Check for
Updates

Glimpse: Mathematical Embedding of Hardware Specification
for Neural Compilation

Byung Hoon Ahn

Sean Kinzer

Hadi Esmaeilzadeh

University of California, San Diego

{bhahn,skinzer,hadi}@eng.ucsd.edu

ABSTRACT

Success of Deep Neural Networks (DNNs) and their computational
intensity has heralded Cambrian explosion of DNN hardware. While
hardware design has advanced significantly, optimizing the code
for them is still an open challenge. Recent research has moved past
traditional compilation techniques and taken a stochastic search
algorithmic path that blindly generates rather stochastic samples
of the binaries for real hardware measurements to guide the search.
This paper opens a new dimension by incorporating the mathe-
matical embedding of the hardware specification of the GPU ac-
celerators dubbed Blueprint to better guide the search algorithm
and focus on sub-spaces that have higher potential for yielding
higher performance binaries. While various sample efficient yet
blind hardware-agnostic techniques have been proposed, none of
the state-of-the-art compilers have considered hardware specifica-
tion as hints to improve the sample efficiency and the search. To
mathematically embed the hardware specifications into the search,
we devise a Bayesian optimization framework called Glimpse with
multiple exclusively unique components. We first use the Blueprint
as an input to generate prior distributions of different dimensions in
the search space. Then, we devise a light-weight neural acquisition
function that takes into account the Blueprint to conform to the
hardware specification while balancing the exploration-exploitation
trade-off. Finally, we generate an ensemble of predictors from the
Blueprint that collectively vote to reject invalid binary samples. We
compare Glimpse with hardware-agnostic compilers. Comparison
to AutoTVM [3], Chameleon [2], and DGP [16] with multiple gen-
erations of GPUs shows that Glimpse provides 6.73%, 1.51x, and
1.92x faster compilation time, respectively, while also achieving
the best inference latency.

ACM Reference Format:

Byung Hoon Ahn, Sean Kinzer, and Hadi Esmaeilzadeh. 2022. Glimpse:
Mathematical Embedding of Hardware Specification for Neural Compilation.
In Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC)
(DAC °22), July 10-14, 2022, San Francisco, CA, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3489517.3530590

1 INTRODUCTION

Prevalent adoption of Deep Neural Networks (DNNs) in voice as-
sistants, smart speakers, and enterprise applications has triggered
a Cambrian explosion of DNN hardware to cope with the colossal
computational intensity of DNNs. While the hardware designs have

This work is licensed under a Creative Commons Attribution International 4.0 License.

DAC °22, July 10-14, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9142-9/22/07.
https://doi.org/10.1145/3489517.3530590

1165

advanced significantly, inseparable task of generating optimized
code for them is still an open challenge. In fact, hand-optimized li-
braries such as NVIDIA cuDNN or Intel MKL that serve backend for
programming interfaces such as TensorFlow [1] and PyTorch [13]
have been the go-to solutions for higher performance DNN exe-
cution. However, recent research in neural compilers has taken a
leap beyond hand-optimized libraries and traditional compilation
techniques, and embraced stochastic search algorithms such as sim-
ulated annealing to improve the search. These search algorithms
navigate an exponentially large search space for the optimized code,
which is one of the main reason behind the success of optimizing
compilers [4]. To traverse the search space in a sample efficient
manner, recent innovations in optimizing compilers strived to re-
duce the compilation time with cost models to approximate the
large search space [3, 14] and effective search algorithms [2, 16].
However, these search algorithms [2, 3, 9, 14, 16, 18], classified as
black-box optimization, are blindly and solely guided by the real
hardware measurements. These measurements, however, comes at
a large cost in terms of time yet barely provides any architectural
hints to effectively guide the search algorithms due to their blind-
ness. As such, although these neural compilers have made their way
into the deep learning pipelines of major deep learning solutions
providers including Amazon, Xilinx, and Qualcomm, the current
paradigm of hardware-agnostic neural compilers takes hours to
optimize even a small model. In fact, this even grows to days on
GPUs to optimize multitude of models on many GPU accelerators!,
which curtails the overall productivity in DNN model deployment.

