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Abstract
Infrastructure service disruptions impact households in an affected commu-
nity disproportionally. To enable integrating social equity considerations in
infrastructure resilience assessments, this study created a new computational
multi-agent simulation model, which enables integrated assessment of hazard,
infrastructure system, and household elements and their interactions. With a
focus on hurricane-induced power outages, themodel consists of three elements:
(1) the hazard component simulates exposure of the community to a hurricane
with varying intensity levels; (2) the physical infrastructure component sim-
ulates the power network and its probabilistic failures and restoration under
different hazard scenarios; and (3) the households component captures the
dynamic processes related to preparation, information-seeking, and response
actions of households facing hurricane-induced power outages. We used empir-
ical data from household surveys from three hurricanes (Harvey, Florence, and
Michael) in conjunction with theoretical decision-making models to abstract
and simulate the underlying mechanisms affecting the experienced hardship of
households when facing power outages. The multi-agent simulation model was
then tested in the context of Harris County, Texas, and verified and validated
using empirical results from Hurricane Harvey in 2017. Then, the model was
used to examine the effects of different factors—such as forewarning durations,
social network types, and restoration and resource allocation strategies—on
reducing the societal impacts of service disruptions in an equitable manner. The
results show that improving the restoration prioritization strategy to focus on
vulnerable populations is an effective approach, especially during high-intensity
events, to enhance equitable resilience. The results show the capability of
the proposed computational model for capturing the dynamic and complex
interactions in the nexus of households, hazards, and infrastructure systems to
better integrate human-centric aspects in resilience planning and assessment of
infrastructure systems in disasters. Hence, the proposed model and its results
could provide a new tool for infrastructure managers and operators, as well as
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for disaster managers, in devising hazard mitigation and response strategies to
reduce the societal impacts of power outages in an equitable manner.

1 INTRODUCTION

The objective of this study is to create a computational
multi-agent simulation framework for capturing dynamic
processes and interactions in the nexus of hazards, house-
holds, and infrastructure systems in order to better inte-
grate social impacts and equity considerations in infras-
tructure resilience assessments. The societal impacts of
prolonged disruptions in infrastructure systems are the
emergent properties arising from dynamic interactions in
complex socio-physical systems (Dai et al., 2020; Guidotti
et al., 2019; Rasoulkhani et al., 2020; Williams et al., 2020).
Therefore, there is a need for novel computational models
to capture and model the dynamic processes and interac-
tions between the complex systems of humans, hazards,
and infrastructure systems. With a focus on prolonged
power outages during hurricanes, this study proposes a
novel computational simulation modeling framework for
integrated analysis of hazard, household, and infrastruc-
ture systems to examine the societal impacts on infrastruc-
ture service disruptions. Examining the impacts of power
outages on the households and assessing the effect of dif-
ferent mitigation strategies on the social groups is a fun-
damental step toward equitable resilience assessment in
infrastructure systems.
Existing infrastructure resilience assessment models

focus primarily on physical infrastructure but fall short
of fully considering interactions between households and
hazards and infrastructure (Mostafavi, 2018; Mostafavi
& Ganapati, 2019). Computational frameworks properly
model the failure and restoration of infrastructure systems
in the face of disturbances to the systems (Guikema et al.,
2014; Ouyang & Dueñas-Osorio, 2014; Ouyang & Fang,
2017; Tomar & Burton, 2021; Winkler et al., 2010). Several
studies have devised ways to assess the resilience of
various infrastructure systems (Batouli & Mostafavi, 2018;
Gori et al., 2020; Guidotti et al., 2019; Hassan &Mahmoud,
2021; Ma et al., 2019). Particularly related to power infras-
tructure systems, there are studies that have developed
computational models for determining the system’s reli-
ability when exposed to potential hazards with respect to
topological and inherent vulnerabilities (Figuero-candia
et al., 2018; Holmgren, 2006; Mensah & Dueñas-Osorio,
2016; Outages et al., 2018; Ouyang & Zhao, 2014; Reed
et al., 2010). Furthermore, there are frameworks that
enable modeling and optimizing the restoration of dam-
aged infrastructure systems (Sharma et al., 2020; Sun &

Davison, 2019; Xu et al., 2019). While these studies inform
about the resilience and reliability of physical infrastruc-
ture systems (such as power networks and transportation
systems), shed light on the interactions between hazards
and infrastructure, and include modeling the restoration
process of utilities, the current body of literature lacks
integrated computational models and frameworks that
consider households’ interactions with infrastructure
systems vis-à-vis the probabilistic impacts of hazards.
Recent studies highlight the need for accounting for

human interaction with infrastructure systems (Simpson
et al., 2020). Households do not experience the adverse
impacts of natural hazards and damage to infrastructure
systems equally (Jones & Tanner, 2017). Integrating
household-level attributes with infrastructure systems
is essential in achieving resilience goals (Ghanem et al.,
2016). Household-level attributes (e.g., previous hazard
experience and socio-demographic attributes) and protec-
tive actions (e.g., preparedness and information-seeking)
and their integration with hazard scenarios, as well as con-
sideration of probabilistic physical infrastructure failures,
service disruption duration, and restoration possibilities,
are essential components for examining societal impacts
of infrastructure service disruptions. Recent studies have
shown a significant disparity in the societal impacts of
infrastructure service disruptions (Chakalian et al., 2019;
Coleman et al., 2019; Esmalian et al., 2020b; Mitsova
et al., 2018, 2021). These studies unveil risk disparities
and suggest that households are heterogeneous entities as
evidenced by varying levels of tolerance for service disrup-
tions. Particularly, shelter-in-place households experience
great hardship from infrastructure service disruptions.
Thus, there is a need for equitable resilience assessment
for infrastructure systems. This equitable resilience assess-
ment includes: (1) examining the disproportionate impact
that disruptions in infrastructure systems have on the
households and (2) assessing to what extent the mitigation
strategies for reducing the societal risks would benefit
different social subgroups. Computational frameworks
are needed to capture households’ interactions with
infrastructure systems. A household’s decisions related to
protective actions are not only influenced by its attributes,
such as socio-demographic characteristics, but they are
also highly influenced by perceived risk from the hazard
(Lindell & Hwang, 2008), information-seeking process
(Morss et al., 2016), and their social network’s influence
(Haer et al., 2016; Kashani et al., 2019). Capturing these
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dynamic processes and decisions is essential for modeling
and understanding the societal impacts of infrastructure
service disruptions. In addition, a households’ hardship
experiences are influenced largely by the duration of
service disruptions, which is the result of physical infras-
tructure failures and the utilities’ decisions regarding
service restorations. Hence, the societal impacts of infras-
tructure service disruptions emerge from the complex
interactions among various processes in the hazard,
households, and infrastructure systems nexus. The cur-
rent literature, however, lacks computational models that
are capable of capturing and modeling the complex inter-
actions in this nexus. Consideration of societal impacts
and disparities in infrastructure resilience assessments
requires novel integrated complex modeling approaches
(Mostafavi, 2018). Integrated complex modeling enables
capturing various processes and mechanisms related
to physical infrastructure and human decision-making
behaviors and their interactions using computational
simulation to identify nonlinear and emergent behaviors
(Reilly et al., 2017). Integrated complex modeling enables
evaluating the combined effects of hazard characteris-
tics, human decision-making behaviors and protective
actions, and physical infrastructure network properties
and restoration strategies. Such combined evaluation of
various processes across different systems is necessary to
capture emergent phenomena in civil infrastructure and
urban systems, such as societal impacts and disparities
due to infrastructure service disruptions.
To address this gap, this study proposes and tests a

novel computational multi-agent simulation framework
including three components: (1) the hazard component
that simulates a hurricane with different intensities; (2)
the physical infrastructure component that simulates
the dynamic process of failures and restoration; and (3)
the households component that captures the dynamic
mechanisms related to households behavior facing power
outages. The proposed modeling framework was tested
and implemented for the examination of strategies to
reduce the societal impacts of disruptions of power
systems. The model bridges the gap in the abstraction
of behaviors of system components and provides a com-
putational implementation of households’ interaction
with infrastructure systems and probabilistic simulation
of hazards and failure scenarios to enable examining
equitable ways for reducing the societal risks.
Using the proposed multi-agent computational simula-

tion framework, we examined strategies to reduce the soci-
etal impacts of power outages and investigated important
questions such as (1)What are the proper strategies formit-
igating the societal risks due to prolonged power outages?
(2) To what extent are the hazard mitigation and response
strategies equitable? The model enables exploratory anal-

ysis of the pathways that determine different levels of soci-
etal impacts. Themodel also enables assessing the extent to
which different strategies for reducing the societal impacts
are equitable (Williams et al., 2020). Computational frame-
works and decision-making tools are needed for resilient
and sustainable infrastructure systems (Rafiei & Adeli,
2016; Wang & Adeli, 2013; Zavadskas et al., 2018). The
computational modeling framework would help disaster
managers, infrastructure managers, and utility operators
in making informed decisions that consider the specific
needs and societal risks in their resilience assessments.
The remainder of the paper unfolds as follows. Section 2

outlines the multi-agent simulation framework, including
the detailed description of model development and the
description of agents. Section 3 presents the model imple-
mentation andmodel testing; furthermore, the description
of model outputs and experimentation are presented in
this section. Section 4 presents the results for equitable
resilience assessment of power networks and discusses the
effectiveness of different strategies for mitigating societal
risks. Last, Section 5 discusses the contribution and major
findings of the research.

