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ABSTRACT
Success of Deep Neural Networks (DNNs) and their computational
intensity has heralded Cambrian explosion of DNNhardware.While
hardware design has advanced signi�cantly, optimizing the code
for them is still an open challenge. Recent research has moved past
traditional compilation techniques and taken a stochastic search
algorithmic path that blindly generates rather stochastic samples
of the binaries for real hardware measurements to guide the search.
This paper opens a new dimension by incorporating the mathe-
matical embedding of the hardware speci�cation of the GPU ac-
celerators dubbed Blueprint to better guide the search algorithm
and focus on sub-spaces that have higher potential for yielding
higher performance binaries. While various sample e�cient yet
blind hardware-agnostic techniques have been proposed, none of
the state-of-the-art compilers have considered hardware speci�ca-
tion as hints to improve the sample e�ciency and the search. To
mathematically embed the hardware speci�cations into the search,
we devise a Bayesian optimization framework called Glimpse with
multiple exclusively unique components. We �rst use the Blueprint
as an input to generate prior distributions of di�erent dimensions in
the search space. Then, we devise a light-weight neural acquisition
function that takes into account the Blueprint to conform to the
hardware speci�cationwhile balancing the exploration-exploitation
trade-o�. Finally, we generate an ensemble of predictors from the
Blueprint that collectively vote to reject invalid binary samples. We
compare Glimpse with hardware-agnostic compilers. Comparison
to AutoTVM [3], Chameleon [2], and DGP [16] with multiple gen-
erations of GPUs shows that Glimpse provides 6.73⇥, 1.51⇥, and
1.92⇥ faster compilation time, respectively, while also achieving
the best inference latency.
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1 INTRODUCTION
Prevalent adoption of Deep Neural Networks (DNNs) in voice as-
sistants, smart speakers, and enterprise applications has triggered
a Cambrian explosion of DNN hardware to cope with the colossal
computational intensity of DNNs. While the hardware designs have
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advanced signi�cantly, inseparable task of generating optimized
code for them is still an open challenge. In fact, hand-optimized li-
braries such as NVIDIA cuDNN or Intel MKL that serve backend for
programming interfaces such as TensorFlow [1] and PyTorch [13]
have been the go-to solutions for higher performance DNN exe-
cution. However, recent research in neural compilers has taken a
leap beyond hand-optimized libraries and traditional compilation
techniques, and embraced stochastic search algorithms such as sim-
ulated annealing to improve the search. These search algorithms
navigate an exponentially large search space for the optimized code,
which is one of the main reason behind the success of optimizing
compilers [4]. To traverse the search space in a sample e�cient
manner, recent innovations in optimizing compilers strived to re-
duce the compilation time with cost models to approximate the
large search space [3, 14] and e�ective search algorithms [2, 16].
However, these search algorithms [2, 3, 9, 14, 16, 18], classi�ed as
black-box optimization, are blindly and solely guided by the real
hardware measurements. These measurements, however, comes at
a large cost in terms of time yet barely provides any architectural
hints to e�ectively guide the search algorithms due to their blind-
ness. As such, although these neural compilers have made their way
into the deep learning pipelines of major deep learning solutions
providers including Amazon, Xilinx, and Qualcomm, the current
paradigm of hardware-agnostic neural compilers takes hours to
optimize even a small model. In fact, this even grows to days on
GPUs to optimize multitude of models on many GPU accelerators1,
which curtails the overall productivity in DNN model deployment.

