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Abstract—Industrial Internet provides a collaborative com-
putational platform for participating enterprises, allowing the
collection of big data for machine learning tasks. Despite the
promise of training and deployment acceleration, and the poten-
tial to optimize decision-making processes through data-sharing,
the adoption of such technologies is impacted by the increasing
concerns about information privacy. As enterprises prefer to keep
data private, this limits interoperability. While prior work has
largely explored privacy-preserving mechanisms, the proposed
methods naively average or randomly sample data shared from
all participants instead of selecting the most well-suited subsets
for a particular downstream learning task. Motivated by the lack
of effective data-sharing mechanisms for heterogeneous machine
learning tasks in Industrial Internet, we propose PriED, a task-
driven data-sharing framework that selectively fuses shared
data and local data from participants to improve supervised
learning performance. PriED utilizes privacy-preserving data
distillation to facilitate data exchange, and dynamic data selection
to optimize downstream machine learning tasks. We demonstrate
performance improvements on a real semiconductor manufactur-
ing case study.

Index Terms—Attention, Data-Sharing, Data Distillation, In-
dustrial Internet, Privacy-Preserving, Reinforcement Learning,
Task-Driven Data Selection.

I. INTRODUCTION

Deep learning models have significantly improved perfor-
mance on various supervised tasks [1, 2] but require large-
scale labeled datasets to extract valuable knowledge [3, 4]. In
industrial settings, collecting such annotated datasets is often
infeasible, prohibitively expensive, or impractical for a single
entity. Consequently, this calls for multiple participants to
collaborate with their data. Lots of existing useful proprietary
or sensitive data are distributed among data owners, yet privacy
concerns prohibit sharing, particularly in critical applications,
such as healthcare, or among participants with competing
interests, such as manufacturing. The bottleneck, therefore,
lies in how to share data while protecting data privacy and
ensuring scalability in centralized model training.
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Fig. 1: Overview of the proposed PriED framework. Each
participant can share distilled privacy-preserving data repre-
sentations, by training their own generative data distillation
model and desensitizing their private data. Given a specific
downstream task, the server performs task-driven data selec-
tion to fit a model on the most suitable subset of distilled data
from different participants.

To solve this problem, previous works have relied on
different approaches, including but not limited to differential
privacy (DP), compressive privacy, federated learning, efc.
[5,6,7,8,9, 10]. Due to the large number of participating het-
erogeneous clients, these methods pose several challenges. For
example, directly averaging parameters requires participants to
have the same model structure. As the number of participants
grows, it becomes infeasible in practice to collect and average
model weights. In addition, requiring model weight or gra-
dient exchange not only remains computationally expensive
but comes with possible security risks and privacy concerns
[11, 12, 13]. Model distillation has recently been applied to
this task, where random subsets of clients are distilled on
a server ensemble (student) that is trained by averaging the
clients’ (teachers’) prediction logits on unlabeled, public, or
artificially generated data [14, 15, 16]. These frameworks



eliminate some of the vulnerabilities but rely on uniformly
averaging model predictions or randomly sampling subsets
of models at each distillation step, instead of selecting the
most suitable data for the downstream task at hand. As such,
randomly acquiring information from all participants results
in suboptimal trained models and often may result in negative
information transfer.

Beyond preserving privacy, another challenge thus lies in
selecting which dataset or data instances are useful for a
specific downstream task. Since participants in a data-sharing
ecosystem might be fairly diverse in terms of the underly-
ing company processes and variable relationships, a crucial
component in improving model performance is the ability to
retrieve participants that are similar. For example, in manu-
facturing data-sharing, these similar participants can produce
similar products with the required specifications or use similar
manufacturing processes, recipes, and equipment. As a result,
some recent works focus on learning retrieval mechanisms for
data selection [17, 18, 19]. Combining task-driven data-sharing
frameworks and privacy-preserving generative methods would
enable a more intelligent data-sharing ecosystem with built-in
incentives and privacy protocols. However, this line of work
has gained fairly limited attention.