This paper sets out to explore a new path where we provide neu-
ral compilers with perception such that it can take a glimpse of the
mathematical embedding of the hardware blueprints to better guide
the search algorithm. We devise a Bayesian optimization framework
called Glimpse that uniquely explores the mathematical embedding
of the GPU specifications dubbed Blueprints to expedite the neural
compilation while also improving the resulting binary performance.
We first use Blueprints to generate a set of prior distributions of
different dimensions of the search space. Then, we devise a light-
weight neural acquisition function learned using meta-learning-
based algorithm that takes into account the Blueprint to conform to
the hardware while balancing the exploration-exploitation trade-off.
Finally, we generate an ensemble of predictors from the Blueprint
that collectively vote to reject invalid binary samples. We compare
Glimpse with state-of-the-art hardware-agnostic neural compilers
AutoTVM [3], Chameleon [2], and DGP [16] with modern DNNs
including AlexNet [8], ResNet-18 [7], VGG-16 [15] on multiple gen-
erations of GPUs including Titan Xp, RTX 2070 Super, RTX 2080 Ti,
RTX 3090. Integration of Glimpse to TVM [4] shows that Glimpse

1For example, 10 DNN models on 100 different GPUs would take around 10,000 GPU
hours to optimize which translates to $9,000 with Amazon EC2 instances (on-demand,
p2.xlarge). This is an exorbitant (per model update) cost for businesses considering
the swift evolution of the neural architectures deployed in real world applications.

https://doi.org/10.1145/3489517.3530590
https://doi.org/10.1145/3489517.3530590
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3489517.3530590&domain=pdf&date_stamp=2022-08-23

DAC '22, July 10-14, 2022, San Francisco, CA, USA

Optimized Configuration from Target HW Optimized Configuration from Different HW

Titan Xp RTX 2080 Ti
o U,

S 6000

5000

s = EE o
05 101520 25 30 35 40 45 50 55 60 65 70 75 80

Figure 1: Visualization of ResNet-18 7th layer’s search space
on different generation of GPUs (Titan Xp vs. RTX 2080 Ti).
While the overall search space may look similar, the optimal
configuration is different. We cannot just reuse the optimal

binary from one hardware to run DNN on another hardware.

provides 6.73x, 1.51%, and 1.92X faster compilation time over Au-
toTVM, Chameleon, and DGP, respectively, while also achieving
the best inference latency. Further analysis show up to 2.18X im-
provement in the initial configurations over transfer learning, 5.07x
and 2.55% reduction in the number of search steps compared to Au-
toTVM and Chameleon. Glimpse also reduces invalid configurations
by 5.56x and 4.53% over AutoTVM and Chameleon.

2 CHALLENGES IN NEURAL COMPILATION

After the models are trained using programming interfaces such as
TensorFlow [1] or PyTorch [13], they are sent to the deployment
engineers whose goal is to make sure the models meet various
Quality-of-Service (QoS) requirements such as inference latency in
end-to-end applications. The deployment engineers utilize optimiz-
ing compilers such as TVM [4] to tune the performance on a given
target hardware, we use the term Neural Compilers throughout
the paper. In fact, major deep learning solution providers such as
Amazon, Xilinx, and Qualcomm incorporate these neural compilers
within their Software Development Kit (SDK).

2.1 Neural Compilation for Model Deployment

Current neural compilers generally try to optimize s € S while con-
sidering the target hardware as a black-box function f(xs), where
x and s are the code templates (e.g., Conv2D, Dense, and etc.) and
their configuration (sampled from combinations of tiling, bindings,
unrolling, and etc.), respectively. Usually the size of the overall
search spaces S is astronomically large, which render simple grid
search algorithms impractical. For example, the first layer of VGG-
16 has over 200 million combinations. To make this worse, these
search spaces are not differentiable, and the optimal configurations
are sparsely distributed throughout the search space making it
a complex problem to solve. Recent advances in neural compila-
tion [2, 3, 9, 14, 16, 18] have introduced a cost model f ~ f that
approximates the vast search space and proposed intelligent search
algorithms that better navigates the search space. However, the
neural compilers still suffer from long compilation times of over
tens of hours to days for even a single neural network.

2.2 Challenges and Opportunities in
Neural Compilation

Although the problem of neural compilation as stated in Section 2.1
is already difficult, current neural compilation formulation has
a narrow focus on a single hardware. However, in reality, there
are multiple generations of hardware that are embedded in the
intelligent devices. For instance, if we consider GPUs that are widely
used to execute DNNs, generations of the GPU (e.g., Pascal, Turing,

1166

Byung Hoon Ahn, Sean Kinzer, and Hadi Esmaeilzadeh

Real Hardware Measurements f

DNN
Model

Multiple

Glimpse Target Hardware

7 4

Code Templates Hardware
&Search Space Blueprints

Figure 2: Overview of compilation with Glimpse. Unlike
current hardware-agnostic approaches which navigate the
search space blindfolded, Glimpse takes hints from glimpse
of hardware Blueprints for faster neural compilation.

