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ARTICLE INFO ABSTRACT
Keywords: Accurate predictions of rock permeability is critical for resource exploration and environmental management. To
Permeability improve on existing approaches to permeability prediction, this study employed a stochastic pore-scale simu-

Pore-scale modeling
Stochastic simulations
Machine learning

lation approach. The petrophysical properties needed for the implementation of this approach are porosity and
pore size distribution (PSD) of rock samples which can be obtained easily from mercury injection capillary
pressure measurements. The approach was tested on four carbonate and five siliciclastic rock cores. To consider a
wide range of possible pore connectivity scenarios that can be associated to the same PSD and porosity, the
employed stochastic pore-scale simulation approach involves the generation of hundreds of 3D pore micro-
structures of the same PSD and porosity but different stochastic pore connectivity. Permeability is calculated by
averaging the permeability distribution obtained from pore-scale flow simulations through the generated 3D
pore microstructures. Permeability estimations were closer to measured permeability with this approach than
with five deterministic empirical model equations. Machine learning was used to reduce the required number of
pore-scale simulations by 157 times and reproduced permeability estimated from pore-scale flow simulations
with a mean absolute percentage error of 10%.

1. Introduction where K is the permeability, 7 is the tortuosity defined as the ratio of

actual length of flow path in the porous media to the length of flow path
in the absence of porous media, d is the pore hydraulic diameter, and ¢ is
the porosity of the porous media. The equation was later modified into
the Kozeny-Carman equation [11,15] The Kozeny-Carman equation is
given by [11]:

Predictions of flow properties in heterogeneous porous media are
highly problematic. In general, assessments of subsurface flow and
reactive transport processes through rocks requires knowledge of
permeability [1-3]. Permeability is the ease of fluid flow through porous
media [4,5]. Fundamentally, permeability is a function of the pore
microstructure of porous media [6-8]. True permeability of rocks is K — Ppd* @
obtained through laboratory measurement from core plugs (rock sam- 16 K
ples) and pressure transient analysis of well test data [9]. In absence of
true permeability measurements, permeability is traditionally estimated
from model equations that relate permeability to other petrophysical
rock properties. Kozeny [10,11] proposed one of the foremost equations
used in permeability estimations. The Kozeny equation is formed from
the combination of Darcy’s Law [12], the Hagen-Poiseuille velocity
equation [13], and the concept of tortuosity [14]. Kozeny’s equation is
expressed mathematically as [11]:

where K is the Kozeny constant which captures the effect of tortuosity,
particle shape, and connectivity of pores.

The dependence of the Kozeny and Kozeny-Carman equations on
tortuosity [11] implies that it is not suited for making permeability
prediction in heterogenous porous media. This is due to the deteriora-
tion of permeability-tortuosity at increased levels of heterogeneity [16].
Also, porosity, which is the key parameter in Kozeny-Carman equation
[11,15] is known to have poor correlation with permeability [17].
K — M o) Permeability have been shown to vary up to five orders of magnitude for

T a very narrow porosity range [18].
Pore size distribution of rocks is deemed to provide better estimation
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Fig. 1. Mineralogical composition of the core plugs employed in this study and their measured petrophysical properties.

of permeability when combined with porosity [18]. This can be imple-
mented using Nuclear Magnetic Resonance (NMR) T2 data through the
Timur-Coates (TC) equation [19] and the Schlumberger-Doll-Research
(SDR) equation [20]. Westphal [18] identified heterogeneity as a limi-
tation in the application of TC and SDR equations in carbonate rocks
because they assume even distribution of pore connectivity and employ
total porosity instead of effective porosity in their respective equations.
Mercury injection capillary pressure (MICP) is another routine approach

used to make permeability predictions using empirical models. Several
authors have used percentage mercury saturation or geometric average
of pore throat sizes as a parameter to predict permeability [22-28]. The
use of MICP for permeability predictions is empirical and it depends
heavily on the data distribution that are used in deriving the respective
model equations. In general, empirical model equations are constrained
by the data used in their derivations. This is a challenge for heteroge-
neous rocks such as carbonate rocks because pore connectivity in these
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Fig. 2. Workflow of permeability prediction.

rocks can vary significantly in space even within the same outcrop due to
diagenesis [29], leading to poor estimates of permeability.

