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Abstract— Premature Ventricular Contraction (PVC) episodes 
are redundant heartbeats that disrupt the normal rhythm of the 
heart. The use of wearable sensors for remote heart monitoring 
and the implementation of trusted artificial intelligence (AI) 
algorithms are improvements in the field of smart health 
(sHealth) using cyber-physical systems (CPS) for telemedicine 
systems. We detect PVC beats by analyzing electrocardiogram 
(ECG/EKG) data and perform automatic classification to 
achieve high accuracy in real-time. In this study, we used a 
number of PVC heartbeat recordings from the MIT BIH 
supraventricular arrhythmia database We divided the 
recordings into a training dataset, which contains 39 ECG data, 
and a test dataset, which contains the remaining 39 ECG data. 
Both datasets contain approximately 80,000 samples of normal 
heartbeats and 7,000 samples of ventricular ectopic We extract 
combination of signal-specific features and signal-independent 
features for feature selection and ranking. We apply four 
algorithms, receiver operator characteristic (ROC) and the area 
under the ROC curve (AUC) (ROCAUC), constant, quasi 
constant and duplicate feature removal (Univariate) (CQCDFR), 
analysis of variance (ANOVA), and root mean square deviation 
(RMSE) to select and rank the feature. For each algorithm, it has 
its own selection of signal-independent features, which we 
combine separately with signal-specific features and test their 
accuracy. Then, we train the top 10 ranked combined features of 
each algorithm separately and check the highest performance. 
We explored the random forest (RF) classifier and support 
vector machine (SVM) classifier. Compared with other 
algorithms, the performance of feature selection using ANOVA 
algorithm before feature ranking is the lowest. The ANOVA 
algorithm achieved the highest accuracy after picking out the top 
10 features. We further separately evaluate the accuracy, 
sensitivity, precision, specificity and F1 score of the top-ranked 
features according to the best accuracy obtained by different 
feature selection algorithms. The classification ANOVA 
algorithm from RF selects the top 7 features with 97% accuracy, 
97.5 sensitivity, 98.1% specificity, 98.1 Precision%, and 95.0% 
F1 Score. This method can accurately monitor cardiac disease in 
real-time and analyze ECG beats so that patients can get 
accurate feedback. 

Keywords- ECG classification, Cardiac episodes, unsupervised 
monitoring, machine learning. 
 

I. INTRODUCTION   
       Cyber-physical systems (CPS) are used to control and 
monitor embedded computers of cyber-physical processes, 
often using feedback loops [1]. A small wearable monitoring 
system can transmit the detected premature ventricular 
contractions (PVCs) in the ECG signal to the central control 
system for effective inspection. When an abnormality occurs, 
the control system can issue an alarm to the actuation system. 
CPS can detect hidden heart disease early and provide an 
effective program. Different wearables are available to 
capture ECG signal from different lead positions [2]. Today's 
ECG devices are small in size to allow for continuous, remote 
monitoring of health conditions [3]. 
        The heart's extra heartbeat starts in one of the two lower 
pumping chambers (the ventricles) called a premature 
ventricular contraction (PVC). These extra heartbeats can 
disrupt the normal heart rhythm. They can occur in a variety 
of people, including those without structural heart disease and 
those with all types and degrees of heart disease. Patients with 
premature ventricular contractions usually have no specific 
symptoms, but may present with palpitations, chest tightness, 
dizziness, fatigue and other symptoms. In severe cases, angina 
pectoris, hypotension, and heart failure may also occur. An 
electrocardiogram (ECG) can detect premature ventricular 
beats and discover type and origin [4-14].  Identifying these 
disorders from raw electrocardiogram (ECG) signals is 
tedious and expensive [4]. Smart method for automatic 
heartbeat classification in ECG recordings will be of great 
help to clinicians in diagnosing heart disease [5]. Automated 
analysis techniques rely on machine learning (ML) models 
trained to identify PVCs. 
       Stationary wavelets transform (SWT) is used for peak-to-
average power ratio and logarithmic energy entropy to extract 
features and detect with support vector machine (SVM). [6]. 
ECG features based on morphological features, temporal 
features, and peak-top features use machine learning 
classification methods such as decision trees, random forests, 
and gradient boosted trees (GDB). [7]. Advances in 
electrocardiogram (ECG) data and dynamic neural networks 

Table I:  The criteria of AAMI labeling class of MIT-BIH Supraventricular Arrhythmia Database with the full database, and training 
and testing dataset. 