This paper sets out to explore a new path where we provide neu-
ral compilers with perception such that it can take a glimpse of the
mathematical embedding of the hardware blueprints to better guide
the search algorithm.We devise a Bayesian optimization framework
called Glimpse that uniquely explores the mathematical embedding
of the GPU speci�cations dubbed Blueprints to expedite the neural
compilation while also improving the resulting binary performance.
We �rst use Blueprints to generate a set of prior distributions of
di�erent dimensions of the search space. Then, we devise a light-
weight neural acquisition function learned using meta-learning-
based algorithm that takes into account the Blueprint to conform to
the hardware while balancing the exploration-exploitation trade-o�.
Finally, we generate an ensemble of predictors from the Blueprint
that collectively vote to reject invalid binary samples. We compare
Glimpse with state-of-the-art hardware-agnostic neural compilers
AutoTVM [3], Chameleon [2], and DGP [16] with modern DNNs
including AlexNet [8], ResNet-18 [7], VGG-16 [15] on multiple gen-
erations of GPUs including Titan Xp, RTX 2070 Super, RTX 2080 Ti,

RTX 3090. Integration of Glimpse to TVM [4] shows that Glimpse
1For example, 10 DNN models on 100 di�erent GPUs would take around 10,000 GPU
hours to optimize which translates to $9,000 with Amazon EC2 instances (on-demand,
p2.xlarge). This is an exorbitant (per model update) cost for businesses considering
the swift evolution of the neural architectures deployed in real world applications.

1165

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3489517.3530590
https://doi.org/10.1145/3489517.3530590
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3489517.3530590&domain=pdf&date_stamp=2022-08-23


DAC ’22, July 10–14, 2022, San Francisco, CA, USA Byung Hoon Ahn, Sean Kinzer, and Hadi Esmaeilzadeh

Titan Xp RTX 2080 Ti
Optimized Configuration from Target HW Optimized Configuration from Different HW

27.79% slowdown31.33% slowdown

Figure 1: Visualization of ResNet-18 7th layer’s search space
on di�erent generation of GPUs (Titan Xp vs. RTX 2080 Ti).
While the overall search space may look similar, the optimal
con�guration is di�erent. We cannot just reuse the optimal
binary from one hardware to run DNN on another hardware.
provides 6.73⇥, 1.51⇥, and 1.92⇥ faster compilation time over Au-
toTVM, Chameleon, and DGP, respectively, while also achieving
the best inference latency. Further analysis show up to 2.18⇥ im-
provement in the initial con�gurations over transfer learning, 5.07⇥
and 2.55⇥ reduction in the number of search steps compared to Au-
toTVM and Chameleon.Glimpse also reduces invalid con�gurations
by 5.56⇥ and 4.53⇥ over AutoTVM and Chameleon.

2 CHALLENGES IN NEURAL COMPILATION
After the models are trained using programming interfaces such as
TensorFlow [1] or PyTorch [13], they are sent to the deployment
engineers whose goal is to make sure the models meet various
Quality-of-Service (QoS) requirements such as inference latency in
end-to-end applications. The deployment engineers utilize optimiz-
ing compilers such as TVM [4] to tune the performance on a given
target hardware, we use the term Neural Compilers throughout
the paper. In fact, major deep learning solution providers such as
Amazon, Xilinx, and Qualcomm incorporate these neural compilers
within their Software Development Kit (SDK).

2.1 Neural Compilation for Model Deployment
Current neural compilers generally try to optimize B 2 ( while con-
sidering the target hardware as a black-box function 5 (GB ), where
G and B are the code templates (e.g., Conv2D, Dense, and etc.) and
their con�guration (sampled from combinations of tiling, bindings,
unrolling, and etc.), respectively. Usually the size of the overall
search spaces ( is astronomically large, which render simple grid
search algorithms impractical. For example, the �rst layer of VGG-
16 has over 200 million combinations. To make this worse, these
search spaces are not di�erentiable, and the optimal con�gurations
are sparsely distributed throughout the search space making it
a complex problem to solve. Recent advances in neural compila-
tion [2, 3, 9, 14, 16, 18] have introduced a cost model 5̂ ⇡ 5 that
approximates the vast search space and proposed intelligent search
algorithms that better navigates the search space. However, the
neural compilers still su�er from long compilation times of over
tens of hours to days for even a single neural network.

