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       Abstract—A premature ventricular contraction (PVC) 
disrupt the normal heart rhythm and indicate underlying 
cardiac disease. We aim to detect these PVC beats from 
electrocardiogram (ECG/EKG) data by automatically 
classifying these ECG beats with high accuracy in real-time. In 
this study, we used MIT BIH Long-Term Electrocardiogram 
Database (ltdb) dataset from the PhysioNet database. We extract 
signal-specific features and signal-independent features and 
combine them for feature ranking. We use principal component 
analysis (PCA), elastic net regularization (ENR), univariate filter 
of constant, quasi constant and duplicate feature removal 
(CQCDFR) and analysis of variance test (ANOVA) for feature 
selection. We take the top 10 features for four methods and 
classify them separately. The machine learning model explored 
is the random forest classifier. In our analysis, elastic net 
regularization performed best in terms of accuracy in cardiac 
patients. We further use the feature with the best accuracy in 
four algorithms to test sensitivity, specificity, accuracy, precision, 
f1-score to evaluate statistics. The overall accuracy of elastic net 
regularization for classifying the highest first 8 feature data is 
97.8%. The sensitivity was 94.7% and the specificity was 99.6%. 
The accuracy rate is 99.6%, and the F1 score is 97.1%. The 
method can accurately detect ECG beats and analyze categories 
for real-time cardiac monitoring for feedback to the use patient. 
Efficient feature selection minimizes the number of features used 
and reduces the power consumption of the monitoring device. 
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I. INTRODUCTION   
         PVCs are one of the most common clinical arrhythmias. 
Due to its variability and susceptibility, patients may be at risk 
at any time. When concomitant with heart disease, frequent 
premature contractions can cause a chaotic and dangerous 
heart rhythm that can lead to sudden cardiac death. So, it is 
important for heart patients to detect PVC problems in real 
time. PVC beats can be detected from electrocardiogram 
(ECG or EKG) signals [2-7]. Therefore, an intelligent method 
for automatic heartbeat classification based on ECG 
recordings is needed, which will be of great help to clinicians 
in diagnosing heart disease [2]. Automated analysis 
techniques to identify PVCs can be performed using a trained 
machine learning (ML) model.        

        PVC discrimination method based on multi-feature 
combination and random forest algorithm is proposed to 
improve the discrimination rate of PVC [3]. Normal, PVC, 
and other types of ECG heartbeats are classified using 
different features and evaluate logistic regression (LG), neural 
network (NN), support vector machine (SVM) with different 
parameters [4]. Developed sparse Bayesian methods, such as 
correlation vector machines (RVMs), offer a parsimonious 
solution compared to support vector machines (SVMs) but 
show competitive accuracy [5]. A k-nearest neighbor (KNN) 
classifier computes the distance between samples based on 
these features to detect PVCs [6]. Random forest is adopted 
as a supervised algorithm for training the features generated 
by the autoencoder. Multiple Active Learning Options 
Uncertainty-based and diversity-based strategies are studied 
on top of random forests [7]. The PVC recognition features 
based on deep learning methods are fed into a convolutional 
neural network (CNN) to find unique patterns and classify 
them more efficiently [8]. 
        The focus of this work is to analyze each heartbeat 
through a unique approach and apply in the wearable device. 
We form the slimier training and test data for normal 
heartbeats and abnormal heartbeats. Detect PVC beats from 
single-lead ECG data and test the accuracy of the top-ranked 
features and compare against all features to find the best 
performance. Increase the number of features and add feature 
selection and ranking. We use the random forest classifier and 
measure statistical performance metrics for top performer. In 
single-lead ECG signals, we use signal specific features and 
signal independent features to form feature vectors for 
classification. Our special beat-by-beat classification method 
classifies ECG data in real-time for wearable heart monitors. 
Efficient feature selection minimizes the number of features 
used and reduces the power consumption of the monitoring 
device. 
         