AAMI Heartbeat 
class 

N S V F Q Total 

Description Normal beat Supraventricular ectopic beat 
(SVEB) 

Ventricular ectopic beat 
(VEB) 

Fusion beat  Unknown beat  

Label N, L, R S, e, j, A, a, J V, E F Q, /, f  
Full data 

(Total 78 records) 
162,338 8,990 

 
9,441 
 

23 3,223 
 

184,555 

Training 
(First 39 records) 

83,292 1,252 
 

7,397 5 
 

1,090 93,036 

Testing 
(Rest 39 records) 

79,046 7,738 7,044 18 2,133 95,979 

 



 
  

(DNNs), particularly algorithms such as long short-term 
memory (LSTM) and convolutional neural networks (CNN), 
are based on the features used. [8]. Develop methods for 
different features, including RR beat interval, time domain, 
frequency domain, and distribution features, and evaluate the 
efficiency of the method with linear classifiers, SVMs, and 
quadratic neural networks. [9]. Use an ML classifier to 
achieve the performance of feature selection techniques and 
perform feature selection on AF morphological features and 
heart rate variability [10].  
       Identifying features that convert a 1D ECG into a 2D form 
through short-time Fourier transform and wavelet transform 
use SVM to detect PVCs. [11]. Trained using deep admixture 
feature selection extracted from the last fully connected layer 
of ten CNNs. These classifiers involve Support Vector 
Machines (SVM), Random Forests (RF), K-Nearest 
Neighbors (KNN), Linear Discriminant Classifiers (LDA), 
Quadratic Discriminant Analysis (QDA), and Decision Trees 
(DT) [12]. Detect impending heart disease using Naive Bayes, 
Artificial Neural Networks, Support Vector Machines, 
Random Forests, Simple Logistic Regression, and 
accompanying physiological features. [13]. 
Electrocardiograms (ECGs) combined with multiple support 
vector machines (SVMs) rely on time intervals and their 
feature automatic classification methods for ECG 
characterization. [14].  
        This work is a further extension and study of previous 
tasks. In the previous task, we used hand-selected signal-
specific features for classification and took 80%, 20% to form 
training and test sets. This results in an imbalance of our 
training and test data for normal and abnormal heartbeats and 
an inability to determine the effectiveness of specific feature 
selection. We form more explicit training and testing data in 
order to classify normal and abnormal heartbeats. Detect PVC 
heartbeats and increase the number of features as well as 
feature selection and ranking to test the accuracy of the top-
ranked features to find the best performance. We measure the 
statistical performance metrics of the top performers using 
random forest classifiers and support vector machines. We 
form feature vectors for classification using signal-specific 
features and signal-independent features. The focus of this 
work is to analyze each heartbeat and apply it to wearable 
devices through an efficient method. We select effective 
features and minimize the number of features used to reduce 
the power consumption of the monitoring device. Our special 
real-time beat-to-beat classification method enables efficient 
analysis of ECG data from wearable heart monitors. 
         

II. METHODOLOGY 
       This study used MIT BIH database in which criteria of 
the AAMI to classify heartbeat types [15]. There are five 
heartbeat categories that MIT-BIH uses for subsequent 
processing. Each category includes multiple types of 
heartbeats, as shown in Table I. Normal and bundle branch 
block heartbeat present in class N. Supraventricular ectopic 
heartbeat (SVEB) present in class S. Ventricular ectopic beats 
(VEB) present in class present in class V. Fusion present in 
class F. Unknown beat present in class Q. We accessed the 
PhysioNet database from the open source of public data. We 
pick up MIT BIH supraventricular arrhythmia database (svdb) 
to achieve our goal [16]. The beats we classify use PVC beats 

and normal beats. Figure 1. shows the flow diagram of process 
to classify PVC beat. 
 
