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eliminate some of the vulnerabilities but rely on uniformly

averaging model predictions or randomly sampling subsets

of models at each distillation step, instead of selecting the

most suitable data for the downstream task at hand. As such,

randomly acquiring information from all participants results

in suboptimal trained models and often may result in negative

information transfer.

Beyond preserving privacy, another challenge thus lies in

selecting which dataset or data instances are useful for a

specific downstream task. Since participants in a data-sharing

ecosystem might be fairly diverse in terms of the underly-

ing company processes and variable relationships, a crucial

component in improving model performance is the ability to

retrieve participants that are similar. For example, in manu-

facturing data-sharing, these similar participants can produce

similar products with the required specifications or use similar

manufacturing processes, recipes, and equipment. As a result,

some recent works focus on learning retrieval mechanisms for

data selection [17, 18, 19]. Combining task-driven data-sharing

frameworks and privacy-preserving generative methods would

enable a more intelligent data-sharing ecosystem with built-in

incentives and privacy protocols. However, this line of work

has gained fairly limited attention.

To address these challenges, in this work, we propose

PriED, a Privacy-prEserving Data-sharing framework that

allows participants to share distilled synthetic data for down-

stream tasks while preserving data privacy. In contrast to

parameter-based sharing or prediction-based sharing methods,

PriED first learns intermediate privacy-enabled data represen-

tations for each participant. These distilled data representations

are then fused with an attention mechanism that captures

similarity among participants towards the intended task, re-

sulting in a task-driven data-sharing framework. The learned

attention-based similarity can effectively select data points

from multiple data owners, conditioned on the corresponding

data receiver. The model is trained end-to-end with rein-

forcement learning (policy gradient), assigning rewards based

on the prediction accuracy for the downstream task. While

in this paper, we focus on supervised learning downstream

tasks, PriED can be easily adapted for various other tasks and

domains, such as semi-supervised learning with corresponding

discrete performance metrics. Most importantly, PriED miti-

gates privacy risks with similar computation costs as baseline

global and local models and allows flexible task-driven data

aggregation from heterogeneous data owners with varying data

types, dimensionalities, and preprocessing mechanisms.

Our contributions can be summarized as follows: (1) We

introduce a privacy-preserving data-sharing paradigm for in-

dustrial data that enables synergistic partnerships among par-

ticipants and reduces data collection and annotation efforts

for each participant. (2) We propose PriED, an end-to-end

model that consists of privacy-preserving data distillation and

attention-based data selection phases. Experimental evaluation

on a real semiconductor manufacturing case study showcases

the effectiveness of the proposed method. (3) We show that

PriED progressively learns a task-driven similarity that can

capture inherent engineering similarities among participants.

II. RELATED WORK

A. Privacy-Preserving Data Sharing

Methods such as differential privacy enable sharing of useful

data patterns while protecting individual aspects of the data

that cannot be publicly shared. To achieve differential privacy,

Xie et al. [20] propose DP-GAN, a Generative Adversarial

Network (GAN) [21] model that is trained with injected

gradient noise. Frigerio et al. [22] extend DP-GAN by incor-

porating clipping decay optimization [23], while Triastcyn and

Faltings [24] propose a differentially private critic to ensure

that synthetic data created by the generator do not appear in

the training samples. Torkzadehmahani et al. [25] clip the

gradients of the real and synthetic data separately to have

better control over the sensitivity towards real data.

A separate line of work focuses on teacher-student en-

semble models. For example, Private Aggregation of Teacher

Ensembles (PATE) [26] utilizes multiple “teacher” models

trained on disjoint datasets to train a single “student” model

via noisy voting. Jordon et al. [27] replace the discriminator

with a set of teacher and student discriminators, where the

student discriminators learn from the data generated by the

teacher discriminator. Long et al. [28] replace the discriminator

in GAN with the teachers from the PATE model and train

the student generator using a private gradient aggregation

mechanism to produce synthetic samples.