Numerical approaches have been proposed and used to estimate
permeability of rocks [30,31]. The main advantage in the use of nu-
merical approaches is the fact that it is not biased since it is dependent
on fundamental governing equations of fluid flow [32,33]. However,
numerical approaches are dependent on the fidelity of the 3D micro-
structure image used to conducting flow simulation as well as its
representative nature. Different approaches have been employed to
construct 3D pore microstructures of rocks from either 2D SEM images
or 3D X-ray micro-CT scan images [30,34]. The construction of 3D pore
microstructures from 2D SEM images has been done by packing together
irregular grains using statistical techniques (e.g., two-point, multiple-
point, and simulated annealing) [35,36]. That said, 2D representations
of pore microstructural features can vary significantly from their true 3D
nature in heterogeneous rocks. The use of FIB-SEM image overcomes
this challenge but is a very expensive and time-consuming procedure.
Notably, FIB-SEM is extremely small and does not provide a represen-
tative distribution of pore microstructural features of rock samples
[30,34]. The use of 3D pore microstructures from 3D X-ray micro-CT
solves this problem. Though, this technology has a typical resolution
of about 1-50 pm which fails to capture smaller pores in rocks as well as
pore connectivity [34]. For permeability calculations, numerical
methods such as Navier Stokes [33] and Lattice Boltzmann methods
[32] provide good estimates of permeability, however, it requires a lot of
computational resources which makes its adoption less attractive. These
encourages the use of pore network modeling which is less accurate in
comparison [37]. This is due to over simplification of pore microstruc-
tures making permeability calculations faster and less computationally
intensive [37].

To reduce the time and cost of obtaining representative 3D pore
microstructure images and conducting respective pore-scale flow sim-
ulations, we use machine learning (ML) models instead of pore-scale
flow simulations to predict permeability. ML models in the approach
is trained with permeability values obtained by a novel stochastic pore-
scale simulation approach.

The stochastic pore-scale simulation approach is detailed in our prior

paper [16]. This approach entails generating 3D pore microstructures of
the same porosity and pore size distribution (PSD) but stochastic pore
connectivity. Direct pore-scale simulations of permeability on the sto-
chastically created 3D pore microstructures is used in obtaining the
permeability distribution which is analyzed to determine the most
probable permeability of a sample with a given porosity and PSD. Direct
pore-scale simulations is a common approach to infer porous media
properties using pore microstructure images [38,39]. In some cases, it
might require thousands of stochastically generated 3D pore micro-
structures to reach representative elementary values. For practicality,
ML is used to reduce the computational cost of direct pore-scale simu-
lations of permeability [37]. The use of ML in geoscience is routine and
has been used in making permeability predictions at various scales
[40-43]. The features employed in these studies include salts mass
concentrations, porosity, lithology, depth, density, grain size, sample
color, sample images, formation factor, pore throat diameter, tortuosity,
and specific surface area. Algorithms used included linear regression,
decision tree, random forest, gradient boosting, support vector ma-
chines, and neural network.

Different from previous approaches, our approach relies solely on the
fundamental pore microstructural parameters as features while the
target (permeability) is physics derived through direct pore-scale sim-
ulations through the Navier Stokes equation. A key advantage of our
approach over existing ML approaches for pore-scale permeability pre-
dictions lies in the use of PSD of rocks instead of pore-scale images which
existing models generally use as feature data [37,41,44,45]. This implies
that the computational resources required by our ML approach is
significantly lower since our feature data is a CSV file and not an image
data that could be up to tens of Gigabytes in size which requires large
computer RAM and GPUs to run. Furthermore, the use of MICP data as in
this study provides continuum scale pore size distribution in rocks at
higher resolution compared to direct imaging techniques [30,34,46].

