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A B S T R A C T   

Accurate predictions of rock permeability is critical for resource exploration and environmental management. To 
improve on existing approaches to permeability prediction, this study employed a stochastic pore-scale simu
lation approach. The petrophysical properties needed for the implementation of this approach are porosity and 
pore size distribution (PSD) of rock samples which can be obtained easily from mercury injection capillary 
pressure measurements. The approach was tested on four carbonate and five siliciclastic rock cores. To consider a 
wide range of possible pore connectivity scenarios that can be associated to the same PSD and porosity, the 
employed stochastic pore-scale simulation approach involves the generation of hundreds of 3D pore micro
structures of the same PSD and porosity but different stochastic pore connectivity. Permeability is calculated by 
averaging the permeability distribution obtained from pore-scale flow simulations through the generated 3D 
pore microstructures. Permeability estimations were closer to measured permeability with this approach than 
with five deterministic empirical model equations. Machine learning was used to reduce the required number of 
pore-scale simulations by 157 times and reproduced permeability estimated from pore-scale flow simulations 
with a mean absolute percentage error of 10%.   

1. Introduction 

Predictions of flow properties in heterogeneous porous media are 
highly problematic. In general, assessments of subsurface flow and 
reactive transport processes through rocks requires knowledge of 
permeability [1–3]. Permeability is the ease of fluid flow through porous 
media [4,5]. Fundamentally, permeability is a function of the pore 
microstructure of porous media [6–8]. True permeability of rocks is 
obtained through laboratory measurement from core plugs (rock sam
ples) and pressure transient analysis of well test data [9]. In absence of 
true permeability measurements, permeability is traditionally estimated 
from model equations that relate permeability to other petrophysical 
rock properties. Kozeny [10,11] proposed one of the foremost equations 
used in permeability estimations. The Kozeny equation is formed from 
the combination of Darcy’s Law [12], the Hagen-Poiseuille velocity 
equation [13], and the concept of tortuosity [14]. Kozeny’s equation is 
expressed mathematically as [11]: 

K =
ϕd2

τ (1)  

where K is the permeability, τ is the tortuosity defined as the ratio of 
actual length of flow path in the porous media to the length of flow path 
in the absence of porous media, d is the pore hydraulic diameter, and ϕ is 
the porosity of the porous media. The equation was later modified into 
the Kozeny-Carman equation [11,15] The Kozeny-Carman equation is 
given by [11]: 

K =
ϕd2

16 Kk
(2)  

where Kk is the Kozeny constant which captures the effect of tortuosity, 
particle shape, and connectivity of pores. 

The dependence of the Kozeny and Kozeny-Carman equations on 
tortuosity [11] implies that it is not suited for making permeability 
prediction in heterogenous porous media. This is due to the deteriora
tion of permeability-tortuosity at increased levels of heterogeneity [16]. 
Also, porosity, which is the key parameter in Kozeny-Carman equation 
[11,15] is known to have poor correlation with permeability [17]. 
Permeability have been shown to vary up to five orders of magnitude for 
a very narrow porosity range [18]. 

Pore size distribution of rocks is deemed to provide better estimation 
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of permeability when combined with porosity [18]. This can be imple
mented using Nuclear Magnetic Resonance (NMR) T2 data through the 
Timur-Coates (TC) equation [19] and the Schlumberger-Doll-Research 
(SDR) equation [20]. Westphal [18] identified heterogeneity as a limi
tation in the application of TC and SDR equations in carbonate rocks 
because they assume even distribution of pore connectivity and employ 
total porosity instead of effective porosity in their respective equations. 
Mercury injection capillary pressure (MICP) is another routine approach 

used to make permeability predictions using empirical models. Several 
authors have used percentage mercury saturation or geometric average 
of pore throat sizes as a parameter to predict permeability [22–28]. The 
use of MICP for permeability predictions is empirical and it depends 
heavily on the data distribution that are used in deriving the respective 
model equations. In general, empirical model equations are constrained 
by the data used in their derivations. This is a challenge for heteroge
neous rocks such as carbonate rocks because pore connectivity in these 

Fig. 1. Mineralogical composition of the core plugs employed in this study and their measured petrophysical properties.  
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rocks can vary significantly in space even within the same outcrop due to 
diagenesis [29], leading to poor estimates of permeability. 

