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Field-programmable gate array (FPGA) accelerators offer performance and
efficiency gains by narrowing the scope of acceleration to one algorithmic domain.
However, real-life applications are often not limited to a single domain, which
naturally makesCross-DomainMulti-Acceleration a crucial next step. The challenge
is, existing FPGAaccelerators are built upon their specific vertically specialized
stacks, which prevents utilizingmultiple accelerators fromdifferent domains. To that
end, we propose a pair of dual abstractions, called Yin-Yang, which work in tandem
and enable programmers to develop cross-domain applications usingmultiple
accelerators on a FPGA. The Yin abstraction enables cross-domain algorithmic
specification, while the Yang abstraction captures the accelerator capabilities. We
also developed a dataflow virtual machine, dubbed Accelerator-Level Virtual Machine
(XLVM), which transparentlymaps domain functions (Yin) to best-fit accelerator
capabilities (Yang). With six real-world cross-domain applications, our evaluations
show that Yin-Yang unlocks 29.4! speedup, while the best single-domain acceleration
achieves 12.0!.

Field-programmable gate arrays (FPGAs) have
emerged as a promising acceleration platform
for diverse application domains both at the edge

and on the cloud (Amazon F1 instances1 and Microsoft
SmartNICs2). Despite the benefits, the accelerators by
definition limit the scope of acceleration to an algorith-
mic domain, while real-life applications3–5 often extend
beyond a single domain. It is evident that for such cross-
domain applications, utilizing multiple accelerators, even

on a single FPGA, from different domains can unlock new
capabilities and offer higher performance and efficiency.
However, each accelerator often comes with its own ver-
tically specialized domain-specific stack, as illustrated in
Figure 1(a), which by design is difficult to conjugate with
other stacks. Thus, there is a need for a horizontal pro-
gramming abstraction that enables programmers to
develop end-to-end applications without delving into the
isolated accelerator stacks.

To that end, this article sets out to devise such
abstractions by building upon a collection of program-
mer-transparent layers. We first devise a pair of dual
abstractions, called Yin–Yang, where 1) the Yin abstrac-
tion allows domain experts to concisely describe the
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capabilities of each domain; and 2) the Yang abstraction
enables hardware designers to abstractly denote com-
pute capabilities and data interfaces for their FPGA
accelerators, henceforth referred to as engines. The Yin

abstraction also offers a lightweight programming inter-
face that allows programmers to aggregate Yin-defined
cross-domain capabilities together as a single program,
while preserving the domain boundaries. Then, to enable
the two abstractions to work in tandem, we develop
accelerator-level virtual machine (XLVM) and its execu-
tion workflow is delineated in Figure 1(b). XLVM is a
dataflow virtual machine that builds and executes
the program as a queued-fractalized dataflow graph
(QF–DFG). In QF–DFG, like fractals, each node is another
QF–DFG but at a progressively finer granularity, until a

node is a primitive scalar operation. For a given QF–DFG,
the XLVM’s engine selector chooses components of the
application (i.e., nodes of QF–DFG) to appropriate
engines, using the engine specifications from Yang ab-
straction. XLVM also comes with engine compiler that
compiles the individual engines into runnable execut-
ables and links them as a unified execution flow by
automatically converting dependencies (i.e., edges of
QF–DFG) to inter-engine communication between FPGA
accelerators.

We collect diverse real-world applications and offer it
as an open-source benchmark suite for cross-domain
multi-acceleration. These applications range from deep
brain stimulation, geological exploration, film captioning,
stock exchange, medical imaging, and surveillance. Each

FIGURE 1. Overview of Yin-Yang. (a) Yin-Yang dual abstractions break the vertical barriers of domain-specific stacks and enable

cross-domain multi-acceleration in the heterogeneous cloud. (b) Yin-Yang dual abstractions and XLVM for cross-domain multi-

acceleration.
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of these benchmarks comprises algorithms from more
than one domain where each is accelerated across mul-
tiple domain-specific accelerators. Using this bench-
mark suite, we evaluate the proposed abstractions and
its concrete system implementation. By enabling cross-
domain multi-acceleration, our work improves speedup
from 12:0! to 29:4! (i.e., 145% extra benefits on aver-
age) compared to an end-to-end execution with a single
FPGA accelerator that offers the highest gain. These
results suggest the effectiveness of the Yin–Yang
abstractions and their associated system framework in
enabling cross-domainmulti-acceleration.

