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Abstract— Premature Ventricular Contraction (PVC) episodes
are redundant heartbeats that disrupt the normal rhythm of the
heart. The use of wearable sensors for remote heart monitoring
and the implementation of trusted artificial intelligence (AI)
algorithms are improvements in the field of smart health
(sHealth) using cyber-physical systems (CPS) for telemedicine
systems. We detect PVC beats by analyzing electrocardiogram
(ECG/EKG) data and perform automatic classification to
achieve high accuracy in real-time. In this study, we used a
number of PVC heartbeat recordings from the MIT BIH
supraventricular arrhythmia database We divided the
recordings into a training dataset, which contains 39 ECG data,
and a test dataset, which contains the remaining 39 ECG data.
Both datasets contain approximately 80,000 samples of normal
heartbeats and 7,000 samples of ventricular ectopic We extract
combination of signal-specific features and signal-independent
features for feature selection and ranking. We apply four
algorithms, receiver operator characteristic (ROC) and the area
under the ROC curve (AUC) (ROCAUC), constant, quasi
constant and duplicate feature removal (Univariate) (CQCDFR),
analysis of variance (ANOVA), and root mean square deviation
(RMSE) to select and rank the feature. For each algorithm, it has
its own selection of signal-independent features, which we
combine separately with signal-specific features and test their
accuracy. Then, we train the top 10 ranked combined features of
each algorithm separately and check the highest performance.
We explored the random forest (RF) classifier and support
vector machine (SVM) classifier. Compared with other
algorithms, the performance of feature selection using ANOVA
algorithm before feature ranking is the lowest. The ANOVA
algorithm achieved the highest accuracy after picking out the top
10 features. We further separately evaluate the accuracy,
sensitivity, precision, specificity and F1 score of the top-ranked
features according to the best accuracy obtained by different
feature selection algorithms. The classification ANOVA
algorithm from RF selects the top 7 features with 97% accuracy,
97.5 sensitivity, 98.1% specificity, 98.1 Precision%, and 95.0%
F1 Score. This method can accurately monitor cardiac disease in
real-time and analyze ECG beats so that patients can get
accurate feedback.
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I. INTRODUCTION

Cyber-physical systems (CPS) are used to control and
monitor embedded computers of cyber-physical processes,
often using feedback loops [1]. A small wearable monitoring
system can transmit the detected premature ventricular
contractions (PVCs) in the ECG signal to the central control
system for effective inspection. When an abnormality occurs,
the control system can issue an alarm to the actuation system.
CPS can detect hidden heart disease early and provide an
effective program. Different wearables are available to
capture ECG signal from different lead positions [2]. Today's
ECG devices are small in size to allow for continuous, remote
monitoring of health conditions [3].

The heart's extra heartbeat starts in one of the two lower
pumping chambers (the ventricles) called a premature
ventricular contraction (PVC). These extra heartbeats can
disrupt the normal heart rhythm. They can occur in a variety
of people, including those without structural heart disease and
those with all types and degrees of heart disease. Patients with
premature ventricular contractions usually have no specific
symptoms, but may present with palpitations, chest tightness,
dizziness, fatigue and other symptoms. In severe cases, angina
pectoris, hypotension, and heart failure may also occur. An
electrocardiogram (ECG) can detect premature ventricular
beats and discover type and origin [4-14]. Identifying these
disorders from raw electrocardiogram (ECG) signals is
tedious and expensive [4]. Smart method for automatic
heartbeat classification in ECG recordings will be of great
help to clinicians in diagnosing heart disease [5]. Automated
analysis techniques rely on machine learning (ML) models
trained to identify PVCs.

Stationary wavelets transform (SWT) is used for peak-to-
average power ratio and logarithmic energy entropy to extract
features and detect with support vector machine (SVM). [6].
ECG features based on morphological features, temporal
features, and peak-top features use machine learning
classification methods such as decision trees, random forests,
and gradient boosted trees (GDB). [7]. Advances in
electrocardiogram (ECQG) data and dynamic neural networks

Table I: The criteria of AAMI labeling class of MIT-BIH Supraventricular Arrhythmia Database with the full database, and training
and testing dataset.

