Apr total precipitation (MRCC) 0.46* 0.44*
MAM average discharge (USGS Station 05427850)" 0.42% 0.39
MAM average SST in Equatorial Pacific (NOAA) —-0.44* —-0.45*

MAM average external phosphorus load (USGS Station 05427850)? 0.38 0.48*
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NCEP/NCAR Reanalysls

SJE

120E

6O

Mar to May: 1995 to 2017: Surface SST
Seasonol Correlation w/ Jun to Aug CyanoBio_JJa.bdt (index lagas by 3 montha)

=07 -0.5 =03 -0.1

e.1

T
0.3 , 0.7

NOA4 Physicol Scisnces Loborotory

Figure 5. Correlation map of Mar-May (MAM) average SSTs and Jun-Aug (JJA) average cyanobacteria biomass; MAM average
SSTs in the box (190W-120W, 0-20S) are selected as a potential predictor.
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Figure 6. Time series of Jun—Aug (JJA) average cyanobacteria biomass observations (solid line) and predictions (boxes), with

categories separated by horizontal black lines.

average SST in the equatorial Pacific Ocean.
According to Kaiser’s rule, only the first PC,
explaining approximately 45% of the variance, is
retained for inclusion in the prediction model.
A cross-validated hindcast produces a Pearson
correlation coefficient of 0.62 between median
model outputs and observed cyanobacteria bio-
mass, indicating moderate predictive skill (Fig. 6).
This marks an improvement on previous Lake
Mendota models. For example, the model devel-
oped by Stow et al. (1997) using spring

center-of-lake phosphorous as a predictor of sum-
mertime cyanobacteria—with the addition of data
from 1995 to 2017—has a cross-validated Pearson
correlation coefficient of 0.46.

The RPSS and HSS values based on categories
of equal probability are 0.60 and 0.38, respec-
tively, indicating improvement over climatology,
and model ability to generally shift toward the
appropriate category. The hit-miss matrix
(Table 2) based on the [B N A] categorical divi-
sions demonstrates high agreement; however,
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there is a slight propensity toward predicting near
normal conditions when above and below normal
conditions are observed. Additionally, the hit-
miss matrix (Table 2) and FAR and forecast bias
(Table 3) all suggest that the model is slightly
biased toward the near normal category. The
model’s ability to skillfully predict the above nor-
mal category—when cyanobacteria is most abun-
dant and managers most concerned—is highly
advantageous; however, the cyanobacteria peaks
in 2008 and 2017 are clearly underpredicted.
Both underpredictions may be related to the dis-
tribution of precipitation throughout the spring.
While both 2008 and 2017 had high overall pre-
cipitation, many days did not actually surpass the
40mm/d threshold and were thus not counted.
Additionally, cyanobacteria biomass is substan-
tially overpredicted in 2009 and 2013 even though
the model average prediction is still in the appro-
priate category. Both years saw a relatively high
number of extreme precipitation events and

Table 2. Hit-miss matrix for categorical Jun-Aug
(JJA) average cyanobacteria biomass prediction and
observations.

Forecast
B N A
Observed B 5 3 0
N 2 4 2
A 0 3 5

B = below normal, N=normal, A=above normal.

Table 3. Forecast bias and false alarm ratios for cat-
egorical JJA average cyanobacteria biomass

predictions.
False alarm ratio
Category Forecast bias (FAR)
B 0.88 0.29
N 1.25 0.6
A 0.88 0.29

B = below normal, N=normal, A=above normal.

increased streamflow. Furthermore, a limitation
of the hydroclimatic forecasting approach for
water quality variables is the difficulty in captur-
ing food web dynamics, which play a significant
role in structuring cyanobacteria communities in
Lake Mendota (Kasprzak and Lathrop 1997,
Walsh et al. 2017). Shifts in food web dynamics
may have an influence on summertime cyano-
bacteria abundance that is not captured in
the model.

Beach closings

Categorical forecast models for beach days closed
and periods closed are developed for 3 beaches
located along the eastern side of Lake Mendota
(Fig. 1). Selected season-ahead predictors mirror
those included in the cyanobacteria biomass
model, including average discharge, P loading,
the number of extreme precipitation events, and
Pacific Ocean SST; however, positive correlations
between number of days or periods closed and
average discharge and extreme precipitation
events were the only significant correlations at
any of the beaches (Table 4). As with the cya-
nobacteria biomass model, only the first PC is
retained for inclusion in each of the beach pre-
diction models. Cross-validated hindcast model
results for days and periods closed at each beach
indicate moderate to strong model skill and an
improvement over climatology in most metrics
(Tables 5 and 6 for James Madison only).
Beach days closed tends to be more skillful
than beach periods closed; however, performance
metrics are highly sensitive to the short hindcast
period and strongly influenced by data in single
years. This limited number of data points is

Table 4. Pearson correlation coefficients between Jun-Aug (JJA) beach days/periods closed and
Mar-May (MAM) potential predictor variables; asterisks indicate statistical significance at the 95%

confidence level.