2 MULTI-AGENT SIMULATION
FRAMEWORK

Multi-agent simulation modeling is a proven approach
for complex modeling and analysis of coupled human–
infrastructure systems (Eid & El-adaway, 2018; Nejat
& Damnjanovic, 2012; Rasoulkhani et al., 2020; Reilly
et al., 2017; Terzi et al., 2019). The multi-agent simulation
model enables the consideration of dynamic processes and
complex interactions among different entities (Gutierrez
Soto & Adeli, 2017; Haer et al., 2017; Watts et al., 2019;
Widener et al., 2013). Furthermore,multi-agent simulation
approach has the advantage of enabling the consideration
of interrelation within agents and their heterogeneity
(Morss et al., 2017; Navarrete Gutiérrez et al., 2017). There-
fore, multi-agent simulation provides a powerful approach
for modeling the nexus of hazard–human–infrastructure.
This approach also enables better incorporating equity in
both impact assessment and resource allocations (Bills &
Walker, 2017). For example, Gurram et al. (2019) developed
an agent-based model to examine the exposure inequality
related to traffic air pollution. Chen et al. (2019) created
a computational framework for examining the equity
in access to bike-sharing systems. Williams et al. (2020)
developed an agent-based model to assess the equity in
the resilience enhancement plans for smallholder farming
systems. In the current study, we create a multi-agent
simulation model to examine the equity in the impact
and recovery of infrastructure systems, in particular
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power outages, in the context of natural hazards. In the
context of this study, the hazard component would cause
damage to the infrastructure systems and also influence
the preparation time for households. The infrastructure
system would be damaged due to the impacts of the
natural hazard. The system’s physical vulnerability and
restoration decisions affect the duration of service outages.
The experienced hardship due to service disruptions by
individual households is a function of their susceptibility
and protective actions. The susceptibility and protective
actions of households are influenced by various factors
(e.g., income and race) and processes and shape the level
of tolerance of households to durations of service outages.
Households perceive threats from the hazard, inform their
social network, and make decisions about their protective
actions (such as preparedness). Households in the commu-
nity have unique attributes and interact with each other to
inform their decision to take protective actions depending
on their capabilities, perception of risks, and their immedi-
ate social network’s actions. Thus, the dynamic process of
information-seeking behavior and decision-making about
the protective actions are integral aspects of determining
the level of tolerance to power outages. In this study,
we used the household service gap model (Esmalian
et al., 2021) to characterize societal risks at the household
level. The model examines service disruptions as threats,
households’ tolerance as susceptibility, and experienced
hardship as an indicator for the realized impacts of risk.
When the duration of service outages exceeds the toler-
ance level of households, they would experience hardship
(which is the indicator of societal impact in this study).

2.1 Model overview

Figure 1 depicts the underlyingmechanisms and processes
in the hazard–households–infrastructure nexus captured
in the proposed framework. In this framework, each of the
underlying mechanisms leading to the societal impacts
(experienced hardship) could be captured as dynamic
processes. The integration of these processes enables
simulating the extent of infrastructure failures, tolerance
level of households, and service restoration duration,
and hence determines the proportion of households in
the community that experience hardship under different
scenarios of hazard intensity and response/restoration
strategies. The detailed descriptions of these interactions
are discussed in the following sections.
The hazard component simulates the intensity of haz-

ard and exposure of components of infrastructure systems.
The infrastructure component captures the physical vul-
nerability and network topology of power infrastructure
systems. The extent of damage to the infrastructure sys-

tem depends on the components’ fragility and the net-
work topology. The more fragile the systems’ components,
the greater the probability of severe damage. Furthermore,
network topology influences the system’s physical vulner-
ability due to the cascading failure and connectivity loss in
the network. The extent of damage and the restoration pro-
cess of the utility determines the duration of a service out-
age. The duration of power service outages affects the hard-
ship experienced by households (Miles & Chang, 2011).
The household component captures the dynamic pro-

cesses and interactions influencing the level of toler-
ance of households to service outages. In particular, this
research focused on the shelter-in-place-households, as
these households are vulnerable to the impacts of power
outages. The rapidity of the unfolding of a hazard event
affects how far in advance households are informed about
the upcominghazard event (i.e., hurricane), allowing them
to take adequate protective actions. Households interact
with each other to share information about the hurricane
and form perceptions about the potential duration of the
outages based on the information they receive and char-
acteristics specific to the household, such as prior hazard
experience.Householdsmake decisions about their protec-
tive action to reduce the impacts of service losses. Their
decisions are not solely influenced by their risk perception
and socio-demographic attributes; they are also influenced
by other households’ decisions. A household is more likely
to prepare for an upcoming hurricane if other households
in their social network take protective actions. Hence, the
model captures the dynamic process related to the house-
holds’ information search behavior, risk perception, and
decisions related to preparedness actions that determine
their tolerance. The experienced hardship of households
would be determined by comparing their tolerance with
their experienced duration of disruptions. Themodel could
then simulate the hardship profile of the affected com-
munities to examine societal impacts of varying hurricane
intensities based on the physical condition of the power
network, restoration activities, and households’ protective
actions to better tolerate the disruptions.

2.2 Hazard component

The hazard component of the proposed model considers
the failure of the power network due to damage by severe
windstorms to components not designed to withstand
strong winds. It is important to mention that the damages
to components of the power network are not limited to
those induced by intense winds; other risks such as debris
flows and potential flooding could also cause damages
to power networks. However, wind-induced damages are
the most prevalent causes of damage during hurricanes as
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F IGURE 1 Human–hazard–infrastructure nexus framework for equitable resilience assessment of power systems

suggested by a review of the literature (Dunn et al., 2018;
Panteli et al., 2017).
The hazard component simulates different hurricane

categories and also includes the historical wind speed of
Hurricane Ike and Hurricane Harvey in Harris County.
The wind speed model is obtained from the HAZUS-MH
wind model (Vickery et al., 2006). The wind model proba-
bilistically generates the full profile of wind speed during
the duration of a hurricane event with various return
periods. The generated hurricane scenarios are grouped
based on the maximum gust wind speed in the county.
This model generates wind speed values for each census
tract across the study area. Then, the generated hurricane
scenarios are used to simulate the hurricane hazard in
the multi-agent model. The wind gust speeds for different
coordinates are implemented for the fragility analysis of
the power network.

2.3 Power network agent

2.3.1 Network structure

The hurricane wind model poses stress on the power
network and could cause multiple damages to the power
network. The power network is a connected grid consisting

of elements such as generators, substations, transmission
lines, poles, conductors, and circuits. The data for mod-
eling actual power networks within an area are either
unavailable or difficult to access due to security issues.
Therefore, the power network in this study is modeled by
using a synthetic power network introduced by Birchfield
et al. (2017) and Gegner et al. (2016). The implemented
synthetic power network is a near-real representation
of the power network in the study area, which matches
the topological characteristics of the actual network in
Harris County. The synthetic power network determines
the geographic coordinates of the synthetized generations
and loading substations based on the required loads and
the publicly available power plant data in the study area.
Then, the substations and generators are connected by
transmission lines through a network that has structural
and topological properties of an actual network and a
converged power Alternating Current (AC) flow.
The distribution network consists of distribution poles

and conductors. The number of distribution poles is esti-
mated based on the population of each tract, assuming
each pole serves 40 customers (Ouyang & Dueñas-Osorio,
2014). In the presence of actual data, the assumed values
could be updated to provide context to the model outputs.
The poles are directly linked via a distribution line to the
distribution pole. Similarly, each distribution pole is con-
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F IGURE 2 Schematic overview of the process for modeling
the power system failure

nected to households through conductors. This methodol-
ogy enables investigating damage to the power network in
the absence of real data to model the actual system. Com-
ponents of the power network, including power genera-
tors, substations, transmission lines, the distribution net-
work, and their linkages are captured in the modeled syn-
thetic power network.
Failures in the power network occur not only due to the

direct damage to the power network components due to
wind forces, but connectivity loss and cascading failures
also cause disruptions to the network. Figure 2 shows
the overview of the failure-modeling process in a power
infrastructure network. The model includes two elements
capturing the failure of the network from its exposures to
a hurricane: (1) component damage: Failure in the power
network components, which is modeled by incorporating
fragility functions. The fragility functions help determine
the probability of damage to the network components
based on hazard intensity; (2) connectivity disruptions:
The failure of a network component may lead to a series
of consecutive connectivity losses. We used connectivity
analysis of the network tomodel such cascading failures in
the power network. The following describes the detailed
modeling approach.