YIN ABSTRACTION
Abstract Domain Description
The goal ofYin abstraction is to delineate the capabilities
of each domain, without any accelerator or application-
specific constructs. For every domain, a unique abstract
definition, called domain description, is provided inde-
pendently by the domain experts to predefine domain’s
common capabilities. As the objective is to allow multi-
acceleration, a domain description consists of a set of
capabilities, each of which is a potential agent for accel-
eration. However, note that the capabilities defined in
domain descriptions are accelerator-agnostic and not
linked to a specific accelerator. Yet, these capabilities
can be mapped to various accelerators through our vir-
tual machine XLVM (see the “Accelerator-Level Virtual
Machine” section). To enable programmers to use the
domain capabilities in their applications, we also provide
a set of lightweight programming model (see the “Com-
ponent & Flow Programming Model” section). Using the
programming interface, programmers can develop their
applications by importing the domain descriptions and
instantiating the domain capabilities, while still preserv-
ing the domain specificity, interface, and boundary of
each instantiation.

Example domaindescription for digital signal process-
ing: Figure 2(a) illustrates an example domain description
for the digital signal processing domain. The domain
descriptions are composed of the following: domain
name, a set of capabilities with input/output semantics, a
default reference implementation, and a cost model. The
domain name is specified using the keyword “domain” in
line 1. In lines 4–22, the domain capabilities and their
input/output are specified. For instance, lines 16–22
define the convolution capability, a frequently used opera-
tion in digital signal processing and is often accelerated
by DSP accelerators. The “capability” keyword denotes
the computational capability supported in this domain,
and is followed by a unique denotation. Each capability
has required input (input) and output (output)

specifications as the arguments to its definition. The
input and output data type and dimensions form the
interface to the computation capability. We also have the
state keyword that semantically stores the state across
multiple executions. State is necessary for domains that
share a temporal component such as robotics, data ana-
lytics, and deep learning. The param keyword denotes
datawhose values remain constant across executions.

Component and Flow Programming
Model
The domain descriptions define the capabilities of individ-
ual domains that constitute end-to-end applications, but
there is a need for programming interface that enables
programmers to use the capabilities for application devel-
opment without concerning the low-level hardware
details. Due to the modular nature of the Yin abstraction,
the Component and Flow programming model (CNF) is
built upon lightweight annotations to create the linkage
between domain description capabilities and end-to-end
application kernels. Components and Flows inCNF repre-
sent the computation and dataflow in between, respec-
tively. In particular, Component is a language construct
that is explicitly usedwithin the code, whereas the Flow is
implicitly present in between.

Deep brain stimulation: To demonstrate the use of
the CNF programming model, we take a cross-domain
application, deep brain stimulation,5 as an example. This
application takes and processes the electrophysiological
response of the brain (DSP) to measure the biomarkers
(analytics), and generates a set of optical stimulations
(control) for memory enhancement in rats. In this setup,
the electrophysiological activity of the brain is collected
in real time, and passed through fast Fourier transform
(FFT) and a set of bandpass filters (BPF) of distinctive fre-
quency bands [i.e., delta (0.5–4 Hz), theta (4–8 Hz), alpha
(8–12 Hz), beta (12–30Hz), and gamma (30–100Hz)]. Next,
the pipeline uses logistic regression (LR) to decode and
classify these brain waves to be used as biomarkers.
Based on the classification output, a model predictive
control (MPC) process configures the synthesized brain
waves (i.e., amplitude, frequency, and duration). Offload-
ing the major compute-heavy algorithms to the corre-
sponding accelerators–FFT to DeCO,6 logistic regression
to Tabla,7 and control optimization to RoboX8–will pro-
vide runtime performance improvements.a

