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A B S T R A C T   

We used a stochastic 3D pore-scale simulation approach to statistically elucidate the effect of stochastic pore 
connectivity on permeability and hydraulic tortuosity of highly heterogeneous porous media such as carbonate 
rocks. The novel nature of our workflow lies in the generation of multiple 3D pore microstructures of the same 
effective porosity, pore size distribution, number of pores, but different stochastic pore connectivity where the 
only pore microstructural feature changing is pore connectivity. This workflow allows the explicit study of the 
role pore connectivity plays in permeability and hydraulic tortuosity without the interference of other pore 
microstructural factors or noise. Permeability and hydraulic tortuosity of the 3D pore microstructures of the 
aforementioned characteristics was obtained from direct pore-scale simulations using STAR CCM+. Our 
approach suppresses the necessity of conducting hundreds of experimental measurements and allows the training 
of neural network models to predict permeability and hydraulic tortuosity. We show that an approximate twofold 
increase in heterogeneity (pore size standard deviation), results in a two orders of magnitude reduction in 
permeability, and that an increase in heterogeneity results in a systematic shift of permeability from normal 
distribution to lognormal distribution. While the stochastic connectivity of pores has a significant impact on 
permeability, it has only minimal effect on hydraulic tortuosity. Furthermore, the predictability of permeability 
from hydraulic tortuosity decreases with an increasing heterogeneity. The high coefficient of determination 
obtained in permeability prediction with a feedforward neural network (NN) model trained with of PTSD data 
along with pore surface area parameters indicates that NN algorithms can capture the effect of stochastic pore 
connectivity on permeability. Since PTSD data and surface parameters can be obtained from mercury injection 
capillary pressure (MICP) measurements, our findings have large implication toward the prediction of perme
ability and hydraulic tortuosity in highly heterogeneous porous media.   

1. Introduction 

Predictions of subsurface flow processes requires knowing the flow 
and transport properties of subsurface porous media, among which 
permeability and hydraulic tortuosity are the main flow and transport 
properties dictating flow of fluids and transport of solutes. Permeability 
is the ease of fluid flow through porous media (Friedman, 1976; Zhang, 
2013) and hydraulic tortuosity is the ratio of actual flow path length to 
the straight-line distance between ends of the flow path (Carman, 1937; 
Clennell, 1997; Kozeny, 1927). Permeability of porous media is tradi
tionally computed from deterministic model equations that relate 
permeability to other properties such as porosity, sphericity of grains, 

hydraulic tortuosity, and surface area (Carman, 1937; Kozeny, 1927). 
While permeability values obtained from deterministic equations are 
relatively effective to predict the flow of fluids in homogeneous porous 
media such as siliciclastic rocks and soil materials, they do not always 
suit flow prediction in highly heterogeneous porous media such as car
bonate rocks (He et al., 2014). The use of porosity as the key parameter 
in estimating permeability of carbonate rocks is known to be very 
erratic. It has been shown that a single porosity value can have a 
five-order of magnitude range in permeability (Westphal et al., 2005a). 
This is due to the complex pore microstructure of carbonate sedimentary 
rocks. Fundamentally, flow and transport properties of porous media are 
a function of pore size distribution and random pore connectivity that 
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can result in complex heterogeneous pore microstructures (Algive et al., 
2012; Chen et al., 2015; Cheng et al., 2019). Pore connectivity describes 
the degree of connection between pores in a rock. The magnitude of pore 
connectivity is the sum of the effects of pore-throat sizes (Dutton and 
Loucks, 2010) and the average number of pores connected to a single 
pore in a rock (Dutton and Loucks, 2010; Bernabé et al., 2010). 
Capturing the complexity of pore connectivity in carbonate rocks re
quires stochastic models (Whitten, 1977). This has been shown to better 
represent flow behavior in complex heterogeneous systems compared to 
deterministic approaches (Apostolopoulou et al., 2019). 

