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Abstract—Heart failure (HF) is a common clinical syndrome
of cardiac episode leading to a variety of cardiac diseases.
Detecting these cardiac episodes from electrocardiogram (ECG
or EKG) data and classifying these large data automatically with
high accuracy in real-time is critical for useful application of
wearables targeting cardiac disease monitoring. With this
motivation, in this study, we used the BIDMC Congestive Heart
Failure (CHF) datasets (from PhysioNet database). A total of 15
patient records was analyzed, which have NYHA Class level 111
and IV patients from the database. Simultaneous measurements
of the 2 leads of ECG were stored in the record. The captured
data was sampled at 250 Hz. The extracted features were for
three categories: temporal, spectral, and statistical. In total, we
extracted 28 features out of which 7 were of amplitude types, 6
were based on frequency, and the remaining 15 were statistical
features. Machine learning models explored include SVM, KNN,
ensemble tree, neural network, decision tree, naive bayes, and
logistic regression. We evaluated different model performance in
each patient data and combined patient data. In our analysis,
neural network was the best performer in terms of accuracy for
cardiac patients. We further studied neural network to test
sensitivity, specificity, accuracy, precision, fl-score to evaluate
the best performer statistics. Neural network has 99.5% overall
accuracy for interpatient data classification, and was also among
the best performers. In interpatient classification, the
performance was: sensitivity 99.80%, specificity 99.0%.
accuracy 99.42%, precision 99.80%, and F1 score 99.64%.
Accurate detection of ECG beat classes using this approach can
allow real-time cardiac disease monitoring.
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I. INTRODUCTION

Heart failure (HF) is a common clinical syndrome that
can be caused by a variety of cardiac diseases [1]. The current
commonly used assessment method to classification severity
HF is the New York Heart Association (NYHA) cardiac

function classification. Cardiac function classification is a
clinical method to assess the degree of cardiac impairment.
The grading of cardiac function in patients with heart disease
can generally reflect the severity of the disease and has
practical value in the selection of treatment measures, the
evaluation of labor ability, and the judgment of prognosis.

Heart failure and other cardiac diseases can be detected
using electrocardiogram (ECG or EKG) signals [2-11].
Analyzing these bio-electrical signals of each heartbeat, the
movements produced by different special heart tissues,
cardiologists can detect some of these abnormalities [2].
However, manual scrutiny of continuous ECG signals for long
duration for each patient is not practical and expensive.
Automated detection can be performed with trained machine
learning (ML) models.

Stationary Wavelet Transform (SWT) and Support
Vector Machine (SVM) are some of the common methods
used for such detection. Some of these ML methods eliminate
detection of P-peak or R-peak, and therefore do not depend on
ECG beat detection for performance [3]. Other methods
include extraction of labeled features from ECG and Heart
Rate Variability (HRV) signals. The key features useful for
such ML classifications can be spectral features, bispectral
features, and nonlinear features including sample entropy and
Poincaré graph extraction features [4]. The ability to classify
according to Heart Failure with Preserved Ejection Fraction
(HFPEF) and Heart Failure with Reduced Ejection Fraction
(HFREF) can be useful for cardiac patient progression
monitoring. Furthermore, early detection of cardiac patient
can be possible by comparing the probability of the presence
of HFPEF with that of traditional logistic regression [5].
Signature serum creatinine and ejection fraction can be
performed by employing traditional biostatistical tests, and
these results can be compared with those provided by machine
learning algorithms for performance evaluation [6].
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Fig. 1: Process flowchart for processing, analyzing, and classifying beat-by-beat ECG signals using machine learning algorithms.
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Various machine learning models, both unsupervised and
supervised, have been used to classify HF subtypes within the
ventricular volume domain [7]. ECG classification method
using machine learning were demonstrated with ML-libs and
Scala language on Apache Spark framework based on
multiple ECG features [8]. Deep learning (DL) techniques
were also demonstrated by analyzing using five classes of
ECG datasets and examining the constructed models [9]. A
framework for processing of ECG signals to determine HF
onset was developed and good performance was achieved
using Long Short-Term Memory (LSTM) [10]. In another
work, the interval and magnitude features were extracted
using single-channel ECG data and classified with Bagging
Tree [11].