ExampleCNF code for deepbrain stimulation:Figure 2(b)
illustrates a CNF implementation of deep brain

aThe original work8 proposed RoboX as an ASIC but it is
straightforward to develop the architecture as an FPGA
accelerator.
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stimulation. First, lines 1–3 import domain descriptions
into the application and bring the available predefined
capabilities. Then, CNF enables programmers to express
1) the component boundaries, 2) its interfaces, and 3) the
hierarchical structure. On line 5, the components are

defined using the keyword Component along with its
inputs (e.g., wave) and outputs (e.g., stimuli), which is fol-
lowed by the code for its computation in lines 7–19. CNF
also allows the programmer to express arbitrary levels of
component hierarchy, where components may be

FIGURE 2. Example Yin-Yang code and its QF–DFG IR. (a) Domain description for DSP. (b) Implementation of deep brain stimulationwith

CNFprogrammingmodel. (c) Engine specification forDeCOengine. (d)QF–DFGof deepbrain stimulation.
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defined inside a component. Once a component has
been defined, the programmer can instantiate it as many
times as needed to express the algorithm.

YANG ABSTRACTION
Abstract Engine Specification
To manage various accelerators and to allow flexible
additions of newly developed accelerators, we devise
the Yang abstraction, as the counterpart to the Yin

abstraction. The Yang abstraction offers a means for
the accelerator developers to abstractly describe the
accelerator specifications. In this article, an engine
denotes an abstract compute platform, which exclu-
sively supports a single domain and is able to serve a
subset of the capabilities defined in the corresponding
domain description. Thus, Yang abstraction allows the
engine developers to specify the provided capabilities
and communication interfaces of an engine as a struc-
tured specification, called engine specification.

Example engine specification describing a digital sig-
nal processing accelerator: Figure 2(c) illustrates an
example engine specification of DeCO6 using our engine
specification language. To provide a flexible abstraction
that canbeusedby a variety of engines, but also to ensure
multi-acceleration, an engine specification needs to
express 1) its own capabilities; and 2) the interface it
exposes to connect with different engines. Line 3 shows
that the engine name is specified using the keyword
engine and domain (digital_signal_processing). In lines
4–7, how the engine communicates its input and output
with the outside world is specified using the keyword
interface. The engine specification provides predefined
interfaces such as FIFO, SRAM, or BRAM, etc. Also, its
capabilities (i.e., fft and band_pass_filter) and their seman-
tics for input, output, weight, and configuration memory
are specified in lines 9–19.

Hints for Engine Selection
Our Yang abstraction also offers two keywords, fusion
and cost, to allow the engine developers to provide
engine-specific information, which can be used as hints
for the engine selection process later in XLVM. The key-
word fusion, denotes a set of capabilities that can be
sequentially executed internally in an engine, while
avoiding external data communication with the host or
other engines. For instance, line 21 illustrates that the fft

capability can be fused with the band_pass_filter capa-
bility, while band_pass_filter cannot be fused with
any other capabilities on DeCO. The cost construct
lets engine developers specify a means to estimate
the latency of capabilities. This can be mapped to a

cycle-accurate simulator, hard-coded metric, or a
machine-learning-based costmodels as in AutoTVM.

ACCELERATOR-LEVEL VIRTUAL
MACHINE

The Yin–Yang abstractions need to be realized as a
unified execution flow so that the application is exe-
cuted efficiently and the maximal gains can be
achieved from cross-domain multi-acceleration. To
accomplish this objective, we devise XLVM, which is
at the confluence of the Yin–Yang abstractions. XLVM
preserves and translates the CNF program as a
queued-fractalized dataflow graph (QF–DFG) interme-
diate representation (IR). Then, we develop Engine
Selector that selects the engines for the application,
maximizing acceleration gains. Finally, we also develop
an engine compiler, which compiles the individual
engines into the corresponding runnable executables
and links them as a unified execution flow.

Queued-Fractalized Dataflow Graph
(QF–DFG)
For effective engine selection and runtime orchestra-
tion, it is crucial to have an intermediate representa-
tion (IR) that 1) preserves the program and domain
semantics (input, output, interface, and hierarchy of
components); and 2) is flexible to support any granu-
larity required for multi-acceleration. As such, we
devise queued-fractalized dataflow graph (QF–DFG),
which is designed to capture the details of the pro-
gram such as dependence (order of execution), func-
tionality (operation), and compositionality (hierarchy)
of the CNF programs. In QF–DFG, each edge denotes
a dataflow and node denotes an operation of multiple
levels of granularity, progressing from coarse granular
nodes to finer nodes until primitive scalar operations
are reached. Figure 2(d) shows a snippet of the
QF–DFG IR, which corresponds to the CNF program in
Figure 2(b).