Numerical approaches have been proposed and used to estimate 
permeability of rocks [30,31]. The main advantage in the use of nu
merical approaches is the fact that it is not biased since it is dependent 
on fundamental governing equations of fluid flow [32,33]. However, 
numerical approaches are dependent on the fidelity of the 3D micro
structure image used to conducting flow simulation as well as its 
representative nature. Different approaches have been employed to 
construct 3D pore microstructures of rocks from either 2D SEM images 
or 3D X-ray micro-CT scan images [30,34]. The construction of 3D pore 
microstructures from 2D SEM images has been done by packing together 
irregular grains using statistical techniques (e.g., two-point, multiple- 
point, and simulated annealing) [35,36]. That said, 2D representations 
of pore microstructural features can vary significantly from their true 3D 
nature in heterogeneous rocks. The use of FIB-SEM image overcomes 
this challenge but is a very expensive and time-consuming procedure. 
Notably, FIB-SEM is extremely small and does not provide a represen
tative distribution of pore microstructural features of rock samples 
[30,34]. The use of 3D pore microstructures from 3D X-ray micro-CT 
solves this problem. Though, this technology has a typical resolution 
of about 1–50 μm which fails to capture smaller pores in rocks as well as 
pore connectivity [34]. For permeability calculations, numerical 
methods such as Navier Stokes [33] and Lattice Boltzmann methods 
[32] provide good estimates of permeability, however, it requires a lot of 
computational resources which makes its adoption less attractive. These 
encourages the use of pore network modeling which is less accurate in 
comparison [37]. This is due to over simplification of pore microstruc
tures making permeability calculations faster and less computationally 
intensive [37]. 

To reduce the time and cost of obtaining representative 3D pore 
microstructure images and conducting respective pore-scale flow sim
ulations, we use machine learning (ML) models instead of pore-scale 
flow simulations to predict permeability. ML models in the approach 
is trained with permeability values obtained by a novel stochastic pore- 
scale simulation approach. 

The stochastic pore-scale simulation approach is detailed in our prior 

paper [16]. This approach entails generating 3D pore microstructures of 
the same porosity and pore size distribution (PSD) but stochastic pore 
connectivity. Direct pore-scale simulations of permeability on the sto
chastically created 3D pore microstructures is used in obtaining the 
permeability distribution which is analyzed to determine the most 
probable permeability of a sample with a given porosity and PSD. Direct 
pore-scale simulations is a common approach to infer porous media 
properties using pore microstructure images [38,39]. In some cases, it 
might require thousands of stochastically generated 3D pore micro
structures to reach representative elementary values. For practicality, 
ML is used to reduce the computational cost of direct pore-scale simu
lations of permeability [37]. The use of ML in geoscience is routine and 
has been used in making permeability predictions at various scales 
[40–43]. The features employed in these studies include salts mass 
concentrations, porosity, lithology, depth, density, grain size, sample 
color, sample images, formation factor, pore throat diameter, tortuosity, 
and specific surface area. Algorithms used included linear regression, 
decision tree, random forest, gradient boosting, support vector ma
chines, and neural network. 

Different from previous approaches, our approach relies solely on the 
fundamental pore microstructural parameters as features while the 
target (permeability) is physics derived through direct pore-scale sim
ulations through the Navier Stokes equation. A key advantage of our 
approach over existing ML approaches for pore-scale permeability pre
dictions lies in the use of PSD of rocks instead of pore-scale images which 
existing models generally use as feature data [37,41,44,45]. This implies 
that the computational resources required by our ML approach is 
significantly lower since our feature data is a CSV file and not an image 
data that could be up to tens of Gigabytes in size which requires large 
computer RAM and GPUs to run. Furthermore, the use of MICP data as in 
this study provides continuum scale pore size distribution in rocks at 
higher resolution compared to direct imaging techniques [30,34,46]. 

The workflow introduced in this study is easy to implement given the 
ease of obtaining continuum scale porosity and PSD of rocks from nu
clear magnetic resonance (NMR) and mercury injection capillary pres
sure (MICP) data. 

Fig. 2. Workflow of permeability prediction.  