II. METHODOLOGY 
       This study used the AAMI criteria to classify MIT BIH 
heartbeat types [9]. MIT-BIH has five heartbeat categories for 
subsequent processing. Each category includes one or more 
types of heartbeats, as shown in Table I. Class N has normal 
and bundle branch block heartbeat types. Class S has 
supraventricular ectopic heartbeat (SVEB). Class V has 
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Table I:  The standard of AAMI classes and labeling of MIT-BIH long-term ECG Database with the full database, and extract training 
and test dataset. 

AAMI  N S V F Q TOTAL 
DESCRIPTION Normal beat Supraventricular ectopic beat 

(SVEB) 
Ventricular ectopic beat 
(VEB) 

Fusion beat  Unknown beat  

LABEL N, L, R S, e, j, A, a, J V, E F Q, /, f  
FULL DATA 600,232 1,500 64,095 2,908 1,117 669,852 
TRAINING 266,949 285 37,522 169 218 305,143 
TESTING 333,283 1,215 26,573 2,739 899 364,709 

The training dataset contain records 14046, 14157, 14184. The testing dataset contain records 14134, 14149, 14172, 15814.  
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ventricular ectopic beats (VEB). Class F has beats that fusion 
normal and VEB generated. Class Q has an unknown beat. To 
achieve our goal, we accessed the PhysioNet database 
exposed by the public data resource and selected the MIT BIH 
long-term ECG database (ltdb) [10]. We use PVC beats to 
classify with normal beats. The process flow diagram of PVC 
beat detection is shown in Figure 1. 
 
A. ECG data 
       In our study we used data from the MIT-BIH Long-Term 
ECG Database [11], which includes many recordings of PVC 
beats. The database contains 7 records of duration between 14 
to 23 hours and containing two ECG lead signals.  Data was 
sampled at 128 Hz and bandpass filtered. The largest category 
is "normal beat" (N) with over 600,000 samples, and the 
smallest category is "unknown beat" (Q) with only around 
1000 samples. Only normal beat (N) and ventricular ectopic 
beat (V) were used for the analysis [11]. The training dataset 
contains ECG data recorded from samples 14046, 14157, 
14184, and the test dataset contains ECG data recorded from 
samples 14134, 14149, 14172, 15814. Both datasets contain 
approximately 300,000 heartbeats and mix arrhythmia 
recordings of normal (N) heartbeats and ventricular ectopic 
(V) beats. Table I also shows a breakdown of each dataset and 
by heartbeat type.  
 

 
Fig. 1: The process flow diagram for processing, analyzing, and classifying 
beat-to-beat ECG signals using machine learning algorithms. 
 

 
Fig. 2: A representative ECG signal waveform showing 3 beats, where P, Q, 
R, S, T peaks and inter-beat parameters are shown from one heartbeat. 
 
B. ECG signal preprocessing 
     In recorded electrocardiogram (ECG) signals, clinical 
information is masked by multiple noises and distortions. 
These noises and distortions result in a low signal-to-noise 
ratio (SNR). The main noise sources are power frequency 
interference, baseline drift, EMG interference and random 
noise. After analyzing these interferences, select an 
appropriate method to remove these noises to obtain a 

relatively real ECG signal. The frequency of ECG signal is 
mainly concentrated in 5~20HZ, so choose a low-pass filter to 
filter out EMG interference.  
 
C. Peak detection 
     In ECG heartbeat recognition, the detection of R peak is 
very important. Figure 2 shows P, Q, R, S, T peaks and one 
heartbeat. The detection of the R peak affects the correct 
position of the remaining P, Q, S, T, T´ peaks. We use the 
pan_tompkin algorithm in this work to detect the exact 
location of the R peak [12]. The open-source code, “The 
Python Toolbox for Neurophysiological Signal Processing” 
uses the Pan Tompkin algorithm to detect R peaks. This file 
is provided by neurokit 2 [13]. After we find the location of 
the R peak, we can start to calculate the RR interval and the 
average RR interval. P, Q, S, T and T' peaks can be found 
using the RR interval and the average RR interval. The middle 
value of the first R peak and the second R peak as the starting 
point of a beat. The middle value between the second R peak 
and the third R peak is regarded as the end point. We use 
middle of two R-peaks to form a heartbeat 
 