2.2 Challenges and Opportunities in
Neural Compilation

Although the problem of neural compilation as stated in Section 2.1
is already di�cult, current neural compilation formulation has
a narrow focus on a single hardware. However, in reality, there
are multiple generations of hardware that are embedded in the
intelligent devices. For instance, if we consider GPUs that are widely
used to execute DNNs, generations of the GPU (e.g., Pascal, Turing,
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Figure 2: Overview of compilation with Glimpse. Unlike
current hardware-agnostic approaches which navigate the
search space blindfolded, Glimpse takes hints from glimpse
of hardware Blueprints for faster neural compilation.
Ampere, etc.) vary machine by machine. To this end, the deployment
engineers are left with a formidable task of tuning the DNN model
for multiple not single target hardware, meaning = repetitions of
the overall neural compilation for = hardware. In other words,
considering \ 2 ⇥ (where ⇥ encodes the hardware con�gurations
such as number of di�erent cores, clocks, bandwidth, bus types,
and etc.), problem formulation must be updated to:

B⇤ = argmax
B

5 (GB |⇥: ), for B 2 ( & many : 2 N (1)

Simplest approach to cope with the variations in hardware is to
just ignore and reuse the optimized con�guration from another hard-
ware. For example, using B⇤ from Titan Xp to compile DNN on RTX

2080 Ti. However, this may not result in the optimized performance
we desire. In fact, Figure 1 shows that while the overall search space
takes a similar shape for di�erent hardware, the optimal con�gu-
ration di�ers among them. For ResNet-18 7th layer, reusing B⇤ led
to 27.79% slowdown of the output code for Titan Xp!RTX 2080 Ti,
and 31.33% for RTX 2080 Ti!Titan Xp. On the other hand, transfer
learning [3] is the most common way of reusing the compilation ex-
periences. However, this also su�ers from similar degradation in the
performance of the resulting binary. An alternative approach would
be to develop multiple neural compilers, one for each hardware,
but this is neither cost-e�ective nor scalable solution to the long
neural compilation time problem. Most importantly, such approach
cannot cope with the constant evolution of the hardware. Simply
put, current hardware-agnostic techniques are not scalable. On the
other end of the spectrum, some analytical model or a simulator
within the neural compilation loop to give full view of the hardware
to run a white-box optimization, the con�dentiality of the hardware
design and the potential slow down of the compilation process from
the complex hardware prohibits this.

However, silver lining here is that: (i) while the precise blueprints
of the hardware are di�cult if not impossible to get and use in
neural compilation, some features or the speci�cation of the hardware
are available in public data sheets [12], and (ii) despite the fact
that optimal solutions are di�erent for di�erent hardware, their
search spaces have similar characteristics that open up opportunities
to transfer the optimization experiences. Overall, the macro view
of the problem of neural compilation for multiple hardware makes
the problem more challenging, yet introduces a new unexplored
dimension in designing neural compilers: hardware-awareness.
3 GLIMPSE: MATHEMATICAL EMBEDDING OF

HARDWARE SPECIFICATION FOR FASTER
NEURAL COMPILATION

Deviating from the current blind and hardware-agnostic neural com-
pilers, we propose Glimpse, a novel neural compiler with perception
to take a sneak peek of the hardware speci�cations in the form
of mathematical embedding dubbed Blueprint. We �rst devise a
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mathematical embedding Blueprint to encapsulate the hardware
speci�cations. Then, we develop a hardware-aware neural compiler
dubbed Glimpse that takes the Blueprints to take a glimpse of the
hardware blueprint to adaptively and quickly optimize the input
DNNs to the target hardware. To this end, this work can be subdi-
vided into two main components that work together: (i) Blueprint
a mathematical embedding that encodes key speci�cations of the
hardware, and (ii) Glimpse that translates the embedding into useful
knowledge such as prior distributions to guide the search, search
strategy in the form of neural acquisition function that can expedite
the optimizing compilation, and ensemble of predictors to reject
the invalid con�gurations. Figure 2 illustrates the overall �ow of
the compilation with Glimpse and Blueprint.

