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Abstract

Inequality in cities is a phenomenon arising from the complex interactions
among urban systems and population activities. Conventional statistics and
mathematical models like multiple regression models require assumptions of
feature interactions with specified mathematical forms that may fail to fully
capture complex interactions of heterogeneous urban components, creating
challenges in systematically assessing socio-economic inequality in cities. To
overcome the limitations of these conventional mathematical models, in this
work, we propose an interpretable machine learning model to capture the
complex interactions of urban variables and the main interaction effects on socio-
economic statuses. We extract urban features from high-resolution anonymized
mobile phone data with billions of activity records related to people and facili-
ties in 47 US metropolitan areas and predict the attributes of urban areas from six
income and race groups. We show that socio-economic inequality in cities can
be effectively measured by the predictability of trained machine learning models
in controlled experiments. We also examine the tradeoff between spatial resolu-
tion, sample size, and model accuracy; test the presence of influential features;
and measure the transferability of the trained models to identify the optimal val-
ues for controlled factors. The results show that metropolitan areas share similar
patterns of inequality, which could be moderated by improved polycentric facility
distribution and road density. The generality of associated factors and transfer-
ability of machine learning models can help bridge data gaps between cities and
inform about inequality alleviation strategies. Despite similarities, 50% to 90%
of variations among cities are still present, which shows the need for localized
policies for inequality alleviation and mitigation. Our study shows that machine
learning models could be an effective approach to examine inequality, which
opens avenues for more data-centric and complexity-informed planning, design,

policymaking, and engineering toward equitable cities.
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1 | INTRODUCTION

Inequality in metropolitan cities has become one of the
cornerstone social and economic issues of our age, prompt-
ing a debate about the measurement and solutions and
fueling public discontent with the built environment
and society (Woetzel et al., 2017). Despite great effort
(Acemoglu & Robinson, 2009; Balland et al., 2020) hav-
ing been applied to research and practice for measuring
and mitigating inequality, systematic divergence from the
optimal equality of facility services and life opportuni-
ties in cities still exists (Mirza et al., 2021), a situation
that is not well understood. We hypothesize that a con-
tribution to such divergence arises from neglecting to
examine equality as an outcome of the complex interac-
tions between the population and the built environment
in urban areas (Fan et al., 2021a). Capturing this mech-
anism by a computational metric can help measure and
explain the presence of inequality, pinpoint potential solu-
tions for mitigating inequalities, and inform policy and
design promoting equitable cities (Xue et al., 2022).

Understanding and improving socio-economic equal-
ity in metropolitan cities is a long-lasting challenge
(Acemoglu & Robinson, 2009). A growing and diverse
number of studies (Gazzotti et al., 2021) have been inves-
tigating this phenomenon over the past two decades.
Conventional research (Marger, 1999) mainly focuses on a
theoretical understanding of social and economic inequal-
ity. The problems of inequality arise with the stratification
of socio-economic classes and relations, characterized
by income concentration (Thomas & Emmanuel, 2014).
The most controversial topics related to income inequal-
ity previously focused on the distribution of wealth. As
research progressed and cities developed, studies on this
front started addressing the inequalities present in people’s
lives, such as satisfactory public services (Anand & Raval-
lion, 1993), accessibility to life needs, availability of social
capital (Dahl & Malmberg-Heimonen, 2010), and opportu-
nities of higher education (Triventi, 2013). The economic
inequality intertwining social needs increases the com-
plexity of the inequality assessment problem. Literature
(Cingano, 2014) has been attempting to establish connec-
tions between urban features and socio-economic status
of people. Theoretical studies, however, are not fully con-
sidering socio-economic inequality as a multidimensional
phenomenon.

Urban inequality represents the level of disparity in
diverse socio-economic contexts across different areas of
a city, which has been unveiled in a variety of aspects
including infrastructure services and population activities
(Casali et al., 2021). The infrastructure statuses and human
activities are heterogeneous and dynamic, leading to high
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variations in socio-economic patterns (Niu et al., 2020).
Recall that inequality is defined from such a variation
that exists in the relationship between urban components
and socio-economic patterns. Quantifying the variation in
socio-economic patterns is one of the key steps to eval-
uating inequality in cities (Li et al., 2019). In addition,
the interactions between the built environment and pop-
ulation activities are nuanced and non-linear as a result
of the different paces of the dynamic urban components
including socio-economic activities of populations and the
evolution of the infrastructure and the environment (J.
Wang et al., 2019). To understand the inequality arising
from intertwined urban features, it is critical to capture the
variation and the non-linearity in the interactions between
heterogeneous urban components.

Machine learning, a method that captures information
from a portion of samples and predicts the labels of the rest,
provides an effective way to assess the variation present
in the data samples (Adeli & Hung, 1994; Rafiei & Adeli,
2016). Inequality, in the socio-economic context, could
be well considered as the variations in the relationship
between input features and output labels of data samples.
Hence, machine learning could be very helpful to address
inequality in cities (Zhou & Liu, 2019). On the other
hand, machine learning models are created in the way
the complex and non-linear interactions of the features
are modeled in an automated manner, without theoretical
assumptions for formulating the equations (Rafiei & Adeli,
2017). Such an automated learning process is promising to
connect the interactions of urban features with the non-
linear model structures of machine learning (Ahmadlou
& Adeli, 2010). Considering these capabilities, we could
claim the fundamental connection between the inequality
of cities and the predictability of machine learning mod-
els to inspire the adoption of machine learning to assess
inequality.

Examining socio-economic inequality as a phenomenon
based on population activity and built environment fea-
tures cannot be fully implemented without the support of
sufficient fine-scale data. Prior to the age of smart devices
and technologies, it was notoriously difficult to collect and
analyze fine-grained data about urban components, such
as facilities and population activities and their interactions
(Esmalian et al., 2022). The digital footprints that accu-
mulate and aggregate on smartphones provide an efficient
and effective proxy for investigating issues of inequal-
ity, as the mobile phone data reveal patterns of human
movements and activities at greater temporal and spatial
granularity while ensuring anonymity and user privacy
(Moro et al., 2021). In addition, the availability of place
data that describe the location, category, and brand of a
place enables specifying the distribution of urban facilitie
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and the development of the built environment, as well as
population life activities. To harness the potential of these
emerging location-based datasets, an increasing number
of studies (Aleta et al., 2020) have employed these data
in multiple research domains and have validated the scale
and accuracy of these data. In particular, existing literature
(F. Wang et al., 2019) has demonstrated that the location-
based data could be highly demographically representa-
tive. Hence, the use of fine-scale location-based data can
transform conventional measurement and understanding
of inequality at a scale and in ways never attempted before
(Milanovic, 2016).

