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ABSTRACT 

The use of location and instruction markers for multi-path planning enhancement in any set of unmanned aerial 

systems’ tasks is crucial to the coordination and effectiveness of the individual unmanned aerial vehicles (UAVs). 

This research implements OpenCV algorithms that allow multiple UAVs to use ArUco markers to receive data related 

to location and instruction for the purposes of multi-path planning. OpenCV algorithms are utilized to develop vision-

based solutions that will enhance the real-time capabilities of the UAVs. The final goal for the multi-drone system 

entails inspecting and surveying objects for structural damage and applying the developed image processing 

algorithms to collected images to determine the significance of damage. This project utilizes OpenCV and Python 

libraries for multi-drone pathway planning by collecting, transmitting, and displaying real-world industrially valuable 

data over the network infrastructure as an application of Internet of Things (IoT). 
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1. INTRODUCTION 

In recent years, the availability of and ease of operation with unmanned aerial systems have grown. With this growth, 

automated applications for path-planning designed for single and multi-unmanned aerial vehicle systems through 

image processing have also increased. There have been many papers published on methods with which unmanned 

aerial vehicles (UAVs) can be operated and their path planned1-3. Most UAVs come equipped with a camera setup 

that can be used with OpenCV for image processing4,5. The application described in this paper focuses on an automated 

structural damage inspection system based on the camera/vision sensors of the unmanned aerial vehicle.  

This project uses two types of unmanned aerial vehicles (DJI Ryze Tello and DJI Tello EDU, SZ DJI Technology Co., 

Ltd.) equipped with camera/vision sensors for real-time image processing for structural damage detection. The 

hardware and functionality of these two drones are very similar, however the Tello EDU black has an updated 

firmware with improved capabilities for future swarm implementations. Visual markers (ArUco) are used as 

instructional tags for the UAV system6,7. These markers are used to support UAV path-planning to guide the UAV 

towards the inspection area. UAV’s intermediate structural damage assessments based on the structural damage 

characterization, such as magnitude, is then displayed and recorded.  

In this work the structural damage assessments are displayed via the network infrastructure as an application of IoT. 

IoT’s involvement in robotic applications include improved navigation, device surveillance, and UAV operations2. 

Through IoT-based UAV, the user is provided with valuable industrial data remotely, based on the imagery and 

characterization of damage. The main goal of this project is to provide an easy-to-deploy UAV and tag system for 

measuring safety of structures through damage inspection and concrete crack characterization. IoT tool is used to share 

the UAV imagery and results remotely for further analysis.  

The rest of this paper is organized as follows: Section 2 summarizes additional related work, and research objectives. 

Section 3 presents the methodology, including marker detection, UAV navigation, and real-time image processing for 

defect detection. Implementation is described in Section 4. Results and Analysis are discussed in Section 5. 

Conclusions are provided in Section 6. 
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2. RELATED WORK 

There have been many applications for marker identification, concrete crack isolation and IoT implementations for 

UAV systems8-10, the three areas of focus of this paper. Marker identification has been linked to increased accuracy 

and efficiency of UAV landing and tracking11-15,7. Path planning is a key component in the development of autonomous 

mobile robots. Path planning is combined with motion planning and decision making to enable higher levels of 

autonomy on a mobile robot, and visual markers, such as ArUco, assist motion instructions. Vision-based concrete 

crack detection methods include image processing and deep learning algorithms16-21. IoT used with UAV systems 

provides remote and real-time access to data and systems through the Internet in a variety of applications from 

surveillance of systems22, environmental monitoring23, precision agriculture24,25, aerial semantic segmentation26,27, 

rehabilitation28,29 to communication and navigation1,30.  IoT applications represent a growing research field and 

market. 

This research aims to combine these three areas of UAV application, namely, marker detection for real-time path 

planning, image processing for concrete defect detection, and IoT implementation for UAV image display and access. 

This project serves towards the final goal of a deployable self-detecting multi-UAV system for remote inspection of 

structural integrity of tall concrete structures through crack detection and characterization.  

3. METHODOLOGY 

In this section the UAV system and how navigation is achieved using ArUco markers is explained. Both marker 

detection and surface defect or crack detection are performed real-time using the UAV’s live image feed. IoT interface 

displays images captured by the UAV as well as image processing results. 