To address these challenges, in this work, we propose
PriED, a Privacy-prEserving Data-sharing framework that
allows participants to share distilled synthetic data for down-
stream tasks while preserving data privacy. In contrast to
parameter-based sharing or prediction-based sharing methods,
PriED first learns intermediate privacy-enabled data represen-
tations for each participant. These distilled data representations
are then fused with an attention mechanism that captures
similarity among participants towards the intended task, re-
sulting in a task-driven data-sharing framework. The learned
attention-based similarity can effectively select data points
from multiple data owners, conditioned on the corresponding
data receiver. The model is trained end-to-end with rein-
forcement learning (policy gradient), assigning rewards based
on the prediction accuracy for the downstream task. While
in this paper, we focus on supervised learning downstream
tasks, PriED can be easily adapted for various other tasks and
domains, such as semi-supervised learning with corresponding
discrete performance metrics. Most importantly, PriED miti-
gates privacy risks with similar computation costs as baseline
global and local models and allows flexible task-driven data
aggregation from heterogeneous data owners with varying data
types, dimensionalities, and preprocessing mechanisms.

Our contributions can be summarized as follows: (1) We
introduce a privacy-preserving data-sharing paradigm for in-
dustrial data that enables synergistic partnerships among par-
ticipants and reduces data collection and annotation efforts
for each participant. (2) We propose PriED, an end-to-end
model that consists of privacy-preserving data distillation and
attention-based data selection phases. Experimental evaluation
on a real semiconductor manufacturing case study showcases
the effectiveness of the proposed method. (3) We show that
PriED progressively learns a task-driven similarity that can
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capture inherent engineering similarities among participants.

II. RELATED WORK
A. Privacy-Preserving Data Sharing

Methods such as differential privacy enable sharing of useful
data patterns while protecting individual aspects of the data
that cannot be publicly shared. To achieve differential privacy,
Xie et al. [20] propose DP-GAN, a Generative Adversarial
Network (GAN) [21] model that is trained with injected
gradient noise. Frigerio et al. [22] extend DP-GAN by incor-
porating clipping decay optimization [23], while Triastcyn and
Faltings [24] propose a differentially private critic to ensure
that synthetic data created by the generator do not appear in
the training samples. Torkzadehmahani et al. [25] clip the
gradients of the real and synthetic data separately to have
better control over the sensitivity towards real data.

A separate line of work focuses on teacher-student en-
semble models. For example, Private Aggregation of Teacher
Ensembles (PATE) [26] utilizes multiple “teacher” models
trained on disjoint datasets to train a single “student” model
via noisy voting. Jordon et al. [27] replace the discriminator
with a set of teacher and student discriminators, where the
student discriminators learn from the data generated by the
teacher discriminator. Long et al. [28] replace the discriminator
in GAN with the teachers from the PATE model and train
the student generator using a private gradient aggregation
mechanism to produce synthetic samples.

Specifically in IoT settings, Du et al. [29] propose a
communication efficient privacy-preserving protocol, where a
differentially private approximate mechanism facilitates the
distributed training. In our work, we consider sharing latent
representations rather than the raw data itself. Most relevant to
our setting, Li et al. [30] propose a robust privacy-preserving
method to obscure important latent presentations for text
preprocessing tasks. In contrast to prior work, and apart from
learning latent representations that are invariant to sensitive
features, we propose to combine distilled synthetic data in a
task-driven manner instead of directly averaging or uniformly
sampling, and thus improving data selection and downstream
performance, while also learning inherent similarity mecha-
nisms that are useful for grouping or retrieving participants
with similar processes.

B. Learn to Select Data

For real-world tasks, the scarcity of annotations prevents
the application of supervised deep learning methods that rely
on large datasets. Several research works focus on addressing
data collection and data selection challenges from various
perspectives. One such direction is active learning (AL),
which aims at incorporating targeted human annotations into
the model training process, by iteratively selecting the most
informative data points to pass to a subject matter expert for
annotation. Commonly used criteria are uncertainty sampling
[31], density-weighted uncertainty sampling [32, 33], diversity
[34], QUIRE [35], extreme learning methods [36] and bayesian



active learning methods such as BALD (Bayesian Active
Learning by Disagreement) [37].