Specifically in IoT settings, Du et al. [29] propose a

communication efficient privacy-preserving protocol, where a

differentially private approximate mechanism facilitates the

distributed training. In our work, we consider sharing latent

representations rather than the raw data itself. Most relevant to

our setting, Li et al. [30] propose a robust privacy-preserving

method to obscure important latent presentations for text

preprocessing tasks. In contrast to prior work, and apart from

learning latent representations that are invariant to sensitive

features, we propose to combine distilled synthetic data in a

task-driven manner instead of directly averaging or uniformly

sampling, and thus improving data selection and downstream

performance, while also learning inherent similarity mecha-

nisms that are useful for grouping or retrieving participants

with similar processes.

B. Learn to Select Data

For real-world tasks, the scarcity of annotations prevents

the application of supervised deep learning methods that rely

on large datasets. Several research works focus on addressing

data collection and data selection challenges from various

perspectives. One such direction is active learning (AL),

which aims at incorporating targeted human annotations into

the model training process, by iteratively selecting the most

informative data points to pass to a subject matter expert for

annotation. Commonly used criteria are uncertainty sampling

[31], density-weighted uncertainty sampling [32, 33], diversity

[34], QUIRE [35], extreme learning methods [36] and bayesian
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active learning methods such as BALD (Bayesian Active

Learning by Disagreement) [37].

Other works focus on interleaving processes to reduce

annotator waiting time in batch active learning [38], and active

learning domain adaptation settings by clustering uncertainty-

weighted embeddings [39] or by utilizing reinforcement learn-

ing [40], Bayesian Optimization [41], and domain similarity

metrics [42]. Recent works formulate active learning as a

multi-armed bandit problem and select data from a set of

candidates in each round [43, 44, 45]. Vu et al. [18] learn

an active learning query strategy using reinforcement learning

and feedback from human annotators, while Liu et al. [17]

leverage imitation learning in a similar setup.

Nevertheless, most of these works target specific natural lan-

guage processing and image classification problems and do not

deal with privacy concerns. The benefit of privacy-preserving

data-sharing models is that they enable the participants to share

the data without violating any privacy constraints, and thus

collaboratively utilize larger amounts of data for downstream

tasks. Our work introduces a framework for learning to select

data from a set of participants, where desensitized distilled

data are shared in lieu of raw data that involve confidential

and proprietary information.

III. METHODOLOGY

A. Problem Formulation

Let M be the set of participants (data owners) in the

data-sharing ecosystem, each associated with a private multi-

variate time series data source {Xt
i ∈ R

F }Mi=1
. Here, X

t
i

denotes all F features of i-th data owner at time t. Multi-

variate time series (MVTS) data collected from interconnected

sensors and actuators are the most common types of data

available in the Industrial Internet of Things (IIoT) and smart

manufacturing [46, 47, 48, 49]. Let k be the data receiver, i.e.,

the participant that wishes to request data for the downstream

task. Subsequently, M−k denotes the rest of the data owners,

i.e., excluding the data receiver k.

To enable privacy-preserving effective data sharing among

the participants (i.e., data owners and receivers), we introduce

the PriED framework that consists of two key components,

data distillation and data selection. Similar to prior works,

we consider a subset of sensitive features, among the set of

all features, that need to be kept private. For example, these

sensitive features might reveal the setting of the underlying

manufacturing process, that is typically private proprietary

information. To alleviate privacy restrictions w.r.t. sensitive

features, we propose a local privacy-preserving deep genera-

tive model (DGM) for the participants. The DGM model takes

the private data as input and learns to approximate them in

order to generate additional data points X̂
t

i that resemble the

learned data distribution (details in subsection III-B).

An attention-based model (described in subsection III-C)

supports the dynamic data selection by progressively learning

to retrieve data from participants based on data contributions

to the supervised learning downstream task performance. Due

to the sequential nature of the problem, i.e., selecting the next

data candidate based on what has been selected so far, we

formulate the data selection task as a Markov Decision Process

(MDP) and train with policy-gradient (subsection III-D). An

overview of the PriED is presented in Fig. 2.

B. Privacy-preserving Data Distillation

To distill data from each data owner participant, we utilize

privacy-preserving Variational Autoencoder Long Short-term

Memory (VAE-LSTM) deep generative models [50]. Each data

owner i trains their own private data distillation network.

