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       Abstract—Heart failure (HF) is a common clinical syndrome 

of cardiac episode leading to a variety of cardiac diseases. 

Detecting these cardiac episodes from electrocardiogram (ECG 

or EKG) data and classifying these large data automatically with 

high accuracy in real-time is critical for useful application of 

wearables targeting cardiac disease monitoring. With this 

motivation, in this study, we used the BIDMC Congestive Heart 

Failure (CHF) datasets (from PhysioNet database). A total of 15 

patient records was analyzed, which have NYHA Class level III 

and IV patients from the database. Simultaneous measurements 

of the 2 leads of ECG were stored in the record. The captured 

data was sampled at 250 Hz. The extracted features were for 

three categories: temporal, spectral, and statistical. In total, we 

extracted 28 features out of which 7 were of amplitude types, 6 

were based on frequency, and the remaining 15 were statistical 

features. Machine learning models explored include SVM, KNN, 

ensemble tree, neural network, decision tree, naive bayes, and 

logistic regression. We evaluated different model performance in 

each patient data and combined patient data. In our analysis, 

neural network was the best performer in terms of accuracy for 

cardiac patients. We further studied neural network to test 

sensitivity, specificity, accuracy, precision, f1-score to evaluate 

the best performer statistics. Neural network has 99.5% overall 

accuracy for interpatient data classification, and was also among 

the best performers. In interpatient classification, the 

performance was: sensitivity 99.80%, specificity 99.0%. 

accuracy 99.42%, precision 99.80%, and F1 score 99.64%. 

Accurate detection of ECG beat classes using this approach can 

allow real-time cardiac disease monitoring.  

Keywords- Cardiac episodes, ECG classification, machine 

learning, unsupervised monitoring. 

 

I. INTRODUCTION   

       Heart failure (HF) is a common clinical syndrome that 
can be caused by a variety of cardiac diseases [1]. The current 
commonly used assessment method to classification severity 
HF is the New York Heart Association (NYHA) cardiac 

function classification. Cardiac function classification is a 
clinical method to assess the degree of cardiac impairment. 
The grading of cardiac function in patients with heart disease 
can generally reflect the severity of the disease and has 
practical value in the selection of treatment measures, the 
evaluation of labor ability, and the judgment of prognosis. 
       Heart failure and other cardiac diseases can be detected 
using electrocardiogram (ECG or EKG) signals [2-11]. 
Analyzing these bio-electrical signals of each heartbeat, the 
movements produced by different special heart tissues, 
cardiologists can detect some of these abnormalities [2]. 
However, manual scrutiny of continuous ECG signals for long 
duration for each patient is not practical and expensive. 
Automated detection can be performed with trained machine 
learning (ML) models. 
       Stationary Wavelet Transform (SWT) and Support 
Vector Machine (SVM) are some of the common methods 
used for such detection. Some of these ML methods eliminate 
detection of P-peak or R-peak, and therefore do not depend on 
ECG beat detection for performance [3]. Other methods 
include extraction of labeled features from ECG and Heart 
Rate Variability (HRV) signals. The key features useful for 
such ML classifications can be spectral features, bispectral 
features, and nonlinear features including sample entropy and 
Poincaré graph extraction features [4]. The ability to classify 
according to Heart Failure with Preserved Ejection Fraction 
(HFPEF) and Heart Failure with Reduced Ejection Fraction 
(HFREF) can be useful for cardiac patient progression 
monitoring. Furthermore, early detection of cardiac patient 
can be possible by comparing the probability of the presence 
of HFPEF with that of traditional logistic regression [5]. 
Signature serum creatinine and ejection fraction can be 
performed by employing traditional biostatistical tests, and 
these results can be compared with those provided by machine 
learning algorithms for performance evaluation [6].  
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Fig. 1: Process flowchart for processing, analyzing, and classifying beat-by-beat ECG signals using machine learning algorithms. 
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     Various machine learning models, both unsupervised and 
supervised, have been used to classify HF subtypes within the 
ventricular volume domain [7]. ECG classification method 
using machine learning were demonstrated with ML-libs and 
Scala language on Apache Spark framework based on 
multiple ECG features [8]. Deep learning (DL) techniques 
were also demonstrated by analyzing using five classes of 
ECG datasets and examining the constructed models [9]. A 
framework for processing of ECG signals to determine HF 
onset was developed and good performance was achieved 
using Long Short-Term Memory (LSTM) [10]. In another 
work, the interval and magnitude features were extracted 
using single-channel ECG data and classified with Bagging 
Tree [11]. 
      The focus of this work is to detect cardiac episodes from 
single-lead ECG data by analyzing each beat at a time, a 
unique approach, and test various types of classifiers to find 
the best performer ML algorithm, and also to measure 
statistical performance metrics for optimal performer. From 
the ECG signal of each lead, we used features in amplitude, 
amplitude difference, time interval, and statistical domain to 
form a feature vector for classification. Our unique approach 
of beat-by-beat classification can lead to real-time 
classification of streaming ECG data suitable for 
implementation on wearable cardiac monitors. 
 