2.3.2 Component damage

Fragility curves are used tomodel the failure in the compo-
nents of the power network. Fragility curves are commonly
used for modeling damages to infrastructure systems in

response to natural hazards (Winkler et al., 2010). Fragility
curves, in this model, determine the failure probability
(𝑃(𝑤)) based on the imposed wind speed. To this end,
the failure probability would be compared to a random
variable 𝑟 ∈ [0, 1] from a uniform distribution in each
iteration (Figure 2). A component, such as a power pole,
would fail if the failure probability becomes greater than
the generated random number (𝑟). In this model, we con-
sider the failure in the critical components of the power
network: substations, transmission lines, distribution
poles, and conductors. Damage to power plants by hurri-
canes, being highly unlikely, was not being considered as
structural damage (Ouyang & Dueñas-Osorio, 2014).

Substations
The damage to substation loads is modeled by imple-
menting the aggregated fragility functions developed in
HAZUS-MH 4 (FEMA, 2008). The fragility functions
provide failure probability based on the local terrain, wind
speed at the area, and the structural characteristics of
the substation. Equation (1) shows the general form of
the fragility function. In this equation, the probability of
failure (𝑃𝑓) is related to the exposed wind speed (𝑥). The
two parameters, mean (𝜇) and variance (𝜎2) are used to
define the lognormal fragility curve. The fragility curves
used for modeling damage to the substations are plotted
in Figure B4 in Appendix B:

𝑃𝑓 (𝑑𝑎𝑚𝑎𝑔𝑒|𝑤 = 𝑥) =

−∞

∫
𝑥

1√
2𝜋𝜎

exp

(
−(ln(𝑥) − 𝜇)

2

2𝜎2

)
𝑑𝑥 (1)

Transmission elements
Transmission elements include the transmission lines and
the transmission towers, which support the lines. The
length of the transmission lines is determined based on
the specific latitude and longitude of the generators and
substations loads in the synthetic network. The number of
necessary transmission towers is estimated by assuming
0.23 km between two consecutive towers. Similar to the
fragility function in Equation (1), we implemented a
lognormal fragility function for determining the (𝑃𝑓) of
the transmission towers. The implemented fragility curves
for modeling damage to the transmission tower are shown
in Figure B2 in the Appendix. Damage to transmission
towers is modeled so that towers fail independently of one
another (Panteli et al., 2017); therefore, the total failure
probability for the transmission element due to damage to
the support structure between two substations that have n
towers would be calculated using the following approach.
In Equation (2), PT(w) is the probability of failure in the
transmission element, 𝑃𝑘,𝑤 represents the probability of
failure of an individual tower between substations, and 𝑁
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is the number of required towers for supporting the lines:

𝑃𝑇 (𝑤) = 1 −

𝑁∏
𝑘=1

(
1 − 𝑃𝑘,𝑤

)
(2)

Extreme weather conditions could cause great damage
to transmission lines; thus, separate fragility curves are
used to model such damage. Following the approach
proposed by Panteli et al. (2017), a linear fragility function
(interpolated linearly), as shown in Equation (3) and
Figure B2 (Appendix B), is implemented for calculating
the probability of failure for the transmission lines.

𝑃𝐿 (𝑤) =

⎧⎪⎨⎪⎩
0.01, if 𝑤 < 𝑤critical

𝑃𝐿, if 𝑤critical < 𝑤 ≤ 𝑤collapse

1, if 𝑤 ≥ 𝑤collapse

(3)
This equation considers three conditions. First, if the

wind speed is below a certain level of “good weather
condition,” the probability of failure is small (0.01). Here,
𝑤critical is the wind speed at which the transmission lines
can sustain damage, and 𝑤collapse represents a situation
when the survival probability of the component is very
small. Then, the component’s probability of failure (𝑃𝐿)
is calculated by considering a linear relation in the inter-
mediate phase between 𝑤critical and 𝑤collapse. These wind
speed thresholds are assumed to be between 30 and 60
m/s following empirical studies (Murray & Bell, 2014;
Panteli et al., 2017). In the presence of data from utilities,
the equations and thresholds could be adjusted to reflect
the real behavior of the components; pseudo algorithms
are presented in Table A1 in Appendix A.

Distribution elements
The synthetic distribution network considers the failure of
the conductors that connect the households to the power
network and the poles that support the conductors. The
empirical damage models, developed by Quanta Tech-
nology and implemented by Quanta (2009) and Mensah
and Dueñas-Osorio (2016) are used in the absence of field
data. The fragility equation for modeling the failure to the
conductors is shown in Equation (4). This equation (also
see Figure B3) draws the relationship between the wind
speed (𝑤) and the probability of failure to the conductors
(𝑃𝐶(𝑤)) in the distribution network.

𝑃𝐶 (𝑤) = 8 × 10−12 × 𝑤5.1731 (4)

Last, the fragility function for modeling failure in
the distribution poles is implemented in the model.
Several studies have developed fragility equations for
the distribution poles depending on their material, age,

and maintenance (Salman & Li, 2016; Salman et al., 2015;
Shafieezadeh et al., 2014). The fragility equation developed
by Shafieezadeh et al. (2014) is used in this study to model
the failure in the distribution poles. An example of the
fragility curves is shown in Figure B3 in Appendix B.

2.3.3 Connectivity disruption

The failure of a component in the power network may
propagate through the network and lead to connectivity
loss (also called cascading failures; Winkler et al., 2010).
The model also considers the cascading failures due to the
interdependencies among the components of the power
network. For example, when a substation experiences
damage, if the distribution network elements connected
to the damaged substations are no longer connected to
a power generator through other network components,
these subsequent distribution networks would also be
removed from the power network (Mensah & Dueñas-
Osorio, 2016). Therefore, at each iteration of the model,
the connectivity of the subsequent network component
to a generator will be assessed. The pseudo-codes of the
developed algorithmare shown inTableA2 inAppendixA.

2.3.4 Restoration process

Restoration activity takes place after the hurricane passes
through the affected area. After the failures in the power
network are detected, the utility repairs damaged compo-
nents of the power network. The downtime of different
system elements depends on three main factors: (1) the
extent of damage to the power network, (2) the available
resources to the utility for restoring service, and (3) the
utility’s strategy for restoring the power (Duffey, 2019;
H. Liu et al., 2007). Severe hurricanes pose more danger
to the infrastructure elements and make it difficult for
the utilities to restore services. The number of crews and
the spare equipment in place also affect the restoration
time (Xu et al., 2019). Finally, the priority of restoration
activities influences the duration of outages. For example,
restoration in more populated areas may sometimes
be prioritized to meet the needs of a higher number of
affected households (H. Liu et al., 2007). The pseudo
algorithms are shown in Table A4 in Appendix A.
To determine restoration duration, the model deter-

mines the duration of the power outages by considering
the dynamic repair process (Figure 3). The process involves
multiple steps (Sharma et al., 2020). First, the priorities are
given to the power restoration in different areas to imple-
ment repair and restoration strategies. Then, for each dam-
aged element, the required resources and time to repair
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F IGURE 3 Schematic overview of the process for modeling
the restoration activity

will be calculated based on Table B1 (Appendix B). The
time to restore each element is calculated by consider-
ing a normal distribution and checking for non-negativity,
𝑁(𝜇, 𝜎), with specific mean and standard deviation (Men-
sah, 2015). The resources in this model are crews, mate-
rials, and machines. The number of teams needed for
the repair task is given in Table B1. The utility could
have a finite number of resources in place, but then these
resources could be augmented daily by assistance from
other utilities through RegionalMutual Assistance Groups
and collaborations (Edison Electric Institute, 2016). A lin-
ear relationship is assumed for the increase in repair
resources (Figure B1) based on the results of previous stud-
ies (Ouyang & Dueñas-Osorio, 2014). The model inputs
resources and initially implements 800 teams increasing
by 15 teams per hour for a week as the base case scenario.

2.3.5 Restoration strategies

Based on a review of the literature, there is no standardway
of restoring power when a severe weather event damages a
power network (Applied Technology Council, 2016). Some
utilities would prioritize the restoration of the service areas
with greater populations; however, this restoration strat-

egy might favor residents living in a larger metropolitan
area and might adversely affect people in rural areas (H.
Liu et al., 2007). Other strategies mainly focus on physical
characteristics, such as prioritizing the components with
a high criticality, such as failed substations and transmis-
sions (C. Liu et al., 2021; Ouyang & Dueñas-Osorio, 2014).
The model uses priorities assigned to the components in
the network to generate the different repair strategies.
In this study, we tested the influence of three main

strategies for restoring the power for residents, component-
based restoration, population-based restoration, and social
vulnerability-based restoration. In component-based
restoration, the model prioritizes the restoration of critical
components, such as failed substations and transmis-
sions. The critical components are those that require
more resources and serve a large number of users. After
the repair of these components, the model initiates the
repair of the damaged distribution network comprising
conductors and poles in a random sequence. Restoration
based on population and the social vulnerability index
(SVI) focuses on the prioritization of the repair of the
components, which serve areas with larger populations
or higher social vulnerability scores informed by census
data and an SVI (Flanagan et al., 2011). Depending on
the selected strategies, the ranges of service restoration
duration would vary in different areas. Therefore, in this
model, households would experience varying levels of
power outage durations due to the differences in the
restoration duration, which is a function of the extent of
damage and the utility’s restoration strategy.