The workflow introduced in this study is easy to implement given the
ease of obtaining continuum scale porosity and PSD of rocks from nu-
clear magnetic resonance (NMR) and mercury injection capillary pres-
sure (MICP) data.
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Fig. 3. MICP data of pore radius against incremental pore volume for all core plugs used in this study (Fig. 1).

2. Material and methods
2.1. Workflow

To test the proposed ML approach to predict permeability, nine core
plugs were obtained. The description of the core plugs is shown in Fig. 1.
Fig. 2 shows the general workflow of this study. The data required in
implementing the workflow are PSD and porosity of a rock sample
(Fig. 2A) which is used in generating 3D pore microstructures of the
same PSD and porosity but different stochastic pore connectivity
(Fig. 2B). Pore-scale flow simulations are conducted on the generated 3D
pore microstructures (Fig. 2C) which provides a distribution of possible
permeability values of the analysed core plug (Fig. 2D). The input data
(porosity and PSD) and respective distribution of possible permeability
values are used to train a ML model (Fig. 2E). It is noteworthy that the
ML model could be trained with combined data of several rock samples.

The permeability distribution obtained from pore-scale simulations
was averaged to obtain the permeability for the respective core plug
which was compared to measured values as wells as permeability ob-
tained from known empirical model equations. The permeability of the
core plugs were obtained from standard laboratory procedures while
porosity and PSD of the core plugs were obtained from their MICP data.

2.2. Permeability measurement

Permeability measurements was based on Darcy’s law[12] which
can be expressed as:

_OxuxL

T AXAP ®

where Q is the volumetric flowrate through the inlet or outlet in m3/s, A
is the cross-sectional area perpendicular to the flow at the respective
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Fig. 4. MICP data plot of pore radius against normalized pore population for all core plugs used in this study (see Fig. 1).

boundary in m, K is the absolute permeability of the rock domain in m?,
AP is the pressure drop in the principal direction of the fluid in Pa, u is
the dynamic viscosity of the fluid in Pa-s, and L is the length along the
direction of the pressure drop in meters. Calculated permeability was
converted from m? to mD.

For pressure drop measurement, we used a Hassler Type core-holder
(RCH-series of Core Laboratory) where water was injected into the core
plugs through a 260 dual syringe pump (Teledyne ISCO). Flow rates
varied from 0.025 to 0.5 mL/min. Confining pressure was applied to
close the space between the core plug and the interior of the core holder
to prevent flow of injected fluid around the core plug. Low flow rates
were used to avoid flow channelling through the core plug and to ensure
that the Reynolds number is very low (less than 1x10~*); enough for the
application of Darcy’s law to be valid for permeability calculation. A
pressure transducer was used to measure the pressure at the inlet while
the outlet pressure is known to be atmospheric pressure. The pressure
drop across the core plug was observed through time to detect when the
system reaches a steady state condition. The experiment is deemed to

reach steady state when the pressure drop becomes constant. L and A
were measure on the respective core plugs, while the dynamic viscosity
of the fluid (water) is known to be 8.90x10~* Pa-s.

2.3. Pore size distribution (PSD) data

PSD data of the core plugs was obtained from MICP data (Fig. 3).
MICP is routinely used to deduce PSD in rocks using the Washburn
equation [47-53]. To partially account for shadowing or ink-bottle
phenomenon in MICP data [34,54], a cut off is applied to the MICP
distribution. The cut off is applied at the minimum incremental pore
volume (MIPV). The MIPV (Fig. 3) is coined in this study as pore size
where the incremental porosity abruptly drops before attaining 100 %
mercury saturation. A cut off is applied at MIPV because the pressure to
get to the pores beyond this point is already very high; hence the entire
pore system unsaturated at this point is erroneously captured as tiny
pores [34,54]. Furthermore, the low magnitude of incremental volume
at the MIPV can be interpreted as a semi-isolated pore system which
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Fig. 5. Representative stochastically generated 3D pore microstructures showing different possible pore connectivity (brown) scenarios in core plug A (Fig. 1).
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Fig. 6. Representative pressure distribution (A and B) and corresponding streamlines (C and D) through stochastically generated pore microstructures from PSD data
(Fig. 4.A and 4.B). Flow is in the positive-X direction.