D. Feature extraction and selection 
       The feature extraction process performs extraction every 
two ECG beats and slides one beat each time (i.e., the next 
beat) when processing is complete. We extract the signal 
specific feature and the signal independent feature and 
combined them together to do the feature ranking. For the 
signal specific feature, we extract 7 of amplitude features, 6 
of frequency features, and 15 of statistical features. Time 
series feature extraction library (TSFEL) which is a python 
package is used to extract 175 signal independent features 
[17].  We used principal component analysis (PCA), Elastic 
net regularization, linear and logistic regression coefficients 
with Lasso (L1) and Ridge (L2) regularization (Elastic net 
regularization), univariate filter of constant, quasi constant 
and duplicate feature removal (CQCDFR) and analysis of 
variance test (ANOVA) to do the feature selection. In PCA, 
the total of 34 signal independent features be selected. In ENR, 
the total of 46 signal independent features be selected. In 
CQCDFR, the total of 34 signal independent features be 
selected. In ANOVA, the total of 32 signal independent 
features be selected. We combined signal independent 
features with the signal specific feature, separately and take 
top 10 ranking of features to do the classification. Table II and 
Table III presents the detail of signal independent features and 
the top 10 ranked features using PCA, ENR, CQCDFR and 
ANOVA selection.  
 
E. ML classification 
     We train the model with an ML classification method and 
use a 10-fold cross-validation technique. We explore random 
forest classifier to find the best accuracy. Ventricular ectopic 
beats are marked with 1, and normal heartbeats are marked 
with 0. Training datasets contain 304,471 heartbeats, and 
testing datasets contain 359,856 heartbeats. We first classify 
all features to check the accuracy. In PCA, ENR, CQCDFR, 
and ANOVA algorithms, we tested the top 10 ranked features 
for random forest training and testing, separately. The training 
method is that we select the top-ranked feature for training. 
Then we train by adding the second-ranked feature to the first-
ranked feature until we add 10 ranked features for training. 
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Table II:  Summary of signal independent features and the top 10 ranked 
features using PCA and ENR selection. 

Type of feature Features 
Signal Independent Feature 
(Time series feature extraction 
library (Tsfel)) 

Total 175 features be extracted 

Principal Component Analysis (PCA) 
(34) 

fast Fourier transform mean coefficient, 
power bandwidth, spectral distance, 
median absolute diff, median diff, 
spectral entropy, …etc.  

Elastic net regularization 
(ENR; Embedded) (46) 

histogram, signal distance, ECDF 
percentile count, empirical cumulative 
distribution function (ECDF), root 
mean square, slope, …etc.  

PCA feature ranking of signal 
specific feature and signal 
independent feature (Top 10 ranked 
in order) 

fast Fourier transform mean coefficient 
22, power bandwidth, histogram 3, 
signal distance, ECDF Percentile 
Count, empirical cumulative 
distribution function (ECDF), 
histogram 5, root mean square, fast 
Fourier transform mean coefficient 23, 
autocorrelation 

ENR feature ranking of signal 
specific feature and signal 
independent feature (Top 10 ranked 
in order) 

empirical cumulative distribution 
function (ECDF 9), ECDF 4, fast 
Fourier transform mean coefficient 23, 
fast Fourier transform mean coefficient 
25, fast Fourier transform mean 
coefficient 1, wavelet absolute mean, 
neighborhood peaks, Fourier transform 
mean coefficient 22, Fourier transform 
mean coefficient 14, frequency of T 

 
Table III:  Summary of signal independent features and the top 10 ranked 

features using CQCDFR and ANOVA selection. 
Type of feature Features 
Signal Independent Feature 
(Time series feature extraction 
library (Tsfel)) 

Total 175 features be extracted 

Univariate filter of constant, quasi 
constant and duplicate feature removal 
(CQCDFR)(34) 

empirical cumulative distribution 
function (ECDF), root mean square, 
slope, wavelet energy, wavelet 
entropy, …etc. 