3.1 UAV System and Navigation 

The UAV systems are composed of a DJI Ryze Tello and DJI Tello EDU drones, with three degrees of freedom of 

motion, including longitudinal, altitudinal and yaw. 4x4 ArUco markers are used for navigational commands for the 

UAV. Figure 1 demonstrates the UAV navigation capabilities and the marker axes used in marker detection. Once the 

marker is detected and identified, the navigation command associated with that marker ID is executed such that the 

UAV moves along the horizontal plane (longitudinal motion), vertical plane (altitudinal motion), or around the vertical 

axis (yaw motion). 
 

 

Figure 1. UAV Navigation with ArUco Markers:        

        Vx = Longitudinal Motion, Vz = Altitudinal Motion, Rz = Yaw Motion

 

3.2 Marker Detection and Identification 

The ArUco marker detection method used in this work is a result of the algorithm-based detection process built into 

OpenCV. A variation of OpenCV, opencv-contrib-python, has an aruco submodule that allows for the creation of a 

marker dictionary from where markers of varying sizes can be pulled.  
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The marker detection process is the same for any marker of any size. The corners of the detected ArUco marker must 

be fit to a line and flattened so that parameters of each marker can be measured in correct aspect ratio. Using OpenCV 

functions, each detected marker is first divided into a cell matrix to determine if the marker fits in any given ArUco 

library. Each detected marker possesses classification layers that allow for the determination of parameters such as 

marker ID, marker orientation, corner points, center point, and pose estimation using OpenCV. A line-fit 4x4 ArUco 

marker with classification layers is displayed in Figure 2. The region of interest (ROI) for the marker is dependent on 

the dimension of the marker but, as mentioned before, the process for each parameter estimation follows the same 

process. 

 

Figure 2. Marker (ID = 10) classification diagram. 

Rotational layer of each marker, represented by the outer bound (bounding box) of the bright pixels, or the 4x4 area 

bounded by the blue frame outside the border of the bright pixels, helps conduct other processes such as pose 

estimation. The marker ID layer, shown as the inner box, or red frame, is dependent on the dimension of the marker, 

and allows for the used OpenCV algorithm to lookup the marker from the created marker dictionary. Bounding box 

help determine the spatial orientation of the bright and dark pixels within the outer bounding box that includes the 4x4 

pixels. The spatial orientation is then used to determine the marker ID.  

3.3 Defect Detection 

Image processing for the captured image containing the structural defect or crack starts with morphological operations 

to enhance the defect in the image for better characterization. Before any morphological operations are applied, 

Gaussian blur is applied to each captured image using the GaussianBlur function to smooth potential high spatial 

frequency noise. The image is then converted to gray scale using the cvtColor function. Both functions are available 

in the OpenCV module. These operations enhance the image to avoid misclassification of any textural features present 

on concrete or any other inspected medium that might adversely affect the proper characterization of the defect. Then 

the threshold function is used to convert the gray scaled image into a binary format. This function uses Otsu’s adaptive 

thresholding algorithm, with the appropriate flag. A crack-filling structuring element is created using the 

getStructuringElement function. The outputs of the threshold and structuring element functions are used in function 

parameters along with the input image to conduct the morphological operations, specifically, morphological erosion 

and dilation. 

Erosion, the first morphological operation, decreases noise, or pixels that do not belong to the main crack defect, 

present on the borders of the binary crack image. Erosion uses the structuring element to eliminate any pixels that do 

not have a 1 behind them in the binary image. What this means is that the structuring element reduces the size of the 

crack along the crack border as well as noisy pixels, which may or may not be connected to the crack. The size of the 

structuring element determines how many pixels are removed from the crack or away from the crack that appear as 

crack (bright pixels in Figure 3). After this noise reduction through erosion, morphological dilation operation is needed  
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to fill in small holes, and to bring the object (crack as defect) back to its original size, since erosion shrinks the crack’s  

visible or surface area. The dilation process increases the surface area of the object (crack) and closes small holes so 

proper magnitude determination can be made. The process of erosion and dilation is pictured in Figure 3. 