might contribute to the overall flow through the core plug. In absence of that the applied cut-off also discards tiny pores in the core plugs.
accurate data for this region, we assume that the region has the same In this study, the pore geometry is simplified to a sphere. Data pro-
pore size distribution as the remainder of the core plug. It is noteworthy, vided from MICP analysis of core plugs is a plot of pore radius against
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incremental pore volume (Fig. 3). To obtain the pore population of the
core plugs, the incremental pore volume is divided by the corresponding
volume of a single pore (Eq. (4)). Pore population was normalized (Eq.
(5)) to ease comparison among the core plugs (Fig. 5).

P= inr Q)
P
P=5p ©

where P, is the incremental pore volume from MICP data, r is the cor-
responding pore radius, ) P is the total number of pores in the analysed
core plug, P is the number of pores of certain pore radius, and P, is the
normalized pore size distribution.

Fig. 4 shows the PSD of all the core plugs to have lognormal distri-
bution. Our core plugs include unimodal (Core plug A-H) and bimodal
(Core plug I) PSD to test the versatility of the workflow. The MICP
analysis also provided porosity (@p). It’s important to note the porosity
provided by MICP is effective porosity given that all the pores must be
accessible by injected mercury.

2.4. Stochastic generation of 3D pore microstructures

The stochastic generation of 3D pore microstructures (Fig. 5) follows
the workflow employed by Ishola et al.,, 2022 [16] where pore size
distribution, effective porosity, and a spherical pore geometry were used
to create multiple realizations of 3D pore microstructures of the same
effective porosity, PSD, and pore shape while stochastically connecting
the pores. The fixed effective porosity, PSD, pore frequency, and pore
shape helps consider the effect of a wide range of possible pore con-
nectivity scenario in each core plug [16]. This is vital because pore
connectivity cannot be accurately deduced in a representative core plug
despite been a key control on permeability [16].

For each core plug, the number of stochastically generated 3D pore
microstructures varied from 845 to 933. In total, 8,123 pore micro-
structures were generated across the nine core plugs. Summary data of
the pore microstructures can be found in the supplementary information
(Table 1S and 2S). Full details on the stochastic generation of 3D pore
microstructures and precautions taken to ensure the representative na-
ture of the pore microstructural parameters is detailed in our preceding
publication [16].

2.5. Pore-scale simulations

Pore-scale simulations of flow (Fig. 6) through the stochastically
generated 3D pore microstructures is executed with STAR-CCM+®
computational fluid dynamics software, using its finite volume meth-
odology to solve the mass continuity equation [16]:

pV+—=0 6
Vp +3 (6)

and Navier-Stokes momentum equation:
v %)

where p is density of the fluid, v is kinematic viscosity, P is pressure, t is

time, and V is fluid velocity.

This software has been successfully used for flow simulations in
similar 3D pore microstructures and has been proven effective in
simulating pore-scale flow and solute transport process [55-57]. The
implementation of pore-scale simulation in this study also follows the
workflow used by Ishola et al., 2022 [16] with the only difference being
that the minimum cell size of the mesh was lowered to 0.375 ym from
0.75 pm to provide higher level of detail in the flow domain. The average
number of cells across generated 3D pore microstructures is 1 million

Fuel 321 (2022) 124044

and the computational time per simulation is about 11 min. We
employed Oklahoma State University’s Pete supercomputing facilities
(32 cores and 96 GB of RAM for each run) to execute the numerical
portion of this study.