A. ECG data 

In our work, we used a number of PVC heartbeat 
recordings from the MIT BIH supraventricular arrhythmia 
database [16]. The database contains two lead ECG signals. 
Total of 78 records of duration around 30 minutes.  Data has 
128 Hz sampling rate and filter with bandpass. This study 
used the AAMI criteria to classify MIT BIH heartbeat types. 
The heartbeat types listed on Table I. The normal beat (N) has 
the largest category with over 162,338 samples, and the 
fusion beat (F) has the smallest category with only around 23 
samples. The number of individual heartbeat types varies 
widely. We selected only normal beats (N) and ventricular 
ectopic beats (V) for analysis. In addition to this, we removed 
supraventricular ectopic beats (SVEB), fused beats (F), and 
unknown beats (Q) from the analysis [17]. The record we 
divided into a training dataset, and a testing dataset. The 
training dataset contains first of 39 ECG data records, and the 
test dataset contains rest of 39 ECG data records. Both 
datasets contain approximately 80,000 samples of normal 
heartbeat and 7,000 samples of ventricular ectopic beat. The 
performance of the classifier is evaluated using the training 
dataset. Final performance evaluation of the heartbeat 
classification system on the test dataset. Table I shows the 
breakdown of each dataset by heartbeat type.  

 

 
Fig. 1: Flowchart of ECG signal demonstrating machine learning algorithm 
for preprocessing, analysis, and classification. 



 
  

B. Signal preprocessing 
     The human electrocardiogram (ECG) signal is a weak 
physiological signal with nonlinear, non-stationary and strong 
randomness. The main noise of electrocardiogram (ECG) 
signal includes baseband drift, EMG interference, power 
frequency noise, other noise interference, etc. This noise and 
distortion results in a low signal-to-noise ratio (SNR). The 
waveform of the disturbed ECG signal will be deformed, 
which will affect the doctor's recognition of the ECG. The 
frequency of the baseline noise is relatively low, and the ECG 
signal itself contains very rich low-frequency signals, so a 
low-pass filter is used to remove the baseline drift. The 
traditional methods for removing baseline drift include 
median filtering, wavelet transform, algorithm average 
filtering, and EMD decomposition. 
 

 
Fig. 2: P, Q, R, S, T peaks in detail to form a heartbeat. 
 
C. Peak detection 
     Identifying and detecting R peaks occupies a very 
important and necessary position in ECG heartbeat 
recognition.  Figure 2 shows P, Q, R, S, T peaks and a 
heartbeat. In this work we detect the exact position of the R 
peak using the pan_tompkin algorithm [18]. The correct 
position of the P, Q, S, T, T´ peaks is affected by the detection 
accuracy of the R peak. We detected R peaks using the Pan 
Tompkin algorithm in the open-source code "The Python 
Toolbox for Neurophysiological Signal Processing" provided 
by neurokit 2 [19]. When the position of the R peak is 
detected, we can calculate the RR interval and the mean RR 
interval. RR interval and average RR interval can be used to 
find the P, Q, S, T and T' peaks. We find three R peaks to form 
the heartbeat. As the starting point of the beat, we use the 
middle value between the first R peak and the second R peak 
to present. As the end point of the beat, we use the middle 
value between the second R peak and the third R peak as the 
presentation. See Table II for specifications. 
 

Table II:  Standard of P, Q, S, T, T’ peak and one heartbeat detection. 
Peak Standard 

P Max of 3/8𝑅𝑅𝑅𝑅 before 𝑅𝑅𝑅𝑅 interval 
Q Min 1/8 𝑅𝑅𝑅𝑅 before 𝑅𝑅𝑅𝑅 interval 
S Min of 𝑅𝑅 to 1/4𝑅𝑅𝑅𝑅 before 𝑅𝑅 peak 
T 1/4𝑅𝑅𝑅𝑅 to max of 3/8𝑅𝑅𝑅𝑅 
T’ 1/4𝑅𝑅𝑅𝑅 to min of 3/8𝑅𝑅𝑅𝑅 

One 
heartbeat 

Min of 1/2𝑅𝑅𝑅𝑅 to max of 1/2𝑅𝑅𝑅𝑅  

 
D. Feature extraction and selection 
        The feature extraction process takes two ECG beats at a 
time, and slides one beat when the process finishes extracting 
(i.e. that beat runs the next beat). We extract combination of 
signal-specific features and signal-independent features for 
feature selection and ranking. We obtain a total of 7 amplitude 
features, 6 frequency features and 15 statistical features in the 