2.4 Household agent

Households have varying levels of tolerance for withstand-
ing power outages. Empirical data fromhousehold surveys
collected in the aftermath of three major hurricane events
(Harvey, Florence, and Michael) together with theoretical
decision-making models were implemented to simulate
the underlying mechanisms that influence households’
tolerance. The tolerance depends on households’ decisions
about protective actions and their inherent needs for the
service (Baker, 2011; Coleman et al., 2020; Esmalian et al.,
2020b). The model includes the process through which
households know about the event and form perceptions
about the risks. Then, empirical models developed based
on the survey data used in conjunction with decision-
making processes are used to determine the probability of
a household taking protective actions. This probabilistic
characteristic of the households’ behaviors enables con-
sideration of the uncertainties regarding the individual’s
behavior in the model. Finally, the household’s hardship
status would be determined based on tolerance and the
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F IGURE 4 Schematic overview of the information seek/share
behavior

duration of outages. The pseudo algorithms are shown in
Table A3 in Appendix A.

2.4.1 Information propagation process

Two information propagation processes are considered in
this model (Figure 4). First, we modeled information-
sharing through official sources (such as mass media). In
the days before hurricane landfall, officials disseminated
information about the upcoming hurricane, which is mod-
eled by implementing a probability of receiving the infor-
mation by the households through officials (𝑃𝑜). In addi-
tion, those who receive the message might also share the
information with their immediate social network, depend-
ing on how important they perceive the risks of the hazard,
and then take protective action themselves. Hence, two
probability values of (𝑃𝑖) and (𝑃𝑛) are considered for imple-
menting the information-sharing process by households.
Those who perceive great risk from the hazard and take
protective actions (𝑃𝑖) are more likely to share informa-
tion with their social network than those who do not take
protective actions (𝑃𝑛). These probabilities are determined
using the empirical data and considering a higher value for
the probability of receiving information from the officials.

2.4.2 Household agent’s social network

Agents interact with each other and influence the deci-
sions of others through their social networks. The social

network of the agent would not only influence the infor-
mation propagation process; it would also affect other
agents’ decisions regarding protective actions (Anderson
et al., 2014; Tran, 2012). Multiple network structures—
random network, small-world (SW) network, scale-free
(SF) network, and distance-based network—characterize
how households are connected with each other. These net-
work structures are present in real-life social settings. For
example, the literature suggests that information-sharing
through online social media, which follows an SF network
structure, could expedite information propagation (Nocaj
et al., 2015; Schnettler, 2009). Therefore, we considered
multiple network structures to account for various modes
through which households could interact and share
information, and we tested the impact of such structures
on the overall impact of the hazard on the communities.
The social network would affect both the information
propagation process and the household decision-making
on the protective actions through peer effect.

2.4.3 Household agent’s risk perceptions

Household agents form a perception about the potential
duration of the power outages. We analyzed data collected
from the household surveys to determine households’
expectations of the disruptions; the summary statistics of
household survey data could be found in Esmalian et al.
(2020b).Households’ expectation of the duration of the dis-
ruption affects their decisions regarding taking protective
actions. Those with higher expectations of the disruptions
are more likely to take protective actions (Coleman et al.,
2020; Lindell & Hwang, 2008). The expected duration of
disruptions was measured by the number of days a house-
hold expected the power outages. This variable is positive
and a count data; thus, a Poisson regression model was
selected for modeling the expected duration of the outage.
Equation (5) shows how the mean value of the duration of
the expectation (𝜇) is related to the predictors through a log
link by implementing a Poisson regression model. In this
model, 𝑥𝑓 refers to the forewarning duration of the event
(measured by the number of days),𝑥𝑖 captures if the house-
holds receive the information about the hurricane (binary
variable), 𝑥𝑜 is home ownership, 𝑥𝑎 captures whether the
head of the household is elderly, 𝑥𝑚 captures if any of the
household members have a mobility/disability issue, and
𝑥𝑓𝑧 refers to if the households live in a flood zone:

𝜇 = 𝑒𝑥𝑝
[
1.74700 + 0.30471𝑙𝑜𝑔

(
𝑥𝑓 + 1

)
+ 0.12369𝑥𝑖

− 0.27720𝑥𝑜 − 0.21065𝑥𝑎 − 0.51210𝑥𝑚 − 0.28153𝑥𝑓𝑧
]
(5)
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2.4.4 Household agent’s socio-demographic
characteristics

Households’ demographic characteristics influence their
perceptions of the risk, decisions regarding the protective
actions, and consequently their tolerance for the disrup-
tions (Baker, 2011; Coleman et al., 2019; Horney, 2008).
In this model, households’ demographic characteristics
are considered by developing a sample of agents based on
publicly available census data. A population is sampled by
considering the probability of being from a specific seg-
ment of a community byusing the actual proportions in the
census data. In particular, data about income level, race,
age, education, mobility/disability conditions, and type of
housing of the households were collected. In addition, to
determine whether a household was in a flood zone, their
location was plotted against a 500-year flood map.
The demographic characteristics of households not

only influence their decisions on protective actions, but
they also affect households’ level of need for the service.
The level of need is modeled through the use of empirical
data. In the surveys, this variable is measured with an
ordered five-level Likert scale; therefore, a cumulative
logit model is developed for determining the level of need
(Equation 6). The model relates the effect of predictor
𝑥 on the log odds of response category 𝑗 or below by
coefficient 𝛽 (Agresti, 2007). This type of modeling helps
in determining the probability of 𝑌 (the level of need)
falling below a certain level (Equation 7). Then, as the
summation of each probability level (𝜋𝑗) equals 1, the
probability of each level could be determined. Appendix B
outlines the models for estimating the level of needs:

logit 𝑃 (𝑌 ≤ 𝑗) = 𝛼𝑗 + 𝛽𝑥 (6)

logit [𝑃 (𝑌 ≤ 𝑗)] = log

[
𝑃 (𝑌 ≤ 𝑗)

1 − 𝑃 (𝑌 ≤ 𝑗)

]
= log

[
𝜋1 +⋯+ 𝜋𝑗

𝜋𝑗+1 +⋯+ 𝜋𝐽

]
, 𝑗 = 1, … , 𝐽 − 1 (7)

2.4.5 Household agent’s protective action
process

Households take protective actions to reduce the impacts
of power outages in two ways. First, the general prepared-
ness behavior of households in terms of obtaining food,
water, and emergency kit supplies helps them to better
cope with the outages. Second, some households might
take further actions by purchasing a generator. We mod-
eled the protective action process of households by imple-
menting the diffusion model developed by Banerjee et al.

F IGURE 5 Schematic overview of taking protective actions by
households

(2013). As shown in Figure 5, households are first informed
about the hurricane through the information propagation
of officials or their immediate social network. Second,
an initial number of households decide to take protective
actions depending on their decisions’ probability (𝑃𝑝).
Households’ probability of taking protective actions (𝑃𝑝)
depends on the households’ personal characteristics, such
as demographic characteristics, risk perception, and peer
influence. Equation (8) shows the implemented logistic
function to model this process. Third, those who decide to
take protective actions influence their social network by
passing the information regarding their protective actions.
Fourth, the newly informed households now decide if
they want to take protective action. This process initiates
as soon as the officials detect the hurricane and ends after
(𝑓) days of forewarning:

log

(
𝑃𝑝

1 −
(
𝑃𝑝

)) = 𝑋𝑖 × 𝛽 + 𝜆 × 𝐹𝑖 (8)

In this model, 𝛽 is the vector of the coefficients that
relates the personal characteristics (𝑋𝑖) to the log-odds
ratio of the protective action decisions. 𝐹𝑖 is the fraction
of the household’s social network that had decided to take
protective actions divided by the total number of house-
hold’s social network. The unit-less parameter of 𝜆 repre-
sents the change in the log-odds ratio of protective actions
due to peer influence. A value of zero for 𝜆 describes the
case in which households make their decision indepen-
dent of their social network, while larger values of 𝜆 refer
to a situation when households affect the decision of their
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social network. The empirical models were implemented
to determine the 𝛽, and the model has been tested to
determine the range of 𝜆s. Details related to the factors
considered for developing these models are presented in
Appendix B.