 

Figure 3. Original crack image, erosion, and dilation sample. 

The mathematical modeling for erosion of a binary image, A, by the structuring element, B, is represented in Equation 

(1) 31, where z represents the translation vector. E refers to the integer grid of the binary image, and Bz is the translation 

of structuring element, B, by the translation vector, z. Dilation of a binary image is denoted in Equation (2), where Bs 

is B symmetric, and all other variables are the same as (1).  

 𝐴 ⊖ 𝐵 = {𝑧 𝜖 𝐸 | 𝐵𝑧  ⊆  𝐴} (1) 

 𝐴 ⊕ 𝐵 = {𝑧 𝜖 𝐸 | (𝐵𝑠)𝑧  ∩  𝐴 ≠ ⍉} (2) 

To quantify the difference between original and resultant binary images after morphological operations, mean square 

error (MSE) and structural similarity index measurement (SSIM)32 were used as image comparison tools. MSE is 

defined by Equation (3), where m and n are the number of pixels or data points in the two images, I represents the 

original binary image, (i,j) represents the index (pixel location) for image I, and K is the binary image after I has 

undergone morphological operations. The two corresponding pixel values in I and K is subtracted, squared and 

summed to obtain the single MSE value representing image similarity, or dissimilarity that is directly proportional to 

the value of MSE. MSE’s resultant value will result in a 0 if there are no differences between I and K, and will be non-

zero otherwise. SSIM is defined by Equation (4) where µ represents the mean luminance for each respective image, σ 

is the standard deviation for all the pixels in each respective image, and C1 and C2 are constants to maintain stability 

if the denominator is to have a value of 0. SSIM’s resultant values are represented in a range from -1 to 1, where a 1 

represents no changes and -1 represents maximum change. 

 𝑀𝑆𝐸 =
1

𝑚 ∗  𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (3) 

 𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 +  𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 (4) 

3.4 IoT Application 

In this implementation, the UAV-captured and processed images are uploaded a Microsoft Azure IoT hub. Azure is 

equipped with a dashboard that allows users to view all files located in the container of the IoT hub as well as the 

number of files uploaded in instances of time. IoT hub ID and storage ID are needed for each device ID associated 

with the hub. This application provides access and viewing of results without the need for being in the viewing range 

of the operating device. In addition, IoT application allows remote and off-line access to data and results for further 

assessment of UAV-captured structural defects.  
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4. IMPLEMENTATION 

In a single UAV system, the operating device can connect directly to the UAV for operation. However, in a multi-

UAV system, the number of UAVs and the operating device, in this case a Surface Book Pro used to start UAV 

motion, must be connected to a network router using the SDK for the UAV and a Wi-Fi connection. Then the UAVs’ 

operation algorithms can be sent over the wireless connection. Using the OpenCV algorithms for marker identification 

and instruction and the algorithms for image processing detailed in Sections 3.2 and 3.3, the UAVs are ready for 

motion via the path planning operations. With the recognition of location A (marker 0) that dictates the UAV to adopt 

a certain motion that involves scanning the area for defects, and with B (marker 10) that informs the UAV’s next 

motion plan to return to the ground for example, the UAV is set to apply the image processing techniques on captured 

images of the area of interest in concrete cracks while it is moving, in this example, from marker 10 to marker 0. 

(Note: A and B discussed here should not be confused with morphological quantities A and B described in Equations 

(1) and (2).) These images are processed in real-time and then sent to Azure IoT hub where any user with the container 

login can view the captured images. Figure 4 displays the general workflow for the UAV after the system is turned on 

and the start command is initiated.  

 

 

Figure 4. System Workflow: Block diagram for setup, path planning, image processing, and IoT implementation. 

 

Figure 5. a) illustrates the implementation setup that includes communications, marker detection, motion planning 

based on marker, image capture and image processing, and motion planning based on second marker to complete the 

scanning cycle of the structure of interest adopted for the experiments. Figure 5. b) is the extended representation of 

detection protocol using multiple UAVs. 