signal specific features. The total of 175 signal independent 
features be extracted using Time series feature extraction 
library (TSFEL) which is a python package [20].  We apply 
four different algorithms to do the feature selection and 
ranking.  Algorithms we use receiver operator characteristic 
(ROC) and the area under the ROC curve (AUC) (ROCAUC), 
constant, quasi constant and duplicate feature removal 
(Univariate) (CQCDFR), analysis of variance (ANOVA), and 
root mean square deviation (RMSE). For each algorithm, it 
has its own choice of signal-independent features, which we 
combine with signal-specific features, separately. We use the 
combined features from each algorithm to make the top 10 
features for classification. Table III and IV shows the 
summaries of signal specific features and signal independent 
features and the top 10 ranked features based on different 
feature selection algorithms in detail. Due to its advantages in 
handling imbalanced and cost-sensitive data, ROC curve and 
AUC (area under the ROC curve) are used to determine 
classification accuracy in supervised learning. Constant, quasi 
constant and duplicate feature removal (Univariate) 
(CQCDFR) methods rank individual features according to 
certain criteria and then select the top N features. Different 
types of ranking criteria are used for univariate filtering 
methods. Analysis of variance (ANOVA) is used to analyze 
differences between group means in a sample. A collection of 
statistical models and their associated estimation procedures. 
The root mean square error (RMSE) is the standard deviation 
of the residuals (prediction error). RMSE measures how 
distributed these residuals are and how concentrated the data 
are around the line of best fit. 
 
E. ML classification 
     We label ventricular ectopic beats (V) as 1, and label 
normal heartbeats (N) as 0. We train the machine learning 
model of random forest (RF) and support vector machine 
(SVM) with use a 10-fold cross-validation technique to do the 
classification. The training and testing datasets had similar 
proportions of numbers of ventricular ectopic and normal 
heartbeat types. Training datasets include 90,689 sample 
intervals and testing datasets include 86,090 sample intervals 
of normal heartbeats and ventricular ectopic beats, separately. 
Table I shows that each dataset is divided by heartbeat type. 
By using RF and SVM classifier, we first classify 
combination of signal specific features and signal 
independent features based on different feature selection 
algorithms to check the performance, separately. After that, 
we use four different algorithms to do the feature ranking for 
identify useful features which can get more precise result. In 
each of algorithm, we run the machine learning model for 
training and testing to classify top 10 ranked features. We 
train the first-ranked feature for first run. After training 
completed, we select the second-ranked feature and add with 
the first-ranked feature together for second test. After training 
completed, we select a third-ranked feature and add with the 
first-ranked feature the second-ranked feature together for 
third test, and so on. Until tenth test, we train all top 10 ranked 
features together.  
 
F. Performance 
      We use various statistical metrics to exhibit model 
performance and observe performance evaluations. We 
evaluated the sensitivity, specificity, accuracy, precision, and  



 
  

 
Table III:  Signal specific features and signal independent features used.  

Feature type Features summary 
Signal Specific Feature Total of 28 features. 
7 amplitude features, 
6 frequency features, 
15 statistical features 

Q peak, S peak, T peak, R peak, QRS 
position, QT length, RR length. 
(amplitude features) 
heart rate, frequency of Q, R, S and T, 
instance heart rate. (frequency features)  
mean peak value of R, Q, S, T and QT, 
mean value of LF and HF, ratio of 
LF/HF, maximum frequency, very low 
frequency, stationary wavelet transforms, 
PNN50, index of sympathetic and 
parasympathetic modulation of the 
autonomic nervous system, root mean 
square of successive differences. 
(statistical features) 

Signal Independent Feature 
 

Total 175 features be extracted 

Time series feature 
extraction library (Tsfel) 

histogram, signal distance, ECDF 
percentile count, empirical cumulative 
distribution function (ECDF), root mean 
square, slope, wavelet energy, wavelet 
entropy, spectral centroid, 
autocorrelation, max power spectrum, 
mean absolute deviation, spectral 
skewness…, and so on.  