To consider the effect of pore size distribution, permeability can be 
estimated from Nuclear Magnetic Resonance (NMR) data using the 
Timur-Coates (TC) equation (Timur, 1968) and the 
Schlumberger-Doll-Research (SDR) equation (Kenyon, 1992). The use of 
pore size distributions has been shown to yield more accurate rock 
permeability values compared to the sole use of porosity (Westphal 
et al., 2005b). That said, its application in carbonate sedimentary rocks 
is still problematic due to heterogeneity (Choquette and Pray, 1970) and 
pore connectivity (Westphal et al., 2005b). This is because the TC and 
SDR equations assume that pores are evenly distributed and evenly 
connected which is not true (Westphal et al., 2005b). In fact, these 
model equations are known to over-estimate permeability due to the use 
of total porosity instead of effective porosity as the porosity parameter 
(Westphal et al., 2005b). 

Mercury injection capillary pressure (MICP) is another tool 
employed to estimate permeability of rocks of complex pore micro
structures through empirical model equations (Dastidar et al., 2007; 
Kamath, 1992; Kolodzie, 1980; Pittman, 1992; Purcell, 1949; Swanson, 
1981; Walls and Amaefule, 1985). MICP provides pore-throat size dis
tributions within a rock. The use of MICP data in predicting permeability 
usually relies on a percentage of mercury saturation in a rock sample 
(Kamath, 1992; Kolodzie, 1980; Pittman, 1992; Purcell, 1949; Swanson, 
1981; Walls and Amaefule, 1985) or a weighted average of pore-throat 
sizes obtained from MICP (Dastidar et al., 2007) and do not fully account 
for pore connectivity. Other methods employed in obtaining pore size 
distribution of rocks includes the use of scanning electron microscope 
(SEM), focused ion beam-scanning electron microscope (FIB-SEM), 
micro-CT scanners, and gas adsorption techniques (Anovitz and Cole, 
2015; Blunt et al., 2013; Xiong et al., 2016). 

Like permeability, hydraulic tortuosity is usually estimated from 
deterministic model equations that employs porosity as the key 
parameter (Kimura, 2018; Lala, 2020). Such estimates of hydraulic 
tortuosity might also mislead in reactive and/or solute transport simu
lations given that size of individual pores and their connectivity might 
play a significant role in the path through which solutes are transported 
in complex pore microstructures. 

At present, a predictive understanding of the relationship between 
complex pore microstructure and flow properties of carbonate sedi
mentary rocks is not fully developed (Bijeljic et al., 2013; Zhang and Cai, 
2021), leading to the reliance on empirically derived permeability and 
hydraulic tortuosity properties obtained by analogy or statistical anal
ysis of past data (England et al., 1994). This is associated with enhanced 
oil recovery, geological carbon storage (Shabani et al., 2020; Shabani 
and Vilcáez, 2017, 2018, 2019; Vilcáez, 2015), and petroleum produced 
water disposal (Ebrahimi and Vilcáez, 2018a, 2018b, 2019; Vilcáez, 
2020), for instance. 

To improve this understanding, this study employs a stochastic pore- 
scale simulation approach. The approach consists of constructing hun
dreds of 3D pore microstructures of the same effective porosity, pore size 
distribution, number of pores, but different stochastic pore connectivity, 
just like it happens in rock samples. Permeability and hydraulic tortu
osity of the constructed 3D pore microstructures of the aforementioned 
characteristics are obtained from direct pore-scale simulations. The use 
of direct pore-scale simulations to obtain permeability and hydraulic 
tortuosity is a standard practice in pore-scale modeling (Soete et al., 
2017; Vilcáez et al., 2017). Our hypothesis is that enough pore micro
structures where the only pore microstructural feature changing is pore 
connectivity allows improved investigation into the role of pore con
nectivity in fluid flow without the interference of other factors. 
Furthermore, it will help assess the predictability of pore-scale perme
ability and hydraulic tortuosity without explicit inclusion of pore con
nectivity in feedforward neural network (NN) models. 

Feedforward NN is a type of artificial neural network architecture 
where neurons are grouped by layers and connections which only move 
in the direction of the output (Mendes et al., 2002; Erofeev et al., 2019; 
Al Khalifah et al., 2020). NN is chosen as the machine learning algorithm 
for this study because of its ability to deduce the best set of weights that 
map a set of input features to the desired target. This ability is useful in 
this study because pore connectivity is random, and it is the only pore 
microstructural parameter varying. Hence, the random nature of pore 
connectivity is captured by NN if accuracy of prediction on test dataset is 
high. Other popular NN approaches in geosciences includes convolu
tional neural network (CNN) which is often used for making predictions 
from image data (Graczyk and Matyka, 2020; Tembely et al., 2021) and 
recurrent neural networks (RNN) which was developed for sequential or 
time series data (Jiang et al., 2021; Song et al., 2020). More recently, 
Bayesian neural networks (BNN) are being used to take uncertainty into 
account and overcome overfitting which is one of the principal chal
lenges of neural networks (Feng et al., 2021a, 2021b). 