More recently, benefiting from the explosion of urban
data, data-driven inequality research (Fan et al., 2021b)
has been growing significantly, and a transition from the-
oretical to data-driven inequality research has emerged
(Mirza et al., 2021). One stream of work adopts and ana-
lyzes location-based data, such as mobile phone data and
geotagged social media data. Researchers in this stream
quantify the connection inequality of neighborhoods (Q.
Wang et al., 2018), income inequality for resilience to natu-
ral disasters (Yabe & Ukkusuri, 2020), the racial inequality
of probabilities of becoming infected in pandemics (Millett
et al., 2020), and economic inequality of innovation activi-
ties and products (Balland et al., 2020) in cities. Another
stream of research relies on public utility and empirical
data, such as facility locations and survey data. These stud-
ies capture the inequality of facility distributions (Xu et al.,
2020) and income inequality of hazard exposure (Rasch,
2017). These studies are largely based on datasets that
document only single aspects of urban systems, such as
social and physical connections (Dong et al., 2019), access
to services (Johar et al., 2018), and interactions with the
environment (Rao et al., 2017).

Cities, however, are complex systems involving a variety
of interconnecting components, such as facilities, infras-
tructure, and populations (Pan et al., 2013). Devoting
efforts to understanding and seeking equality based on
individual components of cities is not nearly enough. An
optimal socio-economic equality knowledge and solution
require an integrative consideration of all urban com-
ponents and their non-linear interactions. The question
arises as to whether it is possible to predict the socio-
demographic status of areas based on features related to
population activities and the built environment and their
interaction. This question is far from being answered by
extant research due to the absence of consensus on ways
of measuring inequality by concurrently incorporating fea-
tures of the built environment and population activities,
as well as the non-linear interactions among the features.
Traditional linear mathematical models are insufficient to
encode the non-linearity in urban systems in examining
inequality.
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Conventional mathematical models like multiple regres-
sion models have been widely adopted to examine the
effect of independent variables on the dependent variable
in the context of social science and urban development.
In these complex study areas, independent variables also
commonly interact with each other. That means, the
relationship between an independent variable and the
dependent variable changes when the independent vari-
able interacts with another independent variable and the
value of the third variable changes. This type of effect
makes the underlying mechanism of variable relation-
ships more complex. But this is, in fact, how the real
world behaves, and it is critical to incorporate it into
the model. Conventional mathematical models call it
interaction effect.

The interaction effect in conventional mathematical
models is examined in a couple of ways, such as incorpo-
rating the multiplication of two variables in the regression
model to consider both the main effect and the interaction
effect of the variables at the same time. This conventional
method works well to consider the interaction effects,
indicating that the relationship between an independent
variable and the dependent variable depends on the value
of another independent variable. The conventional meth-
ods, however, have two assumptions. First, the methods
assume that the interaction effects of the variables fol-
low the multiplication relationship. Second, the value of
the dependent variable is a linear combination of the
main effects of individual independent variables and the
interaction effects of multiple independent variables. That
is, conventional mathematical methods require that the
relationship between the dependent variable and the inde-
pendent variables and the interactions of independent
variables need to be specified before testing the models on
real-world data.

The interactions of urban environment features are
particularly complex. Without fully understanding the
mechanism of how these features are interacted and
influence the dependent variable, it is challenging and
problematic to specify the relationship in the mathe-
matical model, especially in a case of a great number
of independent variables. To overcome the limitations
of these conventional mathematical models, here, we
propose an interpretable machine learning model to auto-
mate the process of capturing the complex interactions
of independent urban variables and the main and inter-
action effects on the dependent variable (socio-economic
attributes). The proposed machine learning method can
encode both the built environment and population activity
features. The method advances our understanding of vari-
able interactions, which releases the constraints of speci-
fying the interaction terms and the linear combination of
multiple effects in existing mathematical models, which
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will provide fundamental insights into interpreting the
effects of urban development, human activities, and land-
scape change on socio-economic inequality in cities. With
that, we claim that the proposed interpretable machine
learning model outperforms conventional mathematical
models.

The core idea of this study is that inequality can be
identified and measured in cities using machine learning.
Machine learning enables capturing various heteroge-
neous urban systems and population features and their
interactions; if the socio-economic status of different areas
could be predicted accurately by machine learning models
using population activity and built-environment features
and their non-linear interactions, then inequality exists. In
other words, if equality is present, features of population
activities and the built environment would not vary drasti-
cally across high-income versus low-income and minority
versus non-minority areas. Hence, the prediction perfor-
mance metrics of machine learning models could be used
to measure the extent of inequality. The high predictabil-
ity of models indicates greater socio-economic inequality
in cities. Also, it could be evidence that inequality is a phe-
nomenon that may not be attributed to individual features
but rather to the complex interactions among various fea-
tures in cities if individual features alone cannot explain
the predictability of machine learning models.

We first created grid maps for 47 US Metropolitan Sta-
tistical Areas (MSAs), assigned socio-economic labels of
census block groups (CBGs) to grid cells within block
groups, and computed features for each grid cell. The
considered features of urban components draw upon mul-
tiple sources of data, including 1 million points of interest
(POIs) data, billions of anonymized mobile phone data,
and more than 10,000 social-economic records for CBGs.
The mobile phone data covers population activities during
the first week of April 2019, which is considered a sta-
ble period, portraying regular human life activities. Two
advanced machine learning (ML) models, XGBoost and
neural network models, were trained and tested. We con-
sidered the predictability of the machine learning models,
quantified by F1 scores, as a metric for evaluating mod-
els’ prediction performance and, accordingly, as a measure
of inequality in a city. To demonstrate the effectiveness
and reliability of the metric, we investigated the tradeoff
between grid size and accuracy and tested the influence
of individual features on the predictability of the models.
Furthermore, we demonstrated the cross-MSA generality
of inequality patterns by training a model in one MSA
and then applying it directly to other MSAs. The trans-
ferability of machine learning models can imply sharable
inequality patterns and quantify variations across MSAs.
We further examined the relationship between inequality
metrics and urban characteristics, including road density
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and facility distribution in MSAs to explore potential solu-
tions for alleviating inequalities. Finally, a conventional
mathematical model, ridge regression model, is used to
demonstrate the performance and capabilities of machine
learning models in capturing the complex interactions
of urban features. The study serves as an effort toward
data-driven and ML-based scientific discovery to address
urban policy challenges such as infrastructure planning to
combat urban inequality.

2 | METHODS

2.1 | Data collection and processing

This study focuses on MSAs in the United States. We
selected the MSAs based on three criteria. First, the popu-
lation size of the MSA should be sufficiently large to serve
as an object of study. Hence, the MSAs selected in this
study are ranked in the top 50 in terms of the sizes of
residential populations. Second, the selected MSAs should
cover different regions of the United States, to consider
the regional effects in concluding the general patterns of
socio-economic inequality in cities. Finally, both public
and private datasets should be available for the selected
MSAs. Considering these criteria, we end up with 47 MSAs
for analyses in this study. A complete list can be found in
the Supplementary Information.