Characteristic James
Beach closing predictors predicted Madison ~ Tenney  Warner
MAM precipitation events >40 mm/d (MRCC) Days closed 0.75* 0.70* 0.69*
Apr precipitation (MRCC) 0.21 0.41 0.37
MAM average discharge (USGS Station 05427850) 0.65* 0.47 0.3
MAM average SST in Equatorial Pacific (NOAA) -0.42 -0.43 -0.46
MAM average external phosphorus load (USGS Station 05427850) 0.39 0.32 0.39
MAM precipitation events > 40mm/d (MRCC) Periods closed 0.69* 0.87* 0.81*
Apr precipitation (MRCC) 0.29 0.42 0.26
MAM average discharge (USGS Station 05427850) 0.37 0.44 0.57*
MAM average SST in Equatorial Pacific (NOAA) —-0.42 —-0.45 -0.36

MAM average external phosphorus load (USGS Station 05427850) 0.16 0.39 0.36




Table 5. Ranked probability skill scores (RPSS), Heidke skill
scores (HSS), and Pearson correlations for beach days and
periods closed prediction models for 3 Lake Mendota beaches.

Beach days closed Beach periods closed

Median Pearson  Median Pearson
Beach RPSS  HSS correlation  RPSS  HSS correlation
James Madison 081 049 0.65 0.25 035 0.36
Tenney 0.08 0.13 0.58 0.38 0.35 0.64
Warner -0.01 0.21 0.31 0.69 0.49 0.66

Table 6. Hit-miss matrix for categorical
beach days closed predictions and observa-
tions at James Madison beach.

Forecast
N A
Observed N 6 3
A 3 4

N=normal, A=above normal.
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especially problematic for prediction in extreme
years (e.g., 2013, Fig. 7). In the case of James
Madison beach, predictors covary closely with
the number of beach days closed except for
2013-2014 (Fig. 8). The days closed forecast
results mirror the cyanobacteria abundance pre-
diction in 2013, in that both were overpredicted,
potentially resulting from changes in the food
web not captured by the model. The model also
overpredicts 2014, likely due to the elevated
phosphorus levels; however, this may not have
materialized in beach closures due to abnormally
low discharge. Additionally, 2015 and 2017
above-average cyanobacteria abundance did not
directly translate into above-average beach

James Madison
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Figure 7. Bar chart representing probabilistic predictions of beach days closed at James Madison beach. Normal category includes
2 or fewer days closed; above normal refers to more than 2d closed per summer. The observed category is illustrated with a

white star.
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Figure 8. Time series of normalized predictors and beach days closed for James Madison beach.
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closures. There are several factors that may be
at play in this disconnect. Wind conditions, for
example, have been shown to influence horizon-
tal movement of surface algae (Deng et al. 2016),
which may cause blooms to concentrate away
from beaches, allowing them to stay open. In
looking at specific years, there is expected vari-
ability due to the complex dynamics of this
lacustrine ecosystem.

Discussion

The development and evaluation of prospective
season-ahead prediction models for cyanobacteria
biomass and beach closures, based on local and
global scale predictors, are presented. The model
is developed as part of a subseasonal to seasonal
cyanobacteria forecasting system for Lake Mendota.
Previous season-ahead prediction models have
utilized phosphorus as the primary predictor vari-
able, given its influence on cyanobacteria abun-
dance and ability to be managed. Here, alternative
predictors are also evaluated to better understand
their potential contribution to prediction skill and
ability to represent signals of phosphorus convey-
ance and distribution. In addition, models con-
tingent solely on phosphorus data collection are
subject to continuous sampling and processing lag
times—often well beyond one season—which may
serve as a major lake management disincentive.
The modeling framework proposed here alleviates
such dependence, demonstrating strong prediction
skill. The proposed framework incorporates a
larger suite of predictor variables than utilized in
previous forecasts; however, the modeling approach
remains straightforward—a clear strength for
future applications. It should be noted that Lake
Mendota has a wealth of high-quality, long-term
data, which is uncommon among similar small
inland lakes. Development of season-ahead fore-
casts for algae may benefit management practices
in other lakes. While it is unlikely that nutrient
loading and within-lake predictors will be as well
characterized for other lakes, the hydroclimatic
drivers evaluated here (e.g., precipitation, extreme
precipitation events, air temperature, and sea sur-
face temperatures) are widely available across the
United States and may be used for forecasting
applications in other lakes.

Although model performance exhibits predic-
tive skill for cyanobacteria biomass, beach days
closed, and beach periods closed, there are sev-
eral noteworthy challenges. The statistical fore-
cast models developed here are limited by the
short time series available, with some inconsis-
tencies in the ability to predict extremes. This
may be addressed through calibrated physically
based lake process models run in a predictive
mode, potentially capturing complex dynamics
across biological, chemical, and environmental
processes; however, preliminary exploration has
indicated poor to marginal skill for Lake
Mendota. Another remaining challenge is when
one category is predicted with high probability
(confidence), yet observations fall in a different
category (e.g., 2013, Fig. 7). This is different
from moderate probability of being in the unob-
served category and may be a challenge to
resource managers. Relatedly, the thresholds
between categories utilized here are subjective;
however, selection does impact model perfor-
mance. Individual managers are likely to have
their own preferred thresholds, warranting fur-
ther evaluation into model performance for spe-
cific choices.