Binary

Blueprint
Generation
Public

Mathematical| Data Sheets.
Embedding

Ampere, etc.) vary machine by machine. To this end, the deployment
engineers are left with a formidable task of tuning the DNN model
for multiple not single target hardware, meaning n repetitions of
the overall neural compilation for n hardware. In other words,
considering 6 € © (where © encodes the hardware configurations
such as number of different cores, clocks, bandwidth, bus types,
and etc.), problem formulation must be updated to:

s* = argmax f(x;|Og), forse S&manyk e N (1)

S

Simplest approach to cope with the variations in hardware is to
just ignore and reuse the optimized configuration from another hard-
ware. For example, using s* from Titan Xp to compile DNN on RTX
2080 Ti. However, this may not result in the optimized performance
we desire. In fact, Figure 1 shows that while the overall search space
takes a similar shape for different hardware, the optimal configu-
ration differs among them. For ResNet-18 7th layer, reusing s* led
to 27.79% slowdown of the output code for Titan Xp—RTX 2080 Ti,
and 31.33% for RTX 2080 Ti—Titan Xp. On the other hand, transfer
learning [3] is the most common way of reusing the compilation ex-
periences. However, this also suffers from similar degradation in the
performance of the resulting binary. An alternative approach would
be to develop multiple neural compilers, one for each hardware,
but this is neither cost-effective nor scalable solution to the long
neural compilation time problem. Most importantly, such approach
cannot cope with the constant evolution of the hardware. Simply
put, current hardware-agnostic techniques are not scalable. On the
other end of the spectrum, some analytical model or a simulator
within the neural compilation loop to give full view of the hardware
to run a white-box optimization, the confidentiality of the hardware
design and the potential slow down of the compilation process from
the complex hardware prohibits this.

However, silver lining here is that: (i) while the precise blueprints
of the hardware are difficult if not impossible to get and use in
neural compilation, some features or the specification of the hardware
are available in public data sheets [12], and (ii) despite the fact
that optimal solutions are different for different hardware, their
search spaces have similar characteristics that open up opportunities
to transfer the optimization experiences. Overall, the macro view
of the problem of neural compilation for multiple hardware makes
the problem more challenging, yet introduces a new unexplored
dimension in designing neural compilers: hardware-awareness.

3 GLIMPSE: MATHEMATICAL EMBEDDING OF
HARDWARE SPECIFICATION FOR FASTER
NEURAL COMPILATION

Deviating from the current blind and hardware-agnostic neural com-

pilers, we propose Glimpse, a novel neural compiler with perception

to take a sneak peek of the hardware specifications in the form
of mathematical embedding dubbed Blueprint. We first devise a

Glimpse: Mathematical Embedding of Hardware Specification for Neural Compilation

mathematical embedding Blueprint to encapsulate the hardware
specifications. Then, we develop a hardware-aware neural compiler
dubbed Glimpse that takes the Blueprints to take a glimpse of the
hardware blueprint to adaptively and quickly optimize the input
DNN:ss to the target hardware. To this end, this work can be subdi-
vided into two main components that work together: (i) Blueprint
a mathematical embedding that encodes key specifications of the
hardware, and (ii) Glimpse that translates the embedding into useful
knowledge such as prior distributions to guide the search, search
strategy in the form of neural acquisition function that can expedite
the optimizing compilation, and ensemble of predictors to reject
the invalid configurations. Figure 2 illustrates the overall flow of
the compilation with Glimpse and Blueprint.

3.1 Blueprint: Mathematically Embedding
Architectural Features of Hardware

To provide hardware-awareness to the neural compiler, we need
to feed the neural compiler with the specification about the target
hardware. However, unlike with white-box optimization where we
would have the full view of the design and the specification of the
hardware enabling explicit description of the hardware within the
neural compiler, the complexity of the hardware designs as well as
the confidentiality of the designs make it hard if not impossible to
get the design. To close the structural gap between the demand for
faster DNN deployment hence faster neural compilation and the
practical difficulty in incorporating hardware information, Glimpse
utilizes the architectural specifications provided by the vendors in
public data sheets [12]. The data sheet lists the number of different
processors/cores, bus interfaces, cache size, clock cycles, and the com-
pute capacity in GFLOPS provided by the manufacturer. We create a
mathematical embedding of these specifications. These mathemat-
ical embeddings can provide neural compilers with a sneak peek
of the architecture, and as a result provide hints about the search
space and assist compiler while learning to quickly optimize tensor
programs to better optimality.

Design. We devise a novel abstraction of the hardware dubbed Blue-
print which is a mathematical embedding vector that summarizes
the important features of the target hardware. Two key considera-
tions while developing the Blueprint are (i) minimizing the loss of
information while (ii) maintaining low overhead. While (i) is an
obvious objective, (ii) is one of the key subtleties. As suggested in
Section 2, one of the key challenges we face in developing neural
compilers is the eons of time required for optimization. Therefore,
one of the key design consideration was reducing the size of the
embeddings that can impact the compilation time. In fact, parsing
overhead for the neural compilers to gain architectural insights
from the Blueprint may accrue to constitute a significant fraction of
the neural compilation time. We perform a dimensionality reduction
of the original feature vectors using Principal Component Analysis
(PCA) to get get the minimal mathematical embedding vector that
summarizes the hardware. We use PCA over neural autoencoders as
PCA provides an intuitive knob that allows us to balance the size
with the information loss. On the other hand, using neural autoen-
coders would require more complex design space exploration of the
neural model. Also, neural networks required more computation to
achieve the same dimensionality reduction.