3.1 Blueprint: Mathematically Embedding
Architectural Features of Hardware

To provide hardware-awareness to the neural compiler, we need
to feed the neural compiler with the speci�cation about the target
hardware. However, unlike with white-box optimization where we
would have the full view of the design and the speci�cation of the
hardware enabling explicit description of the hardware within the
neural compiler, the complexity of the hardware designs as well as
the con�dentiality of the designs make it hard if not impossible to
get the design. To close the structural gap between the demand for
faster DNN deployment hence faster neural compilation and the
practical di�culty in incorporating hardware information, Glimpse
utilizes the architectural speci�cations provided by the vendors in
public data sheets [12]. The data sheet lists the number of di�erent
processors/cores, bus interfaces, cache size, clock cycles, and the com-
pute capacity in GFLOPS provided by the manufacturer. We create a
mathematical embedding of these speci�cations. These mathemat-
ical embeddings can provide neural compilers with a sneak peek
of the architecture, and as a result provide hints about the search
space and assist compiler while learning to quickly optimize tensor
programs to better optimality.

Design. We devise a novel abstraction of the hardware dubbed Blue-
print which is a mathematical embedding vector that summarizes
the important features of the target hardware. Two key considera-
tions while developing the Blueprint are (i) minimizing the loss of
information while (ii) maintaining low overhead. While (i) is an
obvious objective, (ii) is one of the key subtleties. As suggested in
Section 2, one of the key challenges we face in developing neural
compilers is the eons of time required for optimization. Therefore,
one of the key design consideration was reducing the size of the
embeddings that can impact the compilation time. In fact, parsing
overhead for the neural compilers to gain architectural insights
from the Blueprint may accrue to constitute a signi�cant fraction of
the neural compilation time. We perform a dimensionality reduction
of the original feature vectors using Principal Component Analysis
(PCA) to get get the minimal mathematical embedding vector that
summarizes the hardware.We use PCA over neural autoencoders as
PCA provides an intuitive knob that allows us to balance the size
with the information loss. On the other hand, using neural autoen-
coders would require more complex design space exploration of the
neural model. Also, neural networks required more computation to
achieve the same dimensionality reduction.
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Figure 3: Detailed diagram of Glimpse and its components.
Dotted arrows are o�line training procedure.

Prior distribution generation from Blueprint. We consider the
neural compilation as a Bayesian optimization problem where the
optimization begins with a prior distribution and updates the dis-
tribution over multiple iterations to gradually improve the pos-
terior distribution, improving the quality of sampled binaries as
we progress through the compilation. While this prior distribution
can be learned from scratch, this has been shown to be very ine�-
cient [2, 3]. As such, we use the aforementioned hardware Blueprint
and the network speci�cation to generate the prior distribution that
can speed up the compilation signi�cantly. We use a parametric
neural model 5 0: (c) ⇡ 5: instead of non-parametric Gaussian pro-
cesses to approximate the spaces. Then, taking inspiration from
HyperNetworks [6], we devise a prior distribution generatorH that
takes a layer speci�cation and Blueprint as input and outputs the
parameters c for the prior distribution 5 0: (c). To train H , we gath-
ered a large scale dataset similar to [19] of B and 5 . One important
design choice for H was generating = distributions for = dimen-
sions of the search space. H generates 5:, tile_x and 5:, tile_y for the
dimensions tile_x and tile_y, respectively. To get the initial samples
from the search space, Glimpse enumerates combinations of the
argmax(5:,⇤), weighted by the ⇧5:,⇤. Overall, this prior distribution
generator H serves an e�ective initialization for the optimizing
compilation procedure, reducing the number of costly hardware
measurements to locate optimal con�guration B⇤. Importantly, as
prior distribution generation from Blueprint is a one-o� process
per layer, the computational cost of H was negligible.
3.2 Hardware-Aware Exploration: Adapting