2.6. Permeability calculation

Numerical simulation of flow through each 3D pore microstructure
at a Reynold number less than 0.0001 makes permeability estimation
possible through Darcy’s equation (Eq. (3)) [7,12,31] and is rewritten as
[16]:

_ 2\/; X puxL 8)
XAXp
where K is the absolute permeability of the rock domain in m?, APis the
pressure drop in the principal direction of the fluid in Pa, y is the dy-
namic viscosity of the fluid in Pa-s, M is the mass flowrate through the
inlet or outlet in kg/s, p is the density of the fluid flowing through the
medium in kg/m>, A is the cross-sectional area perpendicular to the flow
at the respective boundary in m?, and L is the length along the direction
of the pressure drop in meters. Since properties of the fluid (density and
viscosity of water) and pressure drop are constant, permeability is
calculated from changes in mass flow rate and length scale (L)) of the
3D pore microstructure[16]. Calculated permeability was converted
from m? to mD.

2.7. Machine learning implementation

Several ML algorithms were trained with pore microstructural pa-
rameters obtained from the generated 3D pore microstructures as fea-
tures and corresponding permeability estimated from pore-scale
simulations as the target. For ML implementation, the entire data
set—permeability estimated from pore-scale flow simulations of all 3D
pore micro structures generated for the nine core plugs—was random-
ized, and split into training and test set in ratio 7:3. The pore micro-
structural parameters (features) used for ML implementation are the
average pore-throat size, standard deviation of pore-throat size distri-
bution (PTSD), 1st percentile of PTSD, 5th percentile of PTSD, 10th
percentile of PTSD, 25th percentile of PTSD, 50th percentile of PTSD,
75th percentile of PTSD, 90th percentile of PSD, 99th percentile of
PTSD, porosity, domain size of the pore microstructure, number of pores
connected to the inlet (conin) and outlet (conout) flow faces of the pore
microstructure, and minimum of conin and conout of the respective pore
microstructures. The last three features are introduced in this study, and
they are deemed to capture pore connectively as they quantify the true
number of alternative paths for a particle to from inlet to outlet. The
target in this study is permeability. The ML algorithms considered in this
study are Linear Regression, Random Forest, Support Vector Machine,
Gradient Boosting, and Artificial Neural Network [58]. The algorithm
with the best performance in our test is the Gradient Boosting (GB) al-
gorithm based on mean absolute percentage error [59] between
permeability obtained from the direct pore-scale simulations and
permeability obtained from respective ML algorithms. Hence, only the
parameters related to GB modelling are mentioned in this paper. A
summary on the implementation of the remaining five ML algorithms
and their relative performance is in the supplementary information (Fig.
1S and Table 3S). In the pre-processing stage of the data for machine
learning deployment, the data was standardized to account for the scale
difference in the features [60,61]. In this study, the data was stan-
dardized by:

)

where s is the value after standardization, x is the original value of
feature, X is the feature average, and o is the standard deviation of the
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Fig. 7. Permeability distribution from stochastic pore scale simulations through the generated 3D pore-microstructures for each core plug.

Table 1
Comparison of permeability (mD) between previous deterministic approaches and the stochastic pore-scale simulation approach used in this study with mean absolute

percentage error (MAPE).

Sample A B C D E F G H 1 MAPE Rank
Experimental permeability 20.96 3.19 15.13 35.31 8.73 17.03 15.13 6.69 52.46 NA NA
Winland[24] 9.29 68.75 46.16 40.51 68.66 53.14 240.16 36.18 536.31 676% 4th
Swanson[27] 12.68 55.93 42.19 40.02 67.83 44.88 232.4 26.19 1593.46 821% 5th
Wells-Amaefule[28] 2.28 7.24 5.82 5.58 8.41 6.10 21.94 4.01 98.10 67% 2nd
Kamath[23] 24.29 79.41 63.41 60.8 92.62 66.62 247.46 43.34 1150.05 914% 6th
Dastidar[22] 5.22 36.49 12.24 12.14 57.81 6.05 49.02 11.44 1640.37 573% 3rd
Stochastic simulation approach 2.87 3.33 6.21 7.75 14.00 2.05 10.94 14.00 17.60 64% 1st
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Table 2