As discussed previously, both temperature and
phosphorus load are well established as drivers
of cyanobacteria productivity; however, neither
variable added predictive power at the seasonal
scale. The Stow et al. (1997) prediction model
uses April within-lake phosphorus concentrations
to predict July-September cyanobacteria abun-
dance with notable skill. Additionally, in the
complementary subseasonal forecasting model
for cyanobacteria abundance, June external phos-
phorus loads were highly correlated with July-
August cyanobacteria abundance (Beal et al.
2021). It is possible that the temporal difference
between the phosphorus predictor and summer-
time cyanobacteria biomass is responsible for
this difference in skill. Internal phosphorus load-
ing is also a significant source of phosphorus
for Lake Mendota during the summer and is not
accounted for in this set of predictors (Soranno
et al. 1997).

Spring air temperatures have been shown to
influence water temperature and summertime
bloom onset (Zhang et al. 2016), prompting the



inclusion of spring air temperature as a potential
predictor of summertime cyanobacteria biomass.
Air temperature may have direct and indirect
impacts on cyanobacteria abundance (Taranu
et al. 2012). High temperatures (above 25C)
during the growing season generally promote
cyanobacteria growth over phytoplankton species
such as diatoms and green algae (Paerl and
Huisman 2008). Higher air temperatures may
indirectly favor cyanobacteria, given that increased
temperatures promote stratification strength,
allowing cyanobacteria to outcompete other algal
groups by using specialized gas vacuoles to adjust
their position in the water column (Johnk et al.
2008, Paerl and Huisman 2008). Additionally,
water temperatures have been shown to control
summertime cyanobacteria productivity in Lake
Mendota (Konopka and Brock 1978); however,
none of the temperature-based predictors inves-
tigated correlate at a statistically significant level
with biomass. There may be several explanations
for this: Researchers have noted that higher tem-
peratures have a direct effect on the timing and
proportional dominance of cyanobacteria, but not
the amount of annual biomass (Wagner and
Adrian 2009, Elliott 2012). While a causal rela-
tionship has been demonstrated between spring
air temperatures and summertime cyanobacteria
abundance in subtropical regions (Paerl and
Huisman 2008, Deng et al. 2014, Zhang et al.
2016), that same relationship has not been shown
to exist in the northern temperate climate of the
study site. This could be due to the temporal
mismatch of seasonal abundance with spring tem-
peratures. While high spring temperatures may
encourage cyanobacteria dominance, this does
not necessarily imply long-term abundance
(Anneville et al. 2015, Persaud et al. 2015, Zhang
et al. 2016). Additionally, temperature fluctuations
occurring in the spring are accompanied by a
variety of additional environmental changes, com-
plicating the direct cyanobacteria response to
temperature (Konopka and Brock 1978). The sim-
plicity of the temperature-based predictors pro-
posed may not be capable of fully capturing the
summer cyanobacteria biomass response to tem-
perature nuances occurring throughout the sea-
son. Clearly, the predictor variables considered
in this study may impact individual cyanobacteria
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communities differently; however, average cyano-
bacteria biomass across all communities is spe-
cifically addressed here, as current management
practices do not consider the presence of indi-
vidual communities. Still, there is clear merit in
the consideration of individual cyanobacteria
communities that pose a greater toxicity risk,
specifically those that have the potential to pro-
duce toxins, for future prediction efforts.

For this analysis, predictions are issued at the
end of the spring season (beginning of June).
This advance notice of summertime cyanobac-
teria conditions provides lake and beach man-
agers with information necessary for making
proactive management decisions ahead of the
peak season for cyanobacteria productivity. These
decisions may include changing the frequency
of water quality testing, altering training and
scheduling for lifeguards, tailoring public engage-
ment strategies, and preparing emergency
resources for recreators. Working with the sub-
seasonal forecast developed by Beal et al. (2021),
preseason and within-season (summer) predic-
tions are issued for cyanobacteria abundance,
allowing decision makers to adapt and optimize
management strategies across the peak season
for cyanobacteria productivity. The model devel-
oped here is a key component of this forecasting
system, providing information on expected cya-
nobacteria abundances before recreational use of
Lake Mendota begins to increase and toxin pro-
duction becomes a potential public health threat.
Linking seasonal and subseasonal cyanobacteria
forecasts informs decisions at multiple time
scales, allowing for an optimized approach to
cyanobacteria management. Effectively imple-
menting this forecasting system requires improved
understanding of manager needs, key decisions
dates, and available actions, all themes of ongo-
ing research to facilitate how forecasts can better
be integrated into lake and beach management.

Acknowledgments

We acknowledge Madison & Dane County Public Health
for providing beach closing data and management applica-
tions of forecasts. We also acknowledge the North Temperate
Lakes Long Term Ecological Research Program for provid-
ing cyanobacteria abundance data. Datasets for this research
are available in these in-text data citation references:



14 M. R.W.BEALETAL.

Magnuson et al. (2020), NCEP/NWS/NOAA/USDC (1994),
PHMDC (2020), USGS (2021a, 2021b), Wuertz et al. (2018).
The model code used in this study is available at https://
github.com/mrwbeal/MendotaCyanobacteriaForecast.

Funding

This work is supported by an NSF CAREER project grant
(1845783), a NOAA SARP project grant (NA140OAR4310270),
and the UW-Madison Graduate School.