 
Table IV:  Extract the top 10 ranked signal-independent features according 

to the algorithm used. 
Signal independent feature (base 
on algorithms) 

Features summary 

Receiver operator characteristic 
(ROC) and the area under the 
ROC curve (AUC) (ROCAUC) 

Total of 115 features be selected 

Top 10 Signal-Specific and 
Signal-Independent Features (in 
order) 

empirical cumulative distribution 
function (ECDF), root mean 
square, slope, wavelet energy, 
autocorrelation, absolute energy, 
max power spectrum, mean 
absolute deviation, spectral 
skewness, median 

Root mean square error (RMSE) Total of 115 features be selected 
Top 10 Signal-Specific and 
Signal-Independent Features (in 
order) 

fast Fourier transform mean 
coefficient, power bandwidth, 
histogram, signal distance, 
empirical cumulative distribution 
function (ECDF), root mean 
square, autocorrelation, 
neighborhood peaks, median diff, 
total energy, percentile count 

Constant, quasi constant and 
duplicate feature removal 
(Univariate) (CQCDFR) 

Total of 62 features be selected 

Top 10 Signal-Specific and 
Signal-Independent Features (in 
order) 

ECDF percentile count, root mean 
square, max power spectrum, 
mean absolute deviation, negative 
turning points, neighborhood 
peaks, peak to peak distance, 
wavelet standard deviation, 
wavelet variance, fast Fourier 
transform mean coefficient 

Analysis of variance (ANOVA) Total of 115 features be selected 
Top 10 Signal-Specific and 
Signal-Independent Features (in 
order) 

root mean square, max power 
spectrum, mean absolute 
deviation, power bandwidth, 
spectral distance, median absolute 
diff, median diff, spectral entropy, 
absolute energy, linear prediction 
cepstral coefficients (LPCC) 

 
F1 score for combination of signal specific features and signal 
independent features base on different selection algorithms to 
check the classification performance. We also evaluate the 
top-ranked features separately based on the best accuracy 

obtained by different feature selection algorithms. Sensitivity 
indicates that the actual positives be correctly identified. 
Specificity means correct identification of a measure of the 
true proportion of negatives. Precision represents a measure 
of recognition accuracy. Accuracy means determining how 
close a measured value is to the true value. The F1 score 
represents a test accuracy. 
 

III. RESULTS  

        The sliding window runs every two beat intervals and 
moves one beat at a time until it ends. We extract R peaks 
using a sliding window. Use the Pan-Tompkin algorithm to 
find R-points. When the R point is detected, we can find the 
P, Q, S, T points. Figure 3 shows the top of the R peak with a 
dashed purple line. The two R peaks detected for two ECG 
beats and located at sample interval 1100 and 1207, 
respectively. After we detected the R peak, we can find P, Q, 
S, and T points. Table II is the P, Q, S, T, T' peak detection 
standards. Number 0 represents the T peak position and mark 
as the purple dashed line, number 1 represents the P peak 
position and mark as the green dashed line, number 2 
represents the Q peak position and mark as the yellow dashed 
line, and number 3 represents the S peak position and mark as 
the red dashed line. The sampling interval is from 1050 to 
1250. Figure 4 shows the top of P, Q, S, T points run every 
two ECG beats. 
 

 
Fig. 3: R peak detected for 2 ECG beats. 
 

 
Fig. 4: P, Q, S, T peaks detected for 2 ECG beats 
 
         We divided the data of all patients into training and 
testing datasets. We test a combination of signal-specific 
features and signal-independent features using random forest 
(RF) and support vector machine (SVM) classifiers. 



 
  

ROCAUC algorithm extract the total of 175 signal 
independent features. There are 115 features be extracted and 
combined with the signal specific feature to do the 
classification. By using RF, we get 81.8% sensitivity, 79.2% 
specificity, 78% accuracy, 80.0% precision, and 82.3% F1 
score. By using SVM, we get 78.2% sensitivity, 74.1%, 72% 
accuracy, specificity, 74.2% precision, and 77.5% F1 score. 
RMSE algorithm extract the total of 175 signal independent 
features. There are 115 features be extracted and combined 
with the signal specific feature to do the classification. By 
using RF, we get 77.3% sensitivity, 75.2% specificity, 72% 
accuracy, 75.3% precision, and 76.8% F1 score. By using 
SVM, we get 80.3% sensitivity, 79.1% specificity, 76% 
accuracy, 79.3% precision, and 80.1% F1 score.  
        CQCDFR algorithm extract the total of 175 signal 
independent features. There are 62 features be extracted and 
combined with the signal specific feature to do the 
classification. By using RF, we get 77.1% sensitivity, 75.4% 
specificity, 77% accuracy, 76.2% precision, and 78.3% F1 
score. By using SVM, we get 83.7% sensitivity, 82.1% 
specificity, 78% accuracy, 82.2% precision, and 84.7% F1 
score. ANOVA algorithm extract the total of 175 signal 
independent features. There are 115 features be extracted and 
combined with the signal specific feature to do the 
classification. By using RF, we get 74.2% sensitivity, 75.2% 
specificity, 75% accuracy, 74.0% precision, and 77.3% F1 
score. By using SVM, we get 84.1% sensitivity, 80.5% 
specificity, 77% accuracy, 80.5% precision, and 85.2% F1 
score. Table V shows the comparison of random forest (RF) 
and support vector machine (SVM) performance based on 
different feature extraction algorithms for the signal specific 
feature and the signal independent feature combination. 
 