AAMI Heartbeat N S
class
Description Normal beat Supraventricular ectopic beat
(SVEB)
Label N,L,R S,e,j, A a,]
Full data 162,338 8,990
(Total 78 records)
Training 83,292 1,252
(First 39 records)
Testing 79,046 7,738

(Rest 39 records)

\% F Q Total
Ventricular ectopic beat Fusion beat =~ Unknown beat

(VEB)

V,E F Q,/f

9,441 23 3,223 184,555
7,397 5 1,090 93,036
7,044 18 2,133 95,979



(DNNs), particularly algorithms such as long short-term
memory (LSTM) and convolutional neural networks (CNN),
are based on the features used. [8]. Develop methods for
different features, including RR beat interval, time domain,
frequency domain, and distribution features, and evaluate the
efficiency of the method with linear classifiers, SVMs, and
quadratic neural networks. [9]. Use an ML classifier to
achieve the performance of feature selection techniques and
perform feature selection on AF morphological features and
heart rate variability [10].

Identifying features that converta 1D ECG into a 2D form
through short-time Fourier transform and wavelet transform
use SVM to detect PVCs. [11]. Trained using deep admixture
feature selection extracted from the last fully connected layer
of ten CNNs. These classifiers involve Support Vector
Machines (SVM), Random Forests (RF), K-Nearest
Neighbors (KNN), Linear Discriminant Classifiers (LDA),
Quadratic Discriminant Analysis (QDA), and Decision Trees
(DT) [12]. Detect impending heart disease using Naive Bayes,
Artificial Neural Networks, Support Vector Machines,
Random Forests, Simple Logistic Regression, and
accompanying physiological features. [13].
Electrocardiograms (ECGs) combined with multiple support
vector machines (SVMs) rely on time intervals and their
feature automatic classification methods for ECG
characterization. [14].

This work is a further extension and study of previous
tasks. In the previous task, we used hand-selected signal-
specific features for classification and took 80%, 20% to form
training and test sets. This results in an imbalance of our
training and test data for normal and abnormal heartbeats and
an inability to determine the effectiveness of specific feature
selection. We form more explicit training and testing data in
order to classify normal and abnormal heartbeats. Detect PVC
heartbeats and increase the number of features as well as
feature selection and ranking to test the accuracy of the top-
ranked features to find the best performance. We measure the
statistical performance metrics of the top performers using
random forest classifiers and support vector machines. We
form feature vectors for classification using signal-specific
features and signal-independent features. The focus of this
work is to analyze each heartbeat and apply it to wearable
devices through an efficient method. We select effective
features and minimize the number of features used to reduce
the power consumption of the monitoring device. Our special
real-time beat-to-beat classification method enables efficient
analysis of ECG data from wearable heart monitors.

II. METHODOLOGY

This study used MIT BIH database in which criteria of
the AAMI to classify heartbeat types [15]. There are five
heartbeat categories that MIT-BIH uses for subsequent
processing. Each category includes multiple types of
heartbeats, as shown in Table I. Normal and bundle branch
block heartbeat present in class N. Supraventricular ectopic
heartbeat (SVEB) present in class S. Ventricular ectopic beats
(VEB) present in class present in class V. Fusion present in
class F. Unknown beat present in class Q. We accessed the
PhysioNet database from the open source of public data. We
pick up MIT BIH supraventricular arrhythmia database (svdb)
to achieve our goal [16]. The beats we classify use PVC beats

and normal beats. Figure 1. shows the flow diagram of process
to classify PVC beat.