Engine Selector
QF–DFG is a target-independent IR which, when cre-
ated from CNF, is oblivious to the target engines for
execution, similar to target-independent IR stages of
the traditional compilers. Unlike traditional compila-
tion processes where the target platform is explicitly
known, the duality of domains and engines provided
by Yin–Yang opens a new avenue for optimal target
engine determinations as it exhibits the following
properties: 1) a domain possibly has multiple engines
that can support different subsets of its capabilities;
and 2) every engine, even within the same domain, has
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different performance energy tradeoffs. Thus, to
choose an optimal combination of engines for a given
QF–DFG and a set of engine specifications, XLVM is
equipped with the engine selector, which exploits 1) a
simple cost model as a proxy to estimate the perfor-
mance of engine assignment; and 2) an optimized
objective function.

Algorithm 1. Engine selection algorithm for QF-
DFG
1: Input: QF–DFG GðN;EÞ
2: Output: Engine Selection S
3: candidates ;, cost {}
4: while new_candidate_exists() do
5: candidates candidates [

f(n, e) j 8 n 2 N; 9 e 2 n.domain.engines}
6: end while
7: for c in candidates do
8: cost[c] 0
9: for (n, e) in c do
10: cost[c] cost[c] + T (n, e)
11: for (n_child, e_child) in children((n, e)) do
12: cost[c] cost[c] + C(e, e_child) + D(e, e_child)
13: end for
14: end for
15: end for
16: S  find_engine_selection_with_minimum_cost(cost)
17: return S

Cost model and objective function: We model the
execution time of end-to-end mutli-acceleration appli-
cations using three cost functions: 1) computation
latency (T ); 2) data copy overhead (C); and 3) data for-
mat conversion cost (D). To simplify the design, we
model the overall cost for the given QF–DFG as a sum
of these functions, which does not consider the
dynamic runtime factors such as pipelined execution
and bandwidth contention with other applications.
Using this cost model, we formulate the objective
function of the engine selector as a combination of
engines S for the QF–DFG from the candidate engine
set E, which minimizes total execution latency

argmin
S$E

Cost ¼
X

i

T i þ
X

ij

Cij þ
X

ij

Dij; for i; j 2 S:

Algorithm 1 illustrates the engine selection pro-
cess, which takes a QF–DFG and maps the graph
nodes to a set of available engines that minimize the
expected latency by optimizing the cost function. The
engine selector conducts a brute-force search of
all possible engine assignment combinations to the

QF–DFG and formulates the candidate set for the
engine selections (lines 4–6). Then, the engine selector
evaluates the cost function per each candidate selec-
tion and chooses the candidate that imposes the mini-
mum latency cost (lines 7–16). The selection results
are augmented to the QF–DFG as metadata. While we
demonstrated the engine selection process optimizing
for the execution time, the objective function can be
updated for other objectives such as energy efficiency
or SLO.

Engine Compiler
Once every node has been assigned to an engine, the
engine compiler individually invokes the engine-spe-
cific compiler to obtain the engine executable. The
canonical set of operations in engine executables con-
stitutes loading the input data to engines, setting the
configuration registers, triggering the computation,
observing the runtime status, and receiving the output
data. The underlying implementations of these opera-
tions for accelerators are all disparate, which makes
the runtime orchestration difficult. To unify the inter-
faces, XLVM abstracts the engines as files that can
perform computation and formalizes the engine inter-
faces as a set of file management APIs. Similar to the
Unix I/O, these APIs include 1) open a new engine;
2) read data back from the engine; 3) write data to the
engine; 4) initiate compute of a capability; and
5) close the engine. Thus, to link this computational
file abstraction with the low-level hardware interfaces,
the engine developers are asked to provide engine-
specific device drivers.