The novel nature of our workflow lies in the generation of multiple 
pore microstructures where the only pore microstructural feature 
changing is pore connectivity. This workflow allows elucidation of the 

Fig. 1. Representative 3D pore-microstructures of stochastic pore connectivity. A) group I: 0 μm pore size standard deviation, B) group II: 5 μm pore size standard 
deviation, and C) group III: 11 μm pore size standard deviation. The mean pore size is 10 μm in all three groups. The brown spherical balls are the pores while the 
background is the solid matrix. The black bar represents 100 μm in the respective images. 
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role pore connectivity on permeability and hydraulic tortuosity without 
the interference of other pore microstructural factors, noise, and/or 
assumptions. Hence, we can determine the degree of influence of pore 
connectivity on pore microstructures with respect to set levels of het
erogeneity and evaluate if NN models capture the stochastic nature of 
pore connectivity. 

2. Methods 

2.1. Stochastic construction of 3D pore microstructures 

To elucidate the effect of random pore connectivity on permeability 
and hydraulic tortuosity of highly heterogeneous porous media, three 
groups of 3D pore microstructures were generated. The 3D pore mi
crostructures in each group had the same pore size distribution and 
effective porosity but different stochastic connectivity between the 
pores (Fig. 1). 

The input data used to generate each group of the 3D pore micro
structures are pore geometry, effective porosity, and pore size distri
bution (PSD). Spheres were used as the pore geometry in this study 
because the focus is on pore connectivity, thus, we needed to constrain 

Fig. 2. Lognormal pore size distribution (PSD) curves employed to generate the 3D pore microstructures of stochastic pore connectivity. A) shows the probability 
density function (pdf) while B) is the corresponding cumulative distribution function (cdf). A pore size standard deviation of 0, 5, and 11 μm represents group I, II, 
and III respectively. The mean pores size is 10 μm in all three groups. 

Fig. 3. Mean pore size REV analysis showing a minimum of 700 pores can be 
deemed representative because the percentage deviation from mean (red line) 
is within 3% (green box) when the number of pores is increased further. 

Fig. 4. Pore-scale simulations. A) A polyhedral mesh type was applied to adequately capture the complex nature of a 3D-pore-microstructure. The average pore size 
is 10 μm while the minimum cell size of the mesh is 0.75 μm. B) Representative pressure distribution across a 3D pore microstructure at steady state conditions. The 
inlet is on the left (red arrows) and the outlet is on the right (blue arrows). 

Fig. 5. A schematic comparing pore-throat (red line) and pore size (blue line).  
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pore geometry. It is noteworthy that the use of spherical pores is routine 
in pore network modelling (Huang et al., 2020; Zheng et al., 2022; 
Baychev et al., 2019; Yang et al., 2018). The effective porosity of all the 
generated 3D pore microstructures is consistent with an average of 19% 

and a coefficient of variation of 1%. Coefficient of variation (CV) reflects 
the degree of variation in data from the mean. CV is mathematically 
expressed as: 

CV =
Standard deviation

m
*100 (1)  

Standard deviation =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(Di − m)

2

√

(2)  

where n is the number of pores, Di is the diameter of pore i, and m is the 
mean diameter of the pores. 

Lognormal distribution curves were used to represent PSD because of 
their frequent use to describe PSD of rocks (Ding et al., 2015; Huang 
et al., 2019; Li et al., 2020; Munawar et al., 2021; Naraghi and Jav
adpour, 2015; Niu and Zhang, 2018). For this study, the mean pore size 
of all generated 3D pore-microstructures is 10 μm with a pore size 
standard deviation of 0, 5, and 11 μm for groups I, II, and III, respectively 
(Fig. 2). 