The focus of this work is to detect cardiac episodes from
single-lead ECG data by analyzing each beat at a time, a
unique approach, and test various types of classifiers to find
the best performer ML algorithm, and also to measure
statistical performance metrics for optimal performer. From
the ECG signal of each lead, we used features in amplitude,
amplitude difference, time interval, and statistical domain to
form a feature vector for classification. Our unique approach
of Dbeat-by-beat classification can lead to real-time
classification of streaming ECG data suitable for
implementation on wearable cardiac monitors.

II. METHODOLOGY

In this work, we used the BIDMC Congestive Heart
Failure (CHF) datasets from publicly available PhysioNet
database [12]. A total of 15 patient records, which have
NYHA Class level III and IV patients, were used for this
analysis. The simultaneously measured signals of 2 ECG
leads were stored in the record. The captured data sampling
rate was 250 Hz. All the patients are in the condition of NYHA
class level III and I'V. The process flowchart for HF is given
in Fig. 1.

A. ECG signal preprocessing

The ECG signal is easily contaminated by high-frequency
and low-frequency noises. Common interferences are radio
frequency interference, Electromyography (EMG), power
line interference, mechanical force acting on electrodes,
breathing, patient movement, and equipment movement
interference. In order to filter the noise, a band-pass filter is
used. The characteristic of using this Butterworth filter is that
the frequency response curve in the transparency is integrated,
there is no characteristic, and the resistance range gradually
decreases and appears.

B. R peak detection

The detection of the R peaks is very important for ECG
beat identification. The detection of point R affects the
correctness of prominent points suchas P, Q, R, S, T, and T".
We used the pan_tompkin algorithms to detect R peaks [13].
The code is from the MATLAB (MathWorks Inc.) file
exchange, which uses the Pan Tompkin algorithm to realize
the detection of the R peaks. The document in MATLAB
exchange was provided by Hooman Sedghamiz.
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After detecting the R peak point, we calculate the RR
interval and the average RR interval of each data set, and use

this information to calculate Q, P, S, T, and T’. The
specification to determine these are provided in Table I.

Table I: Formula for detect P, Q, S, T, T” peak.

Peak Formula
P Before every R peak to Q peak, from 3/8 of RR
maximum
0 Before every RR interval, minimum between Y&
of each R peak to R peak
S Before every R peak, minimum between every

R peak to 1/4 of RR interval
T After 1/4 of R peak to R peak to the 3/8 of R
peak to R peak in maximum
T After 1/4 of R peak to R peak to the 3/8 of R
peak to R peak in minimum

D. Feature extraction

The feature extraction process is executed for every two
ECG beats, and then slides one beat (i.e., next beat) every time
the processing is complete. The extracted features were for
three categories: temporal, spectral, and statistical. Fig. 2
shows some of the key features of ECG signals. The features
with three properties of amplitude, frequency, and statistics.
Amplitude features include QRS position, peak of Q, S, T, R,
and length of QT, RR. Frequency features include sampling
frequency of Q, R, S, T, heart rate, and instance heart rate.
Statistical features have maximum frequency, mean peak of R,
Q, S, T and QT, mean of LF and HF, the ratio of LF/HF, very
low frequency, an index of sympathetic and parasympathetic
modulation of the autonomic nervous system, the proportion
of NN50 divided by the total number of NN (R-R) intervals,
root mean square of successive differences, and the stationary
wavelet transform. Thus, the total number of features were 28.

S ss S

Fig. 2: Key features of temporal representation of ECG signals (x-axis
represents time and y-axis represents voltage, arbitrary scale).

E. ML classification

The ML classification method used were from MATLAB
Classification Learner Toolbox. In order to train the model, a
10-fold cross-validation technique is used. Explored ML
models include Support Vector Machine (SVM), k-nearest
neighbors (KNN), ensemble tree, neural network, decision
tree, naive bayes, and logistic regression. For each patient’s
classification, we pick up 80% of ECG beat data for training,
and 20% of ECG beat data for testing. For interpatient data,
we divided 15 patients’ data to training and testing. Here, we
used the first 12 patients’ data is for training, and the rest of
the 3 patients’ data is for testing. This approach is called
“Interpatient classification” which is more representative for
clinical application of ML algorithms (developed with patient
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datasets and applied to real patients). The feature vector of
interpatient data is 64,026 x 29. We mark the abnormal beat
as 1 and the normal beat as 0. We tested how different ML
models perform in each patient data and interpatient data.