EVALUATION
Experimental Setup
Benchmarks: Cross-domain mutli-acceleration is an
emerging field and there is a lack of established work-
loads that span multiple domains. We take real-life
applications comprising well known algorithms to cre-
ate a benchmark suite that can evaluate cross-domain
mutli-acceleration. Table 1(a) summarizes these
benchmarks, the domains they contain, and the accel-
erated kernels: 1) memory–enhance is the deep brain
stimulation introduced in the “Component & Flow Pro-
gramming Model” section; 2) robot–explorer is a four-
wheeled robot equipped with a Kinect sensor to find
its way through a cave and requires a KinectFusion
(KF) algorithm to reconstruct a 3-D map of the cave
and MPC algorithm to navigate through the cave;
3) video–sync synchronizes subtitles with speech seg-
ments for video files, and requires MPEG-decoding
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and FFT to boost the speech-text pattern matching
process; 4) stock–market predicts the call option price
in the stock market, and requires sentiment analysis
using LR on news articles to extract market signals
with Black-Scholes model to predict call option pricing;
5) leukocyte detects leukocytes from video microscopy
of blood vessels, and uses gradient inverse coefficient
of variation (GICOV) score to perform detection in the
frame and motion gradient vector flow (MGVF) matrix
to track the leukocytes; and 6) security–camera
detects suspicious objects from its input video stream
by decoding the MPEG encoded video stream using
MPEG-decoding and performing an object detection
using deep learning (Tiny-Yolo-v2).

Compute platforms: Table 1(b) summarizes the
domains used in the benchmarks, the accelerated
capabilities, the used engines, and their platforms. Our

system is equipped with a host central processing unit
(CPU), Intel Xeon E3 (3.50 GHz). For fair comparison, we
use optimized software libraries to obtain the best per-
formance, including Intel MKL 2020, OpenBLAS v0:3,
and OpenCV 3:4:2. For FPGA, we use Xilinx KCU1500

with open-source hardware accelerators.7,9 Accelerators
are attached to the host via a PCIe interconnect.

Runtime measurements: We run the experiments
for ten times and attain the average to report. When
open-source RTL implementations of existing FPGA
accelerators are unavailable, we use the author-pro-
vided simulators to measure the performance. Using
the kernel execution time on the platforms, we esti-
mate the end-to-end application runtime.

Energy measurements: To measure the energy
consumption, we use the Intel running average power
limit (RAPL) for CPU and use the simulators for the
FPGA accelerators.

Programming effort: Accurately measuring human
effort is impossible, yet similar to prior works, FlexJava and
EnerJ, we count the number of lines of code (LoC) and the
number of annotations to quantify the humaneffort.

Experimental Results
1) Performance Improvement

Figure 3(a) shows the speedup gains as the number
of accelerator engines increases compared to the CPU-
only baseline. All the benchmarks provide benefits even
from a single-engine acceleration, which yields a 12:0!
speedup when the best-performing engine is used for
accelerating the benchmarks. However, the results
show that the speedup increases to 29:4! on average
when leveraging more engines, which amounts to a
145% extra speedup. Thus, there is untapped potential
in accelerating multiple kernels, which is unleashed by
our dual abstractions and XLVM. The rightmost bar
(“Manual Program”) also shows the speedup when the
maximal number of accelerators are enabled manually
by programmers, which represent the ideal speedup
that Yin–Yang would be able to achieve. The results
show that Yin–Yang almost reaches this ideal speedup,
while requiring less programming effort [see the
“Programmability” section]. Overall, our system attests
to the common wisdom that “the more accelerators,
the better.”
2) Performance-per-Joule Improvement

Figure 3(b) illustrates the performance-per-Joule
improvementofmulti-accelerationover theCPUbaseline.
As the figure shows, acceleration using a single engine
achieves an overall Performance-per-Joule improvement
of 7.0! against the baseline. By leveraging more engines
through theYin–Yangabstractions, wecanachievehigher
performance-per-Joule improvements of 12.2!, which is

TABLE 1. (a) Cross-domain benchmark suite, and (b) domains

and engines used in the benchmarks.
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translated to 74.2% extra efficiency. Similar to the “Perfor-
mance Improvement” section, we also report the manual
multi-acceleration results, which shows that Yin–Yang
closely reaches to the ideal efficiency gain, only leaving
marginal room for improvement.
3) Programmability