1167

DAC '22, July 10-14, 2022, San Francisco, CA, USA

Hardware Blueprints

Meta
Optimjzer

A

|
Ny R
. A a0 .
i [Surrogate |

Cost Model [*

1
Prior Distribution
Generator

Sampled binaries Xs'
> for Real Hardware
measurements

Hardware-Aware
Sampling

Hardware-Aware |}

Exploration
(Neural Acauisition Function)

Measurements f(Xs)
from Real Hardware

T
Code Template x
and Search Space

Figure 3: Detailed diagram of Glimpse and its components.
Dotted arrows are offline training procedure.

Prior distribution generation from Blueprint. We consider the
neural compilation as a Bayesian optimization problem where the
optimization begins with a prior distribution and updates the dis-
tribution over multiple iterations to gradually improve the pos-
terior distribution, improving the quality of sampled binaries as
we progress through the compilation. While this prior distribution
can be learned from scratch, this has been shown to be very ineffi-
cient [2, 3]. As such, we use the aforementioned hardware Blueprint
and the network specification to generate the prior distribution that
can speed up the compilation significantly. We use a parametric
neural model fk’ (7) = fi. instead of non-parametric Gaussian pro-
cesses to approximate the spaces. Then, taking inspiration from
HyperNetworks [6], we devise a prior distribution generator H that
takes a layer specification and Blueprint as input and outputs the
parameters 7 for the prior distribution fk’ (7). To train H, we gath-
ered a large scale dataset similar to [19] of s and f. One important
design choice for H was generating n distributions for n dimen-
sions of the search space. H generates fi sile x and fi tie y for the
dimensions tile_x and tile_y, respectively. To get the initial samples
from the search space, Glimpse enumerates combinations of the
argmax(i .), weighted by the I1fi ... Overall, this prior distribution
generator H serves an effective initialization for the optimizing
compilation procedure, reducing the number of costly hardware
measurements to locate optimal configuration s*. Importantly, as
prior distribution generation from Blueprint is a one-off process
per layer, the computational cost of H was negligible.

3.2 Hardware-Aware Exploration: Adapting
Optimization Steps with Meta-learning

Current hardware-agnostic techniques (2, 3, 9, 14, 16, 18] take black-
box approach and utilize stochastic optimization algorithms. To
transfer the experience among different compilation instances,
above method such as AutoTVM [3] uses the cost model as a
proxy to transfer knowledge among similar layers. While these
approaches allow the users to reuse the cost model, they still re-
quire significant number of real hardware measurements before
they start yielding satisfactory output code. Likewise, reusing cost
models among different hardware usually yield sub-optimal output
code as stated in Section 2.2. The main reason for such sub-optimal
performance is because the subtle differences in the architecture
leads to significant, yet nonlinear, changes in the performance for
the target hardware. Unlike these naive approaches to transfer expe-
riences, Glimpse leverages the information encapsulated in Blueprints
to improve the hardware-awareness of the exploration process. The
main insight is that, while the exact locations of the optimal con-
figuration in the search spaces may be different among multiple
hardware, the know-hows on how to achieve that optimal configu-
ration may be transferable. Glimpse incorporates a hardware-aware

DAC '22, July 10-14, 2022, San Francisco, CA, USA

Algorithm 1: Overall flow of Glimpse with Blueprint.

Data: I1: Layer specification, ©: Blueprint
Result: x*: Optimal configuration

/* Section 3.1: Generate prior distributions */
feHae:
for i « 0tondo

/* Section 3.2: Hardware-Aware Exploration */

xs < simulated annealing with f as energy function;
XSpruned ¢ meta-optimizer with O as hints;
/* Section 3.3: Hardware-Aware Sampling */
XSsampled 9€ts sampling to minimize invalid configs.;
/* Run real hardware measurements */
for x € xSsampled 4o
| yef(x): O« (x,y);x* < x with maximum y;
end
update f using O

end

strategy to conduct the search. In particular, we take inspiration from
MetaBO [17] to learn the Meta-Optimizer in the Figure 3 to emit neu-
ral acquisition functions f(-|6) for Hardware-Aware Exploration that
dictates the exploration and exploitation strategy.