211 | Grid and label creation

To understand the fine-scale socio-economic disparities in
cities, we divided the area of an MSA into grid cells of rel-
atively equal size (see Figure 1). We considered one side of
a grid cell as spanning a certain range of latitude or longi-
tude. We started with 0.01 degree as the length of the side
of grid cells and tested different values from 0.01 to 0.05
degrees with a step size of 0.01 degree. As the grid cells get
larger, more facility and human activity information will
be covered by a grid and integrated to represent the fea-
tures of the grid cells. We used grid cells with a side of 0.01
for all analyses in this study and also showed that this is a
proper selection for the size of grid cells.

To compare the features of different urban areas, we
collected socio-economic public data including per capita
income and race—ethnicity data from the US Census 2014—
2018 (5 years) American Community Survey (ACS) at
census tract level of spatial aggregation (United States
Census Bureau, 2019). We focused on the three largest
race—ethnicity groups as determined by self-identification
in the Census: White, Black or African American, and
Hispanic (Q. Wang et al., 2018). These three population
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FIGURE 1

Illustration of the methodological framework. The upper panel shows a schematic of feature engineering, training,

validation, and testing processes. We divide a metropolitan statistical area (MSA) into grid cells of equal size, extract the features related to

facilities and human mobility, and convert the features into a vector for each grid cell. Each grid cell is labeled by one of the six labels related

to income level and race. The lower panel of the figure shows three analyses using the F1 scores of the machine learning models as a metric of

inequality. We interpret the importance of the features on the inequality of an MSA, evaluate the similarity of inequalities among MSAs, and

identify general solutions for alleviating inequalities

subgroups are mutually exclusive: “Hispanic” including
people of all races except White and Black, “Black” refer-
ring only to non-Hispanic Black people, and “White”
including only non-Hispanic White people. The race that
accounts for greater than 50% of people in a census tract
reported in the Census data is considered the race label of
this census tract. We similarly classified the census tracts
as low-income or high-income based on whether the per
capita income of the census tract is higher than the median
of the MSA or not. We assign the label of a grid cell to the
label of a census tract if the centroid of the grid cell falls
into the polygon of the census tract. As such, the grid cells
belonging to specific census tracts in an MSA are labeled
by one of six socio-economic labels.

2.1.2 | Mobility data for activity features

Urban systems are spatially diverse in terms of population
activities and facility distributions. Here, we characterize
each grid cell based on these two dimensions. To under-
stand the inequality of population activities, we employed
mobile phone data from Cuebiq, a data intelligence com-

pany that collects location data from mobile phone users
who opt in to share their data anonymously through a
General Data Protection Regulation- and California Con-
sumer Privacy Act-compliant frameworks. The current
daily active user count collected by Cuebiq is roughly
15 million in the United States. The data sample has a
wide set of attributes, including anonymized device iden-
tifier (ID), latitude, longitude, visited place ID (if the user
visited a specific POI), UTC (coordinated universal time)
time of observation, and the duration of each visit/stop
(e.g., dwelling time). The data were shared under a strict
contract with Cuebiq through their academic collaborative
program in which they provide access to de-identified and
privacy-enhanced mobility data for academic research.
Cuebiq’s responsible data-sharing framework enables us
to query anonymized, aggregated, and privacy-enhanced
data, by providing access to an auditable, on-premises
sandbox environment (Moro et al., 2021). All researchers
processed, aggregated, and analyzed the data under a non-
disclosure agreement and were obligated not to share data
further and not to attempt to re-identify data.

It is important to capture population activities in reg-
ular conditions when no external extreme events perturb
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human activities. Considering that we extracted the Cue-
biq mobility data from April 1, 2019, to April 7, 2019 (7 days)
for selected MSAs, there are no particular events for MSAs
in this time period, to the best of our knowledge. Also, we
took the data for 7 days in order to account for the vari-
ation of population activities on weekdays and weekends.
Using these data, we first assigned each visit or stop point
to a defined grid cell. Then, we calculated a vast number of
features related to population activities, such as the mean
daily number of visits to a grid cell, the average duration of
each visit in a grid cell, and the maximum daily number of
stops in a grid cell. In addition, Cuebiq provides an estima-
tion of the residential areas of mobile devices, which allows
us to estimate the number of residents in each grid cell. The
complete list of population activity features is provided in
the Supplementary Information. The representativeness of
the Cuebiq mobility data has been demonstrated by mul-
tiple prior studies (Aleta et al., 2020; F. Wang et al., 2019).
They found that Cuebiq data are valid to describe human
activities as one of the urban components (Deng et al.,
2021). Hence, the features generated using these datasets
should be representative and valid for our analyses.

2.1.3 | POI data for facility-relevant features
and metrics

To capture the distribution of facilities in urban areas, we
adopted the 6.5 million active POI data in the United States
from Cuebiq. The dataset includes basic information about
the POIs, such as POI IDs, location names, geographical
coordinates, address, brand, and North American Industry
Classification System (NAICS) code to categorize the POIs.
The NAICS code is the standard used by Federal statisti-
cal agencies in classifying business establishments, such
as retail trade, health care facilities, education, and enter-
tainment places (United States Census Bureau, 2017). In
this study, we selected 10 important types of POIs that are
closely relevant to human lives: restaurants, schools, gro-
cery stores, churches, gas stations, pharmacies and drug
stores, banks, hospitals, parks, and shopping malls. We
counted the number of POIs in each grid cell as their
facility features.

By knowing the grid cell location of each POI, we further
adopted a metric, urban centrality index (UCI), to char-
acterize the distribution of the facilities in an MSA. UCI
is the product of the local coefficient and the proximity
index (Pereira et al., 2013). The local coefficient is com-
puted based on the number of POIs within each grid cell,
and the proximity index is computed based on the number
of POIs within each grid cell along with a distance matrix

FAN ET AL.

that considers the distance between grid cells. The indices
are formulated as follows:

c =1 %(ki—l>
pr=1--Y W

Vmax

V =K' xDxXK

where N is the total number of grid cells in an MSA;
K is a vector of the number of POIs in each grid cell,
and k; is a component of the vector K; D is the distance
matrix between grid cells; V. is calculated by assuming
that the total POIs are uniformly settling on the bound-
ary of the MSA. LC is the local coefficient, which measures
the unequal distribution; PI is the proximity index, which
solves the normalization issue; and V'is the Venables index
(Pereira et al., 2013). The value of UCI ranges from 0
to 1. The values close to 0 indicate polycentric distribu-
tions, while the values close to 1 indicate monocentric
distributions.

2.1.4 | Other datasets and metric calculations

To calculate other metrics, we employed datasets from
multiple commonly adopted platforms. In particular, we
extracted data from Open Street Map (Open Street Map,
2021) to calculate the density of road segments in urban
grid cells. We estimated complete road networks from the
raw data by assembling road segments. Since the lengths of
road segments created by the source are close to each other,
we approached the road density by dividing the number of
road segments by the areas of an MSA. To estimate the sta-
tus of the economic development of the MSA, we adopted
the 2018 data of gross domestic product (GDP) for each
MSA (Bureau of Economic Analysis, 2018). The data are
provided by the Bureau of Economic Analysis in the US
Department of Commerce.