II. METHODOLOGY 

       In this work, we used the BIDMC Congestive Heart 
Failure (CHF) datasets from publicly available PhysioNet 
database [12]. A total of 15 patient records, which have 
NYHA Class level III and IV patients, were used for this 
analysis. The simultaneously measured signals of 2 ECG 
leads were stored in the record. The captured data sampling 
rate was 250 Hz. All the patients are in the condition of NYHA 
class level III and IV. The process flowchart for HF is given 
in Fig. 1. 
 

A. ECG signal preprocessing 

The ECG signal is easily contaminated by high-frequency 
and low-frequency noises. Common interferences are radio 
frequency interference, Electromyography (EMG), power 
line interference, mechanical force acting on electrodes, 
breathing, patient movement, and equipment movement 
interference. In order to filter the noise, a band-pass filter is 
used. The characteristic of using this Butterworth filter is that 
the frequency response curve in the transparency is integrated, 
there is no characteristic, and the resistance range gradually 
decreases and appears. 
 

B. R peak detection 

     The detection of the R peaks is very important for ECG 
beat identification. The detection of point R affects the 
correctness of prominent points such as P, Q, R, S, T, and T´. 
We used the pan_tompkin algorithms to detect R peaks [13]. 
The code is from the MATLAB (MathWorks Inc.) file 
exchange, which uses the Pan Tompkin algorithm to realize 
the detection of the R peaks. The document in MATLAB 
exchange was provided by Hooman Sedghamiz. 
 

C. P, Q, S, T, T´ detection 

     After detecting the R peak point, we calculate the RR 
interval and the average RR interval of each data set, and use 

this information to calculate Q, P, S, T, and T’. The 
specification to determine these are provided in Table I. 
 

Table I:  Formula for detect P, Q, S, T, T’ peak. 

Peak Formula 

P Before every R peak to Q peak, from 3/8 of RR 
maximum 

Q Before every RR interval, minimum between ⅛ 
of each R peak to R peak 

S Before every R peak, minimum between every 
R peak to 1/4 of RR interval 

T After 1/4 of R peak to R peak to the 3/8 of R 
peak to R peak in maximum 

T’ After 1/4 of R peak to R peak to the 3/8 of R 
peak to R peak in minimum 

 
D. Feature extraction 

       The feature extraction process is executed for every two 
ECG beats, and then slides one beat (i.e., next beat) every time 
the processing is complete. The extracted features were for 
three categories: temporal, spectral, and statistical. Fig. 2 
shows some of the key features of ECG signals. The features 
with three properties of amplitude, frequency, and statistics. 
Amplitude features include QRS position, peak of Q, S, T, R, 
and length of QT, RR. Frequency features include sampling 
frequency of Q, R, S, T, heart rate, and instance heart rate. 
Statistical features have maximum frequency, mean peak of R, 
Q, S, T and QT, mean of LF and HF, the ratio of LF/HF, very 
low frequency, an index of sympathetic and parasympathetic 
modulation of the autonomic nervous system, the proportion 
of NN50 divided by the total number of NN (R-R) intervals, 
root mean square of successive differences, and the stationary 
wavelet transform. Thus, the total number of features were 28. 

 
Fig. 2: Key features of temporal representation of ECG signals (x-axis 
represents time and y-axis represents voltage, arbitrary scale). 
 

E. ML classification 

     The ML classification method used were from MATLAB 

Classification Learner Toolbox. In order to train the model, a 

10-fold cross-validation technique is used. Explored ML 

models include Support Vector Machine (SVM), k-nearest 

neighbors (KNN), ensemble tree, neural network, decision 

tree, naive bayes, and logistic regression. For each patient’s 

classification, we pick up 80% of ECG beat data for training, 

and 20% of ECG beat data for testing. For interpatient data, 

we divided 15 patients’ data to training and testing. Here, we 

used the first 12 patients’ data is for training, and the rest of 

the 3 patients’ data is for testing. This approach is called 

“interpatient classification” which is more representative for 

clinical application of ML algorithms (developed with patient 
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datasets and applied to real patients). The feature vector of 

interpatient data is 64,026 x 29. We mark the abnormal beat 

as 1 and the normal beat as 0. We tested how different ML 

models perform in each patient data and interpatient data.  