A. ECG data

In our work, we used a number of PVC heartbeat
recordings from the MIT BIH supraventricular arrhythmia
database [16]. The database contains two lead ECG signals.
Total of 78 records of duration around 30 minutes. Data has
128 Hz sampling rate and filter with bandpass. This study
used the AAMI criteria to classify MIT BIH heartbeat types.
The heartbeat types listed on Table I. The normal beat (N) has
the largest category with over 162,338 samples, and the
fusion beat (F) has the smallest category with only around 23
samples. The number of individual heartbeat types varies
widely. We selected only normal beats (N) and ventricular
ectopic beats (V) for analysis. In addition to this, we removed
supraventricular ectopic beats (SVEB), fused beats (F), and
unknown beats (Q) from the analysis [17]. The record we
divided into a training dataset, and a testing dataset. The
training dataset contains first of 39 ECG data records, and the
test dataset contains rest of 39 ECG data records. Both
datasets contain approximately 80,000 samples of normal
heartbeat and 7,000 samples of ventricular ectopic beat. The
performance of the classifier is evaluated using the training
dataset. Final performance evaluation of the heartbeat
classification system on the test dataset. Table I shows the
breakdown of each dataset by heartbeat type.
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Fig. 1: Flowchart of ECG signal demonstrating machine learning algorithm
for preprocessing, analysis, and classification.
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B. Signal preprocessing

The human electrocardiogram (ECG) signal is a weak
physiological signal with nonlinear, non-stationary and strong
randomness. The main noise of electrocardiogram (ECG)
signal includes baseband drift, EMG interference, power
frequency noise, other noise interference, etc. This noise and
distortion results in a low signal-to-noise ratio (SNR). The
waveform of the disturbed ECG signal will be deformed,
which will affect the doctor's recognition of the ECG. The
frequency of the baseline noise is relatively low, and the ECG
signal itself contains very rich low-frequency signals, so a
low-pass filter is used to remove the baseline drift. The
traditional methods for removing baseline drift include
median filtering, wavelet transform, algorithm average
filtering, and EMD decomposition.
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Fig. 2: P, Q, R, S, T peaks in detail to form a heartbeat.

C. Peak detection

Identifying and detecting R peaks occupies a very
important and necessary position in ECG heartbeat
recognition. Figure 2 shows P, Q, R, S, T peaks and a
heartbeat. In this work we detect the exact position of the R
peak using the pan_tompkin algorithm [18]. The correct
position of the P, Q, S, T, T" peaks is affected by the detection
accuracy of the R peak. We detected R peaks using the Pan
Tompkin algorithm in the open-source code "The Python
Toolbox for Neurophysiological Signal Processing" provided
by neurokit 2 [19]. When the position of the R peak is
detected, we can calculate the RR interval and the mean RR
interval. RR interval and average RR interval can be used to
find the P, Q, S, T and T' peaks. We find three R peaks to form
the heartbeat. As the starting point of the beat, we use the
middle value between the first R peak and the second R peak
to present. As the end point of the beat, we use the middle
value between the second R peak and the third R peak as the
presentation. See Table II for specifications.

Table II: Standard of P, Q, S, T, T’ peak and one heartbeat detection.

Peak Standard
P Max of 3/8RR before RQ interval
Q Min 1/8 RR before RR interval
S Min of R to 1/4RR before R peak
T 1/4RR to max of 3/8RR
T 1/4RR to min of 3/8RR

One Min of 1/2RR to max of 1/2RR

heartbeat

D. Feature extraction and selection

The feature extraction process takes two ECG beats at a
time, and slides one beat when the process finishes extracting
(i.e. that beat runs the next beat). We extract combination of
signal-specific features and signal-independent features for
feature selection and ranking. We obtain a total of 7 amplitude
features, 6 frequency features and 15 statistical features in the

