
Application of IoT-based  

sensing and signal processing for rehabilitation  

 
A. Moore a, M. Mehrubeoglu*a, Aaron Mooneya, L. McLauchlanb 

 

aDepartment of Engineering, Texas A&M Univ.-Corpus Christi, Corpus Christi, Texas, USA  
bDepartment of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, 

Kingsville, Texas, USA 

ABSTRACT  

IoT has emerged as a method for cloud-enabled data sharing by connecting everyday objects to the internet. Further 

interconnecting data transmission, IoT sensors create a network of communication among objects, sensed data, and 

users. This work uses an IoT development board equipped with a microcontroller to perform sensor data collection, 

fusion, and processing to assess the motion, flexibility, and improvements of the human knee toward the development 

and enhancement for a wearable sensor device. The signals are collected through simulated movements and processed 

through signal processing algorithms to record and analyze data that can then be used for potential therapeutic 

applications. To characterize the motion and its effect on the user, the three sensors targeted include inertial 

measurement unit (IMU), pressure, and temperature. In this paper we demonstrate an Asure cloud-based IoT 

environment as well as sensor data collection and fusion from simulated knee joint motion, temperature and location 

change. 
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1. INTRODUCTION  

Knee injuries represent a common sports injury requiring surgery and/or rehabilitation exercises for the person to 

improve. In many cases, a gait laboratory to better train the muscles is utilized for treatment; these facilities can be cost 

prohibitive or unavailable for many possible users1. As part of treatment for knee injuries or for improved sports 

training, many researched methods identify the activity or movement performed by the person to include sitting, 

standing up, walking, and running1-6. These activities enable the movement to be corrected or improved by tracking the 

person’s knee position. Panwar et al. utilize deep learning and convolutional neural network (CNN) methods to 

determine the type of limb movement2. Huang et al. also employ CNNs to identify the activity performed by the person3. 

Gautam et al. studied Long-term Recurrent Convolution networks as a means to determine the predicted type of limb 

movement and knee joint angle1. Resta et al. designed a wearable knee brace with a flexible sensor to take knee 

movement measurements4. Caporaso developed a wearable device to monitor knee movement to help users improve on 

their race-walking5. Penders et al. also developed a smart brace to aid in determining knee movements; an app gives the 

wearer feedback on their performed exercises for knee treatment6. 

As people age, many are affected by knee joint pain due to arthritis or other causes; Chen, Luo and Kang developed and 

tested a game to aid with knee joint pain improvement7. In other studies, an IoT-based monitoring system facilitates knee 

treatment for system/device users in addition to providing the ability to monitor gait and knee movement1,8-12, especially 

for those individuals in remote locations or without access to treatment facilities such as gait laboratories. Amplod, 

Choksuchat and Sopitpan developed and studied an IoT-based wearable device that utilizes a force sensor, an inertial 

measurement unit, or IMU, and a gyroscope to track knee treatment for an individual9. Chetan et al. developed a 

wearable knee brace that is an IoT-based device that aids the user with sitting or standing via an app10. Dinh Phong et al. 

proposed an exoskeleton for the legs with IoT functionality built into the device12. Fouris et al. collected temperature 

data from muscles in rest and after exercise using temperature sensors15.  
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In this research an IoT-based device for use in rehabilitation is developed and tested on a knee model. The next section 

presents the setup and components of the IoT system. Section 3 shows the experimental setup and sensor data collection 

and fusion. Section 4 summarizes the results. Conclusions are provided in Section 5. 

 

2. MATERIALS, TOOLS AND METHODS 

Figure 1 demonstrates the conceptualization of the required IoT system components as applicable to a wearable device 

relevant to this project. A typical IoT system involves data acquisition through sensors and devices, and data 

transmission through a communication protocol. A web-based dashboard allows data access, visualization and 

manipulation. An IoT system requires means for analytics processing that allows data analysis and decision making for 

actuation, based on acquired data.  

 

 
Figure 1. Conceptualization of the required components for an IoT system. 

 

2.1 Development of the IoT system 

Figure 2 demonstrates the block diagram of the developed IoT system in this project. 

 

                            

 

  
 
Figure 2. Block diagram for the IoT system 

 



 

 
 

 

The diagram shows interfacing sensors with a microcontroller whose signal acquisition and processing results are then 

uploaded to cloud services. The sensor data fusion results are used to determine the current that is delivered to a 

vibration device such as a small motor, providing a customized frequency of vibration depending on the sensor data 

collected from the user. 

 

In this study, an IoT Kit (Keysight U3810A) equipped with BeagleBone Green Wireless microcontroller and multiple 

sensors has been used for sensor interfacing and communication (Figure 3).  