The socio-demographic data obtained from US Census
2014-2018 (5years) ACS is also used to calculate the ethnic-
ity entropy for an MSA. We first generated the distribution
of population sizes for all race—ethnicity subgroups. Then,
the Shannon entropy function is applied to calculate the
ethnicity entropy H(R):

H(R) = —ZP(rj)logP(rj) )
i=1

where r; is the race-ethnicity category, which occurs with
probability P(r;) calculated by the proportion of people in
the population of an MSA.
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2.2 | Inequality characterization

The analyses employing the features and labels for urban
grid cells consist of two components: (1) measuring
inequality of each MSA using a quantitative metric, and (2)
examining inequality within and across MSAs to explore
potential inequality-alleviating solutions. This section pro-
vides an overview of the methods adopted to conduct
experiments in these two components of analyses.

2.21 | Machine learning models

Machine learning models take as inputs the features of
urban grid cells and learn the non-linear relationships
among the features and the labels (Ramchandani et al.,
2020). If the machine learning model in controlled exper-
iments can reveal the socio-economic disparities of grid
cells based on the input features and their non-linear rela-
tionships, it is an indicator of inequality in a city. In other
words, in the presence of equality, the model should not
be able to predict the socio-economic status of grid cells
based on the input features. Accordingly, the predictabil-
ity of socio-economic status based on the input features in
the machine learning models is an indication of the exis-
tence of inequality, and thus the prediction performance
measure could be a metric for measuring the inequality of
the cities with regard to the complex interactions of the fea-
tures. Hence, we consider the F1 score, which is a metric
for the predictability of machine learning models, as the
metric of inequality of the cities (see Figure 1).

In this study, the F1 scores in each socio-economic class
are calculated individually first in a one-vs-rest manner.
In each class, the positive label is the class label, and
the negative label includes the rest socio-economic labels.
Then, true positives are the ones where the model correctly
predicts their real positive socio-economic label, and true
negatives are the ones where the model correctly predicts
areal negative label. False positives are the ones where the
model incorrectly predicts the positive label, and false neg-
atives are the ones where the model incorrectly predicts the
negative label. Both false positives and false negatives indi-
cate that the machine learning model cannot distinguish
the socio-economic label well. True positives indicate a
good performance of the model. Hence, both precision
(considering true positives and false positives) and recall
(considering true positives and false negatives) are equally
important to the model. F1 score, the harmonic mean of
precision and recall, conveys the balance between the pre-
cision and the recall of the machine learning models. In
addition, data samples for different socio-economic labels
are highly imbalanced. F1 score has been designed to work
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well on imbalanced data, compared to the accuracy of a
machine learning model. The greater the F1 score in a
model of a city, the greater the inequality.

To obtain valid and reliable results, this study adopts two
widely used machine learning models: XGBoost and neu-
ral networks. The XGBoost model, a scalable tree boosting
system, is an efficient and easy-to-use algorithm that deliv-
ers high performance and accuracy (Chen & Guestrin,
2016). We tend to have hundreds of thousands of samples
(i.e., urban grid cells) in each MSA, leading to time-
intensive model training processes. The XGBoost model
could quickly execute and perform well in prediction tasks.
Hence, this study mainly uses the results of XGBoost to
characterize and understand the inequality in MSAs. Neu-
ral networks, composed of an input layer, a hidden layer,
and an output layer, can efficiently identify important
information from inputs leaving out redundant informa-
tion. Through an embodied activation function, the neural
networks are capable of capturing the non-linear rela-
tionship between the input features and output labels.
Recognizing the benefits of the neural network model, we
employed this model for validating the results generated
from XGBoost, further enhancing the reliability of the find-
ings and implications obtained from this study. The ridge
regression model is a conventional mathematical model
that is good at avoiding overfitting by regularizing the coef-
ficient estimates (Hoerl & Kennard, 1970). The results of
the ridge model help to demonstrate the performance and
capabilities of the machine learning models in capturing
complex urban feature interactions.

We implemented these machine learning models using
an open-source Python package, scikit-learn (Pedregosa
et al., 2011). We first randomly split the data into two sets,
train and test; 80% of the samples are in the training set,
and 20% of the samples are in the testing set. We further
adopt the cross-fold validation to train the machine learn-
ing model and tune its hyperparameters. We divide the
training set into five subsets of equal size. Four out of five
subsets are used for training, and the remaining one is used
for validation. With this process, the model would be fur-
ther applied to the testing set and compute the F1 score for
each city. In addition, the results of the machine learning
model, especially the F1 scores for different MSAs, are vali-
dated through the training and testing of different machine
learning models, neural networks and XGBoost.

The performance of a machine learning model may be
influenced by many factors including the structure of the
model, size of data, and so forth. The proposed method
considers these uncertainties and controls them in gen-
erating the metric. We used the same model for learning
the patterns of cities, the same size of grid cells in divid-
ing urban spaces, and the same data sources for generating
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features. Each MSA has more than 1000 grid cells so that
the model can have sufficient data for training and vali-
dation. Hence, we could expect that the method proposed
in this study is capable of capturing the actual inequality
phenomenon in cities.

2.2.2 | Understanding of inequalities

As explained earlier, in this study, the F1 score of machine
learning models quantifies the degree of inequality of
each MSA. The next step is to identify potential solutions
to alleviate inequalities in urban areas, which requires a
thorough understanding of the underlying mechanisms of
inequality within and across MSAs. Here, we propose three
experiments to understand inequality from three different
aspects.

In an MSA, inequality is shaped by both static features
of facilities and dynamic features related to human activ-
ities. Examining the contributions of each feature to the
inequality of the MSA is necessary for identifying allevia-
tion solutions. To this end, we conducted experiments to
measure the importance of features to the F1 score of the
machine learning models. In these experiments, based on
the trained models with all parameters and hyperparame-
ters fixed, we set the values of one input feature to be zero
for all samples and measure the predictability of the model
(Lundberg & Lee, 2017). The decrease in F1 scores, to some
degree, can indicate the importance of the features to the
inequality of the MSA. Transforming the distribution of
the important feature in areas of MSA would contribute
to reducing the inequalities.

In addition to MSA-specific strategies, policies that are
effective in more than one MSA would be beneficial for
reducing policy-making efforts and enhancing the exe-
cution of policies at scale. Capturing the similarities of
MSAs based on their inequality characteristics allows us
to understand the effectiveness of cross-MSA policies. To
this end, we employed the method of transferring machine
learning models to different MSA and quantifying the
similarities of inequalities across MSAs by the metric of
model transferability. Specifically, we train the machine
learning model by feeding in the samples from an MSA.
Once the training process is done and all parameters
are fixed, we feed in the sample from other MSA and
measure the predictability of the model. The obtained
F1 score could indicate the extent to which the patterns
of the MSA on which the model is trained share simi-
larities with the patterns of the MSA that the model is
predicting. This quantitative metric offers us a generic met-
ric to capture similarities of features shaping inequality,
which could inform us about policy generalization and
execution.