2.4.6 Household agent’s protective action
process

Households have different levels of tolerance for with-
standing prolonged power outages (Esmalian et al.,
2019). This is why even a similar outage duration would
cause varying levels of hardships in different households
(Coleman et al., 2019). Households’ tolerance for power
outages is a function of their protective actions and
inherent needs for the service. Household tolerance is
determined by implementing accelerated failure time
(AFT) models, which are a type of survival analysis
approach for the time-to-event data (Dale, 1985). This type
of modeling was found to best describe the model and
to have the lowest prediction error when compared to
generalized linear models (Poisson family and negative
binomial regression) and ensemble learning methods
(random forests and boosting; Esmalian et al., 2020a).
Using AFT models, we can directly relate tolerance to
the predictors with a linear relationship as shown in
Equation (9):

log 𝜇𝑖 = 𝑥𝑇
𝑖
𝛽 + 𝜀𝑖 (9)

where 𝜇𝑖 represents the mean tolerance, 𝑥𝑇
𝑖
denotes the

vector of predictor, 𝛽 is the vector of parameters, and
𝜀𝑖 is an error term that is assumed to be independently
distributed. In this model, three main predictors were
used for determining tolerance: households’ level of need
for the service, their preparedness for the event, and if
they obtain a generator to withstand the power outages.
The protective actions of the households are determined
through a probabilistic approach outlined in the previous
sub-section. The level of need is determined based on
their socio-demographic characteristics to be considered
in calculating the tolerance level.
In the last step, the households’ experienced hardship is

determined by integrating the results from the restoration
process with households’ tolerance. Households experi-
ence different levels of the duration of disruptions and
experience hardship when the duration of the outage
exceeds their tolerance. Figure 6 presents the process for
determining the households’ experienced hardship from
service disruptions.

F IGURE 6 Schematic overview of household hardship
experience process

3 MODEL IMPLEMENTATION AND
SIMULATION EXPERIMENTS

3.1 Computational implementation

Computational representation of the proposedmulti-agent
modeling framework includes developing and implement-
ing algorithms and mathematical models to capture the
theoretical logic representing the experienced hardship of
households due to disaster-induced disruptions. The com-
putational model is created by using an object-oriented
programming platform, AnyLogic 8.3.3. Figure 7 depicts
the Unified Modeling Language diagram of the model,
which shows the class of the agents, agents’ attributes
and functions, and their relationships. A sample of 2500
households based on the demographic characteristics of
Harris County was generated and placed in the census
tracts. The sample is statistically representative of the
households in Harris County with a 95% confidence level
and a 2% margin of error. The synthetic power network
includes a total of 97 substations, 242 transmission ele-
ments, and 1433 distribution elements located in Harris
County based on latitude and longitude coordinates as
described in the power network agent section.

3.2 Verification and validation

The model is verified and validated through a systematic
and iterative process to ensure the quality and credibility
of findings. Various internal and external approaches were
conducted to verify the data, logic, and computational
algorithms in the simulation model (Bankes & Gillogly,
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F IGURE 7 Unified Modeling Language class diagram of the multi-agent simulation model

1994; Mostafavi et al., 2016; Rasoulkhani et al., 2020).
First, the internal verification of the model was ensured by
using the best available theories and standard approaches
for implementing the models’ logic and rules. Second,
we used reliable empirical data collected in the aftermath
of three major hurricane events to develop the model.
Furthermore, we conducted a component validity assess-
ment for ensuring the model components’ completeness,
coherence, consistency, and correctness. The extreme
conditions were tested to examine the model’s ability to
generate reasonable outcomes. External verification of the
model was ensured by examining the causal relationships
among the model components. The behavior of these sub-

components under different values was traced to ensure
the external verification of the model. Themodel logic and
functions were examined to discover any unusual patterns
to ensure that logic and assumptions in the model are
correct.
For validation, the generated patterns in the model

outputs were compared against the empirical data to val-
idate model behavior. The mode of each simulated output
was used to determine the system’s behavior, then the
generated patterns from the model were compared with
the actual household behaviors from the empirical survey
data and similar studies and reports. The developed multi-
agent simulation model integrated the processes leading
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F IGURE 8 Comparing values generated by the model with empirical data. Red whiskers show the model replications’ 5% and 95% values

to the generated patterns. These generated patterns were
compared against the distribution of parameters of interest
to check if the model is able to generate correct behavior.
In this study, the intent of the model was to examine the
strategies to reduce societal impacts of power outages.
In particular, emergent behavior patterns of the outputs
were of interest. Furthermore, results from similar studies
and reports on the impact of hurricanes on the power
networks were used to validate the model’s output for the
physical system (Mensah & Dueñas-Osorio, 2016; Ouyang
& Dueñas-Osorio, 2014). The model is capable of gener-
ating patterns and values similar to the empirical data
(Figure 8). The model outputs capture the Hurricane Har-
vey scenario in Harris County, Texas, in 2017 (Figure 8).
For example, the generated proportions of households that
prepare and obtain substitute energy sources (generators)
are similar to those values from empirical data. Some
differences arise in the model results for large and small
values of the forewarning time; however, the distribution
of tolerance is close to the empirical values. It is worth

mentioning that the primary objective for the creation and
use of multi-agent and agent-based models is not a predic-
tion but rather to generate examples of the probabilities
of various possibilities for robust decision-making under
uncertainty (Mostafavi et al., 2016).

3.3 Model output description

The percentage of households experiencing hardship
from power outages is recognized as an indicator of the
societal impacts on the community. When a households’
duration of power disruption exceeds their tolerance,
they experience hardship. This indicator includes both
the physical impact and the societal susceptibility of the
households for the risk posed. This dynamic measure is
calculated for all households based on their location and
their tolerance during the time without service. Figure 9a
shows how the dynamic profile of hardship could be
implemented to assess the effectiveness of various strate-
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F IGURE 9 Schematic dynamic profile of hardship. (a)
Comparison of the effect of strategies, and (b) comparison of the
impact of strategies on different social groups

gies in reducing the societal impacts of power disruptions.
Different scenarios could be tested to find ways to mitigate
the societal risks of disruptions to power networks.
In addition to examining the societal impact on the

community, the model enables examining the impact on
various sub-populations (Figure 9b). This capability of
the model enables an understanding of whether system
restoration strategies are equitable. For example, while one
strategy might reduce the societal impact on the commu-
nity as a whole, it is possible that the strategy is in favor
of certain demographics in the community. Thus, strate-
gies would be examined to determine how they improve
the condition of different social groups in the affected com-
munity.

3.4 Simulation experimentation

The developed simulation model enables testing scenarios
through various variables such as household character-
istics, household social network structure, forewarning
duration, hurricane category, and restoration units and
strategy. The user could choose the values related to
each of these variables in an interactive user interface
(Figure 10a). The model outputs the various values related
to different variables, including household protective
actions and tolerance, the extent of damages to the
different components of the power network, and the
households’ profile of hardship. In addition, as shown in
Figure 10b, the model visualizes the spatial distribution
of households’ states by color-coding them depending on
their states. Households who experience the power out-
ages are shown in orange, those whose tolerance becomes
less than their duration of disruption and experience
hardship are shown in red, and the color changes to green
when the power is restored for these households.
We performed Monte Carlo experimentation in the

scenario testing to account for the stochasticity in
the model. The primary variable of interest in the
model experimentation was the percentage of the house-

holds who experienced hardship from the power dis-
ruption. Therefore, experiments were replicated as many
times as the mean value of proportional of households
experiencing hardship reached 95% confidence inter-
val with 5% error (Hahn, 1972). The experiment sce-
narios were designed by changing the input values of
each scenario and replicating iterations for each of the
experiments.

3.5 Scenario analysis

The model is implemented for scenario testing aiming
at (1) identifying the combination of the strategies that
would lead to the lowest societal impact due to the power
outages, and (2) examining the extent to which the strate-
gies are equitable. In this study, we examine three main
strategies to reduce the societal impacts of power outages.
First, the power utility’s restoration strategy would be
evaluated to examine its influence on the hardship levels.
In this regard, three strategies of restoration based on the
importance of the components, population size, and SVI
would be evaluated. SVI is a widely adopted measure for
examining the susceptibility of populations in disasters.
Second, the influence of the forewarning time on the expe-
rienced hardship of the households could be examined.
Early warning about the upcoming hazard can reduce the
societal impacts (Panakkat & Adeli, 2009; Rafiei & Adeli,
2017) by influencing the protective decisions of households
(Cremen & Galasso, 2021; Watts et al., 2019). This assess-
ment would determine the effectiveness of identifying
an impending hurricane and communicating critical
information with the population. Third, the impact of the
social network of the households on their experienced
hardship would be evaluated. This assessment would
show the value of using alternative social networks (such
as social media) for disseminating hazard information.
Socialmedia platforms, for example, have distinct network
characteristics, which enable quicker information-sharing
without spatial boundaries (Watts et al., 2019; Zhang et al.,
2019). Therefore, the type, density, and weight of the social
influences would be examined to explore their effect on
reducing the impacts of power outages on the households.
The combination of these strategies to lower the hardship
experienced by the households was also examined. In
addition, the equitable resilience assessment in this study
is being implemented by examining the disproportionate
impact and effect of strategies on racial groups, while
there are other social dimensions in equitable resilience. A
similar approach could be implemented for understanding
the equity aspect for other social groups; however, this
study mainly focused on one group as an example of
equitable resilience assessment.
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F IGURE 10 Screenshots of the developed simulation model

4 RESULTS AND DISCUSSION

The hardship experience of households from scenario
analysis was used for exploratory analysis of societal risks
of prolonged power outages. The analysis included: (1)
examining strategies for reducing the societal impacts;
(2) examining to what extent these strategies, including
restoration strategies, forewarning, and social networks,
are equitable; (3) robustness of the strategies for reducing
the societal impacts under different scenarios; (4) identify-
ing pathways that lead to low societal impacts. To this end,
a base scenario similar to the Hurricane Harvey context
was used with a forewarning of 9 days, component-based
restoration by utility, and an SF social network between
households. Scenarios were then modeled and compared
with the base-case scenario through Monte Carlo simula-
tion. In the simulation results, day zero is the time when
an impending hurricane is identified by the officials as
a threat, and the information is communicated with the
residents.