Training. Training first begins by sampling the maximums X;
from the prior distribution from Section 3.1. Then, we follow the
natural Bayesian optimization pass of (i) sampling initial solutions
from the surrogate cost model f, (ii) Hardware-Aware Exploration
to determine the configurations X; to explore, and (iii) Hardware-
Aware Sampling to prune invalid configurations to determine the
candidates for real measurements X/. Measurements f (reward), Tu-
ples of configuration and the optimization budget (X, ¢, T) (state)
where t and T are the optimization step and the budget, respectively,
and the optimal configuration xs € X (action) are collected as the
dataset to train the Meta-Optimizer. Highlighted inside the brack-
ets translates the Glimpse training setting into the reinforcement
learning parlance, similar to the [17]. We iterate through various
hardware and networks to train our Meta-Optimizer. As we progress
through the Meta-Optimizer training, the Hardware-Aware Explo-
ration that gets emitted gradually improves and learns to (i) make the
optimal trade-off between exploration-exploitation and, more impor-
tantly, (ii) learn how to incorporate the hardware-awareness in the
Hardware-Aware Exploration module. Final outcome of this off-line
process is the hardware-aware optimization strategy ingrained in the
Hardware-Aware Exploration module.

3.3 Hardware-Aware Sampling: Using Statistics
to Minimize Invalid Configurations

Besides the above innovations, Glimpse tackles an innate issue in
neural compilers: frequent invalid configurations. Chameleon [2]
suggested using clustering that samples the centroids to reject in-
valid configurations. However, clustering-based sampling is hardware-
agnostic, and it fails to filter out many of the invalid configurations,
leading to significant waste in GPU time and low (real measure-
ments) sample efficiency. In contrast, Glimpse incorporates the
hardware-guided approach to reject invalid configurations. Glimpse
generates an ensemble of predictors p for different dimensions of the
search space from the Blueprints. For example, pije x and pyje y are
generated for tile_x and tile_y, respectively. For each configuration
sampled from the Hardware-Aware Exploration, ensemble predictors
vote the validity of the configuration. Sampler rejects the config-
uration if considered invalid by more than 72 of the predictors.

2We use 7 = %, found through a gridsearch hyperparameter search.

1168

Byung Hoon Ahn, Sean Kinzer, and Hadi Esmaeilzadeh

DNN Models PEIEET Number of Tasks Hardware Generation (gencode)
12 Titan-Xj Pascal (sm_61
AlexNet ImageNet | s convaa, 4 winograd comi2a, 3 dense) fane (m 6D
RTX 2070 Super Turing (sm_75)
VGG-16 | ImageNet | g conz o wpasconiza acerse T 2000 Tt Taring (4m 75
Resnet-18 | ImageNet |, conizq, 4 winograd conved 1 dense) RTX 3090 Ampere (sm_86)

Table 1: Details of the DNN models and the GPUs.

As each of these predictors are hardware-aware, their accuracy is
significantly higher than other hardware-agnostic approaches.

Design. Instead of a large and complex monolithic predictor could
be an alternative design point for Hardware-Aware Sampling in
Glimpse, we use an ensemble of light-weight predictors for two
reasons. First, statistically speaking, ensemble methods have been
shown to yield a better predictive performance than could be ob-
tained from any of the constituent predictor alone. In this case,
comparable to a large complex monolithic predictor. In fact, smaller
predictors are more appropriate considering the dearth amount
of data. Furthermore, as key design consideration for neural com-
pilers is the compilation speed for higher overall productivity, en-
semble of light-weight predictors were used to minimize compu-
tational overhead of prediction. These predictors are super fast
as they are threshold-based: their time complexity is O(1) over
Chameleon [2]’s O(nkI), where n is the number of samples, k is
the number of clusters, and I is the number of iterations.

Integration and implementation. Algorithm 1 summarizes the
overall flow of Glimpse with Blueprint. We use PyTorch [13] to
implement H for prior generation and the meta-optimization.

4 EVALUATION

We integrate Glimpse with Apache TVM v0.8 [4] to perform eval-
uation of both component and end-to-end scenario. We ran our
framework on host machine with AMD Ryzen 7 3700X, 64GB DDR4,
with NVIDIA RTX 2070 Super, and used CUDA 11.3 to program DNN’s
onto GPUs. We compare Glimpse against the state-of-the-art opti-
mizing compilers: AutoTVM [3], Chameleon [2], and DGP [16]. We
optimize AlexNet [8], VGG-16 [15], and ResNet-18 [7] on multiple
generations of GPUs connected via RPC (Titan Xp, RTX 2070 Super,
RTX 2080 Ti, RTX 3090) as summarized in Table 1.

4.1 Blueprint

Design space exploration of Blueprint. Unlike hardware-agnostic
proposals [2, 3,9, 14, 16, 18] o2

Glimpse utilizes the in- g 0.15 Optimal trade-off of information loss
. . e 01 and compilation speed
formation embedded in £ oo

0% 25% 50% 75% 100%
Size of Blueprint

Blueprint to speed up g 0
the neural compilation. =~
As such, minimizing the
information loss about
the architectural specifi-

Figure 8: Design space exploration
of Blueprint. Point marked with red
star strikes balance between the in-
cations listed in the data formation loss from compression
sheets [12] is imperative. and the compilation time.
Importantly, the Blueprint needs to be designed to have as low over-
head as possible. Figure 8 summarizes the design space exploration
of Blueprint. Our design of Blueprint strikes balance between the
amount of information in the vector (< 0.5% for minimal informa-
tion loss in terms of Root-Mean-Squared-Error (RMSE) while using
Blueprint) versus the size of the embedding (for fast compilation).