 

Figure 3. Keysight U3810A IoT Kit13 

Three of the sensors available as part of the IoT kit relevant to the goals of the project were used during development for 

simulated data collection and sensor data fusion. The sensors used include IMU, pressure, and temperature sensors. 

Flow-based programming tool, Node-RED, and open-source IoT platform, ThingsBoard, were used for data transmission 

over Wi-Fi to a web-based dashboard. Node-RED contains the functions that receive the sensor output data from the 

microcontroller and pushes that data to ThingsBoard using the IoT standard messaging protocol MQTT. In ThingsBoard, 

a web-based dashboard visually displays the real-time data using built-in widgets like gauges and graphs. 

 

Figure 4 shows the IoT modular program developed on Node-RED where a connection to ThingsBoard is established 

and sensor data is pushed to the dashboard at a two second interval. Current functions can be expanded to push messages 

from Node-RED to the microcontroller for on/off operation from the dashboard, display of data history, and other data 

interactions customizable in the dashboard.  

 

Figure 4. Node-RED flow-based coding scheme for IoT connectivity and sensor data display 



 

 
 

 

2.2 Knee Model 

A knee model was developed for sensor placement and testing, sensor data collection and processing through the 

microprocessor, and data display through the IoT dashboard as the interface. The knee model consisted of two pieces of 

cardboard tubes representing upper and lower leg. The two leg model pieces were connected with a wooden ball which 

acted as the knee joint. The three pieces were held together with rubber bands and pushpins as shown in Figure 5. The 

knee model was used such that the lower leg model was fixed in position such that only the upper leg model moved 

manually in one degree of freedom around the joint.  

 

 

(a)                   (b)                                                             (c)  

 

Figure 5. Knee model and simulated motion with one degree of freedom. (a) Standing; (b) Partial flexing; (c) Full or 

complete flexing. The three motions simulate squatting or bending at the knee at arbitrary angles by moving the upper limb 

of the model while the lower limb remains fixed.   

 

The simulated motion achieved by the manual movement of the upper leg was used to generate sensor data for the IMU 

and pressure sensors to test the sensors and develop the IoT system before human subject testing. Temperature sensor 

data variations were achieved with a sock filled with warmed uncooked rice that as placed on the lower limb as 

displayed in Figure 6 (a). Figure 6 (a) also shows the placement of the three sensors (IMU, pressure, temperature) on the 

knee model. It is noted that IMU sensor captures motion parameters in 2D plane (horizontal (x) and vertical (y) axes) 

due to the fixed one degree of freedom of motion of the model. Figure 6 (b) demonstrates the angular motion parameters, 

including angular acceleration, captured by the IMU sensor. 



 

 
 

 

 

(a)                                                                                                                                             (b) 

Figure 6. (a) Sensor placement on the model. Temperature changes are simulated through warmed rice placed in a sock. 

Pressure and IMU respond to the manually-controlled motion around the model knee joint. (b) Angular motion parameters 

captured by the IMU sensor. 

 

3. EXPERIMENTS AND SENSOR DATA 

3.1 Experiments 

Figure 7 shows the collected experimental data. Each experiment consisted of four trials. Each trial was associated with 

sensor data collection from a simulated squat (knee flexion) after the muscles have been at rest, after the muscles have 

been active and were in recovery (at rest), and each of these two cases performed with complete and partial flexion or 

simulated squatting. Each dataset consisted of three simulated squats (knee flexion followed by extension, repeated three 

times).  

 

Figure 7. Collected datasets using complete flexion after muscles were in rest; complete flexion after muscles were exercised and 

were in recovery (rest); partial flexion after muscles were in rest; partial flexion after muscles were exercised and were in recovery 

(rest). For each dataset, three squats were simulated, which entailed three sets of flexing and extending the knee in the model. 



 

 
 

 

 

Acceleration and corresponding angle from IMU sensor, L, exerted pressure (with peak pressure value, P, of interest), 

and temperature of muscle, T, in rest (without prior activity) and in recovery (after exercise or physical activity) were 

measured and recorded from the knee model. 

Data was interfaced through the BeagleBone Green Wireless microcontroller, and displayed on Node-RED IoT 

dashboard. The microcontroller collects the raw data. Node-RED software is downloaded onto the microcontroller and 

connected to the WiFi. The raw data is then sent up to Node-RED. Node-RED then sends that data to ThingsBoard 

where the raw values are displayed in real time. 