F. Performance Evaluation 

      For performance evaluation, we used multiple statistical 
metrics to reflect model effects. In addition to accuracy, we 
also determined sensitivity, specificity, precision, and F1-
score to evaluate the best performing ML method. A 
confusion matrix is a specific matrix used to represent the 
performance of a ML algorithm, where each column 
represents the predicted value, and each row represents the 
actual category, as represented in Fig. 3.  

 
Fig. 3: Confusion matrix for performance evaluation of ML models. 

 

 Sensitivity is a measure of which actual positives are 
correctly identified. Specificity measures the proportion of 
actual negatives correctly identified. Precision is a measure of 
what proportion of positive identifications are correct. 
Accuracy means that the measurement results are close to the 
true value. Accuracy calculates the number of correct 
classifications for each class and then adds up to calculate the 
percentage. F1-score is a measure of test accuracy. It 
considers both the precision and recall of the test to calculate 
the score.  
 

III. RESULTS  

        For the peak detection, we detected R peak point first and 
then P, Q, S, T points. We used the Pan-Tompkin algorithm 
to detect R-points. The extraction of R peak process runs 
every two beats, moving one beat each time processing is 
complete (i.e., sliding window technique). As an illustrative 
instance, we pick up sample interval from 1200 to 1400 to 
detect R peaks as depicted in Fig. 4 that shows one beat of R 
peak from 1200 sample interval to 1400 sample interval. 
There is a pink circle mark at the top of R peak. The R peak is 
located at 1338 sample interval in this example. After we 
found out R peak successfully, the next step is to detect P, Q, 
S, T points. Using Table 1 to calculate Q, P, S, T, and T' 
location range. Fig. 5 depicts the detection of P, Q, R, S, T 
points for running every 5 beats. There are 5 different marks 
showing where the different peaks are. The red circle 
represents R peak location, the green triangle represents Q 
peak location, the yellow square means S peak, the pink 
square represents P peak location, and the blue triangle means 
T peak location. The sample interval is from 1800 sample 
interval to 3400 sample interval. The algorithm detects P, Q, 
R, S, T points.  

 
Fig. 4: One beat for R point in an ECG signal 

 

 
Fig. 5: P, Q, R, S, T peaks detected for 5 ECG beats 
 

         In order to know the accuracy of different ML models, 
we test the performance of each model with 15 patients. Table 
II shows the summary of different ML model performance for 
each patient data. We note the highest accuracy in each model. 
For the SVM, Patient 8 and 11 have accuracy of 99.7% each. 
For KNN, patient 14 has 99.8% accuracy. In ensemble tree, 
patient 10 has 99.8% accuracy.  For neural network, Patient 1 
and 15 have accuracy of 99.9% and 99.8%, respectfully. In 
decision tree model, Patient 4, 5, 6, and 13 have the best 
accuracy. Patient 4, 5, and 13 have accuracy of 99.8%, while 
patient 6 has accuracy of 99.9%. Using naïve bayes model, 
Patient 3, 12, and 14 have accuracy of 99.8%, 99.7%, and 
99.9%, respectfully. For logistic regression model, Patient 7 
and 10 have 99.6% and 99.8% accuracy, respectfully. We also 
assemble all patient’s data to test the accuracy of different 
models for interpatient classification. Table III shows that 
neural network has 99.5% accuracy, and it is one of the best 
performances than other models.  
 
Table. II: Summary of different machine learning model accuracy for each 

patient data. 
Pati

ent 

SVM 

(%) 

KNN 

(%) 

Ensemble 

Tree 

(%) 

Neural 

Network 

(%) 

Decision 

Tree 

(%) 

Naïve 

Bayes 

(%) 

Logistic 

Regression  

(%)  

1 99.1 93.6 99.1 99.9 99.5 98.6 99.6 

2 98.1 99.0 94.5 96.3 93.7 93.7 98.7 

3 95.0 95.7 94.7 96.6 94.6 96.8 97.8 

4 94.7 97.8 95.8 94.1 99.8 98.4 94.2 

5 99.0 99.4 94.2 96.8 95.8 98.7 95.2 

6 94.3 99.0 95.7 95.7 99.9 96.2 95.0 

7 97.3 97.5 95.7 99.0 94.5 93.7 99.6 

8 95.7 94.5 99.5 94.7 98.7 95.7 97.3 

9 99.2 98.7 96.9 95.7 97.7 93.6 95.7 

10 96.9 97.3 99.8 94.5 99.1 96.9 99.8 

11 99.7 99.1 93.6 97.7 97.3 94.6 97.9 

12 95.0 97.2 97.7 95.7 94.7 94.7 99.0 

13 94.5 96.5 94.3 97.2 95.8 99.5 97.7 

14 96.6 99.8 94.5 99.6 97.7 99.9 94.7 

15 95.7 98.7 95.6 99.8 98.7 94.3 95.7 

 
Table. III: Summary of different machine learning model accuracy for 

interpatient data. 
Patient SVM 

(%) 
KNN 

(%) 
Ensemble 

Tree 

(%) 