While the average pore size in rocks can vary widely, a dominant 
pore size of about 10 μm has been reported for different diagenetic 
stages of carbonate rocks (van der Land et al., 2013). The increase in 
standard deviation in each group is to mimic different levels of hetero
geneity in real rock samples. By implication, group I with a standard 
deviation of 0 is comprised of pores of the same sizes but stochastic pore 
connectivity (Fig. 1.A) and a higher pore size standard deviation cor
responds to an increased degree of heterogeneity in PSD (Fig. 1.B and 1. 
C). Groups I, II, and III comprises of 991, 990, and 805 3D 
pore-microstructures respectively. The average number of pores in each 
3D pore microstructures was 973 with a CV of 3% across all the 
generated 3D pore microstructures. The number of pores in all three 
groups of 3D pore microstructures are practically the same to suppress 
the effect of number of pore-throats on permeability and hydraulic 
tortuosity. 

The generation of 3D pore microstructures of stochastic pore con
nectivity was done using statistical tools on MATLAB together with the 
CAD capabilities of STAR CCM+® (a computational fluid dynamics 
software by Siemens). The procedure consisted of the generation of 
random sizes of pores based on a given mean pore size and standard 
deviation of the PSD curve. The coordinates of pores and thus the sto
chastic connectivity between pores in the 3D pore microstructure was 
decided using a uniform distribution function. This ensured an equal 
probability of selecting the location of the pore in the 3D pore micro
structure and an equal probability in the degree of overlap between the 
pores. Two controls were then applied. The first control was to ensure 
that the first pore is centred in the 3D pore microstructure. This gua
rantees that the pores are not concentrated in certain regions of the 3D 
pore microstructures, allowing the pore networks to spread out inside 
the respective rock domains. The second control was to ensure that all 
the pores were connected; hence porosity is equivalent to effective 
porosity in this study. The generation of the 3D pore microstructures was 
automated and run on Oklahoma State University’s Pete Supercom
puter, which provided 32 cores and 96 GB of RAM for each run. It took 
5–35 min to generate each 3D pore microstructure. 

The rock domain within which the 3D pore microstructures are 
generated is a cube (Fig. 1) with varied length scale across the three 
groups. This is due to the need to have a relatively fixed effective 
porosity, PSD, and number of pores in each group. To verify that the 
varying length scales do not impact the study, a representative 
elementary volume (REV) analysis was conducted (Bear, 1972). This 
analysis has been used in several studies to justify that macroscopic 
properties (e.g., porosity, organic matter content, and specific surface 
area) are not controlled by sample volume (Mostaghimi et al., 2012; 
Peng et al., 2012; Saraji and Piri, 2015; Wu et al., 2017). For this study, 
the REV analysis was conducted based on average pore size to guarantee 
that the pore size distribution and porosity is consistent for 

Fig. 6. Histogram of pore-throat size distribution of a single 3D pore micro
structure for A) group I, B) group II, and C) group III. 
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pore-microstructures in each group. Here, the number of pores in the 3D 
pore microstructures is sufficient when the difference between the av
erages of the pores sizes is insignificant as the number of pores is 
increased further. Furthermore, the mean of the PSD used to generate 
the data set is known (10 μm); therefore, the mean pore size at REV must 
be closer to this number. The REV analysis was conducted for group III of 
3D pore microstructures since this group constitutes the most severe 
scenario of heterogeneity; hence, it requires the largest number of pores 
to reach a representative value. Fig. 3 shows 700 pores to be represen
tative for the range of pore sizes used in this study. By contrast, the 
average number of pores in this study is 973, resulting in a length scale 
of 133 μm for group I, 169 μm for group II, and 302 μm for group III of 
3D pore microstructures. 

2.2. Pore-scale simulations of flow 

Simulation of incompressible flow through the generated 3D pore 
microstructures of stochastic pore connectivity was conducted with 
STAR-CCM+® which uses the finite volume methodology to solve the 
mass continuity equation: 

∇
→ ⋅ ρ V→ +

∂ρ
∂t

= 0 (3)  

and Navier-Stokes momentum equation: 

∂ V→

∂t
+

(
V→ ⋅ ∇

→
)

V→= −
1
ρ∇

→P + v∇
→2

V→ (4)  

where ρ is density of the fluid, v is kinematic viscosity, P is pressure, t is 
time, and V→ is fluid velocity. 