signal specific features. The total of 175 signal independent
features be extracted using Time series feature extraction
library (TSFEL) which is a python package [20]. We apply
four different algorithms to do the feature selection and
ranking. Algorithms we use receiver operator characteristic
(ROC) and the area under the ROC curve (AUC) (ROCAUCQC),
constant, quasi constant and duplicate feature removal
(Univariate) (CQCDFR), analysis of variance (ANOVA), and
root mean square deviation (RMSE). For each algorithm, it
has its own choice of signal-independent features, which we
combine with signal-specific features, separately. We use the
combined features from each algorithm to make the top 10
features for classification. Table III and IV shows the
summaries of signal specific features and signal independent
features and the top 10 ranked features based on different
feature selection algorithms in detail. Due to its advantages in
handling imbalanced and cost-sensitive data, ROC curve and
AUC (area under the ROC curve) are used to determine
classification accuracy in supervised learning. Constant, quasi
constant and duplicate feature removal (Univariate)
(CQCDFR) methods rank individual features according to
certain criteria and then select the top N features. Different
types of ranking criteria are used for univariate filtering
methods. Analysis of variance (ANOVA) is used to analyze
differences between group means in a sample. A collection of
statistical models and their associated estimation procedures.
The root mean square error (RMSE) is the standard deviation
of the residuals (prediction error). RMSE measures how
distributed these residuals are and how concentrated the data
are around the line of best fit.

E. ML classification

We label ventricular ectopic beats (V) as 1, and label
normal heartbeats (N) as 0. We train the machine learning
model of random forest (RF) and support vector machine
(SVM) with use a 10-fold cross-validation technique to do the
classification. The training and testing datasets had similar
proportions of numbers of ventricular ectopic and normal
heartbeat types. Training datasets include 90,689 sample
intervals and testing datasets include 86,090 sample intervals
of normal heartbeats and ventricular ectopic beats, separately.
Table I shows that each dataset is divided by heartbeat type.
By using RF and SVM classifier, we first classify
combination of signal specific features and signal
independent features based on different feature selection
algorithms to check the performance, separately. After that,
we use four different algorithms to do the feature ranking for
identify useful features which can get more precise result. In
each of algorithm, we run the machine learning model for
training and testing to classify top 10 ranked features. We
train the first-ranked feature for first run. After training
completed, we select the second-ranked feature and add with
the first-ranked feature together for second test. After training
completed, we select a third-ranked feature and add with the
first-ranked feature the second-ranked feature together for
third test, and so on. Until tenth test, we train all top 10 ranked
features together.

F. Performance

We use various statistical metrics to exhibit model
performance and observe performance evaluations. We
evaluated the sensitivity, specificity, accuracy, precision, and



Table III: Signal specific features and signal independent features used.

Feature type Features summary

Signal Specific Feature Total of 28 features.

7 amplitude features, Q peak, S peak, T peak, R peak, QRS

6 frequency features, position, QT length, RR length.

15 statistical features (amplitude features)
heart rate, frequency of Q, R, S and T,
instance heart rate. (frequency features)
mean peak value of R, Q, S, T and QT,
mean value of LF and HF, ratio of
LF/HF, maximum frequency, very low
frequency, stationary wavelet transforms,
PNNS50, index of sympathetic and
parasympathetic modulation of the
autonomic nervous system, root mean
square of successive differences.
(statistical features)

Signal Independent Feature = Total 175 features be extracted

Time series feature

extraction library (Tsfel)

histogram, signal distance, ECDF
percentile count, empirical cumulative
distribution function (ECDF), root mean
square, slope, wavelet energy, wavelet
entropy, spectral centroid,
autocorrelation, max power spectrum,
mean absolute deviation, spectral
skewness..., and so on.