We point out here that with the wireless connection between UAVs and network router using the SDK method, each 

UAV is designated with their individual IP address. Using the individual IP address for each drone, packets can be 

sent to each UAV individually. Packets are a system of instructions that are predefined and can be sent to the UAVs 

for operation. Using an ArUco marker system that has been designated to transmit specific instruction, a packet can 

be created to transmit the path-planning instructions to the UAV system. Similarly, a packet containing instructional 

data related to image capture and processing techniques can be transmitted to the UAV system for autonomous 

operation. It is important to mention that packets made for transmitting path-planning instructional data must be 

preprogrammed to avoid collision between UAVs while maintaining a relative proximity so that the area of interest 

for processing can be fully framed without gaps in the image capturing process.  
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Figure 5. a) Implementation setup 

 

Figure 5. b) Implementation setup for a multi-UAV system with separate ArUco tags and path plan for each UAV. 

 

5. RESULTS AND ANALYSIS 

This section summarizes the results for a use case study of concrete structural assessment using the UAV 

beginning with marker detection followed by defect detection and characterization, and IoT 

implementation. 

5.1 Real-time ArUco Marker Identification and Detection 

Marker identification uses a marker detection system and marker library to allow for faster processing times33. Using 

the OpenCV and ArUco marker libraries34, identification was targeted for ArUco (4x4) markers. This (4x4) marker 

size allows quicker identification times to reduce the amount of latency present in live video feed and experimental 

processes. The ArUco markers are mapped into a binary image and pose estimated to return identification results when 

the markers are rotated or off-center angle. Then, to create bounding boxes for the markers, the OpenCV findContour 

function is used. The results for the ArUco marker identification process are displayed in Figure 6. 
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          a) ArUco marker, ID: 10               b) ArUco marker, ID: 10             c)  ArUco marker, ID: 10  

                                                                     identification                                 identification (marker 90o rotated)

Figure 6. ArUco marker detection and identification. 

 

5.2 Real-time Defect Detection 

 

5.2.1 Image Capture and Morphological Operations 

Figure 7 shows the first three steps in concrete damage characterization. 

 

Figure 7. UAV-captured image (left), gray-scale conversion (middle), and binary conversion (right). 

 

The image processing techniques detailed in section 3.3 are applied in multiple iterations to increase the effectiveness 

of the image processing results. For morphological erosion, with each increment or iteration, the kernel size present 

in the binary image will be reduced until the kernel is no longer visible. With too many iterations the image will begin 

to lose the useful data that represents the targeted damage, but proper testing of iterations can isolate the valuable data 

that is present in the images. Iterations for erosion are displayed in Figure 8. 

As can be seen, erosion progressively reduces the noisy pixels, but at the expense of the thickness of the crack 

represented by bright pixels in the binary image of Figure 7. Dilation is therefore applied to the eroded images after 

proper iterations are completed. Ideally, after random noise is removed during the erosion process the dilation results 

will provide only an increased area size of the area of interests. Dilation is applied to the last iteration of erosion (8th 

iteration of erosion in this case) since this iteration provided the least amount of random noise when compared to the 

original binary image. Ideally the number of morphological erosion and dilation operations or iterations should match 

if general structural magnitude information is to be kept intact. 
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a) Erosion, iteration = 0                   b) Erosion, iteration = 2      c) Erosion, iteration = 4                    d) Erosion, iteration = 8 

Figure 8. Erosion results after 0, 2, 4 and 8 iterations. 

 

Figure 9 (a) depicts the dilation results. Figure 9 (b) shows the dilation results superimposed onto the original color 

image. Some resurfaced noise in the dilated image after the dilation process is apparent. This can be attributed to the 

varying ways noise can be introduced in images. One such example is a single pixel that might have remained after 

multiple erosions that is then dilated. The surrounding conditions when the image was taken (weather and background 

objects) or the angle in which light is hitting the surface of the captured object will all affect the results of 

morphological operations.  

The results of the image processing operations and the original captured structural damage image are superimposed 

to give a resultant image that provides a clear picture of the surface area that has detected damage in relation to the 

original surrounding area.

 

                                  
 

                                    a) Result of final dilation                                        b) Superimposed image with detected crack

Figure 9. Output of binary crack image dilation and superimposed image with the crack. 