Other works focus on interleaving processes to reduce
annotator waiting time in batch active learning [38], and active
learning domain adaptation settings by clustering uncertainty-
weighted embeddings [39] or by utilizing reinforcement learn-
ing [40], Bayesian Optimization [41], and domain similarity
metrics [42]. Recent works formulate active learning as a
multi-armed bandit problem and select data from a set of
candidates in each round [43, 44, 45]. Vu et al. [18] learn
an active learning query strategy using reinforcement learning
and feedback from human annotators, while Liu et al. [17]
leverage imitation learning in a similar setup.

Nevertheless, most of these works target specific natural lan-
guage processing and image classification problems and do not
deal with privacy concerns. The benefit of privacy-preserving
data-sharing models is that they enable the participants to share
the data without violating any privacy constraints, and thus
collaboratively utilize larger amounts of data for downstream
tasks. Our work introduces a framework for learning to select
data from a set of participants, where desensitized distilled
data are shared in lieu of raw data that involve confidential
and proprietary information.

III. METHODOLOGY
A. Problem Formulation

Let M be the set of participants (data owners) in the
data-sharing ecosystem, each associated with a private multi-
variate time series data source {X! € RF}M, . Here, X!
denotes all F' features of :-th data owner at time ¢. Multi-
variate time series (MVTS) data collected from interconnected
sensors and actuators are the most common types of data
available in the Industrial Internet of Things (IloT) and smart
manufacturing [46, 47, 48, 49]. Let k be the data receiver, i.e.,
the participant that wishes to request data for the downstream
task. Subsequently, M _j denotes the rest of the data owners,
i.e., excluding the data receiver k.

To enable privacy-preserving effective data sharing among
the participants (i.e., data owners and receivers), we introduce
the PriED framework that consists of two key components,
data distillation and data selection. Similar to prior works,
we consider a subset of sensitive features, among the set of
all features, that need to be kept private. For example, these
sensitive features might reveal the setting of the underlying
manufacturing process, that is typically private proprietary
information. To alleviate privacy restrictions w.r.t. sensitive
features, we propose a local privacy-preserving deep genera-
tive model (DGM) for the participants. The DGM model takes
the private data as input and learns to apProximate them in
order to generate additional data points X ; that resemble the
learned data distribution (details in subsection III-B).

An attention-based model (described in subsection III-C)
supports the dynamic data selection by progressively learning
to retrieve data from participants based on data contributions
to the supervised learning downstream task performance. Due
to the sequential nature of the problem, i.e., selecting the next
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data candidate based on what has been selected so far, we
formulate the data selection task as a Markov Decision Process
(MDP) and train with policy-gradient (subsection III-D). An
overview of the PriED is presented in Fig. 2.

B. Privacy-preserving Data Distillation

To distill data from each data owner participant, we utilize
privacy-preserving Variational Autoencoder Long Short-term
Memory (VAE-LSTM) deep generative models [50]. Each data
owner ¢ trains their own private data distillation network.

The encoder is an LSTM network such that for the sequen-
tial data of each data owner i, the state h’; is calculated based
on the previous state hﬁfl and the input X : of the current
time step. The distribution of the VAE latent representation is
obtained from the last state of the LSTM:

R} = fene(hi™, X1), (1)
fiz, = W RS 4 by, (2)
log(0z,) = W h{™ +b,, 3)

where W, W, are learnable weight matrices, and b, b,
are bias terms. In addition, ., and o, correspond to the
mean and variance of the learned latent Gaussian distribution
N(pz;,02;).- By using the reparameterization technique, a
latent representation is sampled from the encoding distribution,
i€, zi ~ N(uz,, 0z,). The initial state h’) of the LSTM-
based decoder model is computed via

WY =Wz +b., @)

where W, and b, are the learnable weight matrix and bias
vector, respectively. Thereafter, we can map the hidden state
of each decoded time step into the multi-variate dimension of

the input and reconstruct it as X

LX), (5)

7

= W] h', +b,, (6)

(.
t

where W, is a learnable weight matrix, and b, is a bias vector.
The joint VAE-LSTM, denoted as g,(X;), will be locally
trained for each data owner 4, based on a hybrid loss function
that combines the VAE loss with an adversarial loss for the
target sensitive features that need to be kept private in the
latent representations. In other words, we seek to learn latent
representations that reconstruct the input very well, while
being a poor representation for the reconstruction of target-
sensitive features. This adds another layer of data protection.
Note that our framework is fairly general and other privacy-
preserving methods can be applied, i.e., the model choice for
generating distilled data is orthogonal to the proposed method.