FAN ET AL.

Finally, inequalities are not uniform among MSAs. The
variations of urban characteristics across MSAs may tell
us general approaches to mitigate urban inequalities. As
such, we extend our analysis to capture the relationships
between urban characteristics and F1 scores across MSAs.
Here, we primarily look into: (1) the status of economic
development quantified by GDP; (2) the scale of urban
development quantified by the number of POIs in the
MSA; (3) the connectedness of urban areas quantified by
road density; (4) the diversity of residents quantified by
ethnicity entropy; and (5) the geometric distribution of
facilities quantified by the UCI. The calculation of these
metrics is as aforementioned in previous sections. With
all these characteristics of MSAs, to capture the rela-
tionships between inequality and urban characteristics,
we employ an ordinary least squares (OLS) regression
model to incorporate the interactions among multiple
independent variables:

Vi ~ Bo+Bixi1 + PaXin+ B3Xiz + PaXis+ PsXis+ &

(3)
where y; is the F1 score of MSA i; x; ; to x; 5 are the vari-
ables of urban characteristics; § are coefficients; ¢; is the
error term. In the regression, since the values of GDP, road
density, and number of POIs have a much larger scale
than other variables, we use logarithmic transformation of
values.

3 | RESULTS

3.1 | Empirical statistics of features

The variety of datasets we gathered allowed us to capture
different features of the cities. We first show examples of
features mapped into the metropolitan area of Atlanta to
gain a basic and empirical understanding of the distribu-
tion of facilities and human activities in an MSA. Figure 2
illustrates the extent to which densities of features vary
across the areas of the Atlanta MSA. As we observed, the
number of active residents varies across different regions
of the MSA (Figure 2a). POIs are concentrated in the cen-
ter of the MSA and expand like a tree from the center to
the periphery of the MSA (Figure 2c). The main incentive
for human movements is the visits to POIs, such as work-
ing and shopping, leading to agglomerated activities in the
center of the MSAs with a high density of POIs (Figure 2b).
Beyond activities in POIs, the footprints of people also
include visits to friends and work commutes. Hence, the
scale of population activities is broader than the locations
of POIs. Finally, in Figure 2d, we show the residential
areas labeled by socio-demographic groups. We find that
White people account for the majority of the residential
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FIGURE 2

Spatial distribution of features and socio-economic characteristics of population groups in Atlanta MSA. (a) The distribution

for the number of residents (mobile phone devices as a proxy) based on mobile phone data. The numbers of residents are aggregated at the

census tract level. Because the areas of census tracts vary, the figure shows the only number of people in different regions of the MSA rather
than the population density. (b) The distribution of the average number of stops per day in a grid cell. (c) The distribution of the number of
points of interest in a grid cell. (d) The distribution of different income and race groups: HI represents high-income groups; LI represents

low-income groups. (e-f) The distribution of some example features (i.e., number of residents (e), number of restaurants (f), number of

grocery stores (g), and number of hospitals (h)) in each sociodemographic group: W represents White; H represents Hispanic, and B

represents Black. The error bar represents the variance of samples.

area of the MSA. High-income White people are living in
the North and close to the center of the MSA, while low-
income White people tend to live on the periphery and
the South of the MSA. Compared to the wide distribution
of White people, the residential areas of Black people are
more condensed, and high-income and low-income Black
subgroups are intertwined in the center of the MSA. His-
panic subgroups occupy only a very small proportion of the
area and are dispersed across the MSA. These observations
inform us about the segregation and inequality of feature
distributions and the complex association between urban
features and socio-demographic groups.

In the next step, we first look at the features of facilities
shared by different population groups. Figure 2e-h shows
the differences in the number of example facilities in the
grid cells occupied by different socio-demographic groups.
We observe that the differences in facilities in residential
areas of different socio-demographic people are not signif-
icant. Specifically, comparing the mean and variance in
the average number of facilities in a grid cell, the differ-
ences may be present in the mean values. For example,
grid cells of Hispanic people have more restaurants and
grocery stores (Figure 2f,g). White people, high-income
or low-income, have the minimum number of facilities
in their residential grid cells. The variance across grid
cells in a population group, however, is extremely large,
making the differences in the number of facilities incon-

spicuous. This pattern is observed in all selected MSAs
(more details can be found in the Supplementary Infor-
mation). Such observation implies that inequality is not
apparent and cannot be simply quantified through basic
statistics and based on only one urban feature due to the
complex interactions of urban features. Hidden and non-
linear mechanisms resulting in inequalities at the nexus of
urban features and socio-demographic attributes exist and
are underexplored without advanced methods capable of
specifying the complex interactions of features.

3.2 | Measurement of inequality

To further decompose the inequality in cities, we trained
three extensively adopted and technically mature mod-
els: two machine learning models, XGBoost and neu-
ral network models, and one conventional model, ridge
regression model. The predictability of these models, given
features in urban grid cells, is considered a metric of
inequality in an MSA. The machine learning models are
well-trained in the same way for different cities. All the
metric values for evaluating the model performance are
obtained when the models are optimized and convergent.
We only compare the inequality metric of cities when all
other influential factors, such as model types, grid size, and
features, are controlled. Showing the influence of these
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factors on model performance is to help select the proper
model, grid size, and features for this study. Under this con-
text, the poor performance of the model can indicate less
inequality since all other influential factors are controlled
well. The results of F1 scores are based on the testing data
for each city. The inequality is pronounced if the machine
learning model can obtain high predictability, indicated
by a great F1 score. That is, the interactions among urban
features can distinguish the residential areas with differ-
ent socio-demographic population groups, reflecting the
fact that inequalities of urban features in serving resi-
dents of subgroups present. Using the F1 score as the
metric of inequality, we quantify the inequality of all
selected MSAs by considering the nuanced relationships of
urban features. However, as aforementioned in the Meth-
ods section, the ability to capture the complex relationships
among urban features and the algorithmic advantages
varies among machine learning models. Here, by training
and testing the models, we found that the ridge and neu-
ral network models have similar performance across all
MSAs; and the XGBoost model outperforms conventional
ridge models by about 25% in the majority of the selected
MSAs (Figure 3a). The XGBoost models achieve an aver-
age of 0.8 for F1 scores among selected MSAs, meaning that
the model can explain 80% of the variations of labels based
on input variables. In view of the outstanding performance
of the XGBoost models, we used the results of XGBoost
to analyze the inequality of MSAs in this study, and the
results of the other two models to validate the outcomes
of XGBoost models.

The predictability of the machine learning models may
be influenced by factors such as the size of grid cells
or specific features that undermine the importance of
the complex interactions of urban features. To examine
the robustness of the models and the results, we applied
the models to samples generated from different sizes of
grid cells. Figure 3b displays the relationship between F1
scores and the size of grid cells for three examples of MSAs.
We observe that the performance of the XGBoost model
decreases when the size of the grid cell increases. There is
a jump in performance at around the grid size of 0.02 and
0.03. Decreases in model performance could be attributed
to the lack of grid cells (samples) to train the model and
also the aggregation of features that reduces the dispari-
ties among grid cells. Such a negative correlation between
model performance and grid size provides us with the
rationale for selecting a proper grid size for measuring the
inequality of MSAs. Based on the results, 0.01 and 0.02
would be proper grid sizes. Thus, for all the analyses in this
study, we used 0.01 as the size of the grid cell so that the
results generated from the machine learning models could
be comparable and informative.

FAN ET AL.

In addition, individual features may also influence the
performance of the model due to the strong correlation
between individual features and labels. Here, we examined
the contributions of individual features while fixing the
parameters of the well-trained model. The trained model
preserves both the complex interactions of the features
and the contributions of individual features. Figure 3e
shows the decrease in model performance by removing
specific features. The elimination of features related to
general human activities, such as mean stops, mean vis-
its, average visit time, and the number of residents, could
lead to decreases in F1 scores. But the decreases do not
significantly influence the performance of the model, com-
pared to the high predictability of the model. For example,
for the results of the XGBoost model, the average influ-
ence of the number of residents on F1 scores is below 0.3.
In Figure Sla,b, we also plot the influences of the fea-
tures on the F1 scores for the ridge and neural network
models. The average influences of the features are even
much lower than 0.2. Compared to the average F1 score
of XGBoost, which is 0.81, we consider that urban features
do not have a significant influence on the model perfor-
mance. In addition, the specific types of POIs and visits to
these types of POIs do not make too much difference to the
F1 scores. In general, individual features cannot explain
the inequality of each MSA well. This result implies that
inequality is a phenomenon arising from non-linear inter-
action among various urban features. Hence, inequality
should be attributed to hidden complex interactions of the
urban features rather than individual attributes.

3.3 | Transferability of inequality

We mapped the F1 scores of the MSAs obtained from the
XGBoost model in Figure 3c. There are 22 MSAs from
the South, 12 MSAs from the West, nine MSAs from the
Midwest, and six MSAs from the Northeast of the United
States. We observed significant regional patterns from
the map: MSAs in the US West tend to have higher F1
scores than MSAs from other regions, and Northeast MSAs
tend to have lower F1 scores. That means, socio-economic
inequality is greater in the MSAs in the US West, and socio-
economic inequality is lesser in the MSAs in the Northeast,
compared to the MSAs in other regions. To further explore
this observation, we plotted the relationships among F1
scores, regions, and the GDP in Figure 3d. In addition to
the regional patterns, we also find that lower GDP is corre-
lated with higher F1 scores, while higher GDP is correlated
with lower F1 scores. This association is not very strong
since we selected MSAs with the largest populations.
The weak negative correlation can still demonstrate the
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FIGURE 3 Results of model training and testing. (a) F1 scores of three models: neural networks, ridge classifier, and XGBoost for each

MSA. The numbers on the bars are the mean values of the F1 scores for all selected MSAs. The dots on top of each bar represent the F1 scores
of the MSAs. The error bars show the variance of the F1 scores. XGBoost achieves the best performance among the three models. (b) Results of
testing the effect of grid size on the performance of the XGBoost model in three example MSAs: Dallas-Fort Worth MSA, Boston MSA, and
Cleveland MSA. The sizes of the grid cells are measured by the differences in the longitude and latitude of the corner points on one side of a

grid cell. Hence, the values on the x-axis represent the differences in degree in the geographical coordinate systems. (c) A geographical map
shows the F1 scores for selected MSAs in the United States. (d) The relationships between F1 scores and gross domestic product of MSAs in
four regions of the United States: South, Northeast, Midwest, and West. (e) Importance of features to the F1 score of the XGBoost models for
each MSA. The x-axis is the difference between the original F1 scores and the F1 scores after dropping a specific feature from the input
(decrease of predictability of the XGBoost model). The y-axis represents the features selected to be removed for understanding its contribution

to the inequality of the MSAs.

association between the extent of socio-economic inequal-
ity and the GDP of the MSAs. These regional patterns of
inequality motivate us to consider the common character-
istics shared by MSAs.

To explore the similarities of inequality across a variety
of MSAs, we conducted experiments on the transferability
of the patterns. That is, to what extent the machine learn-
ing model trained with the samples of one MSA can predict
the occupied population groups for grid cells in other
MSAs. The transferability of the models helps us to under-
stand the generalizability of the patterns across MSAs and
regions. As most of the analyses and results are taken
from the most populated MSAs, other MSAs can benefit
from the identified and generalized patterns (Dong et al.,
2019), if the shared inequality patterns can be captured. We
trained the machine learning models using data samples
from one MSA with both validation and testing processes.
Then, we applied the fixed model to the data samples from
another MSA. This process aims to address if the patterns
from one MSA are transferrable to another MSA, which

allows us to observe the variations of inequality in cities
across the nation and motivates us to explore the factors
related to variant inequalities. Hence, the results present
in the paper are based on the performance of the mod-
els on the testing sets, either from the same MSA or a
different MSA. Figure 4 summarizes the results obtained
from cross-MSA experiments. As expected, all the models
trained and tested on the same MSAs (diagonal) outper-
form models trained and tested in different MSAs. The
performance of the models varies for different pairs of
MSAs. The values on the upper left corner are closer to
light blue, meaning that the F1 scores are close to 0.6 and
the transferability is more evident, while most of the values
on the right-hand side are dark red, meaning that the trans-
ferability is quite low (Figure 4a). These results imply that
some MSAs share common characteristics shaping their
inequalities, and thus the same inequality-alleviating mea-
sures could work across these MSAs. We also found that
the transferability matrix is asymmetric. We show exam-
ple MSAs that achieved the highest transferability and the
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ww==_ Highest Transferability
== Lowest Transferability
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MSAs that Models were Trained On

Shared inequality among selected MSAs measured by the transferability of machine learning models. (a) Pair-wise similarity

of inequalities among MSAs. Each row represents the MSA where the model is trained, and each column represents the MSA where the

trained model is adopted to make predictions. The color indicates the F1 scores. Here, the machine learning model is XGBoost. (b) Examples
of transferability results for the top four and bottom four models for MSAs: Columbus (Col), Kansas City (KC), Oklahoma City (OKC),
Cincinnati (Cin), Salt Lake City (SLC), SJ-Sunnyvale-SC (SJ-S-SC), Tucson (TC), and Urban Honolulu (Hon). The error bars show the
variance of the F1 scores. The numbers attached at the bottom of the bars are the mean values of the F1 scores.

lowest transferability among the selected MSAs. Models
trained on MSAs such as Columbus and Kansas City can
learn the most common patterns of inequality, which could
be applied to most of the other MSAs. However, models
trained on MSAs such as Urban Honolulu are not able to
capture the common inequality patterns of other MSAs
since Urban Honolulu is in Hawaii, where the develop-
ment and environment are different from cities in the US
mainland.

3.4 | Relationship with urban
characteristics

Considering the variety and transferability of models
among MSAs, the next question is what inequality-
alleviating strategies would be effective among MSAs
consistent with their urban characteristics. To investigate
this question, we computed the metrics of urban charac-
teristics for MSAs, including the urban centrality index,
road density, and ethnicity entropy, along with the num-
ber of POIs and GDP of the MSAs (more details can be
found in the Methods section.) Results are summarized
in Figure 5 and Table 1. The distributions of UCIs and
the inequality extent measured by F1 scores are approxi-
mately normal, with histograms shown in Figure 5a. The
Kendall rank correlation reaches 0.72, the Spearman rank
correlation reaches 0.88, and the Pearson correlation coef-
ficient approaches 0.89 for these 47 MSAs. All measures are
statistically significant with p < 0.01, indicating a strong
positive correlation between the UCI and the extent of
inequality. UCI itself is not included in machine learning
models. The strong correlation between UCI and the F1
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Pearson p = 0.89 2.61x10°Y7 Pearson p = —0.62 3.88x10°¢
Speaman p = 0.88 5.03x10°1¢ Speaman p = —0.60 8.89x10°°
Kendall T = 0.72 7.94x10°13 Kendall T = —0.44 1.22x107°
FIGURE 5 The relationship between urban characteristics

and inequality (F1 scores). (a) The values of urban centrality index
(UCI) as a function of F1 scores obtained from XGBoost models. (b)
The logarithmic values of road density in grid cells are a negative
function of F1 scores obtained from XGBoost models. The
correlation analysis under the plots shows the exact statistics and
p-values. Three statistical tests were conducted for each of the
correlation analyses. All measures are statistically significant with
p < 0.01. The UCI is strongly positively correlated with inequality,
and road density is moderately negatively correlated with inequality
for the selected 47 MSAs.

score serves as an important interpretation of the presence
of inequality in cities. That is, a pronounced concentration
of POIs greatly contributes to inequality in MSAs. Analy-
ses on road density reveal another significant relationship.
The distribution of road density is close to log-normal,
while the distribution of F1 scores is normal (histograms
in Figure 5b). The Kendall rank correlation reaches —0.44,
the Spearman rank correlation reaches —0.60, and the

oQ ‘0 “L998LIVT

:sdny woiy papeoy

puop) pue swId L o} 998 “[£202/10/£0] U0 AI181qT SUIUQ A[IAN “SOHEIQNT ASIAIUN) NV SEXOL AQ TL6TI9MU/[ [[1°01/10p/wiod Kaiav-

ssdny)

101/W0o" Ko im-

pue-s

ASUDIT SUOWWIO)) dANEAI)) d[qear[dde ay) Aq pauIa0T axe SAOIMIE () 2SN JO SI[NI 10} ATRIqIT AUI[UQ) A3[IA UO (



FANET AL COMPUTER-AIDED civiL AND INFRASTRUCTURE ENGINEERING . WILEY 13

Pearson correlation coefficient approaches —0.62, for 47

_ g MSAs. These significant measures signify a moderate neg-
§ o = S ative correlation between road density and inequality.
g *
\3/ & % % - H That is, the increase in road density (as an indicator of
g n
~ 8 Rc 8 8 2 urban development and connectivity) could contribute to
€ 3 i 5533 P Y
alleviating socio-economic inequalities.
g q
Coupled with other factors, we analyzed the extent to
?ﬁ g which urban characteristics can capture the inequality
3 . = f MSAs. We examined the performance of multilinear
I . S 3 0 : P
;; N T i . § models with different combinations of variables. Table 1
g * o= . I .
5 & S & R & £ summarizes the results of the multilinear regression mod-
€ ° o 8 . &3 3 &
~ e ! 8 Y e~ 2 els using OLS. The first four models with the inclusion
= g
£ of UCI as a variable reach high-fitting performance with
2 g gp
= 8 R? greater than 0.79, indicating that UCI can explain 79%
~8 @ g of the inequality in MSAs. The coefficients for UCI are
a e . . .
" § ; S o significant, showing a consistent result with the corre-
c S & 1 i % lation analysis. Other variables, such as the number of
=] o ] % n &% = Y
g ~ S B 3 | e o POIs, GDP, and ethnicity entropy, are not significant, even
2 L S T & F 2 g o . .
S = though they may have positive and negative correlations
3 £ g y may p g
T 2 with the inequality scores. The relationship between road
9 S q p
= . § density and inequality is not significant. This result implies
$ 5 g § g that, although the correlation analysis finds the alleviating
% S *8 f’/ § Tél effect of road density on the inequality of MSAs, a poly-
= é’ i 5 kg centric distribution of POIs could moderate the effect of
g S S I B A road density on inequality. The other three models exclude
* - | © © ¥ © w g . R X
S b the UCI variable and examine the effects of road density
w1 %}
g e coupling with other factors. In these models, the neg-
& ) s
8 ~ G = ative relationships between road density and inequality
£ = g 3 © are significant, confirming our previous findings in the
S 3 2 S g g g
8 2 *9 et k= correlation analysis and making the road density weakly
= % % 2 o . . .
iy = h @ - S redictive of inequality. The R? of these models reaches
S = =) 2 <« o &~ & p q
2 -“g’ @ S S 8538 5|2 more than 0.35, showing the moderate effect of expand-
5 E = ing road density on the inequality of MSAs. Other factors,
|7 B Q
= § = including GDP, and ethnicity entropy are still insignificant.
= - ; i i i
5 A > o~ = To establish that the correlations between inequality and
a9 T g S q y
g 2 28 > urban characteristics are sufficiently general, we tested
o N—' > A e . . .
g 2 c 3 *8 : 8 these findings using the F1 scores obtained from neural
§ :5, g o & o @ é networks and ridge models. The results are summarized
~ n n [ .
g Zla S s s ¥ 3 & F in the Supplementary Information, Tables S1 and S2. These
z = g pp ry
5 8 i= findings inform us about the potential of enhancing road
2 3 = density and POI distribution for inequality alleviation,
o °H —~ k3] . . . . O . . .
B 8 > 2 pe which will be discussed in detail in the discussion section.
I 3 — 8 g 5}
3 & S S S S
I 17 =) A = —
5 £ e i i P | £
Z &l g 52 85 3 3.5 | Model comparison
g Aalc S ©c o ¥ 3 & 2
5] =
—_— o
g 5, The machine learning models that this study focuses on
g 2 B o he neural network model and the XGBoost model.
B g 2 o are t
© § § ; % e The ridge regression model is a conventional mathemati-
- .. A A L S = cal model because it is a type of linear regression technique
52 23 g 5 < 8 = P & a
X R o 3 g s L o 58 ©8°3 used to solve some of the problems of OLS by impos-
= OC&EgR .8 5%E S5-.23 the p by mp
2 PYs® U EITE gECV % ing a penalty on regression. The form of the ridge model
i Qe R 3 2 OO0 < I 3 & Q% . . . . . .
= Z @Sy is clearly defined. Solving the ridge model is equivalent
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to solving the coefficient for each independent variable.
The results in Figure 3a show the lowest predictive per-
formance of the ridge model, compared to the machine
learning models like neural network and XGBoost models.
In addition, comparing the results in Figures 3c,d and S2,
we find that the ridge regression model cannot distinguish
the degrees of inequality across US cities. Finally, based on
the poor performance in Table S1, compared to the results
in Tables 1 and S2, we find that the ridge regression model
is limited in interpreting the factors influencing inequality
in cities. Therefore, we prove that conventional regression
models are not capable of capturing the complex interac-
tions among the inputs. The proposed machine learning
models outperform conventional mathematical models to
measure and explain inequality in cities.