Glimpse: Mathematical Embedding of Hardware Specification for Neural Compilation

AutoTVM

Chameleon

Random AutoTVM === Chameleon Glimpse 0 Random

3000

Glimpse

DAC '22, July 10-14, 2022, San Francisco, CA, USA

AutoTVM Random AutoTVM Chameleon

Random Chameleon Glimpse Glimpse

4000

GFLOPS
N
8
5

g
g

N

3000

2000

1000

N

0
0 20 40 60

Titan Xp / ResNet-18 / L7

80 100 0 20 40 60

RTX 2070 Super / ResNet-18 / L12

80

100

0
40 60
RTX 2080 Ti / VGG-16/ L17

80 100 0 20 40 60

RTX 3090 / AlexNet / L8

0 20 80 100

Figure 4: Comparison of initial sampled configurations from random search, AutoTVM, Chameleon, and Glimpse for represen-
tative combinations of DNN layers and GPUs. There are 100 configurations in each set and are sorted in descending order.

BAutoTVM w/o Transfer Learning B AutoTVM w/ Transfer Learning mGlimpse (Ours)
100%

DAutoTVM EChameleon B Glimpse (Ours)

HAutoTVM B Chameleon BGlimpse (Ours)
600 =] 3]

50%

Output code performance
Search Steps / AutoTVM

RTX 2080Ti RTX 3090

Titan Xp

RTX 2070 Super

Titan Xp

RTX 2070 Super

RTX 2080 Ti

Lower the Better

1 AutoTvM
w
8

Redu. in Invalid Configs.

°
8

AlexNet
ResNet-18
VGG-16
geomean
AlexNet
ResNet-18
VGG-16 [EE5
AlexNet [ER
ResNet-18
VGG-16 (EE
AlexNet B
ResNet-18
VGG-16 [
AlexNet
ResNet-18
VGG-16
geomean

RTX 3090 Titan Xp RTX 2070 Super RTX 2080Ti RTX 3090

Figure 5: Comparison to AutoIVM trans- Figure 6: Comparison in number of Figure 7: Comparison to hardware-
fer learning, provided 100 seconds opti- search steps. Results show Glimpse pro- ggnostic sampling approaches in reduc-

mization time budget per layer.

Prior distribution generation with Blueprint. Figure 4 plots the
distribution of the initial configurations sampled with and without
Blueprint for representative GPU / DNN Model / Layer combinations.
The results show that using Blueprint improves the initial configu-
ration. In fact, some layers even reach the optimal configuration
within first few steps of optimization, enabling sub-minute compi-
lation time. In contrast, AutoTVM [3] and Chameleon [2] reports
that it takes at least few hundred steps (around hour per layer)
to reach a similar performance. We also compare against transfer
learning which is the core mechanism used in AutoTVM [3] to
reuse knowledge from prior optimization runs. We used logs from
all but combination of target network and hardware for transfer
learning, and plot the output code performance when provided
100 seconds of budget per layer. Figure 5 shows that Blueprint out-
performs both AutoTVM with and without transfer learning by
40.0%. Despite the belief that transfer learning would be sufficient
to transfer knowledge among tasks, it sometimes performed worse
than baseline AutoTVM. In fact, the results in AutoTVM [3] also
suggests that transfer learning only achieves fraction of the final
binary performance that are achieved with hundreds to thousands
of hardware measurements. These results suggest that knowledge
from transfer learning not only necessitates significant number of
additional real hardware measurements but also is prone to being
misguided. In contrast, Blueprint provides effective initializations to
the Glimpse compiler and consistently yields the best performance.

4.2 Hardware-Aware Explorer

Speed of convergence. In AutoTVM [3] and Chameleon [2], au-
thors formulate a cost minimization with a batch of Markov chains
and use optimization algorithms such as simulated annealing and
reinforcement learning. While the output code performance is de-
termined by the final cost the optimization achieves, the number
of updates or steps these Markov chains take is the key factor that
determines the optimization time. Figure 6 compares the number
of search steps among the three works: AutoTVM [3], Chameleon,
and Glimpse®. Glimpse achieves 5.07x and 2.55x speed-up against
AutoTVM and Chameleon, which shows that Glimpse’s Hardware-
Aware Explorer may converge significantly faster than optimizing

3Here, we do not provide comparisons against acquisition functions such as Expected
Improvement (EI), and Upper Confidence Bound (UCB). AutoTVM’s experimental
results show that they yielded no improvement.

vides significant reduction.