 

3.2 Sensor Data Fusion 

Sensor fusion allows for a more robust system design as it reduces system’s uncertainty. During development, sensor 

data fusion was achieved using a linear equation that would result in a single numerical value for decision making about 

the state of the muscle that can later be used for assessment, and comparative temporal analysis. Similar to the linear 

sensor data fusion equations described in Tan et al.14, the data fusion equations used in this work for the leg muscle 

assessment around the knee joint, that would later be used to determine vibrational frequency for therapeutic solutions 

are as follows:  

 

S = aL + bT + cP,                                                                                (1) 

where                                                                            a + b + c = 1.                                                                                  (2) 

 

S is the result of sensor data fusion, and L, T, and P are the measured sensor data value from the IMU, temperature and 

pressure sensors, respectively. a, b, and c are the weights for each of the corresponding sensor data values.  

To determine the output frequency, each measured sensor output is normalized between 0 and 1 before inserting to 

Equation (1). The normalized sensor output, Xi_norm, can be found using Equation (3). 

                                  
,
                                                                   (3) 

where Xi represents individual sensor’s raw output data, and i is the sensor index. In this case, sensor indices correspond 

to IMU, temperature and pressure sensors, and their output, L, T, or P, respectively. Xi_max represents the highest value 

the sensor output is expected to have for a biological system. This would be less than the manufacturer’s listed upper 

range of the sensor. Xi_min represents the minimum sensor output value expected for the system. For the IMU and 

pressure sensors, Xi_min is zero. For temperature sensor, Xi_min is non-zero. Since each of Lnorm, Tnorm and Pnorm values is 

thus normalized between 0 and 1, fused sensor data, S, is also between 0 and 1 due to the constraint listed in Equation 

(2); therefore, Snorm can be used as a scaling factor for the actuation input, which would determine a variable actuation 

current, where from Equation (1), 

                               Snorm = aLnorm  +  bPnorm  +  cTnorm, and Snorm Є  [0,1].                                                     (4) 

Equation (3) can be written in a scalable form to represent more than 3 sensors: 

Let Xi be the actual measurement from sensor i where i Є {1, 2, 3, …, n} for n sensors. Similarly, let Xia be the 

corresponding real or actual value of the measurement for sensor i, and N1, N2, …, i, …, Nn be the zero mean white noise 

corresponding to each sensor i. Then, each measured sensor output value can be written as in the series of equations 

shown in (5) as 

(X1 = X1a + N1), (X2 = X2a + N2), … , (Xi = Xia + Ni), … , (Xn = Xna + Nn )                                      (5) 

for n sensors. Therefore, in vector form, the measured value from each sensor can be written as  

X  = Xa + N.                                                                                   (6) 



 

 
 

 

To adopt the sensor fusion algorithm14, we will assume a combined sensor output of , where  is the estimated value 

for the resultant sensor fusion data as shown in Equation (7): 

,                                                                           (7) 

where Wi is the weighting factor for sensor i, or for the case presented in this paper, the values of a, b and c described in 

Equation (3). Same constraints as Equation (3) holds for scalable sensor system, where 

.                                                                         (8) 

Summarizing, in our case, n = 3, and  = S. 

Typically, standard deviation or variance are required to determine the weights in sensor data fusion; however, in this 

case, these values were set as initial conditions to a = 0.2, b = 0.4, and c = 0.4 to mimic the contribution of each 

normalized sensor output value to the sensor fusion equation.  

To tailor the vibration frequency of the vibration motor shown in Figure 2, the actuation current, determined by sensor 

data fusion results, can be adjusted based on the vibration motor calibration to produce the current levels that will result 

in the desired vibration frequencies for future therapeutic applications. 

Actuation current can be calculated as 

I = g Snorm (Imax) + d,                                                                               (8) 

where I is the actuation current, Imax is the maximum working current allowable to the actuator, g is the gain and d is the 

DC offset. g and d can be found experimentally. In its simplest form, g = 1, and d = 0, simplifying the actuation current 

equation to: 

I = Snorm (Imax).                                                                                  (9)  

 

4. RESULTS 

4.1 Sensor Data 

Figures 8-10 show raw data from the three sensors placed on the knee model. Figure 8 shows the pressure sensor data 

from three successive simulated squats which entail flexion and extension of the upper leg while the lower leg is kept 

stationary and vertical. Average peak values are used as sensor output data for the sensor fusion equation described in 

Section 3.2. For sensor data fusion, this data is first scaled between 0 and 1 within the expected range of the peak 

pressure readings. Similarly, Figure 9 displays the temperature data collected over 31 seconds. This data shows 

increasing temperatures, as the thermal sensor adjusts to the temperature change, even though the simulated heat source 

is losing heat over time. This can be attributed to the response time of the sensor, and needs further investigation. IMU 

sensor data are plotted in Figure 10. This data shows instantaneous acceleration as the upper leg is flexed and extended 

three times while the lower leg is kept stationary. Green regions represent flexion, and blue regions represent extension 

of the knee. Acceleration information can be utilized to calculate the angular information of the muscle from the relative 

position of the upper and lower leg in the knee model. It is noted that the sensor output values recorded and reported here 

do not necessarily have biological significance and are only shown to demonstrate the operation of the sensors and 

expected sensor output signals.  