The encoder is an LSTM network such that for the sequen-

tial data of each data owner i, the state h
t
i is calculated based

on the previous state h
t−1

i and the input X
t
i of the current

time step. The distribution of the VAE latent representation is

obtained from the last state of the LSTM:

h
t
i = fenc(h

t−1

i ,Xt
i), (1)

µzi
= W

⊤

µ h
end
i + bµ, (2)

log(σzi
) = W

⊤

σ h
end
i + bσ, (3)

where W µ,W σ are learnable weight matrices, and bµ, bσ
are bias terms. In addition, µzi

and σzi
correspond to the

mean and variance of the learned latent Gaussian distribution

N (µzi
, σzi

). By using the reparameterization technique, a

latent representation is sampled from the encoding distribution,

i.e., zi ∼ N (µzi
, σzi

). The initial state h
′0

i of the LSTM-

based decoder model is computed via

h
′0

i = W
⊤

z zi + bz, (4)

where W z and bz are the learnable weight matrix and bias

vector, respectively. Thereafter, we can map the hidden state

of each decoded time step into the multi-variate dimension of

the input and reconstruct it as X̂
t

i

h
′t

i = fdec(h
′t−1

i ,Xt
i), (5)

X̂
t

i = W
⊤

o h
′t

i + bo, (6)

where W o is a learnable weight matrix, and bo is a bias vector.

The joint VAE-LSTM, denoted as gφ(Xi), will be locally

trained for each data owner i, based on a hybrid loss function

that combines the VAE loss with an adversarial loss for the

target sensitive features that need to be kept private in the

latent representations. In other words, we seek to learn latent

representations that reconstruct the input very well, while

being a poor representation for the reconstruction of target-

sensitive features. This adds another layer of data protection.

Note that our framework is fairly general and other privacy-

preserving methods can be applied, i.e., the model choice for

generating distilled data is orthogonal to the proposed method.

Denoting the set of all features as F and the set of few

sensitive target features as Ω, the hybrid loss is written as

3







1510

TABLE I: Data distribution per data owner

Data Owner

ID

Furnace

Group

Sample Size Imbalance

RatioNormal Abnormal

D1 G1 2,082 641 3.25
D2 G1 1,509 1,183 1.28
D3 G1 1,507 1,425 1.06
D4 G1 1,354 1,542 0.88
D5 G1 2,330 815 2.86
D6 G2 3,089 859 3.60
D7 G2 3,982 1,388 2.87
D8 G2 3,575 601 5.95
D9 G2 4,837 512 9.45
D10 G3 1,438 1,435 1.00
D11 G3 1,890 1,017 1.86
D12 G3 1,448 1,491 0.97

series data has a tensor structure (m, l, d), where m refers to

the sample size, l refers to the time length of each sample,

and d refers to the multi-variate dimension, i.e., number of

process variables. Some examples of these process variables

collected over time are pressure of the main chamber, main

heater current, main heater power, pulling speed, thermal field

temperature, diameter, main thermal field resistance, etc. In

this study, the time length l is considered to be 20 minutes for

all data owners with the data collection frequency of 1 minute.

The data imbalance for normal and abnormal events can be

observed from the Table I sample size column. Based on the

data distributions presented, it can be observed that data owner

D9 has the most imbalance data with 9.45 imbalance ratio for

the minority class. D6 and D8 also contain data with high

imbalance. In addition, each data owner from furnace type

G1 has 12 process variables and each data owner from the G2

and G3 groups has 35 process variables. Therefore, data from

different data owners may have varying dimensions. Notably,

there exist several important common features among all the

groups, which are related to the setting of the furnace and

need to be kept private.

C. Experimental Setup

In all experiments, we consider a 80/10/10 split ratio for

training, validation, and testing. We first generate distilled data

for each data owner based on the privacy-preserving deep

generative models described in subsection III-B. We consider

the main heater power (i.e., power supplied to the furnace to

change the temperature gradient in the furnace) and thermal

field SP value (i.e., temperature set points measured by a

thermocouple near the heater) as the sensitive target features

which are desired to be kept private in the distilled data. Based

on Sun et al. [56], these two features are found to be the

most important for the quality prediction downstream task.