STAR-CCM+® has been shown in previous works to accurately 
replicate fundamental pore-scale flow (Yang et al., 2013, 2015) and 
solute transport processes (Yang et al., 2015; Oostrom et al., 2014). The 
first step in flow simulation was to conduct a mesh independence study 
to ensure that flow velocity profiles obtained from solving the governing 
equations (3) and (4) is independent of the mesh resolution. Twenty 
samples were randomly selected for this purpose. It involves steadily 
increasing the number of cells in a flow domain and computing the 
average velocity. A model is deemed mesh independent when the 
change in average velocity is insignificant for an increase in the mini
mum cell size (See Fig. S1 in the supplementary data). The final mesh 
was generated with a minimum cell size of 0.75 μm with other param
eters at default. For this study, an unstructured polyhedral mesh type 
was used. This helped capture the complex nature of the 3D pore mi
crostructures (Fig. 4). 

The average number of cells per pore microstructure is 640,000 
which ultimately results in an average computational time of 15 min per 
simulation. The governing equations (3) and (4) were solved for a steady 
state condition. For simplicity, the fluid used in the simulations was 
water with no chemical reaction between the fluid and the pore mi
crostructures. The rock domain had closed boundaries except for two 
opposite sides through which flow was allowed. A stagnation inlet 
pressure condition was applied at the inlet with a fixed pressure of 1 Pa 
while an outlet pressure of 0 Pa is fixed at the outlet, maintaining a 
pressure drop of 1 Pa across the two open boundaries (Fig. 4). 

A no-slip wall condition was applied to the remainder of the 
computational domain. The Reynolds number of the flow simulations 
were less than 0.0001 in all 3D pore-microstructures in this study. This 

makes the calculation of permeability with Darcy’s law valid in all the 
generated 3D pore-microstructures (Chen et al., 2014). Each pore-scale 
numerical simulation reached steady state conditions before 150 itera
tions (See Fig. S2 in the supplementary data). 

Simulations are stopped at the 200th iteration and solutions are 
deemed to converge when the mass flow at the inlet and the outlet are 
equal and within 0.1% of the respective mass flow in the prior iteration. 
A secondary condition was also added to ensure that the residuals 
(continuity, x momentum, y momentum, and z momentum) are all less 
than 10−6. This process was automated and run on the same super
computing cluster used in generating the 3D pore microstructures. 

2.3. Permeability estimation 

Permeability was calculated from Darcy’s equation (Vilcáez et al., 
2017; Chen et al., 2014; Darcy, 1856). Mathematically, Darcy’s equation 
is expressed as: 

K =
V × μ × L

ΔP
(5)  

where V is the Darcy flow velocity in the rock domain in m/s, K is the 
absolute permeability of the rock domain in m2, ΔP is the pressure drop 
in the principal direction of the fluid in Pa, μ is the dynamic viscosity of 
the fluid in Pa-s, and L is the length along the direction of the pressure 
drop in meters. Calculated permeability was converted from m2 to mD. 
Darcy flow velocity can be rewritten as: 

V =
Q
A

(6)  

where Q is the volumetric flowrate through the inlet or outlet in m3/s 
and A is the cross-sectional area perpendicular to the flow at the 
respective boundary in m2. Volumetric flowrate can also be rewritten as: 

Q =
M
ρ (7)  

where M is the mass flowrate through the inlet or outlet in kg/s and ρ is 
the density of the fluid flowing through the medium in kg/m3. 
Combining (6) and (7): 

V =
M

A*ρ (8) 

Combining (5) and (8): 

K =
M × μ × L

ΔP*A*ρ (9) 

Since properties of the fluid (density and viscosity of water) and 
pressure drop are constant, permeability is calculated from mass flow 
rate and length scale (L−1) of the digital rock domain. 

2.4. Hydraulic tortuosity estimation 

Hydraulic tortuosity can be calculated in terms of the flow velocity 
(Vilcáez et al., 2017; Duda et al., 2011): 

τ =
V
Vi

(10)  

where V is the average magnitude of the intrinsic velocity over the entire 

Table 1 
Statistical analysis of permeability.  

Group Mean pore size (μm) Standard deviation of PSD (μm) Mean Permeability (mD) CV of Permeability Skewness Kurtosis 

I 10 0 28.47 24% 0.57 3.59 
II 10 5 6.39 44% 2.32 16.27 
III 10 11 0.27 161% 6.24 62.97  
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system volume in m/s, and Vi is the volumetric average of the compo
nent parallel to the macroscopic flow direction in m/s. 