F. Performance Evaluation

For performance evaluation, we used multiple statistical
metrics to reflect model effects. In addition to accuracy, we
also determined sensitivity, specificity, precision, and F1-
score to evaluate the best performing ML method. A
confusion matrix is a specific matrix used to represent the
performance of a ML algorithm, where each column
represents the predicted value, and each row represents the
actual category, as represented in Fig. 3.

Actual Value

Good = 1 ad=0

Predicted Value Good =1 TP FP
Bad =0 FN N

TP: True Positive FP: False Postive
FN: False Negative TN: True Negative

Fig. 3: Confusion matrix for performance evaluation of ML models.
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Sensitivity is a measure of which actual positives are
correctly identified. Specificity measures the proportion of
actual negatives correctly identified. Precision is a measure of
what proportion of positive identifications are correct.
Accuracy means that the measurement results are close to the
true value. Accuracy calculates the number of correct
classifications for each class and then adds up to calculate the
percentage. Fl-score is a measure of test accuracy. It
considers both the precision and recall of the test to calculate
the score.

III. RESULTS

For the peak detection, we detected R peak point first and
then P, Q, S, T points. We used the Pan-Tompkin algorithm
to detect R-points. The extraction of R peak process runs
every two beats, moving one beat each time processing is
complete (i.e., sliding window technique). As an illustrative
instance, we pick up sample interval from 1200 to 1400 to
detect R peaks as depicted in Fig. 4 that shows one beat of R
peak from 1200 sample interval to 1400 sample interval.
There is a pink circle mark at the top of R peak. The R peak is
located at 1338 sample interval in this example. After we
found out R peak successfully, the next step is to detect P, Q,
S, T points. Using Table 1 to calculate Q, P, S, T, and T'
location range. Fig. 5 depicts the detection of P, Q, R, S, T
points for running every 5 beats. There are 5 different marks
showing where the different peaks are. The red circle
represents R peak location, the green triangle represents Q
peak location, the yellow square means S peak, the pink
square represents P peak location, and the blue triangle means
T peak location. The sample interval is from 1800 sample
interval to 3400 sample interval. The algorithm detects P, Q,
R, S, T points.
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Fig. 5: P, Q, R, S, T peaks detected for 5 ECG beats

In order to know the accuracy of different ML models,
we test the performance of each model with 15 patients. Table
IT shows the summary of different ML model performance for
each patient data. We note the highest accuracy in each model.
For the SVM, Patient § and 11 have accuracy of 99.7% each.
For KNN, patient 14 has 99.8% accuracy. In ensemble tree,
patient 10 has 99.8% accuracy. For neural network, Patient 1
and 15 have accuracy of 99.9% and 99.8%, respectfully. In
decision tree model, Patient 4, 5, 6, and 13 have the best
accuracy. Patient 4, 5, and 13 have accuracy of 99.8%, while
patient 6 has accuracy of 99.9%. Using naive bayes model,
Patient 3, 12, and 14 have accuracy of 99.8%, 99.7%, and
99.9%, respectfully. For logistic regression model, Patient 7
and 10 have 99.6% and 99.8% accuracy, respectfully. We also
assemble all patient’s data to test the accuracy of different
models for interpatient classification. Table III shows that
neural network has 99.5% accuracy, and it is one of the best
performances than other models.

Table. II: Summary of different machine learning model accuracy for each
patient data.

Pati SVM KNN Ensemble Neural Decision Naive Logistic
ent (%) (%) Tree Network Tree Bayes Regression
(%) (%) (%) (%) (%)

1 99.1 93.6 | 99.1 99.9 99.5 98.6 | 99.6
2 98.1 99.0 | 94.5 96.3 93.7 93.7 | 98.7
3 95.0 95.7 | 94.7 96.6 94.6 96.8 | 97.8
4 94.7 97.8 | 95.8 94.1 99.8 98.4 | 94.2
5 99.0 99.4 | 94.2 96.8 95.8 98.7 | 95.2
6 943 99.0 | 95.7 95.7 99.9 96.2 | 95.0
7 973 97.5 1 95.7 99.0 94.5 93.7 | 99.6
8 95.7 94.5 | 995 94.7 98.7 95.7 1973
9 99.2 98.7 | 96.9 95.7 97.7 93.6 | 95.7
10 | 96.9 97.3 | 99.8 94.5 99.1 96.9 | 99.8
11 | 99.7 99.1 | 93.6 97.7 97.3 94.6 | 979
12 | 95.0 972 | 977 95.7 94.7 94.7 1 99.0
13 | 945 96.5 | 943 97.2 95.8 99.5 | 97.7
14 | 96.6 99.8 | 94.5 99.6 97.7 99.9 | 94.7
15 | 957 98.7 | 95.6 99.8 98.7 943 | 95.7