4.1 Simulating community-scale
societal impacts

Abaseline scenario of societal impacts of power outage dis-
ruption in a community similar to Harris County affected
by a category 4 hurricane is shown in Figure 11. Figure 11a
shows the mean proportion of households experiencing
hardship each day. The results suggest that at maximum,
around 50% of the community experienced hardship from
the outages, and it took roughly 20 days for the community
to fully recover (recovery is determined by having power
restored for all households). The impact, however, was
not equal among the subgroups in the community. Racial
minority groups experienced a higher hardship from
disruptions. Figure 11b shows the overall probability of
experiencing hardship for each group. Analysis of variance

(ANOVA) test showed that the difference between the two
groups is statistically significant at 0.05 confidence level (p
= .018). This result suggests that racial minority groups are
more likely to experience hardship from power outages
in comparison with others in the base-case scenario. The
results overall show the model’s capability to capture the
societal impact of the disruptions on communities and also
reveal the inequities in the impacts of prolonged power
outages on vulnerable populations (e.g., minority groups).

4.2 Examining strategies for reducing
societal impacts

4.2.1 Restoration strategy

Results for comparing different strategies for restoring the
power (Figure 12) show that while under the component-
based strategy, the maximum proportion of hardship
in a day is around 54%. This value would be decreased
to around 47% under the population- and SVI-based
restoration strategies. The results show that overall, a
community similar to Harris County, Texas, would benefit
from prioritization of the areas with a higher vulnerable
population. In this case, the probability of experiencing
hardship for the nonvulnerable population increases and
becomes greater than the vulnerable population (p =

.003); however, the reduction in the probability of experi-
encing hardship for the socially vulnerable groups leads to
an overall reduction in the societal impacts. In addition,
giving priority to the areas with a higher population result
in the reduction of overall societal impacts on the affected
community, while the vulnerable population still faces a
greater probability of experiencing hardship (p = .003).
These findings suggest that overall, the prioritization of
areas with a higher social vulnerability level and also with
a higher population could lead to the reduction of societal
impacts in the affected community.
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F IGURE 11 Societal impacts of disruptions from power outages in the baseline scenario. (a) Average daily proportion of households
experiencing hardship and the 10% confidence intervals, and (b) boxplots and mean lines for the probability of racial minorities and whites
experiencing hardship

F IGURE 1 2 Comparing different power restoration strategies. (a) Dynamic patterns of the proportion of households experiencing
hardship under each strategy, with shaded areas indicating the 0.25 and 0.75 percentile of the values, and (b) probability of experiencing
hardship for different racial groups under each restoration strategy

The results comparing the effect of different prioritiza-
tion strategies on racial groups are shown in Figure 13. The
charts juxtapose the probability of experiencing hardship
for two social groups under different restoration strate-
gies. In the SVI-based recovery, the probability of expe-
riencing hardship decreases by 8% for the socially vul-
nerable groups, while it would increase by 4% for the
nonverbal group. The population-based recovery, however,
decreases the probability of experiencing hardship by 2%
and 4% for the vulnerable and the nonvulnerable groups,
respectively. The results suggest that the population-based
restorations while improving the overall societal risks, do
not favor minority groups. On the other hand, the SVI-
based recovery, while increasing the risks for the Whites,

reduces the overall societal impact. While the population-
based restoration and SVI-based would reduce the overall
societal impacts, an SVI-based approach seems to be more
equitable.

4.2.2 The effect of increasing the
forewarning period

Providing a longer forewarning to the communities
reduces the societal impacts of power outages. As
expected, the longer duration of the forewarning helps the
households to better prepare for the impacts of the power
outages and take protective actions to reduce the impacts



ESMALIAN et al. 17

F IGURE 13 Comparing the probability of experiencing hardship for the racial groups under each restoration strategy

F IGURE 14 Comparing different forewarning levels. (a) Dynamic patterns of the proportion of households experiencing hardship
under each forewarning level. The shaded areas show the 0.25 and 0.75 percentile of the values, (b) probability of experiencing hardship for
different racial groups under each forewarning level, and (c) change in the probability of experiencing hardship for the racial groups under
improvement of the forewarning level

of power outages on their well-being. Comparing an event
with a week of forewarning with a scenario in which the
household had 2 weeks of forewarning, the results suggest
that this early identification of a hazard is very effective for
reducing the impacts for the communities (Figure 14). The
maximum proportion of households experiencing hard-
ship in a day would decrease around 8% when increasing
the forewarning time from 7 to 14 days. With rapidly
intensifying hurricanes (such as Hurricane Ida, 2021),
the forewarning period is becoming shorter, and hence
the results show the effect of shorter forewarning periods
on the experienced societal impacts of power outages.
Investments in making advancements in predicting and
tracking the hurricane pass, and proper communication
with households could significantly reduce the societal
impacts of power outages. However, the enhancements
in providing longer forewarning would not necessarily
reduce the societal impact for socially vulnerable popula-

tions. In both the base scenario and the enhanced strategy,
minorities show a statistically significant higher probabil-
ity of experiencing hardship (p-values are respectively .002
and .001 for forewarning of 7 and 14), Figure 14b. While
the enhanced strategy shows to reduce the impact for
the minority groups slightly more than other groups, this
strategy seems to treat everyone equally and does not nec-
essarily be in favor of improving the equity in the impact.

4.2.3 The effect of hazard information
dissemination and social network types

The social network type has implications regarding which
social network people receive information. The two struc-
tures of social networks, namely, SF and SW, are compared
as each provides certain characteristics in the propagation
of information through the community. For example, as
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F IGURE 15 Comparing scale-free and small-world social networks. (a) Dynamic patterns of the proportion of households experiencing
hardship under each forewarning level. The shaded areas show the 0.25 and 0.75 percentile of the values, (b) probability of experiencing
hardship for different racial groups under each network structure, (c) change in the probability of experiencing hardship for the racial groups
under a change in the social network structure

discussed earlier, communication among close friends
happening offline (in person or on the phone) is through
an SW network, and communication on social media is
through an SF network (Nocaj et al., 2015; Schnettler,
2009). The results from Figure 15 show that there is a
slight difference in the societal impacts of power outages
on the community when comparing the two network
structures. One reason is due to the delays in acting upon
the information received by the social network for taking
protective actions. Results suggest that the probability of
experiencing hardship is greater in the small-work struc-
ture. Both cases show a greater probability of experiencing
hardship by the vulnerable population, with p-values
being .018 and .001, respectively, for SF and SW structures.
The change in the network structure from SF to SW seems
to have a greater impact on the nonminority group. This
means that lack of information communication through
social media could have more impacts onminority groups,
compared to White households.

4.3 Combined effect of strategies for
reducing the societal impacts

4.3.1 Robustness of restoration strategy to
different hurricane categories

The effectiveness of implementing different strategies
for restoring power to reduce the societal impacts varies
depending on the intensity of the hurricanes. Figures 16a,b
show the probability of experiencing hardship for each
strategy and the dynamic impact under the four hurricane
categories. While there is no significant advantage for
implementing population-based and SVI-based strategies
during low-impact events such as hurricane category 1 (p-
value equal to .297), these strategies seem to over-perform
the component-based restoration during hurricane cat-
egories 2 and 3 (with p-values for ANOVA test being

.001 and < .001). The largest difference is related to
hurricane category 3, with population-based restoration
leading to the mildest societal hardship. However, the
difference between the societal impacts of implementing
the population-based and SVI-based with component-
based, while being statistically different (p-value of .01),
decreases in hurricane category 4. This result suggests
that the effectiveness of the improved restoration strategy
may not increase linearly as the intensity increases.
When the intensity increases to hurricane category 4, the
SVI-based strategy seems to perform slightly better than
population-based and component-based restoration. This
trend is due to the increased gap between the vulnerable
population and others when the intensity increases as
the intensity of the hurricane increases. Figures 16c, d
compare the probability of experiencing hardship for the
racial groups for population-based and SVI-based relative
to component-based, respectively. While the population-
based recovery seems to improve the condition for both
social groups, this strategy seems to be slightly in favor
of the nonvulnerable population. However, the SVI-based
restoration reduces the societal impacts for the vulner-
able population more than others. Therefore, when the
intensity increases to hurricane category 4, this strategy
reduces the overall hardship even slightly better than the
population-based restoration.