O. Ishola and J. Vilcáez                                                                                                                                                                                                                       



Fuel 321 (2022) 124044

4

2. Material and methods 

2.1. Workflow 

To test the proposed ML approach to predict permeability, nine core 
plugs were obtained. The description of the core plugs is shown in Fig. 1. 
Fig. 2 shows the general workflow of this study. The data required in 
implementing the workflow are PSD and porosity of a rock sample 
(Fig. 2A) which is used in generating 3D pore microstructures of the 
same PSD and porosity but different stochastic pore connectivity 
(Fig. 2B). Pore-scale flow simulations are conducted on the generated 3D 
pore microstructures (Fig. 2C) which provides a distribution of possible 
permeability values of the analysed core plug (Fig. 2D). The input data 
(porosity and PSD) and respective distribution of possible permeability 
values are used to train a ML model (Fig. 2E). It is noteworthy that the 
ML model could be trained with combined data of several rock samples. 

The permeability distribution obtained from pore-scale simulations 
was averaged to obtain the permeability for the respective core plug 
which was compared to measured values as wells as permeability ob
tained from known empirical model equations. The permeability of the 
core plugs were obtained from standard laboratory procedures while 
porosity and PSD of the core plugs were obtained from their MICP data. 

2.2. Permeability measurement 

Permeability measurements was based on Darcy’s law[12] which 
can be expressed as: 

K =
Q × μ × L

A × ΔP
(3)  

where Q is the volumetric flowrate through the inlet or outlet in m3/s, A 
is the cross-sectional area perpendicular to the flow at the respective 
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Fig. 3. MICP data of pore radius against incremental pore volume for all core plugs used in this study (Fig. 1).  
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boundary in m2, K is the absolute permeability of the rock domain in m2, 
ΔP is the pressure drop in the principal direction of the fluid in Pa, μ is 
the dynamic viscosity of the fluid in Pa-s, and L is the length along the 
direction of the pressure drop in meters. Calculated permeability was 
converted from m2 to mD. 

For pressure drop measurement, we used a Hassler Type core-holder 
(RCH-series of Core Laboratory) where water was injected into the core 
plugs through a 260 dual syringe pump (Teledyne ISCO). Flow rates 
varied from 0.025 to 0.5 mL/min. Confining pressure was applied to 
close the space between the core plug and the interior of the core holder 
to prevent flow of injected fluid around the core plug. Low flow rates 
were used to avoid flow channelling through the core plug and to ensure 
that the Reynolds number is very low (less than 1×10−4); enough for the 
application of Darcy’s law to be valid for permeability calculation. A 
pressure transducer was used to measure the pressure at the inlet while 
the outlet pressure is known to be atmospheric pressure. The pressure 
drop across the core plug was observed through time to detect when the 
system reaches a steady state condition. The experiment is deemed to 

reach steady state when the pressure drop becomes constant. L and A 
were measure on the respective core plugs, while the dynamic viscosity 
of the fluid (water) is known to be 8.90×10−4 Pa⋅s. 

2.3. Pore size distribution (PSD) data 

PSD data of the core plugs was obtained from MICP data (Fig. 3). 
MICP is routinely used to deduce PSD in rocks using the Washburn 
equation [47–53]. To partially account for shadowing or ink-bottle 
phenomenon in MICP data [34,54], a cut off is applied to the MICP 
distribution. The cut off is applied at the minimum incremental pore 
volume (MIPV). The MIPV (Fig. 3) is coined in this study as pore size 
where the incremental porosity abruptly drops before attaining 100 % 
mercury saturation. A cut off is applied at MIPV because the pressure to 
get to the pores beyond this point is already very high; hence the entire 
pore system unsaturated at this point is erroneously captured as tiny 
pores [34,54]. Furthermore, the low magnitude of incremental volume 
at the MIPV can be interpreted as a semi-isolated pore system which 

Fig. 4. MICP data plot of pore radius against normalized pore population for all core plugs used in this study (see Fig. 1).  
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might contribute to the overall flow through the core plug. In absence of 
accurate data for this region, we assume that the region has the same 
pore size distribution as the remainder of the core plug. It is noteworthy, 

that the applied cut-off also discards tiny pores in the core plugs. 
In this study, the pore geometry is simplified to a sphere. Data pro

vided from MICP analysis of core plugs is a plot of pore radius against 

Fig. 5. Representative stochastically generated 3D pore microstructures showing different possible pore connectivity (brown) scenarios in core plug A (Fig. 1).  

Fig. 6. Representative pressure distribution (A and B) and corresponding streamlines (C and D) through stochastically generated pore microstructures from PSD data 
(Fig. 4.A and 4.B). Flow is in the positive-X direction. 
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incremental pore volume (Fig. 3). To obtain the pore population of the 
core plugs, the incremental pore volume is divided by the corresponding 
volume of a single pore (Eq. (4)). Pore population was normalized (Eq. 
(5)) to ease comparison among the core plugs (Fig. 5). 

P =
Pv

4
3 πr3 (4)  

Pp =
P

∑
P

(5)  

where Pv is the incremental pore volume from MICP data, r is the cor
responding pore radius, 

∑
P is the total number of pores in the analysed 

core plug, P is the number of pores of certain pore radius, and Pp is the 
normalized pore size distribution. 

Fig. 4 shows the PSD of all the core plugs to have lognormal distri
bution. Our core plugs include unimodal (Core plug A-H) and bimodal 
(Core plug I) PSD to test the versatility of the workflow. The MICP 
analysis also provided porosity (∅m). It’s important to note the porosity 
provided by MICP is effective porosity given that all the pores must be 
accessible by injected mercury. 

2.4. Stochastic generation of 3D pore microstructures 

The stochastic generation of 3D pore microstructures (Fig. 5) follows 
the workflow employed by Ishola et al., 2022 [16] where pore size 
distribution, effective porosity, and a spherical pore geometry were used 
to create multiple realizations of 3D pore microstructures of the same 
effective porosity, PSD, and pore shape while stochastically connecting 
the pores. The fixed effective porosity, PSD, pore frequency, and pore 
shape helps consider the effect of a wide range of possible pore con
nectivity scenario in each core plug [16]. This is vital because pore 
connectivity cannot be accurately deduced in a representative core plug 
despite been a key control on permeability [16]. 

For each core plug, the number of stochastically generated 3D pore 
microstructures varied from 845 to 933. In total, 8,123 pore micro
structures were generated across the nine core plugs. Summary data of 
the pore microstructures can be found in the supplementary information 
(Table 1S and 2S). Full details on the stochastic generation of 3D pore 
microstructures and precautions taken to ensure the representative na
ture of the pore microstructural parameters is detailed in our preceding 
publication [16]. 

2.5. Pore-scale simulations 

Pore-scale simulations of flow (Fig. 6) through the stochastically 
generated 3D pore microstructures is executed with STAR-CCM+® 
computational fluid dynamics software, using its finite volume meth
odology to solve the mass continuity equation [16]: 

∇
→⋅ρ V→+

∂ρ
∂t

= 0 (6) 

and Navier-Stokes momentum equation: 

∂ V→

∂t
+

(
V→⋅∇→

)
V→ = −

1
ρ∇
→

P + v∇
→2

V→ (7)  

where ρ is density of the fluid, v is kinematic viscosity, P is pressure, t is 
time, and V→ is fluid velocity. 

This software has been successfully used for flow simulations in 
similar 3D pore microstructures and has been proven effective in 
simulating pore-scale flow and solute transport process [55–57]. The 
implementation of pore-scale simulation in this study also follows the 
workflow used by Ishola et al., 2022 [16] with the only difference being 
that the minimum cell size of the mesh was lowered to 0.375 µm from 
0.75 µm to provide higher level of detail in the flow domain. The average 
number of cells across generated 3D pore microstructures is 1 million 

and the computational time per simulation is about 11 min. We 
employed Oklahoma State University’s Pete supercomputing facilities 
(32 cores and 96 GB of RAM for each run) to execute the numerical 
portion of this study. 

2.6. Permeability calculation 

Numerical simulation of flow through each 3D pore microstructure 
at a Reynold number less than 0.0001 makes permeability estimation 
possible through Darcy’s equation (Eq. (3)) [7,12,31] and is rewritten as 
[16]: 

K =
M × μ × L
ΔP × A × ρ (8)  

where K is the absolute permeability of the rock domain in m2, ΔP is the 
pressure drop in the principal direction of the fluid in Pa, μ is the dy
namic viscosity of the fluid in Pa-s, M is the mass flowrate through the 
inlet or outlet in kg/s, ρ is the density of the fluid flowing through the 
medium in kg/m3, A is the cross-sectional area perpendicular to the flow 
at the respective boundary in m2, and L is the length along the direction 
of the pressure drop in meters. Since properties of the fluid (density and 
viscosity of water) and pressure drop are constant, permeability is 
calculated from changes in mass flow rate and length scale (L−1) of the 
3D pore microstructure[16]. Calculated permeability was converted 
from m2 to mD. 

2.7. Machine learning implementation 

Several ML algorithms were trained with pore microstructural pa
rameters obtained from the generated 3D pore microstructures as fea
tures and corresponding permeability estimated from pore-scale 
simulations as the target. For ML implementation, the entire data 
set—permeability estimated from pore-scale flow simulations of all 3D 
pore micro structures generated for the nine core plugs—was random
ized, and split into training and test set in ratio 7:3. The pore micro
structural parameters (features) used for ML implementation are the 
average pore-throat size, standard deviation of pore-throat size distri
bution (PTSD), 1st percentile of PTSD, 5th percentile of PTSD, 10th 
percentile of PTSD, 25th percentile of PTSD, 50th percentile of PTSD, 
75th percentile of PTSD, 90th percentile of PSD, 99th percentile of 
PTSD, porosity, domain size of the pore microstructure, number of pores 
connected to the inlet (conin) and outlet (conout) flow faces of the pore 
microstructure, and minimum of conin and conout of the respective pore 
microstructures. The last three features are introduced in this study, and 
they are deemed to capture pore connectively as they quantify the true 
number of alternative paths for a particle to from inlet to outlet. The 
target in this study is permeability. The ML algorithms considered in this 
study are Linear Regression, Random Forest, Support Vector Machine, 
Gradient Boosting, and Artificial Neural Network [58]. The algorithm 
with the best performance in our test is the Gradient Boosting (GB) al
gorithm based on mean absolute percentage error [59] between 
permeability obtained from the direct pore-scale simulations and 
permeability obtained from respective ML algorithms. Hence, only the 
parameters related to GB modelling are mentioned in this paper. A 
summary on the implementation of the remaining five ML algorithms 
and their relative performance is in the supplementary information (Fig. 
1S and Table 3S). In the pre-processing stage of the data for machine 
learning deployment, the data was standardized to account for the scale 
difference in the features [60,61]. In this study, the data was stan
dardized by: 

s =
x − x

σ (9) 

where s is the value after standardization, x is the original value of 
feature, x is the feature average, and σ is the standard deviation of the 
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Fig. 7. Permeability distribution from stochastic pore scale simulations through the generated 3D pore-microstructures for each core plug.  

Table 1 
Comparison of permeability (mD) between previous deterministic approaches and the stochastic pore-scale simulation approach used in this study with mean absolute 
percentage error (MAPE).  

Sample A B C D E F G H I MAPE Rank 

Experimental permeability  20.96  3.19  15.13  35.31  8.73  17.03  15.13  6.69  52.46 NA NA 
Winland[24]  9.29  68.75  46.16  40.51  68.66  53.14  240.16  36.18  536.31 676% 4th 
Swanson[27]  12.68  55.93  42.19  40.02  67.83  44.88  232.4  26.19  1593.46 821% 5th 
Wells-Amaefule[28]  2.28  7.24  5.82  5.58  8.41  6.10  21.94  4.01  98.10 67% 2nd 
Kamath[23]  24.29  79.41  63.41  60.8  92.62  66.62  247.46  43.34  1150.05 914% 6th 
Dastidar[22]  5.22  36.49  12.24  12.14  57.81  6.05  49.02  11.44  1640.37 573% 3rd 
Stochastic simulation approach  2.87  3.33  6.21  7.75  14.00  2.05  10.94  14.00  17.60 64% 1st  

O. Ishola and J. Vilcáez                                                                                                                                                                                                                       
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features. Hence, all the features have a mean of zero and a standard 
deviation of one. 