The respective absolute error (mD) across the nine core plugs in Table 1.
Sample A B C D E F G H I
Winland|[24] 11.67 65.56 31.03 5.2 59.93 36.11 225.03 29.49 483.85
Swanson|[27] 8.28 52.74 27.06 4.71 59.10 27.85 217.27 19.5.0 1541.00
Wells-Amaefule[28] 18.68 4.05 9.31 29.73 0.32 10.93 6.81 2.68 45.64
Kamath[23] 3.33 76.22 48.28 25.49 83.89 49.59 232.33 36.65 1097.59
Dastidar[22] 15.74 33.30 2.89 23.17 49.08 10.98 33.89 4.75 1587.91
Stochastic simulation approach 18.09 0.14 8.92 27.56 5.27 14.98 4.19 7.31 34.86

Table 3

Data summary of the empirical deterministic permeability models explored in this study (modified after Comisky et al. [65]).
Method Year Number of Samples Sample Source Permeability Measurement Type (s) Permeability Range (mD) Data Density*
Winland[24] 1980 322 Mixed Air, Klinkenberg corrected N/A N/A
Swanson|[27] 1981 56 Mixed Brine 0.002-1000 0.06
Wells-Amaefule[28] 1985 35 Siliciclastic pulse decay 0.00002-70 0.50
Kamath[23] 1992 301 Mixed Klinkenberg corrected 1-2000 0.10
Dastidar[22] 2007 150 Siliciclastic Klinkenberg corrected 0.0001-10000 0.02

" Estimated by diving the number of samples by the permeability range.
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Fig. 8. MAPE of permeability of all nine core plugs used in this study. MAPE by
core plug is shown in the supplementary information (Fig. 2S). The data
highlighted in plot is number of training data.

features. Hence, all the features have a mean of zero and a standard
deviation of one.

GB was implemented on Scikit-learn [61]. The maximum depth in
the GB algorithm was varied between 3 and 10 while the number of
estimators was varied from 10 to 1000. The learning rate used in this
study ranged from 0.0001 to 1 with other parameters in the GB algo-
rithm kept at default. GridSearchCV [61] was used to select the best
combination of maximum depth and number of estimators. The GB
model was trained with data from all nine core plugs and combination of
hyperparameters was selected based on a five-fold cross validation. In
the second phase of GB deployment, the number of training data was
systematically reduced from 100% to 0.5% to test the minimum number
of training data required to make relatively good permeability pre-
dictions. It’s worth highlighting that the test data remained constant for
objective comparison.

2.8. Statistical comparison of results

The permeability of each core plug was estimated by averaging the
permeability of the 3D pore microstructures that were stochastically

generated from the PSD and porosity data (Fig. 4) [62-64]. The
permeability of each core plug estimated using this method was
compared against permeability estimated using five notable model
equations through the mean absolute percentage error (MAPE) [59].
MAPE is the average of the absolute percentage error between measured
permeability and estimated permeability for n pore plugs. It can be
expressed as:

1 n
MAPE = -~ Z

i=1

ki — ke

m,i

x 100 10)

where kp,;, and k.; is the measured permeability and estimated perme-
ability of core plug i, while n is the total number of core plugs. MAPE was
used in this study because it takes magnitude of the measured perme-
ability into account, hence, an objective comparison across different
scales can be made.