Table V:  Comparison of random forest (RF) and support vector machine 
(SVM) performance based on different feature selection algorithms by using 

signal specific features and signal independent features combination. 
Performe
nt 
 

ML Sensitivi
ty (%) 

Specifici
ty (%) 

Accur
acy 
(%)
  

Precis
ion 
(%) 

F1 
Scor
e 
(%) 

ROCAUC       
 Total of 
115 
features 

RF 
SVM 

81.8 
78.2 

79.2 
74.1 

78 
72 

80.0 
74.2 

82.3 
77.5 

RMSE        
Total of 
115 
features 

RF 
SVM 

77.3 
80.3 

75.2 
79.1 

72 
76 

75.3 
79.3 

76.8 
80.1 

CQCDF
R 

      

Total of 
62 
features 

RF 
SVM 
 

77.1 
83.7 

75.4 
82.1 

77 
78 

76.2 
82.2 

78.3 
84.7 

ANOVA        
Total of 
115 
features 

RF 
SVM 

74.2 
84.1 
 

75.2 
80.5 

75 
77 

74.0 
80.5 

77.3 
85.2 

ROCAUC: Receiver Operator Characteristic (ROC) and the area under the 
ROC curve (AUC). CQCDFR: Constant, quasi constant and duplicate 
feature removal (Univariate). ANOVA: Analysis of variance. RMSE: Root 
mean square deviation. 
         
          We combined the signal specific feature and the signal 
independent feature to pick up top 10 ranked features and find 
the performance of each selection algorithm by using RF and 
SVM. ROCAUC, RMSE, CQCDFR and AVONA algorithms 
are the method to select and rank useful features which can 
get more precise accuracy. In each training of RF classifier, 

the ROCAUC algorithm achieves improved accuracy in the 
first 7 training runs. The accuracy remains the same after 7 
features training. The highest accuracy 93%, located on top of 
7 features ranked. The CQCDFR algorithm achieves 
improved accuracy in the first 6 training runs. The accuracy 
remains the same after 6 features training. The highest 
accuracy 90%, located on top of 6 features ranked. The 
ANOVA algorithm achieves improved accuracy in the first 7 
training runs. The accuracy remains the same after 7 features 
training. The highest accuracy 97%, located on top of 7 
features ranked. The RMSE algorithm achieves improved 
accuracy in the first 8 training runs. The accuracy remains the 
same after 8 features training. The highest accuracy 87%, 
located on top of 8 features ranked. Figure 5 presents the 
accuracy of random forest classifier for top 10 ranked based 
on of different selection and ranking algorithms by using 
signal specific feature and the signal independent feature. The 
blue bar presents the accuracy of RF based on ROCAUC 
algorithm. The orange bar presents the accuracy of RF based 
on CQCDFR algorithm. The grey bar presents the accuracy of 
RF based on ANOVA algorithm. The yellow bar presents the 
accuracy of RF based on RMSE algorithm.          
 

 
F1: First feature, F1-2: First and second features together, F1-3: First, 
second and third features together,…F1-10: First, second,…tenth features 
together. SVM: Support Vector Machine. ROCAUC: Receiver Operator 
Characteristic (ROC) and the area under the ROC curve (AUC). CQCDFR: 
Constant, quasi constant and duplicate feature removal (Univariate). 
ANOVA: Analysis of variance. RMSE: Root mean square deviation. 
Fig. 5: Comparison the accuracy of random forest classifier for top 10 
ranked based on of different selection and ranking algorithms by using 
signal specific feature and the signal independent feature. 
 