Table IV: Extract the top 10 ranked signal-independent features according
to the algorithm used.
Signal independent feature (base = Features summary
on algorithms)
Receiver operator characteristic
(ROC) and the area under the
ROC curve (AUC) (ROCAUC)

Total of 115 features be selected

Top 10 Signal-Specific and
Signal-Independent Features (in
order)

Root mean square error (RMSE)
Top 10 Signal-Specific and
Signal-Independent Features (in
order)

Constant, quasi constant and
duplicate feature removal
(Univariate) (COCDFR)

Top 10 Signal-Specific and
Signal-Independent Features (in
order)

Analysis of variance (ANOVA)
Top 10 Signal-Specific and
Signal-Independent Features (in
order)

empirical cumulative distribution
function (ECDF), root mean
square, slope, wavelet energy,
autocorrelation, absolute energy,
max power spectrum, mean
absolute deviation, spectral
skewness, median

Total of 115 features be selected
fast Fourier transform mean
coefficient, power bandwidth,
histogram, signal distance,
empirical cumulative distribution
function (ECDF), root mean
square, autocorrelation,
neighborhood peaks, median diff,
total energy, percentile count
Total of 62 features be selected

ECDF percentile count, root mean
square, max power spectrum,
mean absolute deviation, negative
turning points, neighborhood
peaks, peak to peak distance,
wavelet standard deviation,
wavelet variance, fast Fourier
transform mean coefficient

Total of 115 features be selected
root mean square, max power
spectrum, mean absolute
deviation, power bandwidth,
spectral distance, median absolute
diff, median diff, spectral entropy,
absolute energy, linear prediction
cepstral coefficients (LPCC)

F1 score for combination of signal specific features and signal
independent features base on different selection algorithms to
check the classification performance. We also evaluate the
top-ranked features separately based on the best accuracy

obtained by different feature selection algorithms. Sensitivity
indicates that the actual positives be correctly identified.
Specificity means correct identification of a measure of the
true proportion of negatives. Precision represents a measure
of recognition accuracy. Accuracy means determining how
close a measured value is to the true value. The F1 score
represents a test accuracy.

III. RESULTS

The sliding window runs every two beat intervals and
moves one beat at a time until it ends. We extract R peaks
using a sliding window. Use the Pan-Tompkin algorithm to
find R-points. When the R point is detected, we can find the
P, Q, S, T points. Figure 3 shows the top of the R peak with a
dashed purple line. The two R peaks detected for two ECG
beats and located at sample interval 1100 and 1207,
respectively. After we detected the R peak, we can find P, Q,
S, and T points. Table II is the P, Q, S, T, T' peak detection
standards. Number 0 represents the T peak position and mark
as the purple dashed line, number 1 represents the P peak
position and mark as the green dashed line, number 2
represents the Q peak position and mark as the yellow dashed
line, and number 3 represents the S peak position and mark as
the red dashed line. The sampling interval is from 1050 to
1250. Figure 4 shows the top of P, Q, S, T points run every
two ECG beats.
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Fig. 3: R peak detected for 2 ECG beats.
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Fig. 4: P, Q, S, T peaks detected for 2 ECG beats

We divided the data of all patients into training and
testing datasets. We test a combination of signal-specific
features and signal-independent features using random forest
(RF) and support vector machine (SVM) classifiers.



ROCAUC algorithm extract the total of 175 signal
independent features. There are 115 features be extracted and
combined with the signal specific feature to do the
classification. By using RF, we get 81.8% sensitivity, 79.2%
specificity, 78% accuracy, 80.0% precision, and 82.3% F1
score. By using SVM, we get 78.2% sensitivity, 74.1%, 72%
accuracy, specificity, 74.2% precision, and 77.5% F1 score.
RMSE algorithm extract the total of 175 signal independent
features. There are 115 features be extracted and combined
with the signal specific feature to do the classification. By
using RF, we get 77.3% sensitivity, 75.2% specificity, 72%
accuracy, 75.3% precision, and 76.8% F1 score. By using
SVM, we get 80.3% sensitivity, 79.1% specificity, 76%
accuracy, 79.3% precision, and 80.1% F1 score.