2.9. Previous approaches to permeability estimation

For comparison with the approach used in this study, permeability
was estimated for all nine core plugs using five notable model equations
that employ MICP data. This include Winland [24], Swanson [27],
Wells-Amaefule [28], Kamath [23], and Dastidar models [22]. The
respective equations are given by:

kwintana = 49-4’ER;§7 o il 11)
5, 72005
kSwanson - brine — 355% |:P_b:| (12)
Cla
PRIE:
kwells - Amacfule = 30.5* {Pfh} 13)
cla
5, 7160
Kaman = 347* {P—b} a4
cla
Kpaswidar = 40T3*R};0 *@* % (15)

where s, is the percent bulk volume occupied by mercury, Pc is the
mercury capillary pressure (Psia), A is the maximum amplitude, Rgs is
35% mercury saturation of pore volume, @ is porosity (fraction), and
Rygnm is the geometric mean of pore sizes. Egs. (11)-(14) are dependent
on the empirical correlation between a critical pore throat sizes where
mercury infiltration is deemed to connect the entire pore system of rock
sample while Eq. (15) considered the size of all the pore throat sizes that
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Fig. 9. Change in calculated permeability with number of 3D pore microstructures used for pore-scale flow simulations. The red point indicates the representative
permeability value of the respective core plug. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

are in a rock sample by taking their geometric mean.
3. Results and discussion
3.1. Stochastic pore-scale simulations of permeability

Direct pore-scale simulations of permeability for the 3D pore mi-
crostructures stochastically generated from the PSD curves (Fig. 4) yield
a distribution of possible permeability values for the respective core plug
(Fig. 7). The permeability for each core plug is calculated via arithmetic
mean of possible permeability values. In comparison to existing deter-
ministic model equations attempted in this study (Tables 1 and 2),
computed permeability for the core plugs is generally closer to measured
permeability of the respective core plug. Table 1 shows the relative rank
of all the methods based on MAPE for the nine core plugs used in this
study. The Wells-Amaefule model [28] ranks second place after our
approach and is the only other approach with an MAPE less than 100%.

10

Wells-Amaefule model is only an expansion of the empirical correlation
introduced by Swanson [27] to include tight rocks with permeability as
low as 0.00002 mD [21]. That said, the maximum permeability in the
empirical correlation by Wells-Amaefule is 70 mD which is within a
reasonable range compared to the permeability data used in our study
(Fig. 1 and Table 3). It also implies that the Wells-Amaefule model might
not work well with higher permeability data since the empirical model is
fitted to a narrow permeability data range. That said, the permeability
data density is relatively high compared to the other empirical model
equations implemented in this study (Table 3). it is important to note
that the permeability data used in the Wells-Amaefule model is gas
permeability. However, the authors argued that it is on the same order of
magnitude as Klinkenberg corrected and liquid permeability given the
conditions under which the values are obtained [28]. In third place of
MAPE ranking is the Dastidar model [22]. The Dastidar model [22] is
fundamentally different from the other empirical model equations
considered in this study. As show in Eq. (15), it takes the entire pore size
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Fig. 10. A comparison between permeability predictions made using a GB
model trained with 28 pore microstructural parameters (green) and an hypo-
thetical perfect prediction (orange). The higlighted numbers are respective core
plug IDs. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