          Table VI summaries the performance of RF for top 
ranked features based on different feature selection 
algorithms. The performance evaluation has sensitivity, 
specificity, accuracy, precision, and F1. In each training of 
RF classifier, the ROCAUC algorithm achievethe highest 
accuracy located on top 7 features train. We select top 7 
features to do the performance evalution. We achieved 
95.1% sensitivity, 91.4% specificity, 93% accuracy, 91.3% 
precision, and 93.8% F1 score. The CQCDFR algorithm 
achievethe highest accuracy located on top 6 features train. 
We select top 6 features to do the performance evalution. We 
achieved 91.5% sensitivity, 90.4% specificity, 90% 
accuracy, 90.3% precision, and 90.4% F1 score. The 
ANOVA algorithm achievethe highest accuracy located on 
top 7 features train. We select top 7 features to do the 
performance evalution. We achieved 97.5% sensitivity, 
98.1% specificity, 97% accuracy, 98.1% precision, and 
95.0% F1 score. The RMSE algorithm achievethe highest 
accuracy located on top 8 features train. We select top 8 
features to do the performance evalution. We achieved 



 
  

88.2% sensitivity, 89.3% specificity, 87% accuracy, 89.3% 
precision, and 88.7% F1 score. 
 

Table VI:  Summary of RF (random forest) performance for top ranked 
features based on different feature selection algorithms. 

RF 
Performanc
e 
 

Sensitiv
ity (%) 

Specifici
ty (%) 

Accurac
y (%)
  

Precisio
n (%) 

F1 
Score 
(%) 

ROCAUC      
top 6 
features 

94.4 90.2 89 90.1 92.6 

top 7 
features 

95.1 91.4 93 91.3 93.8 

top 8 
features 

95.1 91.4 93 91.3 93.8 

CQCDFR      
top 5 
features 

88.6 87.8 86 88.2 87.2 

top 6 
features 

91.5 90.4 90 90.3 90.4 

top 7 
features 

91.5 90.4 90 90.3 90.4 

ANOVA      
top 6 
features 

90.7 94.4 91 92.7 92.1 

top 7 
features 

97.5 98.1 97 98.1 95.0 

top 8 
features 

97.5 98.1 97 98.1 95.0 

RMSE       
top 7 
features 

84.1 84.5 83 84.5 85.9 

top 8 
features 

88.2 89.3 87 89.3 88.7 

top 9 
features 

88.2 89.3 87 89.3 88.7 

 
         In each training of SVM classifier, the ROCAUC 
algorithm achieves improved accuracy in the first 7 training 
runs. The accuracy remains the same after 7 features 
training. The highest accuracy 89%, located on top of 7 
features ranked. The CQCDFR algorithm achieves improved 
accuracy in the first 6 training runs. The accuracy remains 
the same after 6 features training. The highest accuracy 92%, 
located on top of 6 features ranked. The ANOVA algorithm 
achieves improved accuracy in the first 5 training runs. The 
accuracy remains the same after 5 features training. The 
highest accuracy 93%, located on top of 5 features ranked. 
The RMSE algorithm achieves improved accuracy in the 
first 7 training runs. The accuracy remains the same after 7 
features training. The highest accuracy 87%, located on top 
of 7 features ranked.  Figure 6 presents the accuracy of 
support vector machine classifier for top 10 ranked based on 
of different selection and ranking algorithms by using signal 
specific feature and the signal independent feature. The blue 
bar presents the accuracy of SVM based on ROCAUC 
algorithm. The orange bar presents the accuracy of SVM 
based on CQCDFR algorithm. The grey bar presents the 
accuracy of SVM based on ANOVA algorithm. The yellow 
bar presents the accuracy of SVM based on RMSE 
algorithm.          
 

 
Fig. 6: Comparison the accuracy of support vector machine classifier for top 
10 ranked based on of different selection and ranking algorithms by using 
signal specific feature and the signal independent feature. 
  