ORCID

Maxwell R. W. Beal (® http://orcid.org/0000-0003-2332-0704

References

Alexander S, Wu S, Block P. 2019. Model selection based
on sectoral application scale for increased value of
hydroclimate-prediction information. ] Water Resour
Plann Manage. 145(5):04019006. doi:10.1061/(ASCE)
WR.1943-5452.0001044.

Anneville O, Domaizon I, Kerimoglu O, Rimet F, Jacquet
S. 2015. Blue-green algae in a “greenhouse century”? New
insights from field data on climate change impacts on
cyanobacteria abundance. Ecosystems 18(3):441-458.
doi:10.1007/s10021-014-9837-6.

Beal MRW, O’Reilly B, Hietpas KR, Block P. 2021.
Development of a sub-seasonal cyanobacteria prediction
model by leveraging local and global scale predictors.
Harmful Algae. 108:102100.

Bennett EM, Reed-Andersen T, Houser JN, Gabriel JR,
Carpenter SR. 1999. A phosphorus budget for the Lake
Mendota watershed. Ecosystems 2(1):69-75. doi:10.1007/
$100219900059.

Block PJ, Souza Filho FA, Sun L, Kwon H-H. 2009. A
streamflow forecasting framework using multiple climate
and hydrological models. JAWRA ] Am Water Resour
Assoc.45(4):828-843. doi:10.1111/j.1752-1688.2009.00327 .x.

Bullerjahn GS, McKay RM, Davis TW, Baker DB, Boyer
GL, D’Anglada LV, Doucette GJ, Ho JC, Irwin EG, Kling
CL, et al. 2016. Global solutions to regional problems:
collecting global expertise to address the problem of
harmful cyanobacterial blooms. A Lake Erie case study.
Harmful Algae. 54:223-238. do0i:10.1016/j.hal.2016.01.003.

Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes
JD. 2012. Eco-physiological adaptations that favour fresh-
water cyanobacteria in a changing climate. Water Res.
46(5):1394-1407. doi:10.1016/j.watres.2011.12.016.

Carpenter SR, Booth EG, Kucharik C]J. 2018. Extreme pre-
cipitation and phosphorus loads from two agricultural
watersheds. Limnol Oceanogr. 63(3):1221-1233.
doi:10.1002/1n0.10767.

Carpenter SR, Lathrop RC, Nowak P, Bennett EM, Reed T,
Soranno PA. 2006. The ongoing experiment: restoration
of Lake Mendota and its watershed. In: Benson BJ, ed-

itor. Long-term dynamics of lakes in the landscape:
long-term ecological research on north temperate lakes.
Oxford (UK): Oxford University Press. p. 236-256.

Dee DP, Da Silva AM. 1998. Data assimilation in the pres-
ence of forecast bias. Q J Royal Met Soc. 124(545):269-
295. do0i:10.1002/qj.49712454512.

Deng J, Chen E Liu X, Peng J, Hu W. 2016. Horizontal
migration of algal patches associated with cyanobacteri-
al blooms in a eutrophic shallow lake. Ecol Eng. 87:185-
193. doi:10.1016/j.ecoleng.2015.12.017.

Deng J, Qin BQ, Paerl H, Zhang Y, Ma J, Chen Y. 2014.
Earlier and warmer springs increase cyanobacterial
(Microcystis spp.) blooms in subtropical Lake Taihu, China.
Freshw Biol. 59(5):1076-1085. doi:10.1111/fwb.12330.

Dillon PJ, Rigler FH. 1974. The phosphorus-chlorophyll
relationship in lakes. Limnol Oceanogr. 19(5):767-773.
doi:10.4319/10.1974.19.5.0767.

Dodds WK, Perkin JS, Gerken JE. 2013. Human impact on
freshwater ecosystem services: a global perspective. Environ
Sci Technol. 47(16):9061-9068. do0i:10.1021/es4021052.

Downing JA, Watson SB, McCauley E. 2001. Predicting
cyanobacteria dominance in lakes. Can ] Fish Aquat Sci.
58(10):1905-1908. doi:10.1139/f01-143.

Elliott JA. 2012. Is the future blue-green? A review of the
current model predictions of how climate change could
affect pelagic freshwater cyanobacteria. Water Res.
46(5):1364-1371. doi:10.1016/j.watres.2011.12.018.

Genskow K, Betz C. 2012. Farm practices in the Lake
Mendota watershed: a comparative analysis of 1996 and
2011. Madison (WI): University of Wisconsin—Extension
Environmental Resources Center.

Hamilton DP, Salmaso N, Paerl HW. 2016. Mitigating harm-
ful cyanobacterial blooms: strategies for control of nitro-
gen and phosphorus loads. Aquat Ecol. 50(3):351-366.
doi:10.1007/s10452-016-9594-z.

Hansen JW, Mason SJ, Sun L, Tall A. 2011. Review of
seasonal climate forecasting for agriculture in Sub-Saharan
Africa. Ex Agric. 47(2):205-240. doi:10.1017/5001447971
0000876.

Helsel D, Hirsch R. 1995. Statistical methods in water re-
sources. Amsterdam (The Netherlands): Elsevier Science.

Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen
JMH, Visser PM. 2018. Cyanobacterial blooms. Nat Rev
Microbiol. 16(8):471-483. do0i:10.1038/s41579-018-0040-1.

Johnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM,
Stroom JM. 2008. Summer heatwaves promote blooms
of harmful cyanobacteria. Global Change Biol. 14(3):495-
512. doi:10.1111/j.1365-2486.2007.01510.x.

Kaiser HE 1960. The application of electronic computers
to factor analysis. Educ Psychol Meas. 20(1):141-151.
do0i:10.1177/001316446002000116.

Kasprzak PH, Lathrop RC. 1997. Influence of two Daphnia
species on summer phytoplankton assemblages from eu-
trophic lakes. J Plankton Res. 19(8):1025-1044.
doi:10.1093/plankt/19.8.1025.

Kavanaugh KE, Derner K, Fisher KM, Davis E, Urizar C,
Merlini R. 2013. Assessment of the Eastern Gulf of


https://github.com/mrwbeal/MendotaCyanobacteriaForecast
https://github.com/mrwbeal/MendotaCyanobacteriaForecast
http://orcid.org/0000-0003-2332-0704
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001044
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001044
https://doi.org/10.1007/s10021-014-9837-6
https://doi.org/10.1007/s100219900059
https://doi.org/10.1007/s100219900059
https://doi.org/10.1111/j.1752-1688.2009.00327.x
https://doi.org/10.1016/j.hal.2016.01.003
https://doi.org/10.1016/j.watres.2011.12.016
https://doi.org/10.1002/lno.10767
https://doi.org/10.1002/qj.49712454512
https://doi.org/10.1016/j.ecoleng.2015.12.017
https://doi.org/10.1111/fwb.12330
https://doi.org/10.4319/lo.1974.19.5.0767
https://doi.org/10.1021/es4021052
https://doi.org/10.1139/f01-143
https://doi.org/10.1016/j.watres.2011.12.018
https://doi.org/10.1007/s10452-016-9594-z
https://doi.org/10.1017/S001447971
https://doi.org/10.1017/S001447971
https://doi.org/10.1038/s41579-018-0040-1
https://doi.org/10.1111/j.1365-2486.2007.01510.x
https://doi.org/10.1177/001316446002000116
https://doi.org/10.1093/plankt/19.8.1025

Mexico harmful algal bloom operational forecast system
(GOMX HAB-OFS): a comparative analysis of forecast
skill and utilization from Oct 1, 2004 to Apr 30, 2008.
National Oceanic and Atmospheric Administration
Report No.: NOAA Technical Report NOS CO-OPS 066.

Konopka A, Brock TD. 1978. Effect of temperature on
blue-green algae (cyanobacteria) in Lake Mendota. Appl
Environ Microbiol. 36(4):572-576. do0i:10.1128/aem.
36.4.572-576.1978.

Lala J, Tilahun S, Block P. 2020. Predicting rainy season
onset in the Ethiopian Highlands for agricultural plan-
ning. ] Hydrometeorol. 21(7):1675-1688. doi:10.1175/
JHM-D-20-0058.1.

Lathrop RC. 2007. Perspectives on eutrophication of the
Yahara Lakes. Lake Reservoir Manage. 23(4):345-365.
doi:10.1080/07438140709354023.

Lathrop RC, Carpenter SR. 1992. Phytoplankton and their
relationship to nutrients. In: Kitchell JE editor. Food web
management: a case study of Lake Mendota. New York
(NY): Springer-Verlag. p. 97-126.

Lathrop RC, Carpenter SR, Stow CA, Soranno PA, Panuska
JC. 1998. Phosphorus loading reductions needed to con-
trol blue-green algal blooms in Lake Mendota. Can ]
Fish Aquat Sci. 55(5):1169-1178. doi:10.1139/f97-317.

Legler DM, Bryant KJ, O’Brien JJ. 1999. Impact of
ENSO-related climate anomalies on crop yields in the U.S.
Clim Change. 42(2):351-375. d0i:10.1023/A:1005401101129.

Magnuson J, Carpenter S, Stanley E. 2020. North temperate
lakes LTER: phytoplankton—Madison Lakes Area 1995—
current ver 28. Environmental Data Initiative; [cited 22
Sep 2021]. doi:10.6073/pasta/13ea8t578654493155a660ab-
886f695e.

Markowski GR, North GR. 2003. Climatic influence of sea
surface temperature: evidence of substantial precipitation
correlation and predictability. ] Hydrometeor. 4(5):856-877.
doi:10.1175/1525-7541(2003)004<0856: CIOSST>2.0.CO:;2.

Midwestern Regional Climate Center. 2016. Midwest cli-
mate: El Nifio; [cited 20 Oct 2019]. http://mrcc.isws.illi-
nois.edu/mw_climate/elNino/index.jsp.

National Centers for Environmental Prediction/National
Weather Service/NOAA/US Department of Commerce.
1994, updated monthly. NCEP/NCAR global reanalysis
products, 1948-continuing. Research Data Archive at
NOAA/Physical Sciences Laboratory; [cited 21 Sep 2022].
psl.noaa.gov/data/gridded/data.ncep.reanalysis.html.