Optimization Steps with Meta-learning
Current hardware-agnostic techniques [2, 3, 9, 14, 16, 18] take black-
box approach and utilize stochastic optimization algorithms. To
transfer the experience among di�erent compilation instances,
above method such as AutoTVM [3] uses the cost model as a
proxy to transfer knowledge among similar layers. While these
approaches allow the users to reuse the cost model, they still re-
quire signi�cant number of real hardware measurements before
they start yielding satisfactory output code. Likewise, reusing cost
models among di�erent hardware usually yield sub-optimal output
code as stated in Section 2.2. The main reason for such sub-optimal
performance is because the subtle di�erences in the architecture
leads to signi�cant, yet nonlinear, changes in the performance for
the target hardware. Unlike these naive approaches to transfer expe-
riences, Glimpse leverages the information encapsulated in Blueprints
to improve the hardware-awareness of the exploration process. The
main insight is that, while the exact locations of the optimal con-
�guration in the search spaces may be di�erent among multiple
hardware, the know-hows on how to achieve that optimal con�gu-
ration may be transferable. Glimpse incorporates a hardware-aware
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Algorithm 1: Overall �ow of Glimpse with Blueprint.
Data: ⇧: Layer speci�cation, ⇥: Blueprint
Result: G⇤ : Optimal con�guration
/* Section 3.1: Generate prior distributions */

5̂  H(⇧,⇥) ;
for 8  0 to = do

/* Section 3.2: Hardware-Aware Exploration */

GB simulated annealing with 5̂ as energy function;
GB?AD=43  meta-optimizer with ⇥: as hints;
/* Section 3.3: Hardware-Aware Sampling */

GBB0<?;43 64CB sampling to minimize invalid con�gs.;
/* Run real hardware measurements */

for G 2 GBB0<?;43 do
~ 5 (G) ; O (G, ~) ; G⇤  G with maximum ~;

end
update 5 using O

end

strategy to conduct the search. In particular, we take inspiration from
MetaBO [17] to learn the Meta-Optimizer in the Figure 3 to emit neu-
ral acquisition functions 5 (·|\ ) for Hardware-Aware Exploration that
dictates the exploration and exploitation strategy.

Training. Training �rst begins by sampling the maximums -B
from the prior distribution from Section 3.1. Then, we follow the
natural Bayesian optimization pass of (i) sampling initial solutions
from the surrogate cost model 5 , (ii) Hardware-Aware Exploration
to determine the con�gurations -B to explore, and (iii) Hardware-
Aware Sampling to prune invalid con�gurations to determine the
candidates for real measurements- 0B . Measurements 5 (reward), Tu-
ples of con�guration and the optimization budget (-B , C,) ) (state)
where C and) are the optimization step and the budget, respectively,
and the optimal con�guration GB 2 -B (action) are collected as the
dataset to train the Meta-Optimizer. Highlighted inside the brack-
ets translates the Glimpse training setting into the reinforcement
learning parlance, similar to the [17]. We iterate through various
hardware and networks to train ourMeta-Optimizer. As we progress
through the Meta-Optimizer training, the Hardware-Aware Explo-
ration that gets emitted gradually improves and learns to (i) make the
optimal trade-o� between exploration-exploitation and, more impor-
tantly, (ii) learn how to incorporate the hardware-awareness in the
Hardware-Aware Exploration module. Final outcome of this o�-line
process is the hardware-aware optimization strategy ingrained in the
Hardware-Aware Exploration module.
3.3 Hardware-Aware Sampling: Using Statistics

to Minimize Invalid Con�gurations
Besides the above innovations, Glimpse tackles an innate issue in
neural compilers: frequent invalid con�gurations. Chameleon [2]
suggested using clustering that samples the centroids to reject in-
valid con�gurations. However, clustering-based sampling is hardware-
agnostic, and it fails to �lter out many of the invalid con�gurations,
leading to signi�cant waste in GPU time and low (real measure-
ments) sample e�ciency. In contrast, Glimpse incorporates the
hardware-guided approach to reject invalid con�gurations. Glimpse
generates an ensemble of predictors ? for di�erent dimensions of the
search space from the Blueprints. For example, ? tile_x and ? tile_y are
generated for tile_x and tile_y, respectively. For each con�guration
sampled from the Hardware-Aware Exploration, ensemble predictors
vote the validity of the con�guration. Sampler rejects the con�g-
uration if considered invalid by more than g2 of the predictors.

2We use g = 1
3 , found through a gridsearch hyperparameter search.