Moreover, to ensure that input data can be represented with a

tensor structure, instead of zero padding, we perform weighted

sampling (i.e., considering class proportion) on data owners

with smaller sample sizes.

TABLE II: Model capacity and training times

Model
# Trainable
Parameters

Training Time
(seconds/epoch)

GlbR 130,413 14.8s
AttR 127, 873 9.8s
CosD 145,982 11.5s
GlbD 145,982 11.4s

PriED 127,502 12.0s

D. Baselines and Evaluation Metrics

To evaluate the proposed PriED data-sharing framework,

we perform comparisons to demonstrate: (1) the effectiveness

of the privacy-preserving data distillation in the framework,

and (2) the effectiveness of the data selection mechanism.

Specifically, we compare model variants under a combination

of data sharing and data selection settings. For data-sharing,

we consider: (1) raw data: using raw data without any privacy-

preserving method and (2) distilled data: using the proposed

privacy-preserving data distillation. Furthermore, we vary the

data selection methods as follows: (1) local model: models are

trained on the local data from each data owner without data-

sharing; (2) global model: a global model is trained on (raw

or distilled) data from all participants concatenated together;

and (3) cosine similarity: data from data owners are selected

based on their corresponding cosine similarity with the data

from the data receiver.

Therefore, we conduct experiments with five baselines in

total: (1) GlbR: raw data with a global model, (2) LocR:

raw data with local models, (3) AttR: raw data with the

proposed attention-based data selection mechanism, (4) CosR:

distilled data with the cosine similarity criterion, (5) GlbD:

distilled data with a global model, and (6) PriED our proposed

framework. Finally, since the downstream task is to predict

the rework event during the CZ process, i.e., imbalanced

binary classification, we evaluate with recall, precision, and

F1 score. We report macro-averaged evaluation metrics (recall,

precision, F1 score) computed via 5-fold cross-validation.

E. Hyper-parameter Details

To ensure fair comparison as much as possible, hyperpa-

rameters are set such that model capacity (i.e., the number of

learnable parameters) is approximately the same across various

baselines and the proposed PriED. An overview of model

capacity and training times per epoch for each baseline can

be found in Table II. We use the same LSTM-based model

architecture as the local model of all data owners. In detail,

the VAE-LSTM consists of a 2-layer LSTM encoder and a

2-layer LSTM decoder with 64 neurons per layer. We set

λ1 = 1, λ2 = 1, and d = 16 as the dimension for the learned

VAE latent presentations zi ∈ R
d, ∀i ∈ M. For the data

selection, PriED consists of a bi-linear attention layer and

a fully-connected layer with ReLU activation functions, both

with 16 neurons per layer. LocR (local model operating on

raw data) is an LSTM architecture that consists of 2 layers

with 16 neurons per layer. The final data representations for

the local models are based on an element-wise max-pooling
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Figure 6 shows that the patterns learned from CosD and

AttR (Fig. 6 (b),(c)) are less clear than PriED (Fig. 6 (a)).

The patterns calculated by cosine similarity seem more random

since cosine only measures the element-wise distance between

data points from different owners. Figure 6(d) shows that the

attention-based data selection mechanism learns the similarity

between the D1-D4 and D10-D12. However, the other patterns

are poorly learned, which is most likely due to the information

lost during the projection of the raw data. This indicates the

importance of privacy-preserving data distillation.

V. CONCLUSION

Data-sharing mechanisms can accelerate machine learning

training and deployment and improve data-driven decision-

making. Yet, privacy concerns significantly limit data-sharing

operations in Industrial Internet domains. On the other hand,

utilizing shared data with poor information utility for a specific

downstream task may increase the computational burden or

even hamper modeling performance. In this work, we propose

PriED as a privacy-preserving data-sharing framework that

enables effective data-sharing to improve the performance of

supervised downstream tasks with privacy guarantees. Exper-

imental results on a real semiconductor manufacturing case

study demonstrate the effectiveness of the proposed method.

PriED can be generally applied to other supervised learning

tasks. In our future work, we hope to further investigate the

effectiveness of different method configurations through com-

prehensive ablation studies on a variety of downstream tasks.

Furthermore, we aim to extend the data-sharing framework to

multiple downstream tasks.
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