          Table VII summaries the performance of SVM for top 
ranked features based on different feature selection 
algorithms. In each training of SVM classifier, the ROCAUC 
algorithm achievethe highest accuracy located on top 7 
features train. We select top 7 features to do the performance 
evalution. We achieved 93.8% sensitivity, 91.4% specificity, 
89% accuracy, 91.3% precision, and 90.1% F1 score. The 
CQCDFR algorithm achievethe highest accuracy located on 
top 6 features train. We select top 6 features to do the 
performance evalution. We achieved 92.7% sensitivity, 
94.4% specificity, 92% accuracy, 94.3% precision, and 
93.4% F1 score. The ANOVA algorithm achievethe highest 
accuracy located on top 5 features train. We select top 5 
features to do the performance evalution. We achieved 
94.3% sensitivity, 93.5% specificity, 93% accuracy, 93.6% 
precision, and 91.5% F1 score. The RMSE algorithm 
achievethe highest accuracy located on top 7 features train. 
We select top 7 features to do the performance evalution. We 
achieved 88.7% sensitivity, 89.6% specificity, 87% 
accuracy, 89.6% precision, and 88.0% F1 score. 
 
Table VII:  Summary of SVM (support vector machine) performance for top 

ranked features based on different feature selection algorithms. 
SVM 
Performance 
 

Sensitivit
y (%) 

Specificit
y (%) 

Accuracy 
(%)
  

Precisio
n (%) 

F1 
Score 
(%) 

ROC_AUC      
top 6 
features 

88.0 84.5 83 84.6 86.2 

top 7 
features 

93.8 91.4 89 91.3 90.1 

top 8 
features 

93.8 91.4 89 91.3 90.1 

CQCDFR      
top 5 
features 

90.1 88.9 88 89.0 90.9 

top 6 
features 

92.7 94.4 92 94.3 93.4 

top 7 
features 

92.7 94.4 92 94.3 93.4 

ANOVA 
Test  

     

top 4 
features 

92.0 89.0 87 89.2 91.6 

top 5 
features 

94.3 93.5 93 93.6 91.5 

top 6 
features 

94.3 93.5 93 93.6 91.5 

RMSE       
top 6 
features 

84.1 82.9 80 82.8 83.6 

top 7 
features 

88.7 89.6 87 89.6 88.0 

top 8 
features 

88.7 89.6 87 89.6 88.0 

 



 
  

IV. CONCLUSIONS  

        This work aims to use machine learning algorithms to 
detect cardiac conditions in patients from single-lead ECG 
data in a database of supraventricular arrhythmias and 
applying wearables device. A premature ventricular 
contraction (PVC) is an unwanted heartbeat that begins in one 
of the heart's two lower pumping chambers (the ventricles). 
These extra heartbeats disrupt the normal heart rhythm and 
sometimes feel like a throbbing or throbbing in the chest. 
Early monitoring and treatment can be of great help to 
patients. We use MIT BIH supraventricular arrhythmia 
database (svdb) which is the public source to do the analysis.  
We extract combination of signal-specific features and 
signal-independent features from the ECG signal to form 
feature vectors. Signal specific features contain amplitude 
features, frequency features, and statistical features. Signal-
independent features contain statistical features from the 
TSFELs. We apply four different algorithms to do the feature 
selection and ranking.  Algorithms we use receiver operator 
characteristic (ROC) and the area under the ROC curve (AUC) 
(ROCAUC), constant, quasi constant and duplicate feature 
removal (Univariate) (CQCDFR), analysis of variance 
(ANOVA), and root mean square deviation (RMSE). We 
train the machine learning model of random forest (RF) and 
support vector machine (SVM) to find out the best feature 
selection method. Based on different feature selection 
algorithms, we analyze the ECG database and compare the 
accuracy of the combinations of signal-specific and signal-
independent features with the top-ranked feature 
combinations to find the best performance. When the feature 
selection algorithm is different, the feature selection will also 
show different results. By training RF and SVM classifier, 
feature selection using ANOVA algorithm without ranking 
shows the lowest performance compare with other algorithms. 
After doing the feature ranking, ANOVA algorithm gets the 
highest accuracy compare with other algorithms. We further 
analyze the most accurate feature selection methods base on 
different algorithms to test performance such as the accuracy, 
sensitivity, precision, specificity and F1 score. ANOVA 
algorithm shoes the best performance on RF classifier and 
SVM classifier. Therefore, The ANOVA algorithm can help 
us select effective features and eliminate useless ones for 
testing of real-time wearable heart monitoring devices. 
Effective feature selection not only reduces the number of 
features used, but also reduces the power consumption of the 
monitoring device. As the amount of training data increases, 
the accuracy and performance of the model can be improved 
by relying on more features. The ability to improve the 
classification accuracy and features are more suitable for real-
world needs. 
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