 
 

 



 

 
 

 

                                    

Figure 8. Pressure sensor raw data from three simulated squats, flexion-extension of the leg model. Peak pressure values 

indicate maximum exerted pressure. Average peak for complete flexion is 102 kPa. Average peak for partial flexion is 101.5 

kPa.  

 

Figure 9. Temperature sensor raw data from simulated muscle heat, warmed rice in a sock, in the knee model. 

 

Figure 10. IMU sensor raw data from three simulated squats, flexion-extension of the leg model. This information can be 

used to determine angle of rotation. Average of maximum values from three simulated squats are used in the sensor fusion 

equation. 



 

 
 

 

 

4.2 IoT Display 

Figure 11 represents the display of sample raw data from the sensors based on the IoT interface, Node-RED and 

ThingsBoard. This information can be accessed remotely, and further analyzed by authorized users. 

 

Figure 11. IoT display using ThingsBoard demonstrating individual raw IMU, pressure and temperature sensor results. 

 

4.3 Sensor Data Fusion and Actuation 

Using Equation (1), and based on interviews with a health care professional identifying sensor data and which would be 

of clinical contribution, the values of a, b, and c in Equation (4) were set to 0.2, 0.4 and 0.4, for IMU, pressure, and 

temperature sensor outputs, respectively, as mentioned before. 

The following shows four sets of results representing four states of the muscle: 

1. Muscle in rest (measurements taken without any leg exercises beforehand), full flexion (measurements taken at 

maximum experimental angle of the knee during simulated squatting) 

2. Muscle in rest, partial flexion (measurements taken with knee at partial experimental angle of the knee during 

simulated squatting) 

3. Muscle in recovery (measurements taken while resting after leg exercises), full flexion 

4. Muscle in recovery, partial flexion 

Table 1 summarizes a sample data set collected over one experiment with four states of the muscle and then normalized 

(Lnorm, Pnorm, Tnorm), as well as calculated fused sensor data, Snorm, and actuation current, I. 

 



 

 
 

 

 Table 1. Sampe data set and calculations from simulated knee movement. Imax = 70 mA 

 Lnorm 

(m/s2) 

Pnorm 

(kPa) 

Tnorm 

(oC) 

Snorm 

(0.2Lnorm  +  0.4Pnorm  +  0.4Tnorm) 

(arbitrary units) 

I 

(  Snorm .(Imax)  ) 

( mA) 

1. Muscle in rest, full 

flexion 
0.1 0.7 0.8 0.62 43.4 

2. Muscle in rest,  

partial flexion 
0.1 0.9 0.8 0.70 49.0 

3. Muscle in recovery, 

full flexion 
0.3 0.7 0.3 0.46 32.2 

4. Muscle in recovery 

partial flexion 
0.3 0.9 0.3 0.54 37.8 

 

Although the results in Table 1 do not have any biological significance, they are important in showing the sensor data 

collection, as well as the computations of normalized sensor data, sensor data fusion results, and actuation current. 

Additional information can be communicated or saved through the IoT system through cloud services where more 

complex algorithms can be implemented for further analysis and decision making.  

5. CONCLUSIONS AND FUTURE WORK 

In this project a knee model was created to simulate leg flexion and extensions during squatting and to obtain sensor data 

from simulated leg muscle response. The implemented knee model was used to collect sensor data for sensing the state 

of a muscle during experiments. Data have been collected from sensors, and sensor fusion equation has been established. 

The normalized fused sensor data results determine the actuation current, or the current received by the actuator, which 

in turn deliver tailored vibration frequencies to the user through the vibration motor. The raw data is displayed through 

an IoT dashboard programmed in ThingsBoard and pushed through the cloud via Node-RED.  

Future work involves fine-tuning sensor parameters from experimental data from human subjects, once IRB approval for 

collecting sensor data from human subjects is obtained. Addition of a second IMU to the set of sensors will improve the 

assessment of flexion and extension of knee, in particular, when calculating the angles. Installing the sensors on a 

wearable knee sensor device for human subject testing will allow collection of data for adjusting both sensor fusion 

equation weights, other sensor parameters, as well as actuation equation parameters from experimental data.  

This device can be incorporated in future research to determine therapeutic values for actuation of vibrational 

frequencies deliverable by a vibration motor that is tailored to individuals. The developed model can support IoT-based 

data collection, analytics and actuation. Finally, once the interfacing is completed, IoT will be an excellent resource to 

implement machine learning and other algorithms for state of health and intervention determination from collected and 

analyzed data with customized interventions. 
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