1169

tion of invalid configurations.

compilers for single hardware. This notable reduction in the num-
ber of search steps come from the Glimpse compiler’s ability to take
hints from the mathematical embeddings of the Blueprints about
the optimization steps, on when and where to explore and exploit.

4.3 Hardware-Aware Sampling

There is an intrinsic issue of the search space provided by TVM [4]
where there exists numerous invalid configurations leading to large
delays in compilation speed and waste in GPU hours. In current
compilers, around 10% of the measurements made were invalid.
Figure 7 presents the reduction in fraction of invalid configurations
with respect to the number of hardware measurements for sampling
in Chameleon [2] and Glimpse compared to AutoTVM [3]. Glimpse
reduces the invalid configurations by 5.56x and 4.53x compared to
AutoTVM and Chameleon, respectively. The results suggest, that
weak statistical guarantees of the sample synthesis and the adaptive
sampling to reduce the frequency of these invalid configurations are
insufficient to cope with the above issue. Instead, Hardware-Aware
Sampling in Glimpse effectively reduces the number of hardware
measurements using the statistical approach.

4.4 Putting It All Together

Figure 9 compares the end-to-end compilation time and the out-
put binary performance of Glimpse compared to state-of-the-art
hardware-agnostic techniques: AutoTVM [3], Chameleon [2], and
DGP [16]. First, Glimpse cuts down the search time 6.73%, 1.51X,
and 1.92X compared to AutoTVM, Chameleon, and DGP respec-
tively, while achieving the best inference latency of the output
binary. The gains come from the collaboration of (i) prior distribu-
tions generated from Blueprint, (ii) effective balance of exploration-
exploitation as well as hardware-awareness of Hardware-Aware
Exploration, and (iii) hardware measurements reduction with sta-
tistical Hardware-Aware Sampling. Table 2 summarizes the search
reduction (GPU time), inference time improvement. Also, following
[16], we present Hyper-Volume (HV) to measure the efficacy of
different approaches considering multi-objectives.
HV = Search Reduction X Inference Reduction X 100 (2)
Glimpse cuts down the search time significantly compared to
hardware-agnostic techniques while achieving the fastest inference.
Therefore, Glimpse shows the highest HV score: the best trade-off
between search time and inference speed. Even if inference speed is
the main criterion [16], Glimpse provides the best inference speed.

DAC '22, July 10-14, 2022, San Francisco, CA, USA

AutoTVM (NeurlPS'19)

Sepu Search Mean Inference (ms)

(GPU Hours) RTX 3090

Chameleon (ICLR’20)

Search

Redu. (%)

Byung Hoon Ahn, Sean Kinzer, and Hadi Esmaeilzadeh

DGP (ICCV’21) Glimpse (Ours)
Search
Redu. (%)

Search
Redu. (%)

Inference
Redu. (%)

Inference
Redu. (%)

Inference
Redu. (%)

Titan Xp
1.0277

RTX 2070 Super RTX 2080 Ti

AlexNet 18.65 0.9662 0.7872 0.4799

72.16

5.88 4.2430 65.96 6.91 4.5578 82.84 6.94 5.7492

ResNet-18 36.53 1.0258 1.3305 0.9282 0.5518

76.67

4.16 3.1895 70.43 5.17 3.6412 84.85 5.18 4.3954

VGG-16 49.08 3.9829 4.5751 3.1865 1.8926

82.56

3.44 2.8401 76.83 4.24 3.2576 87.37 4.24 3.7045

Table 2: Comparisons to state-of-the-art optimizing compilers [2, 3, 16] for Hyper-Volume (HV), a metric that summarizes the
multiple objectives of optimizing compilation: search time (GPU Hours) and end-to-end model inference latency (milliseconds).

@AutoTVM (NeurlPS'19) mChameleon (ICLR'20) mDGP (ICCV'21) mGlimpse (Ours)

[
o
S

Improvement / AutoTVM
IS

(a) Optimization time.

(b) Inference speed.
Figure 9: End-to-end evaluation.