Analysis of variance test  
(ANOVA) (32) 

signal distance, slope, wavelet energy, 
wavelet entropy, spectral 
centroid, …etc. 

 CQCDFR feature ranking of signal 
specific feature and signal 
independent feature (Top 10 ranked 
in order) 

root mean square, slope, wavelet 
energy, wavelet entropy, spectral 
centroid, autocorrelation, mean 
absolute deviation, spectral skewness, 
wavelet standard deviation, wavelet 
variance 

 ANOVA feature ranking of signal 
specific feature and signal 
independent feature (Top 10 ranked 
in order) 

median frequency, negative turning 
points, neighborhood peaks, peak to 
peak distance, wavelet standard 
deviation, fast Fourier transform mean 
coefficient, spectral distance, median 
absolute diff, median diff, spectral 
entropy 

 
F. Performance 
      Regarding performance evaluation, we use various 
statistical metrics to demonstrate model performance. We 
evaluated the accuracy, sensitivity, specificity, precision, and 
F1 score for all feature accuracy and best accuracy on the 
feature selection method. A measure of correctly identifying 
actual positives can be expressed in terms of sensitivity. A 
measure of the actual proportion of negatives correctly 
identified can be expressed in terms of specificity. A measure 
of recognition accuracy can be expressed in terms of precision. 
Identifying how close a measurement is to the true value can 
be expressed in terms of accuracy. A measure of test accuracy 
can be expressed as an F1 score. 
 

III. RESULTS  

        We use the Pan-Tompkin algorithm to detect the R 
point, and find the P, Q, S, T points. We extract R peaks 
using a sliding window technique. In Figure 3, we represent 
the top of the R peak with a dashed purple line. Three R 

peaks are located at 875, 985, and 1095 sample intervals, 
respectively. When we find the R peak we can detect the P, 
Q, S, T, T’ points. Table II shows the standard of P, Q, S, T, 
T’ peak detection. Figure 4 shows the detection of P, Q, S, T 
points every 3 runs. The purple dashed line numbered 0 
represents the position of the T peak, the green dashed line 
numbered 1 represents the position of the P peak, the yellow 
dashed line numbered 2 represents the position of the Q 
peak, and the red dashed line numbered 3 represents the 
position of the S peak. We set the sampling interval from 
828 sampling interval to 1160 sampling interval. 
 

 
Fig. 3: Three beats for R point detection with Pan-Tompkins’s algorithm in 
an ECG signal 
 

 
Fig. 4: P, Q, S, T peaks detected for 3 ECG beats after R peak detection 
 

Table IV:  Summary of random forest performance for combination of the 
signal specific feature and the signal independent feature. 

Perform(%) Sensitivity Specificity Accurace Precision F1 
PCA (62) 70.3 71.1 75.42 71.0 72.6 
ENR (74)  81.6 80.3 82.64 80.2 82.3 

CQCDFR 
(62) 