CQCDFR algorithm extract the total of 175 signal
independent features. There are 62 features be extracted and
combined with the signal specific feature to do the
classification. By using RF, we get 77.1% sensitivity, 75.4%
specificity, 77% accuracy, 76.2% precision, and 78.3% F1
score. By using SVM, we get 83.7% sensitivity, 82.1%
specificity, 78% accuracy, 82.2% precision, and 84.7% F1
score. ANOVA algorithm extract the total of 175 signal
independent features. There are 115 features be extracted and
combined with the signal specific feature to do the
classification. By using RF, we get 74.2% sensitivity, 75.2%
specificity, 75% accuracy, 74.0% precision, and 77.3% F1
score. By using SVM, we get 84.1% sensitivity, 80.5%
specificity, 77% accuracy, 80.5% precision, and 85.2% F1
score. Table V shows the comparison of random forest (RF)
and support vector machine (SVM) performance based on
different feature extraction algorithms for the signal specific
feature and the signal independent feature combination.

Table V: Comparison of random forest (RF) and support vector machine
(SVM) performance based on different feature selection algorithms by using
signal specific features and signal independent features combination.

Performe = ML Sensitivi =~ Specifici = Accur = Precis = F1
nt ty (%) ty (%) acy ion Scor
(%) (%) e

(%)

ROCAUC

Total of RF 81.8 79.2 78 80.0 82.3

115 SVM | 782 74.1 72 74.2 77.5

features

RMSE

Total of RF 77.3 75.2 72 75.3 76.8

115 SVYM  80.3 79.1 76 79.3 80.1

features

COCDF

R

Total of RF 77.1 75.4 77 76.2 78.3

62 SVM | 83.7 82.1 78 822 84.7

features

ANOVA

Total of RF 74.2 75.2 75 74.0 77.3

115 SVM | 84.1 80.5 77 80.5 85.2

features

ROCAUC: Receiver Operator Characteristic (ROC) and the area under the
ROC curve (AUC). CQCDFR: Constant, quasi constant and duplicate
feature removal (Univariate). ANOVA: Analysis of variance. RMSE: Root
mean square deviation.

We combined the signal specific feature and the signal
independent feature to pick up top 10 ranked features and find
the performance of each selection algorithm by using RF and
SVM. ROCAUC, RMSE, CQCDFR and AVONA algorithms
are the method to select and rank useful features which can
get more precise accuracy. In each training of RF classifier,

the ROCAUC algorithm achieves improved accuracy in the
first 7 training runs. The accuracy remains the same after 7
features training. The highest accuracy 93%, located on top of
7 features ranked. The CQCDEFR algorithm achieves
improved accuracy in the first 6 training runs. The accuracy
remains the same after 6 features training. The highest
accuracy 90%, located on top of 6 features ranked. The
ANOVA algorithm achieves improved accuracy in the first 7
training runs. The accuracy remains the same after 7 features
training. The highest accuracy 97%, located on top of 7
features ranked. The RMSE algorithm achieves improved
accuracy in the first 8 training runs. The accuracy remains the
same after 8 features training. The highest accuracy 87%,
located on top of 8 features ranked. Figure 5 presents the
accuracy of random forest classifier for top 10 ranked based
on of different selection and ranking algorithms by using
signal specific feature and the signal independent feature. The
blue bar presents the accuracy of RF based on ROCAUC
algorithm. The orange bar presents the accuracy of RF based
on CQCDEFR algorithm. The grey bar presents the accuracy of
RF based on ANOVA algorithm. The yellow bar presents the
accuracy of RF based on RMSE algorithm.
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FI1: First feature, F1-2: First and second features together, F1-3: First,
second and third features together,...F1-10: First, second,...tenth features
together. SVM: Support Vector Machine. ROCAUC: Receiver Operator
Characteristic (ROC) and the area under the ROC curve (AUC). COCDFR:
Constant, quasi constant and duplicate feature removal (Univariate).
ANOVA: Analysis of variance. RMSE: Root mean square deviation.

Fig. 5: Comparison the accuracy of random forest classifier for top 10
ranked based on of different selection and ranking algorithms by using
signal specific feature and the signal independent feature.