5 RELATED WORKS

A large body of inspiring works on neural compilers have been
introduced to generate high-performance binaries for innovative
neural accelerators [10]. While many neural compilers such as
TVM [4] blindly rely on the statistical guarantees of stochastic
optimization, this paper uniquely explores the use of hardware
blueprints, a proxy of the complete architecture description to
improve the initialization, exploration, and the sampling to improve
neural compilation. Below, we discuss the most related works:

Neural compilers. While TVM [4] significantly improves infer-
ence speed of DNNS, it comes with an intractable search space.
AutoTVM [3] develops learned cost models and TenSet [19] pro-
vides large scale dataset to improve the cost models to approximate
this large search space To find optimal configurations, TVM [4]
builds on random search and genetic algorithms while AutoTVM [3],
GGA [11], and Chameleon [2] explored simulated annealing, guided
genetic algorithm, and reinforcement learning to further improve
the search efficacy. [16] explored deep Gaussian process to transfer
knowledge to different layers on a single target GPU. Prior works
were blind about the hardware during optimization, discarding the
opportunity to transfer experiences between optimization runs on
different hardware. While these blind approaches incur large GPU
hours for compilation, this paper explores the use of Blueprint as
a mechanism to let compilers perceive the target hardware and
predict the search space landscape to expedite the search, reducing
the overall GPU hours while also achieving faster inference.

Meta-learning for neural compilation. Meta-learning [5] proposes
a mechanism to learn to learn that guides and expedites optimiza-
tion. For example, MetaBO [17] explored meta-learning in the con-
text of Bayesian optimization for more sample efficient optimiation.
In the context of neural compilation, MetaTune [14] leverages meta-
learning to expedite the convergence of the cost models. In contrast,
Glimpse incorporates a unique blend of meta-optimizer that takes
domain-knowledge about the architectures as input. Specifically,
we develop a mechanism that feeds the Hardware-Aware Exploration
with information in Blueprint, which led to significant reduction in
compilation time as well as the inference latency.

6 CONCLUSION

This paper presents Glimpse, a neural compiler that exclusively
explores mathematical embeddings of the hardware Blueprints to

1170

improve both the speed and the performance of neural compila-
tion. Experiments on modern DNNs on a multiple generations of
hardware shows that hardware-awareness of Glimpse significantly
reduces the compilation time while achieving the best inference
latency. Encouraging results with Glimpse of Blueprint for neu-
ral compilation suggest significant potential in abstractions that
encode domain knowledge to improve optimization.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their insightful comments.
We also thank Jaeyoung Kang and Jangho Kim for the constructive
discussions and feedbacks on the manuscript. This work was in part
supported by generous gifts from Google, Samsung, Qualcomm,
Microsoft, Xilinx as well as the National Science Foundation (NSF)
awards CCF#2107598, CNS#1822273, National Institute of Health
(NIH) award #R01EB028350, Defense Advanced Research Project
Agency (DARPA) under agreement number #HR0011-18-C-0020,
and Semiconductor Research Corporation (SRC) award #2021-AH-
3039. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes not withstanding any copy-
right notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied of Google, Qualcomm, Microsoft, Xilinx, Samsung, NSF,
SRC, NIH, DARPA or the U.S. Government.

REFERENCES
(1]

M. Abadi et al. 2016. TensorFlow: A system for large-scale machine learning.
OSDL

B. H. Ahn et al. 2020. Chameleon: Adaptive Code Optimization for Expedited
Deep Neural Network Compilation. ICLR.

T. Chen et al. 2018. Learning to optimize tensor programs. NeurIPS.

[4] T. Chen et al. 2018. TVM: An automated end-to-end optimizing compiler for
deep learning. OSDL
[5] C.Finn et al. 2017. Model-agnostic meta-learning for fast adaptation of deep
networks. ICML.
[6] D.Ha et al. 2017. Hypernetworks. ICLR.
[7] K. He et al. 2016. Deep residual learning for image recognition. CVPR.
[8] A.Krizhevsky et al. 2012. ImageNet classification with deep convolutional neural
networks. NIPS.
[9] M.Lietal. 2020. AdaTune: Adaptive Tensor Program Compilation Made Efficient.
NeurIPS.
10] M. Li et al. 2020. The deep learning compiler: A comprehensive survey. TPDS.
11] J. Mu et al. 2020. A history-based auto-tuning framework for fast and high-
performance DNN design on GPU. DAC.
[12] NVIDIA. since 1993. List of Nvidia graphics processing units.
[13] A. Paszke et al. 2019. PyTorch: An imperative style, high-performance deep
learning library. NeurIPS.
[14] J. Ryu et al. 2021. MetaTune: Meta-Learning Based Cost Model for Fast and
Efficient Auto-tuning Frameworks. arXiv.
[15] K. Simonyan et al. 2015. Very deep convolutional networks for large-scale image
recognition. ICLR.
[16] Q.Sunetal. 2021. Fast and Efficient DNN Deployment via Deep Gaussian Transfer
Learning. ICCV.
[17] M. Volpp et al. 2020. Meta-learning acquisition functions for transfer learning in
bayesian optimization. ICLR.
[18] M. Zhang et al. 2021. DynaTune: Dynamic Tensor Program Optimization in Deep
Neural Network Compilation. ICLR.
[19] L. Zheng et al. 2021. TenSet: A Large-scale Program Performance Dataset for

Learned Tensor Compilers. NeurIPS Track on Datasets and Benchmarks.

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents

