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We used a stochastic 3D pore-scale simulation approach to statistically elucidate the effect of stochastic pore
connectivity on permeability and hydraulic tortuosity of highly heterogeneous porous media such as carbonate
rocks. The novel nature of our workflow lies in the generation of multiple 3D pore microstructures of the same
effective porosity, pore size distribution, number of pores, but different stochastic pore connectivity where the
only pore microstructural feature changing is pore connectivity. This workflow allows the explicit study of the
role pore connectivity plays in permeability and hydraulic tortuosity without the interference of other pore
microstructural factors or noise. Permeability and hydraulic tortuosity of the 3D pore microstructures of the
aforementioned characteristics was obtained from direct pore-scale simulations using STAR CCM+. Our
approach suppresses the necessity of conducting hundreds of experimental measurements and allows the training
of neural network models to predict permeability and hydraulic tortuosity. We show that an approximate twofold
increase in heterogeneity (pore size standard deviation), results in a two orders of magnitude reduction in
permeability, and that an increase in heterogeneity results in a systematic shift of permeability from normal
distribution to lognormal distribution. While the stochastic connectivity of pores has a significant impact on
permeability, it has only minimal effect on hydraulic tortuosity. Furthermore, the predictability of permeability
from hydraulic tortuosity decreases with an increasing heterogeneity. The high coefficient of determination
obtained in permeability prediction with a feedforward neural network (NN) model trained with of PTSD data
along with pore surface area parameters indicates that NN algorithms can capture the effect of stochastic pore
connectivity on permeability. Since PTSD data and surface parameters can be obtained from mercury injection
capillary pressure (MICP) measurements, our findings have large implication toward the prediction of perme-
ability and hydraulic tortuosity in highly heterogeneous porous media.

1. Introduction

Predictions of subsurface flow processes requires knowing the flow
and transport properties of subsurface porous media, among which
permeability and hydraulic tortuosity are the main flow and transport
properties dictating flow of fluids and transport of solutes. Permeability
is the ease of fluid flow through porous media (Friedman, 1976; Zhang,
2013) and hydraulic tortuosity is the ratio of actual flow path length to
the straight-line distance between ends of the flow path (Carman, 1937;
Clennell, 1997; Kozeny, 1927). Permeability of porous media is tradi-
tionally computed from deterministic model equations that relate
permeability to other properties such as porosity, sphericity of grains,
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hydraulic tortuosity, and surface area (Carman, 1937; Kozeny, 1927).
While permeability values obtained from deterministic equations are
relatively effective to predict the flow of fluids in homogeneous porous
media such as siliciclastic rocks and soil materials, they do not always
suit flow prediction in highly heterogeneous porous media such as car-
bonate rocks (He et al., 2014). The use of porosity as the key parameter
in estimating permeability of carbonate rocks is known to be very
erratic. It has been shown that a single porosity value can have a
five-order of magnitude range in permeability (Westphal et al., 2005a).
This is due to the complex pore microstructure of carbonate sedimentary
rocks. Fundamentally, flow and transport properties of porous media are
a function of pore size distribution and random pore connectivity that
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Fig. 1. Representative 3D pore-microstructures of stochastic pore connectivity. A) group I: 0 pm pore size standard deviation, B) group II: 5 pm pore size standard
deviation, and C) group III: 11 pm pore size standard deviation. The mean pore size is 10 pm in all three groups. The brown spherical balls are the pores while the
background is the solid matrix. The black bar represents 100 pm in the respective images.

can result in complex heterogeneous pore microstructures (Algive et al.,
2012; Chen et al., 2015; Cheng et al., 2019). Pore connectivity describes
the degree of connection between pores in a rock. The magnitude of pore
connectivity is the sum of the effects of pore-throat sizes (Dutton and
Loucks, 2010) and the average number of pores connected to a single
pore in a rock (Dutton and Loucks, 2010; Bernabé et al., 2010).
Capturing the complexity of pore connectivity in carbonate rocks re-
quires stochastic models (Whitten, 1977). This has been shown to better
represent flow behavior in complex heterogeneous systems compared to
deterministic approaches (Apostolopoulou et al., 2019).

To consider the effect of pore size distribution, permeability can be
estimated from Nuclear Magnetic Resonance (NMR) data using the
Timur-Coates (TC) equation (Timur, 1968) and the
Schlumberger-Doll-Research (SDR) equation (Kenyon, 1992). The use of
pore size distributions has been shown to yield more accurate rock
permeability values compared to the sole use of porosity (Westphal
et al., 2005b). That said, its application in carbonate sedimentary rocks
is still problematic due to heterogeneity (Choquette and Pray, 1970) and
pore connectivity (Westphal et al., 2005b). This is because the TC and
SDR equations assume that pores are evenly distributed and evenly
connected which is not true (Westphal et al., 2005b). In fact, these
model equations are known to over-estimate permeability due to the use
of total porosity instead of effective porosity as the porosity parameter
(Westphal et al., 2005b).

Mercury injection capillary pressure (MICP) is another tool
employed to estimate permeability of rocks of complex pore micro-
structures through empirical model equations (Dastidar et al., 2007;
Kamath, 1992; Kolodzie, 1980; Pittman, 1992; Purcell, 1949; Swanson,
1981; Walls and Amaefule, 1985). MICP provides pore-throat size dis-
tributions within a rock. The use of MICP data in predicting permeability
usually relies on a percentage of mercury saturation in a rock sample
(Kamath, 1992; Kolodzie, 1980; Pittman, 1992; Purcell, 1949; Swanson,
1981; Walls and Amaefule, 1985) or a weighted average of pore-throat
sizes obtained from MICP (Dastidar et al., 2007) and do not fully account
for pore connectivity. Other methods employed in obtaining pore size
distribution of rocks includes the use of scanning electron microscope
(SEM), focused ion beam-scanning electron microscope (FIB-SEM),
micro-CT scanners, and gas adsorption techniques (Anovitz and Cole,
2015; Blunt et al., 2013; Xiong et al., 2016).

Like permeability, hydraulic tortuosity is usually estimated from
deterministic model equations that employs porosity as the key
parameter (Kimura, 2018; Lala, 2020). Such estimates of hydraulic
tortuosity might also mislead in reactive and/or solute transport simu-
lations given that size of individual pores and their connectivity might
play a significant role in the path through which solutes are transported
in complex pore microstructures.

At present, a predictive understanding of the relationship between
complex pore microstructure and flow properties of carbonate sedi-
mentary rocks is not fully developed (Bijeljic et al., 2013; Zhang and Cali,
2021), leading to the reliance on empirically derived permeability and
hydraulic tortuosity properties obtained by analogy or statistical anal-
ysis of past data (England et al., 1994). This is associated with enhanced
oil recovery, geological carbon storage (Shabani et al., 2020; Shabani
and Vilcaez, 2017, 2018, 2019; Vilcaez, 2015), and petroleum produced
water disposal (Ebrahimi and Vilcaez, 2018a, 2018b, 2019; Vilcaez,
2020), for instance.

To improve this understanding, this study employs a stochastic pore-
scale simulation approach. The approach consists of constructing hun-
dreds of 3D pore microstructures of the same effective porosity, pore size
distribution, number of pores, but different stochastic pore connectivity,
just like it happens in rock samples. Permeability and hydraulic tortu-
osity of the constructed 3D pore microstructures of the aforementioned
characteristics are obtained from direct pore-scale simulations. The use
of direct pore-scale simulations to obtain permeability and hydraulic
tortuosity is a standard practice in pore-scale modeling (Soete et al.,
2017; Vilcaez et al., 2017). Our hypothesis is that enough pore micro-
structures where the only pore microstructural feature changing is pore
connectivity allows improved investigation into the role of pore con-
nectivity in fluid flow without the interference of other factors.
Furthermore, it will help assess the predictability of pore-scale perme-
ability and hydraulic tortuosity without explicit inclusion of pore con-
nectivity in feedforward neural network (NN) models.

Feedforward NN is a type of artificial neural network architecture
where neurons are grouped by layers and connections which only move
in the direction of the output (Mendes et al., 2002; Erofeev et al., 2019;
Al Khalifah et al., 2020). NN is chosen as the machine learning algorithm
for this study because of its ability to deduce the best set of weights that
map a set of input features to the desired target. This ability is useful in
this study because pore connectivity is random, and it is the only pore
microstructural parameter varying. Hence, the random nature of pore
connectivity is captured by NN if accuracy of prediction on test dataset is
high. Other popular NN approaches in geosciences includes convolu-
tional neural network (CNN) which is often used for making predictions
from image data (Graczyk and Matyka, 2020; Tembely et al., 2021) and
recurrent neural networks (RNN) which was developed for sequential or
time series data (Jiang et al., 2021; Song et al., 2020). More recently,
Bayesian neural networks (BNN) are being used to take uncertainty into
account and overcome overfitting which is one of the principal chal-
lenges of neural networks (Feng et al., 2021a, 2021b).

The novel nature of our workflow lies in the generation of multiple
pore microstructures where the only pore microstructural feature
changing is pore connectivity. This workflow allows elucidation of the
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Fig. 2. Lognormal pore size distribution (PSD) curves employed to generate the 3D pore microstructures of stochastic pore connectivity. A) shows the probability
density function (pdf) while B) is the corresponding cumulative distribution function (cdf). A pore size standard deviation of 0, 5, and 11 pm represents group I, II,

and III respectively. The mean pores size is 10 pm in all three groups.
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Fig. 3. Mean pore size REV analysis showing a minimum of 700 pores can be
deemed representative because the percentage deviation from mean (red line)
is within 3% (green box) when the number of pores is increased further.

role pore connectivity on permeability and hydraulic tortuosity without
the interference of other pore microstructural factors, noise, and/or
assumptions. Hence, we can determine the degree of influence of pore
connectivity on pore microstructures with respect to set levels of het-
erogeneity and evaluate if NN models capture the stochastic nature of
pore connectivity.

2. Methods
2.1. Stochastic construction of 3D pore microstructures

To elucidate the effect of random pore connectivity on permeability
and hydraulic tortuosity of highly heterogeneous porous media, three
groups of 3D pore microstructures were generated. The 3D pore mi-
crostructures in each group had the same pore size distribution and
effective porosity but different stochastic connectivity between the
pores (Fig. 1).

The input data used to generate each group of the 3D pore micro-
structures are pore geometry, effective porosity, and pore size distri-
bution (PSD). Spheres were used as the pore geometry in this study
because the focus is on pore connectivity, thus, we needed to constrain

.>
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size v

<_

Fig. 5. A schematic comparing pore-throat (red line) and pore size (blue line).

0 Pressure (Pa) 1

Fig. 4. Pore-scale simulations. A) A polyhedral mesh type was applied to adequately capture the complex nature of a 3D-pore-microstructure. The average pore size
is 10 pm while the minimum cell size of the mesh is 0.75 pm. B) Representative pressure distribution across a 3D pore microstructure at steady state conditions. The

inlet is on the left (red arrows) and the outlet is on the right (blue arrows).
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Fig. 6. Histogram of pore-throat size distribution of a single 3D pore micro-
structure for A) group I, B) group II, and C) group IIL

pore geometry. It is noteworthy that the use of spherical pores is routine
in pore network modelling (Huang et al., 2020; Zheng et al., 2022;
Baychev et al., 2019; Yang et al., 2018). The effective porosity of all the
generated 3D pore microstructures is consistent with an average of 19%

Journal of Natural Gas Science and Engineering 105 (2022) 104719

and a coefficient of variation of 1%. Coefficient of variation (CV) reflects
the degree of variation in data from the mean. CV is mathematically
expressed as:

CV— Standard deviation

1 & 2
iation =, [~y (D; - 2
Standard deviation n 2 (D; —m) 2)

where n is the number of pores, D; is the diameter of pore i, and m is the
mean diameter of the pores.

Lognormal distribution curves were used to represent PSD because of
their frequent use to describe PSD of rocks (Ding et al., 2015; Huang
et al., 2019; Li et al., 2020; Munawar et al., 2021; Naraghi and Jav-
adpour, 2015; Niu and Zhang, 2018). For this study, the mean pore size
of all generated 3D pore-microstructures is 10 pm with a pore size
standard deviation of 0, 5, and 11 pm for groups I, II, and III, respectively
(Fig. 2).

While the average pore size in rocks can vary widely, a dominant
pore size of about 10 pm has been reported for different diagenetic
stages of carbonate rocks (van der Land et al., 2013). The increase in
standard deviation in each group is to mimic different levels of hetero-
geneity in real rock samples. By implication, group I with a standard
deviation of 0 is comprised of pores of the same sizes but stochastic pore
connectivity (Fig. 1.A) and a higher pore size standard deviation cor-
responds to an increased degree of heterogeneity in PSD (Fig. 1.B and 1.
C). Groups I, II, and III comprises of 991, 990, and 805 3D
pore-microstructures respectively. The average number of pores in each
3D pore microstructures was 973 with a CV of 3% across all the
generated 3D pore microstructures. The number of pores in all three
groups of 3D pore microstructures are practically the same to suppress
the effect of number of pore-throats on permeability and hydraulic
tortuosity.

The generation of 3D pore microstructures of stochastic pore con-
nectivity was done using statistical tools on MATLAB together with the
CAD capabilities of STAR CCM+® (a computational fluid dynamics
software by Siemens). The procedure consisted of the generation of
random sizes of pores based on a given mean pore size and standard
deviation of the PSD curve. The coordinates of pores and thus the sto-
chastic connectivity between pores in the 3D pore microstructure was
decided using a uniform distribution function. This ensured an equal
probability of selecting the location of the pore in the 3D pore micro-
structure and an equal probability in the degree of overlap between the
pores. Two controls were then applied. The first control was to ensure
that the first pore is centred in the 3D pore microstructure. This gua-
rantees that the pores are not concentrated in certain regions of the 3D
pore microstructures, allowing the pore networks to spread out inside
the respective rock domains. The second control was to ensure that all
the pores were connected; hence porosity is equivalent to effective
porosity in this study. The generation of the 3D pore microstructures was
automated and run on Oklahoma State University’s Pete Supercom-
puter, which provided 32 cores and 96 GB of RAM for each run. It took
5-35 min to generate each 3D pore microstructure.

The rock domain within which the 3D pore microstructures are
generated is a cube (Fig. 1) with varied length scale across the three
groups. This is due to the need to have a relatively fixed effective
porosity, PSD, and number of pores in each group. To verify that the
varying length scales do not impact the study, a representative
elementary volume (REV) analysis was conducted (Bear, 1972). This
analysis has been used in several studies to justify that macroscopic
properties (e.g., porosity, organic matter content, and specific surface
area) are not controlled by sample volume (Mostaghimi et al., 2012;
Peng et al., 2012; Saraji and Piri, 2015; Wu et al., 2017). For this study,
the REV analysis was conducted based on average pore size to guarantee
that the pore size distribution and porosity is consistent for

100 (@)
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Table 1
Statistical analysis of permeability.
Group Mean pore size (pm) Standard deviation of PSD (pm) Mean Permeability (mD) CV of Permeability Skewness Kurtosis
1 10 0 24% 0.57 3.59
I 10 5 44% 2.32 16.27
III 10 11 161% 6.24 62.97

pore-microstructures in each group. Here, the number of pores in the 3D
pore microstructures is sufficient when the difference between the av-
erages of the pores sizes is insignificant as the number of pores is
increased further. Furthermore, the mean of the PSD used to generate
the data set is known (10 pm); therefore, the mean pore size at REV must
be closer to this number. The REV analysis was conducted for group III of
3D pore microstructures since this group constitutes the most severe
scenario of heterogeneity; hence, it requires the largest number of pores
to reach a representative value. Fig. 3 shows 700 pores to be represen-
tative for the range of pore sizes used in this study. By contrast, the
average number of pores in this study is 973, resulting in a length scale
of 133 pm for group I, 169 pm for group II, and 302 pm for group III of
3D pore microstructures.

2.2. Pore-scale simulations of flow

Simulation of incompressible flow through the generated 3D pore
microstructures of stochastic pore connectivity was conducted with
STAR-CCM+® which uses the finite volume methodology to solve the
mass continuity equation:

VopV+ZL =0 3)

SIS

and Navier-Stokes momentum equation:

67 — — 1 —2—
(V)= TP TV )
ot p

where p is density of the fluid, v is kinematic viscosity, P is pressure, t is

time, and V is fluid velocity.

STAR-CCM+® has been shown in previous works to accurately
replicate fundamental pore-scale flow (Yang et al., 2013, 2015) and
solute transport processes (Yang et al., 2015; Oostrom et al., 2014). The
first step in flow simulation was to conduct a mesh independence study
to ensure that flow velocity profiles obtained from solving the governing
equations (3) and (4) is independent of the mesh resolution. Twenty
samples were randomly selected for this purpose. It involves steadily
increasing the number of cells in a flow domain and computing the
average velocity. A model is deemed mesh independent when the
change in average velocity is insignificant for an increase in the mini-
mum cell size (See Fig. S1 in the supplementary data). The final mesh
was generated with a minimum cell size of 0.75 pm with other param-
eters at default. For this study, an unstructured polyhedral mesh type
was used. This helped capture the complex nature of the 3D pore mi-
crostructures (Fig. 4).

The average number of cells per pore microstructure is 640,000
which ultimately results in an average computational time of 15 min per
simulation. The governing equations (3) and (4) were solved for a steady
state condition. For simplicity, the fluid used in the simulations was
water with no chemical reaction between the fluid and the pore mi-
crostructures. The rock domain had closed boundaries except for two
opposite sides through which flow was allowed. A stagnation inlet
pressure condition was applied at the inlet with a fixed pressure of 1 Pa
while an outlet pressure of 0 Pa is fixed at the outlet, maintaining a
pressure drop of 1 Pa across the two open boundaries (Fig. 4).

A no-slip wall condition was applied to the remainder of the
computational domain. The Reynolds number of the flow simulations
were less than 0.0001 in all 3D pore-microstructures in this study. This

makes the calculation of permeability with Darcy’s law valid in all the
generated 3D pore-microstructures (Chen et al., 2014). Each pore-scale
numerical simulation reached steady state conditions before 150 itera-
tions (See Fig. S2 in the supplementary data).

Simulations are stopped at the 200th iteration and solutions are
deemed to converge when the mass flow at the inlet and the outlet are
equal and within 0.1% of the respective mass flow in the prior iteration.
A secondary condition was also added to ensure that the residuals
(continuity, x momentum, y momentum, and z momentum) are all less
than 107%. This process was automated and run on the same super-
computing cluster used in generating the 3D pore microstructures.

2.3. Permeability estimation

Permeability was calculated from Darcy’s equation (Vilcaez et al.,
2017; Chen et al., 2014; Darcy, 1856). Mathematically, Darcy’s equation
is expressed as:

_VxuxL

K
AP

(5)
where V is the Darcy flow velocity in the rock domain in m/s, K is the
absolute permeability of the rock domain in m?, AP is the pressure drop
in the principal direction of the fluid in Pa, u is the dynamic viscosity of
the fluid in Pa-s, and L is the length along the direction of the pressure
drop in meters. Calculated permeability was converted from m? to mD.
Darcy flow velocity can be rewritten as:

y== 6

" (6)
where Q is the volumetric flowrate through the inlet or outlet in m>/s
and A is the cross-sectional area perpendicular to the flow at the
respective boundary in m2. Volumetric flowrate can also be rewritten as:

oY @)

where M is the mass flowrate through the inlet or outlet in kg/s and p is
the density of the fluid flowing through the medium in kg/m°.
Combining (6) and (7):

M
V=i, ®
Combining (5) and (8):
M xuxL
- AP*A*[) )

Since properties of the fluid (density and viscosity of water) and
pressure drop are constant, permeability is calculated from mass flow
rate and length scale (L’l) of the digital rock domain.

2.4. Hydraulic tortuosity estimation

Hydraulic tortuosity can be calculated in terms of the flow velocity
(Vilcaez et al., 2017; Duda et al., 2011):

T:V,- (10)

where V is the average magnitude of the intrinsic velocity over the entire
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system volume in m/s, and V; is the volumetric average of the compo-
nent parallel to the macroscopic flow direction in m/s.

By implication, the smallest possible hydraulic tortuosity is 1, which
indicates a straight-line flow path. An increase in the hydraulic tortu-
osity value translates into more tortuous and longer flow path.

Journal of Natural Gas Science and Engineering 105 (2022) 104719
2.5. Pore microstructural parameters

To elucidate the effect of stochastic pore connectivity on perme-
ability and hydraulic tortuosity of complex heterogeneous rocks, the
following parameters were obtained from the generated 3D pore
microstructures.

2.5.1. Pore-throat sizes

The pore-throat size is the length at the intersection between two
pores (Fig. 5). Pore-throats sizes are constrained by the sizes of the pore
they connect since a pore-throat cannot be larger than the size of the
pores they are connecting. The size of the pore-throats for each group of
3D pore microstructures were calculated, resulting in a relatively uni-
form pore-throat size distribution (PTSD) for 3D pore microstructures
constructed from uniform PSD (Fig. 6A) and a lognormal PTSD for 3D
pore microstructures constructed from lognormal PSD (Fig. 6B and C).

2.5.2. Surface area

The surface area (S) of each 3D pore microstructure was calculated.
Although surface area is not a direct subject of this study, it plays a key
role in the velocity distribution in porous media. This is because of the
no-slip condition at the pore-fluid boundary resulting in zero velocity at
the pore walls. Therefore, it has an inverse relationship with the average
flow velocity through porous media which is consequential for perme-
ability and hydraulic tortuosity.

Two parameters were derived from the surface area, namely pore
volume normalized surface area (pS) which is given by:

PS=4 an

and bulk volume normalized surface area (bS) which is given by:

S
ps—S 12
S B 12)
where S, P, and B are the surface area of pores (mz), pore volume (m3),
and the bulk volume of the digital rock (m®) respectively.

2.6. Neural network implementation

A feedforward neural network (NN) was applied to assess the pre-
dictability of permeability and hydraulic tortuosity using PTSD data and
surface area parameters. Ten features were used for training the NN
algorithm. This includes bulk volume normalized surface area (bS), pore
volume normalized surface area (pS), standard deviation of the PTSD,
1st percentile of the PTSD, 10th percentile of the PTSD, 25th percentile
of the PTSD, 50th percentile of the PTSD, 75th percentile of the PTSD,
90th percentile of the PTSD, and domain length scale. The domain
length scale accounts for the different length scales of the three groups of
3D pore microstructures. The targets are permeability and hydraulic
tortuosity. Correlation between all the features and targets were exam-
ined in each group to help evaluate the predictability of the targets from
individual features and identify possible multicollinearity between fea-
tures used in this study (See Table S1, S2 and S3 in the supplementary
data). The features and targets from the three groups were combined for
use in the NN algorithm to maximize its performance. In the pre-
processing stage of the NN algorithm deployment, the data was
randomly split into training, validation, and test data in a 7:1:2 ratio,
respectively. The data was randomly sampled to remove bias and the
percentage of training data is deemed sufficient given the total size of
our data (Verdhan, 2020). The training data was used to train the NN
algorithm while the validation data were used to check the predict-
ability of the target properties with the NN algorithm after each epoch to
guard against overfitting. The test data was finally used to check the
predictability of permeability and hydraulic tortuosity from the trained
NN algorithm. Prior to training, the features were standardized using the
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with the number of 3D pore microstructures.

z-scoring technique (Mohamad and Usman, 2013). The NN architecture
of the permeability model used in this study comprised of an input layer,
two hidden layers with 64 neurons each, an output layer, and a 10%
dropout before the output layer as a second measure to prevent over-
fitting. The two hidden layers in the permeability model were assigned
sigmoid activation functions. For the hydraulic tortuosity model, the NN
architecture is made up of an input layer, a single hidden layer with 64
neurons and tanh activation function, and an output layer. The loss
function used in both models is the mean squared error which was
minimized with the Adam optimizer (Kingma and Ba, 2014) at a
learning rate of 0.001. The choices of activation function, number of
neurons, and number of hidden layers were based on comparative per-
formance when tuning the hyperparameters. A linear activation func-
tion was used as output since both target properties are continuous
values. The epoch was set to 20,000 with a patience of 100. The best
training weights was selected based on the mean squared error of the
validation data.

3. Results and discussion
3.1. Heterogeneity and permeability

Table 1 summarizes mean permeability values estimated for groups
L, II, and III of 3D pore microstructures of different degree of heteroge-
neity (pore size standard deviation).

As expected, an increase in the degree of heterogeneity (pore size
standard deviation) reduces permeability because effective porosity and
the number of pores in all generated 3D pore microstructures is

approximately the same. If effective porosity and the number of pores is
the same, an increase in heterogeneity results in an increase of the
number of smaller pore-throats as shown in Fig. 6. Since pore-throat
sizes are generally smaller when heterogeneity is increased and pore-
throats are always smaller than pore bodies (Fig. 5), it is apparent that
PTSD is a key control of permeability. An approximate twofold increase
in heterogeneity (pore size standard deviation) from group I to group III
results in decrease of the mean pore-throat size from 5.99 pm to 3.79 pm
(Fig. 6) and a two orders of magnitude reduction in average perme-
ability from 28.5 mD to 0.27 mD (Table 1).

The resulting lognormal permeability distribution (Fig. 7) has been
reported for real rocks (Malin et al., 2020; Sahin et al., 2007) validating
the stochastic pore-scale simulation approach used in this study. A key
contribution of this study is that an increase in heterogeneity also results
in an increase of the skewness and kurtosis of the permeability distri-
bution curves (Fig. 7) which represents a systematic shift of permeability
from normal distribution to lognormal distribution. This also results in
an increase in the CV of permeability from 24% to 161% (Table 1). Fig. 8
shows that the average permeability for each group does not signifi-
cantly change when the number of generated 3D pore microstructures is
more than 300, indicating that representative nature of this analysis.

By implication, the use of Gaussian techniques to obtain perme-
ability realizations using geostatistics (e.g., Kriging) is not recom-
mended in modelling and simulations of fluid flow. The larger the
standard deviation of pore size in the PSD of a rock, the more skewed
and long tailed the distribution of permeability that can be associated to
the rock.

Furthermore, variation in the permeability of group I with uniform
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Table 2
Statistical analysis of hydraulic tortuosity.
Group Mean pore size (pm) Standard deviation of PSD (pm) Mean Hydraulic Tortuosity CV of Hydraulic Tortuosity Skewness Kurtosis
I 10 0 2.05 10% 0.62 3.82
II 10 5 2.16 13% 1.05 5.93
III 10 11 2.38 25% 1.21 5.94

PSD is an indication that PSD is not enough to accurately predict the
permeability of rocks. This is because even if pore size is the same, pore-
throat size is varying due to the stochastic nature of pore connectivity
(Fig. 6A). Hence, it is more reliable to obtain permeability prediction
from PTSD compared to the use of porosity and/or PSD.

Heterogeneity also impacts the relationship between permeability
and hydraulic tortuosity. Fig. 9 shows the predictability of permeability
from hydraulic tortuosity to decrease with an increase in heterogeneity.
The deteriorating relationship is evident from the decreasing R? value.
Therefore, equations that leverage on the relationship between perme-
ability and hydraulic tortuosity such as the Kozeny (1927) and
Kozeny-Carman models (Carman, 1937) might give misleading esti-
mates of flow properties in heterogeneous porous media.

3.2. Heterogeneity and hydraulic tortuosity

Table 2 summarizes mean hydraulic tortuosity values estimated for
groups I, II, and III of 3D pore microstructures of different degree of
heterogeneity (pore size standard deviation). An increase in heteroge-
neity increases the average hydraulic tortuosity in each group.

This is expected given the inverse relationship between heteroge-
neity and permeability (Table 1) and the inverse relationship between
hydraulic tortuosity and permeability (Fig. 9). Fig. 8 shows that the
average hydraulic tortuosity does not significantly change after 300
samples, indicating the representative nature of this study. Like the
distribution of permeability, the distribution of hydraulic tortuosity is
more skewed and long tailed (Table 2 and Fig. 10) as heterogeneity
(standard deviation of PSD) increases from group I to group III (Fig. 1).
However, it is still close to a normal distribution in the most severe case
of heterogeneity (Fig. 10). Furthermore, there is only a small change in
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mean hydraulic tortuosity across the three groups, implying that PTSD
resulting from the random connectivity of pores does not have a sig-
nificant effect on hydraulic tortuosity. However, it is noteworthy the
results in Table 2 indicates that hydraulic tortuosity of rocks will
generally vary even if the porosity and PSD is the same.

3.3. Permeability and hydraulic tortuosity predictability with neural
networks

Fig. 11 compares direct pore-scale simulations and NN predictions of
permeability and hydraulic tortuosity. The coefficient of determination
(R2) of permeability and hydraulic tortuosity are 0.94 (Fig. 11.A) and
0.23 (Fig. 11.C) respectively.

The high coefficient of determination obtained with the use of the
NN to predict permeability indicates NN algorithms trained using PTSD
data and surface area parameters can significantly capture the stochastic
nature of pore connectivity of real rocks. Furthermore, the addition of
hydraulic tortuosity as a parameter in permeability prediction improves
the R? metric from 0.94 to 0.98 (Fig. 11.A and 11.B).

Hydraulic tortuosity prediction with the corresponding NN model is
poor. However, the coefficient of determination for hydraulic tortuosity
prediction increases from 0.24 to 0.50 when permeability is added to the
training parameters (Fig. 11.C and 11.D). It is worth noting that the
mean absolute error of the test data is only 0.23 without permeability as
a parameter and 0.17 when permeability is added as a parameter. These
errors are very small compared to the ranges of possible hydraulic tor-
tuosity, up to 4.5 (Fig. 10) for a single porosity value that was used in
this study, underlying the merits of using NN with parameters selected in
this study compared to model equations that estimate hydraulic tortu-
osity directly from porosity.

The use of NN model for prediction of permeability and hydraulic
tortuosity as used in this study is practical since PTSD data, surface area
parameters, and domain length can be obtained from MICP measure-
ments and routine analysis. The inclusion of permeability-hydraulic
tortuosity relationship in the respective NN models has been shown to
be beneficial (Fig. 11); however, it might also have a negative effect on
performance if model is not properly trained (Fig. 12). At smaller
epochs, the inclusion of permeability-hydraulic tortuosity relationships
in both NN models could worsen performance (Fig. 12). Hence, estab-
lishing an optimal number of epoch is very vital.

4. Conclusions

This study has employed a stochastic pore-scale simulation approach
to statistically elucidate the effect of stochastic pore connectivity on
permeability and hydraulic tortuosity of highly heterogeneous porous
media such as carbonate rocks. Furthermore, we assessed the capacity of
NN to capture the stochastic nature of pore connectivity. The novelty of
this study lies in the generation of multiple pore microstructures where
the only pore microstructural feature changing is pore connectivity,
allowing the explicit study of the role of pore connectivity on flow
without the interference of other factors. The key findings from this
novel approach are as follow:

1. An increase in heterogeneity (pore size distribution) drives the dis-
tribution of permeability farther from normal distribution towards
lognormal distribution. This can be crucial when introducing
permeability heterogeneity into reservoir scale models of perme-
ability. Like permeability, hydraulic tortuosity also deviates from
normal distribution; however, the degree of divergence from normal
distribution is insignificant.

2. Pore-throat size distribution and pore surface area obtainable from
rock MICP data can be leveraged in machine learning algorithms
such as feedforward neural networks to make predictions of
permeability with a high degree of accuracy. On the other hand,
hydraulic tortuosity is poorly predicted using the same approach
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which suggests that pore-throats or surface area are not the key
controls of hydraulic tortuosity.

3. The use of NN could serve as an efficient alternative to direct pore-
scale simulations of permeability which are computationally
intensive.

4. In comparison to model equations that employ porosity and/or pore
size distribution as the key predictive parameter for permeability and
hydraulic tortuosity, the use of feedforward neural network provides
a better prediction given the variability in permeability and hy-
draulic tortuosity obtained at a fixed porosity and pore size distri-
bution particularly when heterogeneity is high.

5. The relationship between permeability and hydraulic tortuosity de-
teriorates with increase in heterogeneity. Therefore, deterministic
equations that relate permeability and hydraulic tortuosity (for
example, the Kozeny-Carman equation) might be less reliable at
higher degrees of heterogeneity in rocks.

In general, the outcome of this statistical and neural network analysis
helps improve our understanding about the effect of heterogeneity and
pore connectivity on fluid flow and solutes transport. This insight has a
broader significance in enhanced oil recovery, geological carbon stor-
age, petroleum produced water disposal, resource exploration and pro-
duction, as well as the management of subsurface environment.
Furthermore, it introduces a way to leverage the use of MICP data to
make relatively accurate predictions of permeability and hydraulic
tortuosity. In a follow up study, the established pore-scale stochastic
approach will be used to predict permeability of actual carbonate rocks
at Darcy’s scale.
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