Neural 

Network 

(%) 

Decision 

Tree 

(%) 

Naïve 

Bayes 

(%) 

Logistic 

Regression  

(%)  
All 99.4 99.7 98.2 99.5 99.4 98.7 99.2 

 
        The neural network classifier showed the best 
performance than other models within each patient dataset. So 
we further analyze this ML model to test each patients, and 
measure performance of sensitivity, specificity, accuracy, 
precision, and F1-score. Table IV presents the summary of 
neural network performance in each patient. Here, patient 12 
has the highest sensitivity of 97.8%, patient 1 has the highest 
specificity of 99.8%, patient 10 has the best accuracy of 
98.57%, Patient 1 and 6 have the best precision of 99.8%, and 
patient 7 has the best F1-score of 99.64%. We also combined 
all patient data for interpatient classification, and used neural 
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network classifier to classify the combined data. As Table V 
presents, we reached the sensitivity of 98.2%, specificity of 
99.1%, accuracy of 98.64%, precision of 99.3%, and F1-score 
of 99.42%.  
 

Table. IV: Summary of neural network performance for each patient. 
Pati- 

ent 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Precision 

(%) 

F1 

Score 

(%) 

1 94.3 99.8 97.05 99.8 96.97 
2 95.2 97.5 96.23 98.7 97.26 
3 93.7 98.7 95.78 99.5 98.37 
4 94.5 99.2 98.42 96.9 94.65 
5 96.2 96.8 97.37 97.3 94.91 
6 94.6 99.7 95.07 99.8 98.57 
7 94.9 97.9 97.12 97.7 99.64 
8 95.3 99.0 96.25 96.2 97.93 
9 94.1 96.6 97.98 94.5 95.75 
10 93.0 95.7 98.57 95.6 93.70 
11 96.7 97.8 96.50 96.4 97.67 
12 97.8 94.5 96.34 97.3 96.24 
13 95.0 93.9 98.21 94.7 96.64 
14 94.2 97.0 97.69 95.8 94.71 
15 94.6 99.4 96.98 99.0 96.88 

 
Table. V: Summary of neural network performance for interpatient data. 
Patient Sensitivity 

(%) 
Specificity 

(%) 
Accuracy 

(%) 
Precision 

(%) 
F1 

Score 

(%) 
All 98.2 99.1 98.64 99.3 99.42 

 
IV. CONCLUSIONS  

       This work is aimed to detect cardiac condition of HF 
patients using machine learning algorithms from single-lead 
ECG data. Heart failure is a serious global public health 
problem and is the final stage in the development of most 
cardiovascular diseases. It is important to be detected in early 
stage. We used publicly available BIDMC CHF datasets for 
this analysis. From the ECG signals, we used amplitude, 
amplitude difference, frequency interval, and statistical 
features to form a feature vector. We test various types of 
classifiers to obtain the highest accuracy ML model by 
analyzing ECG data based on each beat, and compare the 
performance between each patient’s data as well as 
interpatient data. We further analyzed the model which had 
highest accuracy to test the performance such as sensitivity, 
specificity, accuracy, precision, and F1-score. The neural 
network classifier showed the best accuracy in this work. We 
choose neural network classifier to test the performance 
between each patient’s data and interpatient data. Thus, the 
neural network classifier can help us develop efficient 
algorithm for training and testing in real-time wearable 
cardiac monitoring device as this algorithm can deal with 
multiple calculation quickly. To improve this further, we can 
increase dataset for training and testing models for more 
accurate results. The classification accuracy is more 
appropriate to real world performance as the size of the 
training data increases. More features can also help to 
improve the accuracy and performance of the models. We can 
also employ feature selection to find the optimal subset of 
features. Feature ranking and top feature selection can 
eliminate irrelevant or redundant features, thereby reducing 
the number of features, improving model accuracy, and 
reducing running time. On the other hand, the selection of 

truly relevant features simplifies the model and assists in 
understanding the process of data generation. One limitation 
of this study is that the data for training and testing for the 
normal beat and abnormal beat are not balanced. Because we 
have unbalanced training dataset and testing dataset, the 
result of machine learning classifier might be skewed. We 
will further analyze this in future with balanced dataset. 
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