Obenour DR, Gronewold AD, Stow CA, Scavia D. 2014.
Using a Bayesian hierarchical model to improve Lake
Erie cyanobacteria bloom forecasts. Water Resour Res.
50(10):7847-7860. doi:10.1002/2014WR015616.

Ostfeld A, Tubaltzev A, Rom M, Kronaveter L, Zohary T, Gal
G. 2015. Coupled data driven evolutionary algorithm for
toxic cyanobacteria (blue-green algae) forecasting in Lake
Kinneret. ] Water Resour Plann Manage. 141(4):04014069.
doi:10.1061/(ASCE)WR.1943-5452.0000451.

Paerl HW. 1988. Nuisance phytoplankton blooms in coast-
al, estuarine, and inland waters. Limnol Oceangr. 33(4_
part_2):823-843. do0i:10.4319/10.1988.33.4_part_2.0823.

LAKE AND RESERVOIR MANAGEMENT . 15

Paerl HW. 2017. Controlling cyanobacterial harmful blooms
in freshwater ecosystems. Microb Biotechnol. 10(5):1106-
1110. do0i:10.1111/1751-7915.12725.

Paerl HW, Huisman J. 2008. Climate. Blooms like it hot.
Science. 320(5872):57-58. doi:10.1126/science.1155398.
Paerl, H. W,, & Otten, T. G. (2016). Duelling ‘CyanoHABs’:
unravelling the environmental drivers controlling domi-
nance and succession among diazotrophic and non-N2-
fixing harmful cyanobacteria. Environ. Microbiol.

18(2):316-324. do0i:10.1111/1462-2920.13035.

Persaud AD, Paterson AM, Dillon PJ, Winter JG, Palmer
M, Somers KM. 2015. Forecasting cyanobacteria domi-
nance in Canadian temperate lakes. ] Environ Manage.
151:343-352. doi:10.1016/j.jenvman.2015.01.009.

Public Health Madison Dane County. 2020. Beach closure
summary 2005-2020; [cited 21 Jun 2021]. https://www.
publichealthmdc.com/environmental-health/beaches-lakes-
pools/beach-conditions/.

Reichwaldt ES, Ghadouani A. 2012. Effects of rainfall patterns
on toxic cyanobacterial blooms in a changing climate:
between simplistic scenarios and complex dynamics. Water
Res. 46(5):1372-1393. doi:10.1016/j.watres.2011.11.052.

Rigosi A, Hanson P, Hamilton DP, Hipsey M, Rusak JA, Bois
J, Sparber K, Chorus I, Watkinson AJ, Qin B, et al. 2015.
Determining the probability of cyanobacterial blooms: the
application of Bayesian networks in multiple lake systems.
Ecol Appl. 25(1):186-199. d0i:10.1890/13-1677.1.

Ropelewski CF, Halpert MS. 1986. North American precip-
itation and temperature patterns associated with the El
Nino/Southern Oscillation (ENSO). Mon Wea Rev.
114(12):2352-2362. doi:10.1175/1520-0493(1986)114<235
2:NAPATP>2.0.CO:;2.

Ropelewski CF, Halpert MS. 1987. Global and regional scale
precipitation patterns associated with the El Nifo/
Southern Oscillation. Mon Wea Rev. 115(8):1606-1626.
doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

Rousso BZ, Bertone E, Stewart R, Hamilton DP. 2020. A
systematic literature review of forecasting and predictive
models for cyanobacteria blooms in freshwater lakes.
Water Res. 182:115959.

Sarachik ES, Cane MA. 2010. The El Nino-Southern
Oscillation phenomenon. Cambridge (UK): Cambridge
University Press.

Schaefer JT. 1990. The critical success index as an indicator
of warning skill. Wea Forecasting. 5(4):570-575. doi:10.
1175/1520-0434(1990)005<0570: TCSIAA>2.0.CO;2.

Schindler DW. 1977. Evolution of phosphorus limitation in
lakes. Science. 195(4275):260-262. do0i:10.1126/sci-
ence.195.4275.260.

Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC.
2013. Evolution of multicellularity coincided with in-
creased diversification of cyanobacteria and the Great
Oxidation Event. Proc Natl Acad Sci USA. 110(5):1791-
1796. doi:10.1073/pnas.1209927110.

Schueler TR. 1987. Controlling urban runoff: a practical
manual for planning and designing urban BMP. Washington
(DC): Metropolitan Washington Council of Governments.


https://doi.org/10.1128/aem.
https://doi.org/10.1128/aem.
https://doi.org/10.1175/JHM-D-20-0058.1
https://doi.org/10.1175/JHM-D-20-0058.1
https://doi.org/10.1080/07438140709354023
https://doi.org/10.1139/f97-317
https://doi.org/10.1023/A:1005401101129
https://doi.org/10.6073/pasta/13ea8f578654493155a660ab886f695e
https://doi.org/10.6073/pasta/13ea8f578654493155a660ab886f695e
https://doi.org/10.1175/1525-7541(2003)004<0856:CIOSST>2.0.CO;2
http://mrcc.isws.illinois.edu/mw_climate/elNino/index.jsp
http://mrcc.isws.illinois.edu/mw_climate/elNino/index.jsp
http://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://doi.org/10.1002/2014WR015616
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000451
https://doi.org/10.4319/lo.1988.33.4_part_2.0823
https://doi.org/10.1111/1751-7915.12725
https://doi.org/10.1126/science.1155398
https://doi.org/10.1111/1462-2920.13035
https://doi.org/10.1016/j.jenvman.2015.01.009
https://www.publichealthmdc.com/environmental-health/beaches-lakes-pools/beach-conditions/
https://www.publichealthmdc.com/environmental-health/beaches-lakes-pools/beach-conditions/
https://www.publichealthmdc.com/environmental-health/beaches-lakes-pools/beach-conditions/
https://doi.org/10.1016/j.watres.2011.11.052
https://doi.org/10.1890/13-1677.1
https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2
https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2
https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2
https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
https://doi.org/10.1126/science.195.4275.260
https://doi.org/10.1126/science.195.4275.260
https://doi.org/10.1073/pnas.1209927110

16 M. R.W.BEALETAL.

Smith SR, Legler DM, Remigio MJ], O’Brien JJ. 1999.
Comparison of 1997-98 U.S. temperature and precipita-
tion anomalies to historical ENSO warm phases. J Clim.
12(12):3507-3515. doi:10.1175/1520-0442(1999)012<3507:
COUSTA>2.0.CO;2.

Smith VH. 1982. The nitrogen and phosphorus dependence
of algal biomass in lakes: an empirical and theoretical
analysis 1. Limnol Oceanogr. 27(6):1101-1111.
doi:10.4319/10.1982.27.6.1101.

Smith VH. 1985. Predictive models for the biomass of
blue-green algae in lakes ] Am Water Resour Assoc.
21(3):433-439. do0i:10.1111/j.1752-1688.1985.tb00153.x.

Smith VH. 2003. Eutrophication of freshwater and coastal
marine ecosystems: a global problem. Environ Sci Pollut
Res Int. 10(2):126-139. do0i:10.1065/espr2002.12.142.

Soranno PA. 1997. Factors affecting the timing of surface
scums and epilimnetic blooms of blue-green algae in a
eutrophic lake. Can ] Fish Aquat Sci. 54(9):1965-1975.
doi:10.1139/197-104.

Soranno PA, Carpenter SR, Lathrop RC. 1997. Internal
phosphorus loading in Lake Mendota: response to exter-
nal loads and weather. Can J Fish Aquat Sci. 54(8):1883-
1893. doi:10.1139/£97-095.

Stow CA, Carpenter SR, Lapthrop RC. 1997. A Bayesian
observation error model to predict cyanobacterial bio-
volume from spring total phosphorus in Lake Mendota,
Wisconsin. Can ] Fish Aquat Sci. 54(2):464-473.
doi:10.1139/196-279.

Stow CA, Cha Y, Johnson LT, Confesor R, Richards RP.
2015. Long-term and seasonal trend decomposition of
Maumee River nutrient inputs to Western Lake Erie.
Environ Sci Technol. 49(6):3392-3400. doi:10.1021/
€s5062648.

Stumpf RP, Johnson LT, Wynne TT, Baker DB. 2016.
Forecasting annual cyanobacterial bloom biomass to in-
form management decisions in Lake Erie. ] Great Lakes
Res. 42(6):1174-1183. doi:10.1016/j.jglr.2016.08.006.

Stumpf RP, Wynne TT, Baker DB, Fahnenstiel GL. 2012.
Interannual variability of cyanobacterial blooms in Lake Erie.
PLoS One. 7(8):e42444. doi:10.1371/journal.pone.0042444.

Taranu ZE, Gregory-Eaves I, Leavitt PR, Bunting L, Buchaca
T, Catalan J, Domaizon I, Guilizzoni P, Lami A, McGowan
S, et al. 2015. Acceleration of cyanobacterial dominance
in north temperate-subarctic lakes during the Anthropocene.
Ecol Lett. 18(4):375-384. doi:10.1111/ele.12420.

Taranu ZE, Zurawell RW, Pick F, Gregory-Eaves 1. 2012.
Predicting cyanobacterial dynamics in the face of glob-
al change: the importance of scale and environmental
context. Glob Change Biol. 18(12):3477-3490.
doi:10.1111/gcb.12015.

Trenberth KE, Caron JM. 2000. The Southern Oscillation
revisited: sea level pressures, surface temperatures, and
precipitation. J Climate. 13(24):4358-4365. doi:10.1175/
1520-0442(2000)013<4358:TSORSL>2.0.CO;2.

US Geological Survey. 2021a. National Water Information
System data available on the World Wide Web (USGS
water data for the nation); [cited 22 Sep 2021]. https://
waterdata.usgs.gov/usa/nwis/uv?site_no=05427718.

US Geological Survey. 2021b. National Water Information
System data available on the World Wide Web (USGS
Water Data for the Nation); [cited 2021 Sep 22]. https://
waterdata.usgs.gov/nwis/uv?site_no=05427850.

Vitart F, Robertson AW, Anderson DL. 2012. Subseasonal
to seasonal prediction project: bridging the gap between
weather and climate. Bull World Meteorol Organ. 61(2):23.