4.3.2 Robustness of forewarning to different
hurricane categories

The extent of reduction in the societal impacts of power
outages by providing a longer forewarning time varies
depending on the hurricane category. The probability of
experiencing hardship for different forewarning levels is
not equal in different hurricane categories (p-values are <
.001). The reduction of societal impacts showed significant
changes for the forewarning time of more than 6 days
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F IGURE 16 Effect of restoration strategy on the societal impacts of power outages under various hurricane intensities. (a) Histograms
of the probability of experiencing hardship for each scenario, (b) displays the average daily experienced hardship for each scenario, (c, d)
percentage difference of the probability of experiencing hardship for the racial groups under each scenario

(Figure 17a,b). These figures show that both the proba-
bility of experiencing hardship and the daily experienced
hardship sharply decline when forewarning time increases
to more than 6 days. The results explain the major impact
of rapid onset hazard events (such as fast-moving hurri-
canes) on the affected communities. Figure 17c compares
the probability of experiencing hardship for scenarios
increasing by 3-day increments of forewarning. This result
suggests that providing longer forewarning is mainly an
effective strategy for low-intensity hurricanes. The effect
of providing a longer forewarning in categories 3 and 4
hurricanes seems to diminish. Thus, implementing this
strategy may not solely reduce the societal impacts of
high-intensity hazard events. Last, Figure 17d shows the
percentage of reduction of the probability of experiencing
hardship for racial groups if the forewarning increase
from 6 to 12 days. The result shows that increasing the
forewarning duration does not seem to benefit certain

groups. While minorities experience a decrease in the
experienced hardship under hurricane categories 1 and 2,
the difference does not seem to be significant, especially
for the more intense hurricane events.

4.4 Pathways to different levels of
societal impacts

A combination of scenarios was used to create the scenario
landscape (Figure 18) and to evaluate the combination of
strategies that lead to the least onerous societal impacts of
power outages. To this end, classification and regression
tree (CART) analysis was implemented to examine the
effect of different variables for reducing the societal
impacts under various scenarios (Breiman et al., 1984).
CART is a tree-based classification technique that explains
how a target variable could be determined based on the
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F IGURE 17 Effect of providing longer forewarning on the societal impacts of power outages under various hurricane intensities. (a)
Histograms of the probability of experiencing hardship for each scenario. (b) average daily experienced hardship for each scenario, (c)
percentage change of the reduction in the probability of experiencing hardship for each scenario compared to the forewarning equal to 3 days,
and (d) percentage difference of the probability of experiencing hardship for the racial groups under each scenario

interaction among a large number of predictors. This
algorithm recursively partitions into binary splits, which
maximizes the homogeneity of the groups in relation to
the dependent variable (Prasad et al., 2006). The higher
splits show the variables with a stronger influence over
changes in the dependent variable, which is the experi-
enced hardship in the scenario landscape. CART analysis
is shown to be effective in meta-modeling analysis based
on simulation results (Mostafavi, 2018).
In this analysis, in addition to the described strate-

gies for reducing the societal impacts (restoration activ-
ity, longer forewarning, and social network structure), also
included are the hurricane category, the number of restora-
tion resources, and the information sharing probability
of the officials. The hurricane category has the greatest
impact on households’ experienced hardship. A longer
forewarning duration seems to have a great impact on

reducing the societal impacts of the power outages. This
pattern is consistent for different hurricane categories,
which supports the suggestion that providing a longer
forewarning could effectively reduce societal impacts. The
effect of the restoration strategy and increasing the num-
ber of resources varies depending on the hurricane inten-
sity. Improving the restoration strategy to focus on the
needs of the population (population-based and SVI-based)
seems to more effectively reduce societal impacts than
increasing the number of resources in response to high-
intensity hurricanes. The effect of increasing the number
of resources, however, seems to be an effective approach
for lower-severity events. Last, when considering the effect
of longer forewarning and information-sharing by the offi-
cials, the effect of the social network structure seems to be
insignificant in reducing the societal impacts of disaster-
induced prolonged power outages. The results show that
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F IGURE 18 Classification and regression tree analysis for analyzing the effect of various strategies in reducing the societal impacts

hardships due to power outages during high-intensity hur-
ricanes would be inevitable for minorities and other vul-
nerable populations unless power infrastructure systems
are strengthened to reduce their likelihood of failure and
sufficient resources, focusing on socially vulnerable popu-
lations, are earmarked for prioritizing power restoration.

5 CONCLUDING REMARKS

This study presents a new computational simulation
framework formodeling the complex hazard–households–
infrastructure nexus to better integrate social equity
considerations into resilience assessments. The proposed
integrated multi-agent simulation model enables cap-
turing of the complex interactions between hazard, risk
and restoration process, and households’ decision-making
behaviors. This new computational model enables con-
sideration of heterogeneity in the impact of infrastructure
service disruption in affected communities.
The model enables a combined evaluation of the

effects of hazard characteristics, population attributes and
decision-making processes, and physical infrastructure

network topology and vulnerability in facilitating more
equitable resilience assessments. While the current litera-
ture includes various computational models for assessing
infrastructure resilience, the majority of existing models
focus primarily on physical systems and fail to consider
the population’s interactions with these systems and their
services during disasters. The proposed computational
framework captures and models the underlying dynamic
mechanisms and complex interactions among hazard,
physical networks, and household behavior in determin-
ing the societal impacts and disparities. Thus, this paper
contributes to the field of computer-aided infrastructure
engineering by (1) abstracting the complex mechanisms
that lead to the societal impacts of hurricane-induced
power outages; (2) simulating societal impacts by using
theoretical models and empirical data and capturing
and modeling the interactions between hazard, power
network, and households’ behavior; and (3) devising
an approach to meet the need for equitable resilience
assessment in infrastructure systems. The multi-agent
simulation model enables the inclusion of the social
dimension in the resilience assessment of the infrastruc-
ture system. The model is capable of assisting in resilience
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assessment in different contexts given the availability of
similar data such as household information.
The output results would inform about the overall

societal impact on the community and the distributional
impact on the various segments of the community. By
enabling decision-makers to conduct scenario analysis
of strategies for reducing societal impacts of power out-
ages, such as restoration strategies, forewarning time, and
household social network structure, themodel provides an
approach to reduce overall societal impacts. The proposed
model could be used by emergency and infrastructure
managers and operators to better prioritize resource
allocation to their hazard mitigation investments and
restorations to reduce the societal impacts of infrastructure
disruptions. Beyond its contribution to equitable infras-
tructure resilience assessment, the computational simula-
tionmodel proposed in this study contributes to integrated
complex modeling approaches in civil infrastructure and
urban systems. Integrated complex modeling is a grow-
ingly important approach in analyzing various complex
phenomena related to sustainability and resilience of
urban resilience and infrastructure systems for robust
decision-making, as well as developing interdisciplinary
socio-technical system theories of urban infrastructure
systems and disaster resilience. The integrated simulation
framework that captures the complex interactions among
hazard characteristics, population behaviors, and physical
infrastructure network properties could provide a tool
and simulated data for developing more interdisciplinary
disaster resilience theories and examining complex phe-
nomena, which could not be evaluated using empirical
and observational data (Mostafavi & Ganapati, 2019).
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TABLE A3 Pseudo-households decision-making and
protective action

APPENDIX B
Model development
Fragility curves and restoration resources

Household agents
Model description
In these models, the zone of tolerance would be calculated
through the process and depending on the three variables.
The households’ zone of tolerance is a function of the

F IGURE B1 Number of added resources for the restoration
activity

TABLE A4 Pseudo-algorithms for the restoration activity and
prioritization

household’s need, substitute, and preparedness level. The
following equation describes the relationships among the
variables:

𝜇 = exp
[
1.7762 − 0.5130𝑥𝑠 + 0.1827𝑥𝑛 + 0.2664𝑥𝑝

]
Therefore, in this model, we needed to calculate the

three factors of substitute, need, and preparedness.