By implication, the smallest possible hydraulic tortuosity is 1, which 
indicates a straight-line flow path. An increase in the hydraulic tortu
osity value translates into more tortuous and longer flow path. 

2.5. Pore microstructural parameters 

To elucidate the effect of stochastic pore connectivity on perme
ability and hydraulic tortuosity of complex heterogeneous rocks, the 
following parameters were obtained from the generated 3D pore 
microstructures. 

2.5.1. Pore-throat sizes 
The pore-throat size is the length at the intersection between two 

pores (Fig. 5). Pore-throats sizes are constrained by the sizes of the pore 
they connect since a pore-throat cannot be larger than the size of the 
pores they are connecting. The size of the pore-throats for each group of 
3D pore microstructures were calculated, resulting in a relatively uni
form pore-throat size distribution (PTSD) for 3D pore microstructures 
constructed from uniform PSD (Fig. 6A) and a lognormal PTSD for 3D 
pore microstructures constructed from lognormal PSD (Fig. 6B and C). 

2.5.2. Surface area 
The surface area (S) of each 3D pore microstructure was calculated. 

Although surface area is not a direct subject of this study, it plays a key 
role in the velocity distribution in porous media. This is because of the 
no-slip condition at the pore-fluid boundary resulting in zero velocity at 
the pore walls. Therefore, it has an inverse relationship with the average 
flow velocity through porous media which is consequential for perme
ability and hydraulic tortuosity. 

Two parameters were derived from the surface area, namely pore 
volume normalized surface area (pS) which is given by: 

pS =
S
P

(11)  

and bulk volume normalized surface area (bS) which is given by: 

bS =
S
B

(12)  

where S, P, and B are the surface area of pores (m2), pore volume (m3), 
and the bulk volume of the digital rock (m3) respectively. 

2.6. Neural network implementation 

A feedforward neural network (NN) was applied to assess the pre
dictability of permeability and hydraulic tortuosity using PTSD data and 
surface area parameters. Ten features were used for training the NN 
algorithm. This includes bulk volume normalized surface area (bS), pore 
volume normalized surface area (pS), standard deviation of the PTSD, 
1st percentile of the PTSD, 10th percentile of the PTSD, 25th percentile 
of the PTSD, 50th percentile of the PTSD, 75th percentile of the PTSD, 
90th percentile of the PTSD, and domain length scale. The domain 
length scale accounts for the different length scales of the three groups of 
3D pore microstructures. The targets are permeability and hydraulic 
tortuosity. Correlation between all the features and targets were exam
ined in each group to help evaluate the predictability of the targets from 
individual features and identify possible multicollinearity between fea
tures used in this study (See Table S1, S2 and S3 in the supplementary 
data). The features and targets from the three groups were combined for 
use in the NN algorithm to maximize its performance. In the pre- 
processing stage of the NN algorithm deployment, the data was 
randomly split into training, validation, and test data in a 7:1:2 ratio, 
respectively. The data was randomly sampled to remove bias and the 
percentage of training data is deemed sufficient given the total size of 
our data (Verdhan, 2020). The training data was used to train the NN 
algorithm while the validation data were used to check the predict
ability of the target properties with the NN algorithm after each epoch to 
guard against overfitting. The test data was finally used to check the 
predictability of permeability and hydraulic tortuosity from the trained 
NN algorithm. Prior to training, the features were standardized using the 

Fig. 7. A lognormal density function (red line) fitted on histograms of 
permeability distribution for (A) group I, (B) group II, and (C) group III. 
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z-scoring technique (Mohamad and Usman, 2013). The NN architecture 
of the permeability model used in this study comprised of an input layer, 
two hidden layers with 64 neurons each, an output layer, and a 10% 
dropout before the output layer as a second measure to prevent over
fitting. The two hidden layers in the permeability model were assigned 
sigmoid activation functions. For the hydraulic tortuosity model, the NN 
architecture is made up of an input layer, a single hidden layer with 64 
neurons and tanh activation function, and an output layer. The loss 
function used in both models is the mean squared error which was 
minimized with the Adam optimizer (Kingma and Ba, 2014) at a 
learning rate of 0.001. The choices of activation function, number of 
neurons, and number of hidden layers were based on comparative per
formance when tuning the hyperparameters. A linear activation func
tion was used as output since both target properties are continuous 
values. The epoch was set to 20,000 with a patience of 100. The best 
training weights was selected based on the mean squared error of the 
validation data. 