GB was implemented on Scikit-learn [61]. The maximum depth in 
the GB algorithm was varied between 3 and 10 while the number of 
estimators was varied from 10 to 1000. The learning rate used in this 
study ranged from 0.0001 to 1 with other parameters in the GB algo
rithm kept at default. GridSearchCV [61] was used to select the best 
combination of maximum depth and number of estimators. The GB 
model was trained with data from all nine core plugs and combination of 
hyperparameters was selected based on a five-fold cross validation. In 
the second phase of GB deployment, the number of training data was 
systematically reduced from 100% to 0.5% to test the minimum number 
of training data required to make relatively good permeability pre
dictions. It’s worth highlighting that the test data remained constant for 
objective comparison. 

2.8. Statistical comparison of results 

The permeability of each core plug was estimated by averaging the 
permeability of the 3D pore microstructures that were stochastically 

generated from the PSD and porosity data (Fig. 4) [62–64]. The 
permeability of each core plug estimated using this method was 
compared against permeability estimated using five notable model 
equations through the mean absolute percentage error (MAPE) [59]. 
MAPE is the average of the absolute percentage error between measured 
permeability and estimated permeability for n pore plugs. It can be 
expressed as: 

MAPE =
1
n

∑n

i=1

⃒
⃒
⃒
⃒
km,i − ke,i

km,i

⃒
⃒
⃒
⃒ × 100 (10)  

where km,i, and ke,i is the measured permeability and estimated perme
ability of core plug i, while n is the total number of core plugs. MAPE was 
used in this study because it takes magnitude of the measured perme
ability into account, hence, an objective comparison across different 
scales can be made. 

2.9. Previous approaches to permeability estimation 

For comparison with the approach used in this study, permeability 
was estimated for all nine core plugs using five notable model equations 
that employ MICP data. This include Winland [24], Swanson [27], 
Wells-Amaefule [28], Kamath [23], and Dastidar models [22]. The 
respective equations are given by: 

kWinland = 49.4*R1⋅7
35 *∅1⋅47 (11)  

kSwanson - brine = 355*
[

sb

PC

]2.005

A
(12)  

kWells - Amaefule = 30.5*
[

sb

PC

]1.56

A
(13)  

kKamath = 347*
[

sb

PC

]1.60

A
(14)  

kDastridar = 4073*R1.64
wgm*∅3.06 (15)  

where sb is the percent bulk volume occupied by mercury, PC is the 
mercury capillary pressure (Psia), A is the maximum amplitude, R35 is 
35% mercury saturation of pore volume, ∅ is porosity (fraction), and 
Rwgm is the geometric mean of pore sizes. Eqs. (11)-(14) are dependent 
on the empirical correlation between a critical pore throat sizes where 
mercury infiltration is deemed to connect the entire pore system of rock 
sample while Eq. (15) considered the size of all the pore throat sizes that 

Table 2 
The respective absolute error (mD) across the nine core plugs in Table 1.  

Sample A B C D E F G H I 

Winland[24]  11.67  65.56  31.03  5.2  59.93  36.11  225.03 29.49  483.85 
Swanson[27]  8.28  52.74  27.06  4.71  59.10  27.85  217.27 19.5.0  1541.00 
Wells-Amaefule[28]  18.68  4.05  9.31  29.73  0.32  10.93  6.81 2.68  45.64 
Kamath[23]  3.33  76.22  48.28  25.49  83.89  49.59  232.33 36.65  1097.59 
Dastidar[22]  15.74  33.30  2.89  23.17  49.08  10.98  33.89 4.75  1587.91 
Stochastic simulation approach  18.09  0.14  8.92  27.56  5.27  14.98  4.19 7.31  34.86  

Table 3 
Data summary of the empirical deterministic permeability models explored in this study (modified after Comisky et al. [65]).  

Method Year Number of Samples Sample Source Permeability Measurement Type (s) Permeability Range (mD) Data Density* 

Winland[24] 1980 322 Mixed Air, Klinkenberg corrected N/A N/A 
Swanson[27] 1981 56 Mixed Brine 0.002–1000 0.06 
Wells-Amaefule[28] 1985 35 Siliciclastic pulse decay 0.00002–70 0.50 
Kamath[23] 1992 301 Mixed Klinkenberg corrected 1–2000 0.10 
Dastidar[22] 2007 150 Siliciclastic Klinkenberg corrected 0.0001–10000 0.02  

* Estimated by diving the number of samples by the permeability range. 
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are in a rock sample by taking their geometric mean. 

3. Results and discussion 

3.1. Stochastic pore-scale simulations of permeability 

Direct pore-scale simulations of permeability for the 3D pore mi
crostructures stochastically generated from the PSD curves (Fig. 4) yield 
a distribution of possible permeability values for the respective core plug 
(Fig. 7). The permeability for each core plug is calculated via arithmetic 
mean of possible permeability values. In comparison to existing deter
ministic model equations attempted in this study (Tables 1 and 2), 
computed permeability for the core plugs is generally closer to measured 
permeability of the respective core plug. Table 1 shows the relative rank 
of all the methods based on MAPE for the nine core plugs used in this 
study. The Wells-Amaefule model [28] ranks second place after our 
approach and is the only other approach with an MAPE less than 100%. 

Wells-Amaefule model is only an expansion of the empirical correlation 
introduced by Swanson [27] to include tight rocks with permeability as 
low as 0.00002 mD [21]. That said, the maximum permeability in the 
empirical correlation by Wells-Amaefule is 70 mD which is within a 
reasonable range compared to the permeability data used in our study 
(Fig. 1 and Table 3). It also implies that the Wells-Amaefule model might 
not work well with higher permeability data since the empirical model is 
fitted to a narrow permeability data range. That said, the permeability 
data density is relatively high compared to the other empirical model 
equations implemented in this study (Table 3). it is important to note 
that the permeability data used in the Wells-Amaefule model is gas 
permeability. However, the authors argued that it is on the same order of 
magnitude as Klinkenberg corrected and liquid permeability given the 
conditions under which the values are obtained [28]. In third place of 
MAPE ranking is the Dastidar model [22]. The Dastidar model [22] is 
fundamentally different from the other empirical model equations 
considered in this study. As show in Eq. (15), it takes the entire pore size 
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distribution into account by using their geometric mean. In contrast, the 
other four model equations (Eqs. 11–14) use a threshold in mercury 
saturation through the rock samples. However, the MAPE of perme
ability obtained using the Dastidar model was 573%, which is relatively 
high. This could be due to three reasons: 1) The Dastidar model gives 
more weight to porosity than the average pore-throat size (Eq. (15)). 
Hence, porosity is the controlling parameter in this model. Porosity is 
known to have a relatively poor relationship with permeability [18]. 2) 
The weights used in Dastidar model (Eq. (15)) is derived from incre
mental porosity [21,22] and not the pore populations. We believe pore 
population better reflects true frequency of pores in a rock sample. 3) 
The permeability data density used in developing the Dastidar model is 
relatively low (Table 3). The Winland approach [24] ranks 4th place in 
this study with an MAPE of 676%. The performance of this model could 
be due to the inclusion of uncorrected air permeability in modelling 
which is known to overestimate permeability [21]. 240 of the 322 
permeability data points used in developing the Winland model are 
uncorrected air permeability (Table 3). The Swanson-brine model [27] 
ranked 5 out of the 6 methods in this study. The Swanson- brine model 
[27] was established with permeability ranging from 0.02 mD to 1000 
mD, however, the permeability data density is low (Table 3). Given that 
the main difference between Wells-Amaefule model[28] and the 
Swanson- brine model[27] is a significant reduction in permeability data 
density in Swanson- brine model [27] (Table 3), we can conclude that 
this is responsible for the drop off in MAPE from 67% in Wells-Amaefule 
model [28] to 821% in Swanson-brine model [27]. It is noteworthy that 
permeability range used to establish the Wells-Amaefule model equation 
[28] (Table 3) is concentrated within the permeability data range of this 
study (Fig. 1) which might also influence the performance of Wells- 
Amaefule model [28]. This underlines a pitfall in the use of empirical 
model equations because it is usually suited to the data distribution from 
which it was derived and can be unreliable when the permeability data 
density is poor. Kamath model [23] ranked 6 out of 6 in in approaches 
tested in the study with a MAPE of 914%. Considering that permeability 
prediction is consistently overestimated across all core plugs (Table 1), it 
is plausible that the performance is driven by the datasets used in the 
study. Based on the relative performance of the model equations used in 
this study, we can conclude that, empirical permeability model 

equations are adversely impacted by permeability data density, the use 
of uncorrected air permeability, reliance on porosity as the key param
eter, and the distribution of permeability data used in fitting the rela
tionship. The use of the stochastic pore-scale simulation approach [16] 
overcomes these limitations because it mimics mechanistic processes 
that occur in rocks through the governing equation of fluid flow, and it 
considers different pore connectivity scenarios that can result in the 
same PSD and porosity. 