Vollenweider RA. 1970. Scientific fundamentals of the eu-
trophication of lakes and flowing waters, with particular
reference to nitrogen and phosphorus as factors in eu-
trophication. Paris (France): Organisation for Economic
Co-Operation and Development.

Von Storch H, Zweirs FW. 1999. Statistical analysis in climate
research. Cambridge (UK): Cambridge University Press.

Wagner C, Adrian R. 2009. Cyanobacteria dominance: quan-
tifying the effects of climate change. Limnol Oceanogr.
54(6part2):2460-2468. doi:10.4319/10.2009.54.6_part_2.2460.

Walsh JR, Lathrop RC, Vander Zanden M]J. 2017. Invasive
invertebrate predator, Bythotrephes longimanus, reverses
trophic cascade in a north-temperate lake. Limnol
Oceanogr. 62(6):2498-2509. doi:10.1002/1n0.10582.

Wilks DS. 2011. Statistical methods in the atmospheric
sciences. Cambridge (MA): Academic Press.

[WI DNR] Wisconsin Department of Natural Resources
2020. Wisconsin watersheds. WI DNR Open Data.
Dataset accessed 31 Aug 2021.

[WICCI] Wisconsin Initiative on Climate Change Impacts.
2011. Wisconsins changing climate: impacts and adaptation.
Madison (WI): University of Wisconsin Board of Regents.

Wood AW, Kamar A, Lettenmaier DP. 2005. A retrospective
assessment of National Centers for Environmental
Prediction climate model-based ensemble hydrologic fore-
casting in the western United States. ] Geophys Res.
110(D4). doi:10.1029/2004JD004508.

Wauertz D, Lawrimore J, Korzeniewski B. 2018. Cooperative
Observer Program (COOP) Hourly Precipitation Data
(HPD), Version 2.0. NWS COOP Number: 474961.
NOAA National Centers for Environmental Information;
[cited 22 Sep 2021]. doi:10.25921/p7j8-2170. https://
mrcc.purdue.edu/CLIMATE/Station/Daily/StnDyBTD.jsp.

Wynne TT, Stumpf RP. 2015. Spatial and temporal patterns
in the seasonal distribution of toxic cyanobacteria in
Western Lake Erie from 2002-2014. Toxins (Basel).
7(5):1649-1663. doi:10.3390/toxins7051649.

Xiao X, He J, Yu Y, Cazelles B, Li M, Jiang Q, Xu C. 2019.
Teleconnection between phytoplankton dynamics in north
temperate lakes and global climatic oscillation by
time-frequency analysis. Water Res. 154:267-276.

Zhang M, Qin B, Yu Y, Yang Z, Shi X, Kong E 2016. Effects
of temperature fluctuation on the development of cya-
nobacterial dominance in spring: implication of future
climate change. Hydrobiologia 763(1):135-146.
do0i:10.1007/s10750-015-2368-0.

Zhu B, Cao H, Li G, Du W, Xu G, Domingo JS, Gu H,
Xu N, Duan S, Lu J. 2019. Biodiversity and dynamics of
cyanobacterial communities during blooms in temperate
lake (Harsha Lake, Ohio, USA). Harmful Algae. 82:9-18.
do0i:10.1016/j.hal.2018.12.006.


https://doi.org/10.1175/1520-0442(1999)012<3507:
https://doi.org/10.1175/1520-0442(1999)012<3507:
https://doi.org/10.4319/lo.1982.27.6.1101
https://doi.org/10.1111/j.1752-1688.1985.tb00153.x
https://doi.org/10.1065/espr2002.12.142
https://doi.org/10.1139/f97-104
https://doi.org/10.1139/f97-095
https://doi.org/10.1139/f96-279
https://doi.org/10.1021/es5062648
https://doi.org/10.1021/es5062648
https://doi.org/10.1016/j.jglr.2016.08.006
https://doi.org/10.1371/journal.pone.0042444
https://doi.org/10.1111/ele.12420
https://doi.org/10.1111/gcb.12015
https://doi.org/10.1175/
https://doi.org/10.1175/
https://waterdata.usgs.gov/usa/nwis/uv?site_no=05427718
https://waterdata.usgs.gov/usa/nwis/uv?site_no=05427718
https://waterdata.usgs.gov/nwis/uv?site_no=05427850
https://waterdata.usgs.gov/nwis/uv?site_no=05427850
https://doi.org/10.4319/lo.2009.54.6_part_2.2460
https://doi.org/10.1002/lno.10582
https://doi.org/10.1029/2004JD004508
https://doi.org/10.25921/p7j8-2170
https://mrcc.purdue.edu/CLIMATE/Station/Daily/StnDyBTD.jsp
https://mrcc.purdue.edu/CLIMATE/Station/Daily/StnDyBTD.jsp
https://doi.org/10.3390/toxins7051649
https://doi.org/10.1007/s10750-015-2368-0
https://doi.org/10.1016/j.hal.2018.12.006

	Variability of summer cyanobacteria abundance: can season-ahead forecasts improve beach management?
	ABSTRACT
	Study site
	Materials and methods
	Local scale
	Global scale
	Model construction
	Model performance measures

	Results
	Cyanobacteria biomass model
	Beach closings

	Discussion
	Acknowledgments

	Funding
	ORCID
	References