78.1 76.8 74 76.7 79.2 

ANOVA(60) 78.9 77.2 73 77.3 78.1 
 
          We use random forest classifier to test combination of 
the signal specific feature and the signal independent feature. 
Table IV shows the performance for combination of the signal 
specific feature and the signal independent feature. Elastic net 
regularization (ENR) algorithm got the best performance than 
the other algorithms. Total of 74 features comes from the 
signal specific feature and ENR selected signal independent 
feature. We get the 82.64% accuracy, 81.6% sensitivity, 
80.3% specificity, 80.2% precision, and 82.3% F1 score.              
          We also test accuracy of top ranked features and 
compare with all features to find the best performance. Figure 
5 shows the accuracy of ranking the top 10 ranked features 
from the signal specific feature and the signal independent 
feature using the random forest classifier. The blue, orange, 
gray and yellow bars represent the PCA, ENR, CQCDFR and 
ANOVA algorithms, respectively. In PCA algorithm, the 
highest accuracy rate in first 7 features ranked is 90%.  In ENR, 
the highest accuracy in first 8 features ranked is 98%. In 
CQCDFR, the highest accuracy in first 6 features ranked is 
90%. In ANOVA, the highest accuracy in first 7 features 
ranked is 94%.  
          We test the performance evaluation of sensitivity, 
specificity, accuracy, precision, and F1 score on the best 
accuracy of random forest. As shown in Table V. In PCA, we 
achieved 91.3% sensitivity, 92.4% specificity, 90.32% 
accuracy, 92.3% precision, and 91.8% F1 score in top 7 
features. In ENR, we achieved 94.7% sensitivity, 99.6% 
specificity, 97.83% accuracy, 99.6% precision, and 97.1% F1 
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score in top 8 features. In CQCDFR, we achieved 93.3% 
sensitivity, 91.4% specificity, 90% accuracy, 91.3% precision, 
and 91.6% F1 score in top 6 features. In ANOVA test, we 
achieved 94.9% sensitivity, 99.7% specificity, 97% accuracy, 
99.6% precision, and 97% F1 score in top 7 features. 
 

 
Fig. 5: Comparison of the accuracy for top 10 ranked of the signal specific 
feature and the signal independent feature.  
 
Table V:  Summary of random forest performance for top ranked features. 

Perform (%) Sensitivity Specificity Accurace Precision F1 
PCA      

top 6 features 90.4 89.3 88 89.4 87.2 
top 7 features 91.3 92.4 90 92.3 91.8 
top 8 features 91.3 92.4 90 92.3 91.8 

ENR       
top 7 features 90.5 96.2 93 96.3 92.3 
top 8 features 94.7 99.6 98 99.6 97.1 
top 9 features 94.7 99.6 98 99.6 97.1 

CQCDFR      
top 5 features 89.7 88.9 86 90.2 88.9 
top 6 features 93.3 91.4 90 91.3 91.6 
top 7 features 93.3 91.4 90 91.3 91.6 
ANOVA Test       

top 6 features 92.7 90.4 91 90.5 93.1 
top 7 features 94.9 99.7 94 99.6 97 
top 8 features 94.9 99.7 94 99.6 97 

 

IV. CONCLUSIONS  

        This work aims to detect cardiac conditions in patients 
from a long-term ECG database using machine learning 
algorithms from single-lead ECG data and apply in the 
wearable device. A PVC beat is a premature heartbeat that 
originates in the ventricles and disrupts the heart's normal 
rhythm. Early detection and monitoring are important, which 
can provide early predictor for worsening cardiac health 
condition. We performed this analysis using the publicly 
available MIT BIH long-term ECG dataset. From the ECG 
signal, we use signal-specific features and signal-independent 
features to form feature vectors. We use PCA, ENR, 
CQCDFR, and ANOVA algorithms for feature extraction and 
selection. We test random forest classifier to obtain the best 
feature selection method by analyzing ECG data based on 
different feature extraction and selection and compare the 
performance of different features. We test accuracy of top 
ranked features and compare with all features to find the best 
performance. Based on the different algorithms used for 
doing feature selection, the result of selected features is 
different. In my work, Elastic net regularization algorithms 
are always higher than the other algorithms. We further 
analyzed the most accurate feature selection methods to test 
performance. ENR algorithm showed the best accuracy in this 
work as it is suitable for multivariate data structure. Since 
both PCA and ANOVA are univariate methods based on SVD, 
they do not take into account the potential multivariate nature 
of the data structure, whereas ENR has the ability to tackle 
that issue, hence leading to better performance as 
demonstrated in this paper. Therefore, ENR selection of 

embedded method can help us select effective features for 
training and testing of real-time wearable heart monitoring 
devices. Effective feature selection can minima the numbers 
of feature using and reduce the power consumption of 
monitoring devices. More features help improve model 
accuracy and performance. With the increase in the amount 
of training data, the classification accuracy and features are 
more suitable for the needs of early predictive monitoring of 
cardiac health.  
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