Denoting the set of all features as F and the set of few
sensitive target features as (2, the hybrid loss is written as
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Fig. 2: Pictorial overview of PriED. Data from multiple participants (data owners) are distilled into low-dimensional vector
representations that are invariant to sensitive features and hence preserve data privacy. An attention-based dynamic data selection
mechanism progressively learns to retrieve data from participants based on their data contributions to the downstream task
performance for the respective data receiver. PriED is trained end-to-end with reinforcement learning to allow the incorporation
of flexible reward mechanisms, e.g., incentivizing correct predictions for the minority class in an imbalanced classification task.
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where the first two terms of the loss refer to the VAE loss,
which consists of the input reconstruction squared error on
non-sensitive features w € F \ ! and the KL-divergence
minimization between the learned distribution (1,,,0,) and
the latent distribution, that is assumed to be a standard
Gaussian distribution A(0, 1). Such Gaussian latent priors are
commonly used in the literature due to allowing reparameteri-
zation [51, 52, 53]. The negative sign of the third term referred
to as the adversarial loss can be implemented by the gradient
reversal layer during backpropagation [54]. In other words, the
gradients are reversed in sign for the reconstruction of sensitive
features w € () since we want the VAE latent representations
to be maximally poor for the reconstruction of these features.
In this objective function, A; and A are hyperparameters that
balance the impact of different loss terms.

C. Data Selection Mechanism

Once each participant can share distilled data in the form of
latent low-dimensional representations z; € R?, Vi € M_y,
the data receiver k£ has to select which data sources to
query, conditioned on their local data and the contribution of
the selected data to the downstream task. To facilitate task-
driven data retrieval, we utilize attention. More specifically, we
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perform a cross-correlation similarity operation that compares
data receiver k and data owner ¢ via a bi-linear attention

sim (zx,2i) = 2, Wozi,

®)

where W, is a learnable weight matrix and 2z = gy (Xy) is
an LSTM-based low-dimensional local representation for the
data receiver k, to project the raw data from the data receiver
to the same d-dimensional embedding space as the distilled
data from data owners. This similarity is then normalized and
transformed into a probability distribution:

t sim(zk, 2;)
— ’
ag; > sim(zg, 25)] v
JEM_

where aj, ; refers to the attention weights between data re-
ceiver k and data owner i at time step ¢. After learning these
attention weights for a specific task, we can quantify the task-
driven similarity of each data receiver £ with all the other
data owners i € M _y,. Finally, we can compute the attention
output ¢}, as the aggregated representation of data receiver k
at time step ¢ based on the weighted sum of attention weights
and distilled data from different data owners as

t E t
Cp = ak’izz‘.

1EM_p

(10)

Here, the attention weights aj, ; indicate the preference of
the data receiver k and determine the selection among the data
owners. As our objective is to enable task-driven data-sharing
between the participating data receiver and data owners, the
attention weights can capture any inherent participant similari-
ties and can be used to query data points based on performance
improvements on the downstream task.



D. Policy Gradient

Due to the sequential nature of data selection, we frame the
learning task as a Markov Decision Process (MDP) and utilize
reinforcement learning. The MDP is formulated as follows:
State S: The state of the environment is determined by the
context vectors at time ¢, i.e., s; = ¢l s; € S.

Action A: We consider the label set as the action set since
the model prediction is w.r.t. the given downstream task, that
is we train the model end-to-end. For a binary classification
problem, the action set is A = {0,1}, i.e., we denote the
model prediction at time step ¢ as a; € A.

Reward R: To address the potential imbalance in the binary
classification task, following prior work [55], we define the
reward as follows:

+1,a; =y and y, = 0,
_17at 7é Yt and Yt = Oa

(11)
+A,a; =y and y; = 1,

R(Styatyyt) =
=X a; #y and yp = 1,

where y; is the label for the data sample observed at state sy,
A > 1 and y; = 1 denotes the minority class. This reward
function formulation has been shown to outperform several
imbalanced classification algorithms [55].
Policy mg(as|s¢): the policy network is parameterized by the
downstream supervised learning model that is conditioned on
context vectors ck. The model is a fully-connected layer with
sigmoid activations, i.e., mg(at|s;) = f(W, ¢k + bg), where
f is the sigmoid function, Wy are learnable weights, and by
is a bias term.

The objective is to maximize the expected cumulative
reward over time, i.e.,

T
argmgaxﬁg =En, lz R(Shat’yt)} . (12)

t=0

We adopt policy gradients for training. Therefore, updating the
policy parameters can be derived as:

T T
Vo,Lo = En, KZ R(St,az,yt)> <Z Vﬂllogﬁﬂ,,(atst)>:| - (13)
t=0

t=0
IV. EXPERIMENTS

A. A Real Manufacturing Test Case

Our research is motivated by Czochralski crystal growth
processes (CZ processes) to manufacture ingots, considered
as manufacturing participants. A pictorial overview of the
CZ process is shown in Fig. 3. The CZ process determines
the initial product quality in the semiconductor manufacturing
industry. Therefore, it is extremely important to model and
control product quality at this stage. To do so, we can model
the reworks, ie., restarting a segment of the CZ process.
[56, 57, 58]. There are different reasons for rework. For
example, the normal conditions of the CZ process will produce
single crystalline silicon ingots; and the abnormal conditions
may lead to mono-crystalline defects. In quality inspection,
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Fig. 3: CZ manufacturing process (redrawn from [59]).

data collected are often used to train a supervised model to
predict rework due to defects based on CZ process variables.

One of the common issues encountered in quality modeling
is imbalanced class distributions, e.g., the number of defective
samples (minority class) is disproportionate to the number
of normal samples. It may take several months to collect
sufficient data to train a neural network model for quality mod-
eling. Since the sample size depends on the number of furnaces
present in the manufacturing system, small manufacturers face
considerably greater difficulties. Due to these difficulties, ex-
changing manufacturing data from related processes is crucial
for the effectiveness of the modeling since it allows for the
collection of more defective samples. Directly sharing raw
data may cause the disclosure of manufacturing recipes, which
can be easily utilized by competitors, resulting in substantial
economic loss. In general, data-sharing offers a productive
means to promote high-quality CZ process modeling, but it
can also lower costs for data collection, storage, registration,
and annotation for several manufacturing tasks. Most impor-
tantly, data-sharing facilitates collaborative partnerships, as
participants can synergistically strengthen their collaboration,
if being able to identify participants with similar underlying
manufacturing processes and therefore share valuable data
with each other. Driven by these practical challenges, we
apply the proposed PriED for privacy-preserving data-sharing.
We continue with a description of our data collection and
experimental evaluation.

B. Dataset

Our case study involves data collected from three groups of
furnaces that vary in terms of machine configurations, recipes,
and product designs. We denote these three (3) groups as G1,
G2, and G3. In this case study, we define twelve (12) data
owners (D1-D12) as referring to manufacturers who produce
particular ingots by their own furnaces. Multiple ingots are
assigned to each furnace, and for each ingot, we collect
multivariate time series data, obtained by various sensors in the
CZ process. The defective samples are labeled by the rework
actions recorded in the dataset, where, as mentioned, rework
refers to redoing a segment of the process.

Table I represents each data owner (D1-D12) with their
associated furnace group, the sample size of each class, and
the imbalance ratio. From this table, it can be observed that for
each group G1, G2, and G3, we have 5, 4, and 3 associated
data owners, respectively. Each data owner’s multivariate time



TABLE I: Data distribution per data owner

Data Owner  Furnace Sample Size Imbalance
ID Group Normal Abnormal Ratio
D1 Gl 2,082 641 3.25
D2 Gl 1,509 1,183 1.28
D3 Gl 1,507 1,425 1.06
D4 Gl 1,354 1,542 0.88
D5 Gl 2,330 815 2.86
D6 G2 3,089 859 3.60
D7 G2 3,982 1,388 2.87
D8 G2 3,575 601 5.95
D9 G2 4,837 512 9.45

D10 G3 1,438 1,435 1.00
D11 G3 1,890 1,017 1.86
DI2 G3 1,448 1,491 0.97

series data has a tensor structure (m, !, d), where m refers to
the sample size, [ refers to the time length of each sample,
and d refers to the multi-variate dimension, i.e., number of
process variables. Some examples of these process variables
collected over time are pressure of the main chamber, main
heater current, main heater power, pulling speed, thermal field
temperature, diameter, main thermal field resistance, etc. In
this study, the time length [ is considered to be 20 minutes for
all data owners with the data collection frequency of 1 minute.

The data imbalance for normal and abnormal events can be
observed from the Table I sample size column. Based on the
data distributions presented, it can be observed that data owner
DO has the most imbalance data with 9.45 imbalance ratio for
the minority class. D6 and D8 also contain data with high
imbalance. In addition, each data owner from furnace type
G1 has 12 process variables and each data owner from the G2
and G3 groups has 35 process variables. Therefore, data from
different data owners may have varying dimensions. Notably,
there exist several important common features among all the
groups, which are related to the setting of the furnace and
need to be kept private.

C. Experimental Setup

In all experiments, we consider a 80/10/10 split ratio for
training, validation, and testing. We first generate distilled data
for each data owner based on the privacy-preserving deep
generative models described in subsection III-B. We consider
the main heater power (i.e., power supplied to the furnace to
change the temperature gradient in the furnace) and thermal
field SP value (i.e., temperature set points measured by a
thermocouple near the heater) as the sensitive target features
which are desired to be kept private in the distilled data. Based
on Sun et al. [56], these two features are found to be the
most important for the quality prediction downstream task.
Moreover, to ensure that input data can be represented with a
tensor structure, instead of zero padding, we perform weighted
sampling (i.e., considering class proportion) on data owners
with smaller sample sizes.
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TABLE II: Model capacity and training times

# Trainable Training Time

Model Parameters  (seconds/epoch)
GIbR 130,413 14.8s
AttR 127, 873 9.8s
CosD 145,982 11.5s
GIbD 145,982 11.4s
PriED 127,502 12.0s

D. Baselines and Evaluation Metrics

To evaluate the proposed PriED data-sharing framework,
we perform comparisons to demonstrate: (1) the effectiveness
of the privacy-preserving data distillation in the framework,
and (2) the effectiveness of the data selection mechanism.
Specifically, we compare model variants under a combination
of data sharing and data selection settings. For data-sharing,
we consider: (1) raw data: using raw data without any privacy-
preserving method and (2) distilled data: using the proposed
privacy-preserving data distillation. Furthermore, we vary the
data selection methods as follows: (1) local model: models are
trained on the local data from each data owner without data-
sharing; (2) global model: a global model is trained on (raw
or distilled) data from all participants concatenated together;
and (3) cosine similarity: data from data owners are selected
based on their corresponding cosine similarity with the data
from the data receiver.

Therefore, we conduct experiments with five baselines in
total: (1) GIbR: raw data with a global model, (2) LocR:
raw data with local models, (3) AttR: raw data with the
proposed attention-based data selection mechanism, (4) CosR:
distilled data with the cosine similarity criterion, (5) GlbD:
distilled data with a global model, and (6) PHED our proposed
framework. Finally, since the downstream task is to predict
the rework event during the CZ process, i.e., imbalanced
binary classification, we evaluate with recall, precision, and
F1 score. We report macro-averaged evaluation metrics (recall,
precision, F1 score) computed via 5-fold cross-validation.

E. Hyper-parameter Details

To ensure fair comparison as much as possible, hyperpa-
rameters are set such that model capacity (i.e., the number of
learnable parameters) is approximately the same across various
baselines and the proposed PriED. An overview of model
capacity and training times per epoch for each baseline can
be found in Table II. We use the same LSTM-based model
architecture as the local model of all data owners. In detail,
the VAE-LSTM consists of a 2-layer LSTM encoder and a
2-layer LSTM decoder with 64 neurons per layer. We set
A =1, A2 =1, and d = 16 as the dimension for the learned
VAE latent presentations z; € RY Vi € M. For the data
selection, PriED consists of a bi-linear attention layer and
a fully-connected layer with ReLU activation functions, both
with 16 neurons per layer. LocR (local model operating on
raw data) is an LSTM architecture that consists of 2 layers
with 16 neurons per layer. The final data representations for
the local models are based on an element-wise max-pooling



TABLE III: Results for all data receivers by groups. Mean and standard deviation reported over 5 experimental trials. Best
performance is highlighted in blue for models operating on raw data and green for models trained on distilled data. Overall
best performance across all baselines is highlighted with grey cell background. Green arrows indicate relative gains over the
next best method operating on distilled data. Best average performance (column-wise, AVG column) in bold.