Table. I1I: Summary of different machine learning model accuracy for
interpatient data.
Patient SVM KNN Ensemble Neural Decision Naive Logistic
(%) (%) Tree Network Tree Bayes Regression
(%) (%) (%) (%) (%)
All 99.4 | 99.7 | 98.2 99.5 99.4 98.7 | 99.2

The neural network classifier showed the best
performance than other models within each patient dataset. So
we further analyze this ML model to test each patients, and
measure performance of sensitivity, specificity, accuracy,
precision, and F1-score. Table IV presents the summary of
neural network performance in each patient. Here, patient 12
has the highest sensitivity of 97.8%, patient 1 has the highest
specificity of 99.8%, patient 10 has the best accuracy of
98.57%, Patient 1 and 6 have the best precision of 99.8%, and
patient 7 has the best F1-score of 99.64%. We also combined
all patient data for interpatient classification, and used neural
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network classifier to classify the combined data. As Table V
presents, we reached the sensitivity of 98.2%, specificity of
99.1%, accuracy of 98.64%, precision of 99.3%, and F1-score
0f 99.42%.

Table. IV: Summary of neural network performance for each patient.

Pati- Sensitivity | Specificity | Accuracy | Precision | F1
ent (%) (%) (%) (%) Score
(%)
1 94.3 99.8 97.05 99.8 96.97
2 95.2 97.5 96.23 98.7 97.26
3 93.7 98.7 95.78 99.5 98.37
4 94.5 99.2 98.42 96.9 94.65
5 96.2 96.8 97.37 97.3 94.91
6 94.6 99.7 95.07 99.8 98.57
7 94.9 97.9 97.12 97.7 99.64
8 95.3 99.0 96.25 96.2 97.93
9 94.1 96.6 97.98 94.5 95.75
10 93.0 95.7 98.57 95.6 93.70
11 96.7 97.8 96.50 96.4 97.67
12 97.8 94.5 96.34 97.3 96.24
13 95.0 93.9 98.21 94.7 96.64
14 94.2 97.0 97.69 95.8 94.71
15 94.6 99.4 96.98 99.0 96.88
Table. V: Summary of neural network performance for interpatient data.
Patient Sensitivity | Specificity | Accuracy | Precision | F1
(%) (%) (%) (%) Score
(%)
All 98.2 99.1 98.64 99.3 99.42

IV. CONCLUSIONS

This work is aimed to detect cardiac condition of HF
patients using machine learning algorithms from single-lead
ECG data. Heart failure is a serious global public health
problem and is the final stage in the development of most
cardiovascular diseases. It is important to be detected in early
stage. We used publicly available BIDMC CHF datasets for
this analysis. From the ECG signals, we used amplitude,
amplitude difference, frequency interval, and statistical
features to form a feature vector. We test various types of
classifiers to obtain the highest accuracy ML model by
analyzing ECG data based on each beat, and compare the
performance between each patient’s data as well as
interpatient data. We further analyzed the model which had
highest accuracy to test the performance such as sensitivity,
specificity, accuracy, precision, and Fl-score. The neural
network classifier showed the best accuracy in this work. We
choose neural network classifier to test the performance
between each patient’s data and interpatient data. Thus, the
neural network classifier can help us develop efficient
algorithm for training and testing in real-time wearable
cardiac monitoring device as this algorithm can deal with
multiple calculation quickly. To improve this further, we can
increase dataset for training and testing models for more
accurate results. The classification accuracy is more
appropriate to real world performance as the size of the
training data increases. More features can also help to
improve the accuracy and performance of the models. We can
also employ feature selection to find the optimal subset of
features. Feature ranking and top feature selection can
eliminate irrelevant or redundant features, thereby reducing
the number of features, improving model accuracy, and
reducing running time. On the other hand, the selection of

truly relevant features simplifies the model and assists in
understanding the process of data generation. One limitation
of this study is that the data for training and testing for the
normal beat and abnormal beat are not balanced. Because we
have unbalanced training dataset and testing dataset, the
result of machine learning classifier might be skewed. We
will further analyze this in future with balanced dataset.
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