Table VI summaries the performance of RF for top
ranked features based on different feature selection
algorithms. The performance evaluation has sensitivity,
specificity, accuracy, precision, and F1. In each training of
RF classifier, the ROCAUC algorithm achievethe highest
accuracy located on top 7 features train. We select top 7
features to do the performance evalution. We achieved
95.1% sensitivity, 91.4% specificity, 93% accuracy, 91.3%
precision, and 93.8% F1 score. The CQCDFR algorithm
achievethe highest accuracy located on top 6 features train.
We select top 6 features to do the performance evalution. We
achieved 91.5% sensitivity, 90.4% specificity, 90%
accuracy, 90.3% precision, and 90.4% F1 score. The
ANOVA algorithm achievethe highest accuracy located on
top 7 features train. We select top 7 features to do the
performance evalution. We achieved 97.5% sensitivity,
98.1% specificity, 97% accuracy, 98.1% precision, and
95.0% F1 score. The RMSE algorithm achievethe highest
accuracy located on top 8 features train. We select top 8
features to do the performance evalution. We achieved



88.2% sensitivity, 89.3% specificity, 87% accuracy, 89.3%
precision, and 88.7% F1 score.

Table VI: Summary of RF (random forest) performance for top ranked
features based on different feature selection algorithms.

RF Sensitiv = Specifici = Accurac Precisio = F1
Performanc ity (%) ty (%) y (%) n (%) Score
e (%)
ROCAUC

top 6 94.4 90.2 89 90.1 92.6
features

top 7 95.1 914 93 91.3 93.8
features

top 8 95.1 914 93 91.3 93.8
features

CQCDFR

top 5 88.6 87.8 86 88.2 87.2
features

top 6 91.5 90.4 90 90.3 90.4
features

top 7 91.5 90.4 90 90.3 90.4
features

ANOVA

top 6 90.7 94.4 91 92.7 92.1
features

top 7 97.5 98.1 97 98.1 95.0
features

top 8 97.5 98.1 97 98.1 95.0
features

RMSE

top 7 84.1 84.5 83 84.5 85.9
features

top 8 88.2 89.3 87 89.3 88.7
features

top 9 88.2 89.3 87 89.3 88.7
features

In each training of SVM classifier, the ROCAUC
algorithm achieves improved accuracy in the first 7 training
runs. The accuracy remains the same after 7 features
training. The highest accuracy 89%, located on top of 7
features ranked. The CQCDFR algorithm achieves improved
accuracy in the first 6 training runs. The accuracy remains
the same after 6 features training. The highest accuracy 92%,
located on top of 6 features ranked. The ANOVA algorithm
achieves improved accuracy in the first 5 training runs. The
accuracy remains the same after 5 features training. The
highest accuracy 93%, located on top of 5 features ranked.
The RMSE algorithm achieves improved accuracy in the
first 7 training runs. The accuracy remains the same after 7
features training. The highest accuracy 87%, located on top
of 7 features ranked. Figure 6 presents the accuracy of
support vector machine classifier for top 10 ranked based on
of different selection and ranking algorithms by using signal
specific feature and the signal independent feature. The blue
bar presents the accuracy of SVM based on ROCAUC
algorithm. The orange bar presents the accuracy of SVM
based on CQCDFR algorithm. The grey bar presents the
accuracy of SVM based on ANOVA algorithm. The yellow
bar presents the accuracy of SVM based on RMSE
algorithm.
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Fig. 6: Comparison the accuraC); of support vector machine classifier for top
10 ranked based on of different selection and ranking algorithms by using
signal specific feature and the signal independent feature.