(a) Precision

(b) Recall

Metric o 1)Meth(.)d I Data Group ID
rivacy-Preserving ata Selection

Name Method Method G1 G2 G3 AVG
GIbR raw data global model 0.60+0.02 0.384+0.01 0.78+0.02 0.57+£0.01
LocR raw data local model 0.824+0.06 0.0040.00 0.76+0.03 0.531+0.04
Precision AtR raw data attention 0.91+0.02 0.45+0.16 0.88+0.01 0.754+0.07
CosD distilled data cosine similarity 0.91-0.1410-04 0.2240.12 0.834-0.03 0.6640.10
GIbD distilled data global model 0.761+0.06 0.414+0.16 0.734+0.06 0.64+0.08
PriED distilled data attention 0.8740.04 0.71+0.111°-30 0.86+0.0210-03 0.81+0.06
GIbR raw data global model 0.3940.02 0.1740.02 0.56£0.02 0.36£0.01
LocR raw data local model 0.5340.04 0.004-0.00 0.7240.04 0.4040.03
Recall AR raw data proposed 0.92+0.02 0.34+0.13 0.86+0.02 0.71+0.06
CosD distilled data cosine similarity 0.5640.03 0.01+0.01 0.64+0.03 0.3940.02
GIbD distilled data global model 0.4340.04 0.03£0.02 0.204-0.06 0.244-0.04
PriED distilled data attention 0.84-+0.0270-28 0.560.1010-53 0.860.0179-22 | 0.7540.05
GIbR raw data global model 0.461+0.02 0.244-0.02 0.65+0.02 0.431+0.02
LocR raw data local model 0.5610.05 0.0040.00 0.74+0.03 0.4240.03
Fl score AtR raw data proposed 0.91+0.02 0.374+0.11 0.87+0.01 0.72+0.05
CosD distilled data cosine similarity 0.6340.03 0.01£0.01 0.7140.02 0.4540.02
GIbD distilled data global model 0.554+0.04 0.0740.03 0.31+0.07 0.324+0.04
PriED distilled data attention 0.86+0.0370-23 0.62+0.1010-55 0.861-0.0170-15 | 0.78+0.05
1.00
0.75
-0.50
-0.25
-0.00

Fig. 4: Heatmaps of the (a) precision, (b) recall, and (c) F1 scores for all data receivers. The top-3 rows correspond to baselines
operating on raw data (GIbR, LocR, AttR), and the bottom-3 rows to baselines operating on distilled data (CosD, GIbD, PriED).

of all hidden states. GIbR (global model operating on raw
data) consists of 3 fully-connected layer with {256, 128, 32}
neurons and ReLU activations, accompanied by a sigmoid
output layer. To apply the proposed data selection mechanism
to raw data with different feature dimensions, MLP projection
heads are utilized to project data to the same dimensionality.
GIbD (global model operating on distilled data) employs an
LSTM network with 128 neurons with a sigmoid output layer.
We train all models with Adam optimizer, 10~ learning rate,
and batch size of 64.

F. Experimental Results

In Table III, we summarize results for data receivers by
different groups. We present mean and standard deviation over
5 experimental trials. To showcase the effectiveness of the
proposed PriED, we compare with global and local models
operating on either raw or distilled data. Note, however, that
sharing raw data is an infeasible option in practice due to
the need to preserve private information. These models are
adopted as references to anchor the potentially best model
performance. Overall, PriED yields the best average precision,
recall, and F1 score across all groups (Table III, last column).
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By investigating the performance of the attention-based
data selection method, we find that AttR achieves the best
performance with raw data (i.e.,, GIbR, LocR, and AttR) while
PriED achieves the best performance with distilled data (i.e.,,
CosD, GIbD, and PriED). These results validate that the data
selected by the task-driven data selection method are more
informative and contribute to the downstream task of the target
data receiver. Moreover, the comparison between AttR and
GIbR shows that most data receivers achieve better perfor-
mance on the downstream task by sharing informative data
from similar manufacturing processes, rather than utilizing
data from all participants without performing data selection.