4 | DISCUSSION AND CONCLUDING
REMARKS

Measuring and understanding the socio-economic
inequality in cities is of great importance to policymaking,
planning, and design toward equitable urban systems
of facility services and life opportunities. When equal-
ity exists, people of different income levels and racial
groups would have similar interactions with facilities and
infrastructure to meet their life needs. In this study, we
present a new computational method that leverages the
interpretability of machine learning models to encode
the high-dimensional and complex interactions of urban
features to quantify and understand socio-economic
inequality in 47 US metropolitan areas. Inequality is a
multifaceted phenomenon that arises from the complex
interactions among heterogeneous urban features. Dif-
ferent from existing works, the method proposed in this
study allow us to integrate heterogeneous urban features
and their complex interactions into a comprehensive and
quantitative metric. The metric is capable of providing
a holistic view of the inequality of intertwined urban
components in a city and also allowing to transfer insights
across cities.

We show that being able to predict the income and race
label of an area based on population and the built envi-
ronment features is an indicator of inequality. Accordingly,
we demonstrate the effectiveness of using the predictabil-
ity of machine learning models as a metric of inequality to
integrate the non-linear relationships among urban com-
ponents. We also examine the tradeoff between grid size
and model accuracy and find regional patterns of inequal-
ity of MSAs. The results show that the predictability of
machine learning models does not decline drastically if
individual features are removed. This result provides evi-
dence that inequality is a phenomenon influenced by the

FAN ET AL.

intertwined urban features rather than a consequence of
individual features.

We conducted validation on different parts of the
method to enhance the validity of the findings. First,
the validation of the machine learning models has been
conducted using five-fold cross-validation in training the
models. Second, the results of the machine learning model,
especially the F1 scores for different MSAs, are validated
through the training and testing of different machine
learning models such as neural networks and XGBoost and
the comparison with the results of conventional mathe-
matical models like the ridge regression model. Third, the
strong correlations between F1 scores and facility distribu-
tions, and road density, which align with existing social
science literature, could also support the validity of the
method and findings in this study.

The objective of the proposed machine learning method
for urban inequality is not to improve the prediction
accuracy or other quantitative metrics of model perfor-
mance. The proposed machine learning model overcomes
the limitations of the conventional mathematical models
that require specifying the form of feature interactions
and compound effects on the dependent variable. In fact,
it is improper to specify the forms of feature interac-
tions and compound effects before being aware of the
underlying mechanisms of these interactions. As such,
existing mathematical models based on assumed formulae
are not comparable with our model because the complex
interactions of urban features are unknown.

The finding helps us rethink how inequality should
be examined in cities. The transferability analyses of the
models show that MSAs indeed share common patterns
of inequality, implying that urban characteristics may
influence the inequality of cities. Variations of inequality
patterns, however, still exist because the models are not
completely transferable. By examining the relationships
between urban characteristics and the inequality met-
ric, we develop a deeper understanding of inequality and
identify general solutions for inequality mitigation. The
results and findings of this study have notable implications
that contribute to decision-making in various research
and practical domains such as urban planning, infrastruc-
ture development, economic promotion, and government
regulation.

With the growing availability of urban big data and
the amplified complexity of urban systems, learning how
urban components interact with and understanding the
consequent impacts of complex interactions are particu-
larly critical for optimizing the operations of urban systems
and the decision-making of urban development. Our
results suggest individual features cannot reveal the com-
plexity of the urban systems and how inequalities emerge,
and thus are not capable of quantifying the inequality
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of cities properly. The inequality metric proposed in this
study further understanding of the non-linear interaction
of population activities and facility distributions and the
effects on social-economic inequality of cities. The pro-
posed metric provides a new perspective on evaluating the
complex relationships of urban components and a novel
approach to deriving knowledge of urban systems from
large-scale multisource granular data. In particular, over-
coming city-scale challenges such as inequality issues, a
holistic perspective to think about the underlying mech-
anisms and solutions is required, as the interdependencies
of the urban components are making a difference in the
socio-economic outcomes of the whole city.

Another implication of our work is helping city planners
and governments evaluate strategies for alleviating socio-
economic inequalities in MSAs with the inferred relation-
ship between urban characteristics and the inequality met-
ric. Our study shows that better urban development and
dispersed distribution of facilities could alleviate inequal-
ity of cities significantly. Changing the facility distribution
from mono-centricity to poly-centricity could narrow the
service gap between different areas of the cities and could
intertwine with the regular life activities of the population.
Increasing road density (as an indicator of urban develop-
ment) could improve the accessibility of public services.
On the other hand, the effects of facilities distribution
may moderate the effects of road density on inequality.
This finding raises a more practical way for alleviating and
mitigating inequalities as dramatically changing the distri-
bution of facilities in a city would lead to a worse impact
on the economy than the benefits of mitigating inequality.
Hence, given limited resources, policies that could increase
road density and slightly change facility distribution at the
same time may end up being cost-effective solutions, as
these actions could reshape the mobility flows and visit
patterns of the population. In addition, localized actions
for each MSA are still needed since variations of inequality
patterns are also observed in our study.

This study also has some limitations that need future
research to overcome. First, human activities are not
static features. Activities in different scenarios, such as
gathering events, commuting peaks, and natural disasters
could show a more comprehensive profile of population
patterns and further make a difference in measuring socio-
economic inequality. Future research could build upon our
framework and extend the machine learning models to
incorporate dynamic population activities. For example,
the long short-term memory model could be adopted to
encode time-series information on human activities (Alam
et al., 2020). The understanding of inequality could be
deepened by capturing more features about urban sys-
tems and populations. Second, this study considers each
area of a city as independent. The physical adjacencies
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and social dependencies are not computed and included
in our models, although these features are of impor-
tance to understanding the spillover effect of inequality.
Future research could develop new computational models
(Martins et al., 2020), such as graph neural networks
to encode such relational information quantifying the
inequality of cities.
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