Figure 3(c) shows LoC improvements of the dual
abstractions when compared to manual programming.
The bar on the left represents LoC that programmers
write, while the stacked bar on the right delineates
the summated LoC that programmers, domain
experts, and engine developers should write in aggre-
gate. The results show that Yin–Yang effectively
reduces the LoC by 33.1% on average while obtaining
the same functionality and performance. The human
efforts needed for domain descriptions and engine
specifications are imposed only once when registering
the domains and engines. From the programmers per-
spective, the LoC is reduced from 383 to 137, which
increases the reduction rate to 64.2%. These results

suggest that the proposed dual abstractions allow
domain experts and engine developers to take part in
enabling multi-acceleration with minimum effort, and
CNF emancipates application programmers from the
onerous task of hardware development and low-level
programming for orchestrating multiple accelerators.

RELATEDWORK
Abstractions for heterogenous platforms:Although vari-
ous general purpose abstractions for accelerators such
as OpenCL exist, they do not incorporate the algorith-
mic domain knowledge. Intel oneAPI10 provides libraries
and compilation tools that can target multiple accelera-
tors. The libraries of oneAPI contain fine-grained con-
structs that allow programmers to focus on their
domain of interest and optimize it. SysML11 is a system
architecture modeling tool built upon unified modeling
language (UML). While SysML has a similarity to our
CNF programming model, it offers a general-purpose
and unified abstraction that lacks the notion of
domains. In contrast, this work provides cross-domain
programming abstractions and necessary mechanisms
to make it easy for programmers to harmoniously com-
bine existing accelerators from different domains
together to develop a single application.

CROSS-DOMAINMULTI-ACCELERATION
CANUNLOCKNEWCAPABILITIES. FOR
THISEMERGINGDIRECTION,WE
UNIQUELYPROVIDEDUAL
ABSTRACTIONSWHICHPRESERVE
DOMAINKNOWLEDGEWHILE LINKING
ALGORITHMICREPRESENTATIONSTO
HARDWARECAPABILITIES.

Domain-specific abstractions: There are a plethora
of one-sided acceleration solutions6,8 for a single
domain, which is either algorithm- or hardware-centric.
Our approach differs from these works in providing dual
abstractions thatmove away fromone-sided representa-
tion of a single domain and links multiple domains. This
enables us to utilize disjointly predesigned accelerators
to be used in tandem for cross-domain applications.

FPGA acceleration: High-level synthesis (HLS) is an
effective tool that allows programmers to use a high-
level language for accelerator development. While HLS
improves programmability, its performance gains are
usually lower than the custom-designed accelerators,
as shown in prior works.12 In contrary, Yin–Yang is an

FIGURE 3. Experimental results that show the acceleration gains

by Yin-Yang, in comparison with the baselines. We use the CPU-

only execution as the baseline for performance and energy-effi-

ciency results. The baseline for LoC results is the case of manual

programming. (a) Speedup with various number of accelerator

engines against CPUbaseline. (b) Performance-per-Joule improve-

ment achieved by multi-acceleration. (c) LoC improvements of

Yin-Yang in comparisonwith thebaselinemanual programming.
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alternative programming tool that offers three different
abstractions for three parties: 1) domain experts; 2)
engine developers; and 3) application programmers,
which allow them to collaboratively enable mutli-accel-
eration for cross-domain applications.

CONCLUSION
Cross-domainmulti-acceleration can unlock new capabil-
ities. For this emerging direction, we uniquely provide
dual abstractions which preserve domain knowledge
while linking algorithmic representations to hardware
capabilities. As a mechanism to provide this linkage, we
develop XLVM, which represents the program as QF–
DFG and determines efficient engine-to-capability map-
pings. Experimental results using a real-life benchmark
suite show significant improvements in performance and
energy when multiple accelerators from different domain
are used. This article also provides an open-source bench-
mark suite for the emerging area of cross-domain multi-
acceleration, which is available at https://github.com/he-
actlab/cross-domain-benchmarks.
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