By comparing AttR and PriED, we find that using the
distilled data may not achieve the best performance compared
to using raw data (e.g., for groups G1 and G3). However,
the proposed method is closer to the best-performing raw
data method, as compared to other baselines. Moreover, re-
sults clearly show that distilled data can produce superior
performance for G2, where the most severe class imbalance
is observed (Table I). This illustrates that the proposed VAE-
LSTM learns informative data representations that improve the
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Fig. 5: An example of accuracy and loss improvements over training epochs for data owner D2. (a) Local model trained only

on the D2 data, (b) PriED trained with cross-entropy, and (c) PriED trained with the policy gradient (RL).
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Fig. 6: (a) Learned attention weights between different data owners by PriED, (b) Intrinsic similarity of data owners based
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different data owners by raw data.

modeling performance on imbalance classification tasks.

In Figure 4, we visualize the precision, recall, and F1
score for all data receivers, respectively. To demonstrate the
possible best performance (i.e., upper bound), we present
results for baselines employing raw data. As expected, the
patterns of AttR and PriED are similar in the presented
heatmaps. Although the darker color indicates AttR achieves
better performance for most data receivers, PriED outperforms
AttR on D7 and D8, which illustrates its advantage in data with
high data imbalance ratios. As far as models trained on dis-
tilled data (bottom-3 rows), the proposed PriED demonstrates
a dominant advantage over other baselines by achieving better
performance across all data owners.

G. Ablation Study on RL Loss

Figure 5 illustrates the accuracy and loss improvements
during training (across epochs) for a randomly selected data

owner (D2). In general, we observe much smoother learning
trends on the validation data for PriED trained with an RL
loss, as shown in Figure 5(c), when compared to PriED trained
with cross-entropy (shown in Figure 5(b)) and a local model
with no data-sharing (shown in Figure 5(a)). We observe
similar benefits across all data owners. Therefore, PriED with
RL can reach comparable performance with a lower number
of epochs and more stable training (fewer loss oscillations),
as compared to other optimization objectives.

H. Qualitative Analysis

Figure 6 presents the PriED attention weights (which en-
code similarity between different data owners), in comparison
to the inherent similarities between all data owners shown in
Figure 6(b), the cosine similarity between different data own-
ers (i.e., CosD in Figure 6(c)), and the learned attention-based
similarity matrix on raw data in (i.e., AttR in Figure 6(d)).

151§



Figure 6 shows that the patterns learned from CosD and
AttR (Fig. 6 (b),(c)) are less clear than PriED (Fig. 6 (a)).
The patterns calculated by cosine similarity seem more random
since cosine only measures the element-wise distance between
data points from different owners. Figure 6(d) shows that the
attention-based data selection mechanism learns the similarity
between the D1-D4 and D10-D12. However, the other patterns
are poorly learned, which is most likely due to the information
lost during the projection of the raw data. This indicates the
importance of privacy-preserving data distillation.

V. CONCLUSION

Data-sharing mechanisms can accelerate machine learning
training and deployment and improve data-driven decision-
making. Yet, privacy concerns significantly limit data-sharing
operations in Industrial Internet domains. On the other hand,
utilizing shared data with poor information utility for a specific
downstream task may increase the computational burden or
even hamper modeling performance. In this work, we propose
PriED as a privacy-preserving data-sharing framework that
enables effective data-sharing to improve the performance of
supervised downstream tasks with privacy guarantees. Exper-
imental results on a real semiconductor manufacturing case
study demonstrate the effectiveness of the proposed method.
PriED can be generally applied to other supervised learning
tasks. In our future work, we hope to further investigate the
effectiveness of different method configurations through com-
prehensive ablation studies on a variety of downstream tasks.
Furthermore, we aim to extend the data-sharing framework to
multiple downstream tasks.
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