3.2. Computational reduction with machine learning 

Fig. 8 shows only a 10% difference between the permeability values 
computed from pore-scale flow simulations and a GB model trained with 
pore microstructural parameters (features) of 28 pore microstructures. It 
is worth noting that the total number of pore microstructures required to 
obtain a representative permeability value from pore-scale flow simu
lations across the nine core plugs employed in this study is ~4400 
(Fig. 9). This implies that the time required to obtain representative 
permeability prediction across the core plugs is reduced from 34 days 
(4,400 3D pore microstructures) to 6 h (28 3D pore microstructures). If a 
pretrained GB model is available, permeability predictions will take less 
than a second on a 16 GB RAM computer. Fig. 8 also shows that 
permeability predictions do improve with the size of training perme
ability data. Therefore, there is need for trade-off between available 
computing resources and accuracy the GB model. That said, Fig. 10 
shows 28 pore microstructures to be sufficient (green data points) as it is 
close to a perfect prediction (orange data points). However, if the 
objective is to replicate representative permeability values computed 
from pore-scale flow simulations with near perfection, a larger number 
of training permeability data is beneficial. It is worth nothing that the 
only information needed to implement this ML approach is porosity and 
PSD which can be obtained from X-ray imaging methods, MICP, and 
NMR data. 

4. Conclusions 

In this study we have employed a stochastic pore-scale simulation 
approach to predict the permeability of nine core plugs of both car
bonate and siliciclastic sources. Our stochastic pore-scale simulation 
approach is more accurate in predicting permeability compared to five 
notable deterministic model equations attempted in this study. To 
reduce the computational cost of predicting permeability by our sto
chastic pore-scale simulation approach, we used Gradient Boosting al
gorithm. This ML approach reduces the number of simulations needed to 
obtain representative permeability of all nine core plugs from 4,400 to 
28, significantly reducing required computational resources and time. 
There are at least three key applications for our results: 1) a pretrained 
ML model using our approach can be incorporated with NMR informa
tion obtained while drilling to provide permeability information of 
penetrated formations, instantaneously; 2) a pretrained ML model using 
our approach could provide a simple tool to make quick assessments of 
rock samples before full laboratory experiments are applied to get true 
permeability of core plugs; and 3) the approach used in this study can 
help improve the performance and accuracy of fluid flow and reactive 
transport simulation computer programs. In general, the result of this 
study is beneficial in resource exploration as well as environmental 
protection and management. 

CRediT authorship contribution statement 

Olubukola Ishola: Methodology, Investigation, Formal analysis, 
Software, Writing – original draft. Javier Vilcáez: Conceptualization, 
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O. Ishola and J. Vilcáez                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0016-2361(22)00902-4/h0260
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0260
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0260
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0265
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0265
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0265
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0270
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0270
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0270
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0275
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0275
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0275
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0280
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0280
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0280
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0285
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0285
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0285
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0290
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0295
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0295
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0300
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0300
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0300
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0305
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0305
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0310
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0310
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0315
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0315
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0320
http://refhub.elsevier.com/S0016-2361(22)00902-4/h0320
https://doi.org/10.2118/110050-MS

	Machine learning modeling of permeability in 3D heterogeneous porous media using a novel stochastic pore-scale simulation a ...
	1 Introduction
	2 Material and methods
	2.1 Workflow
	2.2 Permeability measurement
	2.3 Pore size distribution (PSD) data
	2.4 Stochastic generation of 3D pore microstructures
	2.5 Pore-scale simulations
	2.6 Permeability calculation
	2.7 Machine learning implementation
	2.8 Statistical comparison of results
	2.9 Previous approaches to permeability estimation

	3 Results and discussion
	3.1 Stochastic pore-scale simulations of permeability
	3.2 Computational reduction with machine learning

	4 Conclusions
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgments
	Funding
	Appendix A Supplementary data
	References