DNN Models  Dataset Number of Tasks 

AlexNet

VGG-16

Resnet-18

ImageNet 

ImageNet 

ImageNet 

12 
(5 conv2d, 4 winograd conv2d, 3 dense) 

21 
(9 conv2d, 9 winograd conv2d, 3 dense) 

17 
(12 conv2d, 4 winograd conv2d, 1 dense)  

Hardware Generation (gencode) 
Titan-Xp

RTX 2070 Super
RTX 2080 Ti

Pascal (sm_61) 
Turing (sm_75) 
Turing (sm_75) 

RTX 3090 Ampere (sm_86) 

Table 1: Details of the DNN models and the GPUs.
As each of these predictors are hardware-aware, their accuracy is
signi�cantly higher than other hardware-agnostic approaches.

Design. Instead of a large and complex monolithic predictor could
be an alternative design point for Hardware-Aware Sampling in
Glimpse, we use an ensemble of light-weight predictors for two
reasons. First, statistically speaking, ensemble methods have been
shown to yield a better predictive performance than could be ob-
tained from any of the constituent predictor alone. In this case,
comparable to a large complex monolithic predictor. In fact, smaller
predictors are more appropriate considering the dearth amount
of data. Furthermore, as key design consideration for neural com-
pilers is the compilation speed for higher overall productivity, en-
semble of light-weight predictors were used to minimize compu-
tational overhead of prediction. These predictors are super fast
as they are threshold-based: their time complexity is O(1) over
Chameleon [2]’s O(=:� ), where = is the number of samples, : is
the number of clusters, and � is the number of iterations.

Integration and implementation. Algorithm 1 summarizes the
overall �ow of Glimpse with Blueprint. We use PyTorch [13] to
implement H for prior generation and the meta-optimization.

4 EVALUATION
We integrate Glimpse with Apache TVM v0.8 [4] to perform eval-
uation of both component and end-to-end scenario. We ran our
framework on host machine with AMD Ryzen 7 3700X, 64GB DDR4,
with NVIDIA RTX 2070 Super, and used CUDA 11.3 to program DNNs
onto GPUs. We compare Glimpse against the state-of-the-art opti-
mizing compilers: AutoTVM [3], Chameleon [2], and DGP [16]. We
optimize AlexNet [8], VGG-16 [15], and ResNet-18 [7] on multiple
generations of GPUs connected via RPC (Titan Xp, RTX 2070 Super,

RTX 2080 Ti, RTX 3090) as summarized in Table 1.

4.1 Blueprint
Design space exploration of Blueprint. Unlike hardware-agnostic

proposals [2, 3, 9, 14, 16, 18],
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Figure 8: Design space exploration
of Blueprint. Point marked with red
star strikes balance between the in-
formation loss from compression
and the compilation time.

Glimpse utilizes the in-
formation embedded in
Blueprint to speed up
the neural compilation.
As such, minimizing the
information loss about
the architectural speci�-
cations listed in the data
sheets [12] is imperative.
Importantly, the Blueprint needs to be designed to have as low over-
head as possible. Figure 8 summarizes the design space exploration
of Blueprint. Our design of Blueprint strikes balance between the
amount of information in the vector (< 0.5% for minimal informa-
tion loss in terms of Root-Mean-Squared-Error (RMSE) while using
Blueprint) versus the size of the embedding (for fast compilation).
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Figure 6: Comparison in number of
search steps. Results show Glimpse pro-
vides signi�cant reduction.
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Figure 7: Comparison to hardware-
agnostic sampling approaches in reduc-
tion of invalid con�gurations.