Need
The needed variable is inherent based on the socio-
demographic characteristics of the household. Table B2
shows the influencing factors:
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TABLE B1 Required resources for the damage to each
component

Damaged component Restoration time
Needed
resources

Load
substations

Moderate: N*(72 h,
36 h), severe:
N(168 h, 84 h) and
complete: N(720
h, 360 h)

6
14
60

Transmission towers N(72 h, 36 h) 6
Transmission lines N(48 h, 24 h) 4
Distribution poles N(10 h, 5 h) 1
Distribution lines N(8 h, 4 h) 1

*N(a,b) refers to the randomly generated number from a normal distribution
with mean = a and standard deviation = b (Mensah, 2015).

TABLE B2 Influencing factors of the households’ need

Variable Measure
Race minority “Yes” = 1, “No” = 2
Mobility issue "Yes" = 1, "No" = 2
Young children (age 10) "Yes" = 1, "No" = 2
Medical "Yes" = 1, "No" = 2

TABLE B3 Model for determining the households’ need

Variable Estimate p-value
(Intercept):1 0.444 .125
(Intercept):2 1.792 <.001
(Intercept):3 3.344 <.001
(Intercept):4 4.992 <.001
Racial minority 0.896 <.001
Mobility issue −0.519 <.001
Having children (< 10) 0.220 .050
Medical issue −0.303 <.001

TABLE B4 Influencing factors of the households’ protective
action (buying a generator)

Variable Measure
Income “Less than $25,000” = 1,

“$25,000–$49,999” = 2,
“$50,000–$74,999” = 3,
“$75,000–$99,999” = 4,
“$100,000–$124,999” = 5,
“$125,000–$149,999” = 6, “more
than $150,000” = 7

Expectations The number calculated in the
previous step

Ownership “Renter” (1), “owner” (0)
Self-efficacy “Strongly low” = 1, “somewhat low”

= 2, “medium” = 3, “somewhat
high” = 4, “strongly high” = 5

Logistic regression relates the predictors to the logit based on the following
equation:

TABLE B5 Influencing factors of the households’ preparation

Variable Measure
Vehicle vulnerability “Did not have a car” = 1, “I have it”

= 0
Experience The number calculated in the

previous step
Ownership “Renter” (1), “owner” (0)
Self-efficacy “Strongly low” = 1, “somewhat low”

= 2, “medium” = 3, “somewhat
high” = 4, “strongly high” = 5

Elderly Yes (1), no (0)
Forewarning Number of days
Distant to supermarket Miles

Note: Distancewas simulated fromanormal distributionwithmean 5 and vari-
ance 30.

TABLE B6 Influencing factors of the households’ level of
self-efficacy

Variable Measure
Ownership Yes (1), no (0)
Social capital Yes (1), no (0)
Chronic disease Yes (1), no (0)
Medical Yes (1), no (0)

TABLE B7 Model for determining the households’ level of
self-efficacy

Variable Estimate p-value
(Intercept):1 −3.191 <.001
(Intercept):2 −1.792 <.001
(Intercept):3 −0.551 .009
(Intercept):4 1.458 <.001
Ownership 0.339 <.001
Medical −0.245 .016
Chronic disease −0.237 .029
Social capital 0.217 <.04

The variables in the model are socio-demographic
characteristics; therefore, we implemented a simulated
sample of the population for determining these variables.
The cumulative logit models with proportional odds

were used for modeling the parameter; here, there are

TABLE B8 Influencing factors of the households’ level of
experience

Variable Measure
Having a child (age 10) Yes (1), no (0)
Race Yes (1), no (0)
State duration Number of years
Elderly Yes (1), no (0)
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F IGURE B2 Transmission distribution network fragility curve

four intercepts, which means there exist four equations
for calculating the probability of the five need levels B3.
The general equation for this model is as follows:

logit [𝑃 (𝑌 ≤ 𝑗)] = log

[
𝑃 (𝑌 ≤ 𝑗)

1 − 𝑃 (𝑌 ≤ 𝑗)

]
= log

[
𝜋1 +⋯+ 𝜋𝑗

𝜋𝑗+1 +⋯+ 𝜋𝐽

]
, 𝑗 = 1, … , 𝐽 − 1

Here, instead of directly calculating the probability of
each level (e.g., the probability of need to be 1 (p(y = 1)),
we will calculate the p(Y ≤ = 1). But P(y ≤ 1) = P(y = 1);
thus, we can calculate the probability of the first level, p(y
= 1), by the following equation:

log
𝑝 (𝑦 = 1)

1 − 𝑝 (𝑦 = 1)
= 0.44441 + 0.89646𝑥𝑟 − 0.51914𝑥𝑚

+0.21971𝑥𝑎 − 0.30319𝑥𝑚

F IGURE B3 Distribution network fragility curve

Then, the probability of (p(y = 1) would be determined
based on the following equation:

𝑝 (𝑦 = 1) =
𝑒[𝑝(𝑦=1)]

1 + 𝑒[𝑝(𝑦=1)]

Then, the next probability would be the probability of
p(Y < = 2), which is P1 + P2. Therefore, we can calculate
the probability of the second one based on the difference
between this probability and the one calculated in the
previous step:

log
𝑝 (𝑦1) + 𝑝 (𝑦2)

𝑝 (𝑦3) + 𝑝 (𝑦4) + 𝑝 (𝑦5)
= 1.79242 + 0.89646𝑥𝑟

−0.51914𝑥𝑚 + 0.21971𝑥𝑎 − 0.30319𝑥𝑚

Therefore, p(y ≤ 2) would be calculated based on the
following equation:

𝑝 (𝑦 ≤ 2) =
𝑒[𝑝(𝑦≤2)]
1 + 𝑒[𝑦≤2]
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F IGURE B4 Substation fragility curve

Thus, p(2) would be the difference between the two
probabilities. This will be continued until we have used
the third and fourth intercepts. Last, the probability of the
final level p5 would be calculated by 1−p(y ≤ 4). Here, p(y
≤ 4) is equal to the last equation using intercept 4.

Substitute
We calculate the probability of getting a generator by using
logistic regression. We calculate the probability of getting
a generator by using logistic regression. Here, the prob-
ability depends on the income, self-efficacy, ownership,
and the household’s expectations of the disruptions. Table
B4 shows the variables.

𝑃𝑠 = log
𝑝 (𝑦 = 1)

1 − 𝑝 (𝑦 = 1)
= −2.53950 + 0.07416𝑥𝑖

− 0.93270𝑥𝑜 + 0.48647 log (𝑥𝑒 + 1) + 0.26128𝑥𝑠𝑒

Here, the log transformation was conducted on the
expectation variable. Then, the probability of having a
generator or p(y = 1) would be determined based on the
following equation:

𝑝 (𝑦 = 1) =
𝑒[𝑃𝑠]

1 + 𝑒[𝑃𝑠]

Preparation
This variable was modeled in a similar fashion as the
substitute. The main variable that makes it a process
variable is the forewarning. This variable depends on the
following factors: having a vehicle, previous experience,
being elderly, ownership, forewarning, distance to the
supermarket, and self-efficacy. We calculated the proba-
bility of preparedness by using logistic regression. Table
B5 below shows the variables.
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Logistic regression relates the predictors to the logit
based on the following equation:

𝑃𝑝 = log
𝑝(𝑦 = 1)

1 − 𝑝(𝑦 = 1)
= 1.89292 − 0.58174𝑥𝑣

−1.11299𝑥𝑒 + 0.44445𝑥𝑒𝑙 − 0.60578𝑥𝑜 + 0.08802𝑥𝑓

− 0.02362𝑥𝑑 + 0.50834𝑥𝑠𝑒

Then, the probability of having a generator or p(y = 1)
would be determined based on the following equation:

𝑝 (𝑦 = 1) =
𝑒[𝑃𝑝]

1 + 𝑒[𝑃𝑝]

Self-efficacy
This variable defines to what extent the households believe
in the effectiveness of the preparedness actions. Table B6
shows the influencing variables: ownership, having social
capital, having a chronic disease, and a medical condition.
The calculation of the probabilities based on results in

Table for each level should be done using the procedure
explained in the need section B7.

Experience
This variable is calculated to find those with previous
disaster experience.Having previous experiencewith a dis-
aster depends on the duration of the time they have lived in
their state, racial minority, elderly, and having a child (B8).
State duration should be simulated based on a normal

distribution and mean 25 and standard deviation 15
(variance of 225). Logistic regression relates the predictors
to the logit based on the following equation:

log
𝑝(𝑦 = 1)

1 − 𝑝(𝑦 = 1)
= 1.371844 + 0.020162𝑥𝑠𝑑

−0.656271 𝑥𝑟 − 0.366558𝑥𝑎 + 0.272127𝑥𝑒

Then, the probability of having a generator or 𝑝(𝑦 = 1)

would be determined based on the following equation:

𝑝 (𝑦 = 1) =
𝑒[−1.98711+0.12456𝑥𝑖−0.71779 𝑥𝑜+0.37576log(𝑥𝑒+1)]

1 + 𝑒[−1.98711+0.12456𝑥𝑖−0.71779 𝑥𝑜+0.37576log(𝑥𝑒+1)]
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