For an image processing application to be considered real-time, image capture and the image processing must happen 

simultaneously or at a time interval that is negligible. This application uses a two-second interval for capturing 

structural damage images where the UAV and hence the camera are in a left-to-right (longitudinal) motion and the 

image processing algorithms begin immediately after the image capture. Each iteration of image capture and image 

processing workflow is included with a time.time() Python function that records the time in seconds since each epoch, 

which is January 1, 1970, at 00:00:00 where time begins. This value is subtracted by itself at the start to get a baseline 

value of 0 for the start time. The real-time image processing and read out time results can be seen in Figure 10.
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a) Processed Image 01 

 
 b) Processed Image 02 

  
c) Processed Image 03 

 
 

d) Capture and processing read-out times 

  

Figure 10. Real-time image processing results and processing times for defect detection during UAV flight path after 

and before detection of ArUco markers. 

 

 

5.2.2 Defect Assessment 

The MSE and SSIM values can be used to assess the effect of the operations that the image has undergone. In this 

case the MSE and SSIM values were calculated for the original binary image from raw color data and the binary image 

obtained after eight iterations of erosion, before dilation was applied to bring the object in the image (the crack) back 

to its original magnitude representation. These values can be used to assess both damage and the effect of image 

processing on original data. The MSE and SSIM results are shown in Figure 11. 

 

Figure 11. MSE and SSIM image comparison measurements for original (left) and resultant (right) binary images. 

Figure 12 shows the characterization of the detected crack in terms of its magnitude. The crack is characterized by 

first applying skeletonization to the multiple iterations of eroded then dilated image, then adding the number of pixels 

that belong to the crack end to end. The actual length of the crack can be estimated by multiplying by the conversion 

factor representing the actual physical distance each pixel represents. Here, the length is reported in pixels.  
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a)                                                            b)                                                            c) 

Figure 12. Estimating defect magnitude. a) Binary image after erosion and dilation b) Skeletonized image of the crack 

defect; c) End-to-end length of the crack in pixels. 

 

5.3 IoT Implementation 

The last focus of this project is the IoT application. As mentioned before, this work uses the Microsoft Azure IoT hub 

as a network space where images are uploaded and available for viewing so long as the user is operating off a device 

that is included in the device list of the hub. The image uploading process involves locating the connection string, 

container name, and image source folder. This information is configured in a YAML file and is used as information 

strings in Python functions that allow uploading files to the hub storage account. Once images are uploaded to the 

hub, users can view/edit files, view data associated with files, and view devices that uploaded the images to the hub. 

Moving forward additional functionality can be added to the IoT interface. Figure 13 displays the IoT container 

available in Azure hub, the images located in the container, and the view screen for the user. 

 

a) Container files and view/edit option 

 

b) View/edit screen

  

Figure 13. Azure IoT hub display.
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6. CONCLUSION 

The detailed methods for implementation and experimental results have allowed successful structural damage 

inspection guided by a set of ArUco markers for UAV path planning enhancement. ArUco markers provide a fast 

detection method for UAV path planning for the real-time implementation of structural damage detection, in this case, 

of concrete cracks. Varying iterations for morphological image processing techniques for noise reduction have also 

been displayed for isolated structural damage results. The captured images and results were uploaded through the 

network infrastructure to Azure IoT hub as the application of IoT for this research, enabling remote viewing and access 

to UAV imagery for further user evaluation. Overall, the system represents an affordable and safer alternative to real 

world large scale structural damage assessment. 

The multi-UAV application was limited to individually-programmed UAVs and ArUco marker instructions that were 

executed independently (Fig. 5(B)). Coordinated multi-UAV communication and tasks will be incorporated in the 

next phase of the project. Future work includes determining the accuracy of path planning with Vicon Vantage motion 

capture cameras. These cameras, along with a UAV equipped with reflective orbs, will produce the three-dimensional 

path that the UAV underwent during testing. The longitudinal, altitudinal and yaw movements of the UAV will be 

recorded from the UAV object where the path planning dataset is collected via the Vicon software to map and analyze 

the UAV’s path during testing. Here we only scratched the surface of the potential for IoT implementation. With 

multiple defect images collected using UAVs, IoT will lend itself to image analytics and AI/deep learning approaches 

for further defect detection, identification and characterization. 
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