Prior distribution generation with Blueprint. Figure 4 plots the
distribution of the initial con�gurations sampled with and without
Blueprint for representative GPU / DNN Model / Layer combinations.
The results show that using Blueprint improves the initial con�gu-
ration. In fact, some layers even reach the optimal con�guration
within �rst few steps of optimization, enabling sub-minute compi-
lation time. In contrast, AutoTVM [3] and Chameleon [2] reports
that it takes at least few hundred steps (around hour per layer)
to reach a similar performance. We also compare against transfer
learning which is the core mechanism used in AutoTVM [3] to
reuse knowledge from prior optimization runs. We used logs from
all but combination of target network and hardware for transfer
learning, and plot the output code performance when provided
100 seconds of budget per layer. Figure 5 shows that Blueprint out-
performs both AutoTVM with and without transfer learning by
40.0%. Despite the belief that transfer learning would be su�cient
to transfer knowledge among tasks, it sometimes performed worse
than baseline AutoTVM. In fact, the results in AutoTVM [3] also
suggests that transfer learning only achieves fraction of the �nal
binary performance that are achieved with hundreds to thousands
of hardware measurements. These results suggest that knowledge
from transfer learning not only necessitates signi�cant number of
additional real hardware measurements but also is prone to being
misguided. In contrast, Blueprint provides e�ective initializations to
the Glimpse compiler and consistently yields the best performance.
4.2 Hardware-Aware Explorer

Speed of convergence. In AutoTVM [3] and Chameleon [2], au-
thors formulate a cost minimization with a batch of Markov chains
and use optimization algorithms such as simulated annealing and
reinforcement learning. While the output code performance is de-
termined by the �nal cost the optimization achieves, the number
of updates or steps these Markov chains take is the key factor that
determines the optimization time. Figure 6 compares the number
of search steps among the three works: AutoTVM [3], Chameleon,
and Glimpse3. Glimpse achieves 5.07⇥ and 2.55⇥ speed-up against
AutoTVM and Chameleon, which shows that Glimpse’s Hardware-
Aware Explorer may converge signi�cantly faster than optimizing

3Here, we do not provide comparisons against acquisition functions such as Expected
Improvement (EI), and Upper Con�dence Bound (UCB). AutoTVM’s experimental
results show that they yielded no improvement.

compilers for single hardware. This notable reduction in the num-
ber of search steps come from the Glimpse compiler’s ability to take
hints from the mathematical embeddings of the Blueprints about
the optimization steps, on when and where to explore and exploit.
4.3 Hardware-Aware Sampling
There is an intrinsic issue of the search space provided by TVM [4]
where there exists numerous invalid con�gurations leading to large
delays in compilation speed and waste in GPU hours. In current
compilers, around 10% of the measurements made were invalid.
Figure 7 presents the reduction in fraction of invalid con�gurations
with respect to the number of hardware measurements for sampling
in Chameleon [2] and Glimpse compared to AutoTVM [3]. Glimpse
reduces the invalid con�gurations by 5.56⇥ and 4.53⇥ compared to
AutoTVM and Chameleon, respectively. The results suggest, that
weak statistical guarantees of the sample synthesis and the adaptive
sampling to reduce the frequency of these invalid con�gurations are
insu�cient to cope with the above issue. Instead, Hardware-Aware
Sampling in Glimpse e�ectively reduces the number of hardware
measurements using the statistical approach.
4.4 Putting It All Together
Figure 9 compares the end-to-end compilation time and the out-
put binary performance of Glimpse compared to state-of-the-art
hardware-agnostic techniques: AutoTVM [3], Chameleon [2], and
DGP [16]. First, Glimpse cuts down the search time 6.73⇥, 1.51⇥,
and 1.92⇥ compared to AutoTVM, Chameleon, and DGP respec-
tively, while achieving the best inference latency of the output
binary. The gains come from the collaboration of (i) prior distribu-
tions generated from Blueprint, (ii) e�ective balance of exploration-
exploitation as well as hardware-awareness of Hardware-Aware
Exploration, and (iii) hardware measurements reduction with sta-
tistical Hardware-Aware Sampling. Table 2 summarizes the search
reduction (GPU time), inference time improvement. Also, following
[16], we present Hyper-Volume (HV) to measure the e�cacy of
di�erent approaches considering multi-objectives.