distribution into account by using their geometric mean. In contrast, the
other four model equations (Eqs. 11-14) use a threshold in mercury
saturation through the rock samples. However, the MAPE of perme-
ability obtained using the Dastidar model was 573%, which is relatively
high. This could be due to three reasons: 1) The Dastidar model gives
more weight to porosity than the average pore-throat size (Eq. (15)).
Hence, porosity is the controlling parameter in this model. Porosity is
known to have a relatively poor relationship with permeability [18]. 2)
The weights used in Dastidar model (Eq. (15)) is derived from incre-
mental porosity [21,22] and not the pore populations. We believe pore
population better reflects true frequency of pores in a rock sample. 3)
The permeability data density used in developing the Dastidar model is
relatively low (Table 3). The Winland approach [24] ranks 4th place in
this study with an MAPE of 676%. The performance of this model could
be due to the inclusion of uncorrected air permeability in modelling
which is known to overestimate permeability [21]. 240 of the 322
permeability data points used in developing the Winland model are
uncorrected air permeability (Table 3). The Swanson-brine model [27]
ranked 5 out of the 6 methods in this study. The Swanson- brine model
[27] was established with permeability ranging from 0.02 mD to 1000
mD, however, the permeability data density is low (Table 3). Given that
the main difference between Wells-Amaefule model[28] and the
Swanson- brine model[27] is a significant reduction in permeability data
density in Swanson- brine model [27] (Table 3), we can conclude that
this is responsible for the drop off in MAPE from 67% in Wells-Amaefule
model [28] to 821% in Swanson-brine model [27]. It is noteworthy that
permeability range used to establish the Wells-Amaefule model equation
[28] (Table 3) is concentrated within the permeability data range of this
study (Fig. 1) which might also influence the performance of Wells-
Amaefule model [28]. This underlines a pitfall in the use of empirical
model equations because it is usually suited to the data distribution from
which it was derived and can be unreliable when the permeability data
density is poor. Kamath model [23] ranked 6 out of 6 in in approaches
tested in the study with a MAPE of 914%. Considering that permeability
prediction is consistently overestimated across all core plugs (Table 1), it
is plausible that the performance is driven by the datasets used in the
study. Based on the relative performance of the model equations used in
this study, we can conclude that, empirical permeability model
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equations are adversely impacted by permeability data density, the use
of uncorrected air permeability, reliance on porosity as the key param-
eter, and the distribution of permeability data used in fitting the rela-
tionship. The use of the stochastic pore-scale simulation approach [16]
overcomes these limitations because it mimics mechanistic processes
that occur in rocks through the governing equation of fluid flow, and it
considers different pore connectivity scenarios that can result in the
same PSD and porosity.

3.2. Computational reduction with machine learning

Fig. 8 shows only a 10% difference between the permeability values
computed from pore-scale flow simulations and a GB model trained with
pore microstructural parameters (features) of 28 pore microstructures. It
is worth noting that the total number of pore microstructures required to
obtain a representative permeability value from pore-scale flow simu-
lations across the nine core plugs employed in this study is ~4400
(Fig. 9). This implies that the time required to obtain representative
permeability prediction across the core plugs is reduced from 34 days
(4,400 3D pore microstructures) to 6 h (28 3D pore microstructures). If a
pretrained GB model is available, permeability predictions will take less
than a second on a 16 GB RAM computer. Fig. 8 also shows that
permeability predictions do improve with the size of training perme-
ability data. Therefore, there is need for trade-off between available
computing resources and accuracy the GB model. That said, Fig. 10
shows 28 pore microstructures to be sufficient (green data points) as it is
close to a perfect prediction (orange data points). However, if the
objective is to replicate representative permeability values computed
from pore-scale flow simulations with near perfection, a larger number
of training permeability data is beneficial. It is worth nothing that the
only information needed to implement this ML approach is porosity and
PSD which can be obtained from X-ray imaging methods, MICP, and
NMR data.

4. Conclusions

In this study we have employed a stochastic pore-scale simulation
approach to predict the permeability of nine core plugs of both car-
bonate and siliciclastic sources. Our stochastic pore-scale simulation
approach is more accurate in predicting permeability compared to five
notable deterministic model equations attempted in this study. To
reduce the computational cost of predicting permeability by our sto-
chastic pore-scale simulation approach, we used Gradient Boosting al-
gorithm. This ML approach reduces the number of simulations needed to
obtain representative permeability of all nine core plugs from 4,400 to
28, significantly reducing required computational resources and time.
There are at least three key applications for our results: 1) a pretrained
ML model using our approach can be incorporated with NMR informa-
tion obtained while drilling to provide permeability information of
penetrated formations, instantaneously; 2) a pretrained ML model using
our approach could provide a simple tool to make quick assessments of
rock samples before full laboratory experiments are applied to get true
permeability of core plugs; and 3) the approach used in this study can
help improve the performance and accuracy of fluid flow and reactive
transport simulation computer programs. In general, the result of this
study is beneficial in resource exploration as well as environmental
protection and management.
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