Table VII summaries the performance of SVM for top
ranked features based on different feature selection
algorithms. In each training of SVM classifier, the ROCAUC
algorithm achievethe highest accuracy located on top 7
features train. We select top 7 features to do the performance
evalution. We achieved 93.8% sensitivity, 91.4% specificity,
89% accuracy, 91.3% precision, and 90.1% F1 score. The
CQCDFR algorithm achievethe highest accuracy located on
top 6 features train. We select top 6 features to do the
performance evalution. We achieved 92.7% sensitivity,
94.4% specificity, 92% accuracy, 94.3% precision, and
93.4% F1 score. The ANOVA algorithm achievethe highest
accuracy located on top 5 features train. We select top 5
features to do the performance evalution. We achieved
94.3% sensitivity, 93.5% specificity, 93% accuracy, 93.6%
precision, and 91.5% F1 score. The RMSE algorithm
achievethe highest accuracy located on top 7 features train.
We select top 7 features to do the performance evalution. We
achieved 88.7% sensitivity, 89.6% specificity, 87%
accuracy, 89.6% precision, and 88.0% F1 score.

Table VII: Summary of SVM (support vector machine) performance for top
ranked features based on different feature selection algorithms.

SVM Sensitivit | Specificit = Accuracy Precisio F1

Performance y (%) y (%) (%) n (%) Score
(%)

ROC_AUC

top 6 88.0 84.5 83 84.6 86.2

features

top 7 93.8 91.4 89 91.3 90.1

features

top 8 93.8 91.4 89 91.3 90.1

features

CQCDFR

top 5 90.1 88.9 88 89.0 90.9

features

top 6 92.7 94.4 92 94.3 93.4

features

top 7 92.7 94.4 92 94.3 93.4

features

ANOVA

Test

top 4 92.0 89.0 87 89.2 91.6

features

top 5 94.3 93.5 93 93.6 91.5

features

top 6 94.3 93.5 93 93.6 91.5

features

RMSE

top 6 84.1 82.9 80 82.8 83.6

features

top 7 88.7 89.6 87 89.6 88.0

features

top 8 88.7 89.6 87 89.6 88.0

features



IV. CONCLUSIONS

This work aims to use machine learning algorithms to
detect cardiac conditions in patients from single-lead ECG
data in a database of supraventricular arrhythmias and
applying wearables device. A premature ventricular
contraction (PVC) is an unwanted heartbeat that begins in one
of the heart's two lower pumping chambers (the ventricles).
These extra heartbeats disrupt the normal heart rhythm and
sometimes feel like a throbbing or throbbing in the chest,
Early monitoring and treatment can be of great help to
patients. We use MIT BIH supraventricular arrhythmia
database (svdb) which is the public source to do the analysis.
We extract combination of signal-specific features and
signal-independent features from the ECG signal to form
feature vectors. Signal specific features contain amplitude
features, frequency features, and statistical features. Signal-
independent features contain statistical features from the
TSFELs. We apply four different algorithms to do the feature
selection and ranking. Algorithms we use receiver operator
characteristic (ROC) and the area under the ROC curve (AUC)
(ROCAUC), constant, quasi constant and duplicate feature
removal (Univariate) (CQCDFR), analysis of variance
(ANOVA), and root mean square deviation (RMSE). We
train the machine learning model of random forest (RF) and
support vector machine (SVM) to find out the best feature
selection method. Based on different feature selection
algorithms, we analyze the ECG database and compare the
accuracy of the combinations of signal-specific and signal-
independent features with the top-ranked feature
combinations to find the best performance. When the feature
selection algorithm is different, the feature selection will also
show different results. By training RF and SVM classifier,
feature selection using ANOVA algorithm without ranking
shows the lowest performance compare with other algorithms.
After doing the feature ranking, ANOVA algorithm gets the
highest accuracy compare with other algorithms. We further
analyze the most accurate feature selection methods base on
different algorithms to test performance such as the accuracy,
sensitivity, precision, specificity and F1 score. ANOVA
algorithm shoes the best performance on RF classifier and
SVM classifier. Therefore, The ANOVA algorithm can help
us select effective features and eliminate useless ones for
testing of real-time wearable heart monitoring devices.
Effective feature selection not only reduces the number of
features used, but also reduces the power consumption of the
monitoring device. As the amount of training data increases,
the accuracy and performance of the model can be improved
by relying on more features. The ability to improve the
classification accuracy and features are more suitable for real-
world needs.
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