HV = Search Reduction ⇥ Inference Reduction ⇥ 100 (2)
Glimpse cuts down the search time signi�cantly compared to

hardware-agnostic techniques while achieving the fastest inference.
Therefore, Glimpse shows the highest HV score: the best trade-o�
between search time and inference speed. Even if inference speed is
the main criterion [16], Glimpse provides the best inference speed.
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Model ΣGPU Search
(GPU Hours) 

AlexNet
ResNet-18
VGG-16

18.65
36.53
49.08

AutoTVM (NeurIPS’19)
Mean Inference (ms) 

0.5518
1.8926

Chameleon (ICLR’20)

HV

4.2430
3.1895
2.8401

Search 
Redu. (%)

72.16
76.67
82.56

Inference
Redu. (%)

5.88
4.16
3.44

DGP (ICCV’21)

HV

4.5578
3.6412
3.2576

Search 
Redu. (%)

65.96
70.43
76.83

Inference
Redu. (%)

6.91
5.17
4.24

Glimpse (Ours)

HV

5.7492
4.3954
3.7045

Search 
Redu. (%)

82.84
84.85
87.37

Inference
Redu. (%)

6.94
5.18
4.24

0.4799
Titan Xp RTX 2070 Super RTX 2080 Ti RTX 3090

1.0258
3.9829

1.0277
1.3305
4.5751

0.9662
0.9282
3.1865

0.7872

Table 2: Comparisons to state-of-the-art optimizing compilers [2, 3, 16] for Hyper-Volume (HV), a metric that summarizes the
multiple objectives of optimizing compilation: search time (GPU Hours) and end-to-end model inference latency (milliseconds).
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Figure 9: End-to-end evaluation.

5 RELATEDWORKS
A large body of inspiring works on neural compilers have been
introduced to generate high-performance binaries for innovative
neural accelerators [10]. While many neural compilers such as
TVM [4] blindly rely on the statistical guarantees of stochastic
optimization, this paper uniquely explores the use of hardware
blueprints, a proxy of the complete architecture description to
improve the initialization, exploration, and the sampling to improve
neural compilation. Below, we discuss the most related works:

Neural compilers. While TVM [4] signi�cantly improves infer-
ence speed of DNNs, it comes with an intractable search space.
AutoTVM [3] develops learned cost models and TenSet [19] pro-
vides large scale dataset to improve the cost models to approximate
this large search space To �nd optimal con�gurations, TVM [4]
builds on random search and genetic algorithmswhile AutoTVM [3],
GGA [11], and Chameleon [2] explored simulated annealing, guided
genetic algorithm, and reinforcement learning to further improve
the search e�cacy. [16] explored deep Gaussian process to transfer
knowledge to di�erent layers on a single target GPU. Prior works
were blind about the hardware during optimization, discarding the
opportunity to transfer experiences between optimization runs on
di�erent hardware. While these blind approaches incur large GPU
hours for compilation, this paper explores the use of Blueprint as
a mechanism to let compilers perceive the target hardware and
predict the search space landscape to expedite the search, reducing
the overall GPU hours while also achieving faster inference.

Meta-learning for neural compilation. Meta-learning [5] proposes
a mechanism to learn to learn that guides and expedites optimiza-
tion. For example, MetaBO [17] explored meta-learning in the con-
text of Bayesian optimization for more sample e�cient optimiation.
In the context of neural compilation, MetaTune [14] leverages meta-
learning to expedite the convergence of the cost models. In contrast,
Glimpse incorporates a unique blend of meta-optimizer that takes
domain-knowledge about the architectures as input. Speci�cally,
we develop a mechanism that feeds theHardware-Aware Exploration
with information in Blueprint, which led to signi�cant reduction in
compilation time as well as the inference latency.

6 CONCLUSION
This paper presents Glimpse, a neural compiler that exclusively
explores mathematical embeddings of the hardware Blueprints to

improve both the speed and the performance of neural compila-
tion. Experiments on modern DNNs on a multiple generations of
hardware shows that hardware-awareness of Glimpse signi�cantly
reduces the compilation time while achieving the best inference
latency. Encouraging results with Glimpse of Blueprint for neu-
ral compilation suggest signi�cant potential in abstractions that
encode domain knowledge to improve optimization.
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