3. Results and discussion 

3.1. Heterogeneity and permeability 

Table 1 summarizes mean permeability values estimated for groups 
I, II, and III of 3D pore microstructures of different degree of heteroge
neity (pore size standard deviation). 

As expected, an increase in the degree of heterogeneity (pore size 
standard deviation) reduces permeability because effective porosity and 
the number of pores in all generated 3D pore microstructures is 

approximately the same. If effective porosity and the number of pores is 
the same, an increase in heterogeneity results in an increase of the 
number of smaller pore-throats as shown in Fig. 6. Since pore-throat 
sizes are generally smaller when heterogeneity is increased and pore- 
throats are always smaller than pore bodies (Fig. 5), it is apparent that 
PTSD is a key control of permeability. An approximate twofold increase 
in heterogeneity (pore size standard deviation) from group I to group III 
results in decrease of the mean pore-throat size from 5.99 μm to 3.79 μm 
(Fig. 6) and a two orders of magnitude reduction in average perme
ability from 28.5 mD to 0.27 mD (Table 1). 

The resulting lognormal permeability distribution (Fig. 7) has been 
reported for real rocks (Malin et al., 2020; Sahin et al., 2007) validating 
the stochastic pore-scale simulation approach used in this study. A key 
contribution of this study is that an increase in heterogeneity also results 
in an increase of the skewness and kurtosis of the permeability distri
bution curves (Fig. 7) which represents a systematic shift of permeability 
from normal distribution to lognormal distribution. This also results in 
an increase in the CV of permeability from 24% to 161% (Table 1). Fig. 8 
shows that the average permeability for each group does not signifi
cantly change when the number of generated 3D pore microstructures is 
more than 300, indicating that representative nature of this analysis. 

By implication, the use of Gaussian techniques to obtain perme
ability realizations using geostatistics (e.g., Kriging) is not recom
mended in modelling and simulations of fluid flow. The larger the 
standard deviation of pore size in the PSD of a rock, the more skewed 
and long tailed the distribution of permeability that can be associated to 
the rock. 

Furthermore, variation in the permeability of group I with uniform 

Fig. 8. A, B, and C shows the change in average permeability with the number of 3D pore microstructures while D shows the change in average hydraulic tortuosity 
with the number of 3D pore microstructures. 
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PSD is an indication that PSD is not enough to accurately predict the 
permeability of rocks. This is because even if pore size is the same, pore- 
throat size is varying due to the stochastic nature of pore connectivity 
(Fig. 6A). Hence, it is more reliable to obtain permeability prediction 
from PTSD compared to the use of porosity and/or PSD. 

Heterogeneity also impacts the relationship between permeability 
and hydraulic tortuosity. Fig. 9 shows the predictability of permeability 
from hydraulic tortuosity to decrease with an increase in heterogeneity. 
The deteriorating relationship is evident from the decreasing R2 value. 
Therefore, equations that leverage on the relationship between perme
ability and hydraulic tortuosity such as the Kozeny (1927) and 
Kozeny-Carman models (Carman, 1937) might give misleading esti
mates of flow properties in heterogeneous porous media. 

3.2. Heterogeneity and hydraulic tortuosity 

Table 2 summarizes mean hydraulic tortuosity values estimated for 
groups I, II, and III of 3D pore microstructures of different degree of 
heterogeneity (pore size standard deviation). An increase in heteroge
neity increases the average hydraulic tortuosity in each group. 

This is expected given the inverse relationship between heteroge
neity and permeability (Table 1) and the inverse relationship between 
hydraulic tortuosity and permeability (Fig. 9). Fig. 8 shows that the 
average hydraulic tortuosity does not significantly change after 300 
samples, indicating the representative nature of this study. Like the 
distribution of permeability, the distribution of hydraulic tortuosity is 
more skewed and long tailed (Table 2 and Fig. 10) as heterogeneity 
(standard deviation of PSD) increases from group I to group III (Fig. 1). 
However, it is still close to a normal distribution in the most severe case 
of heterogeneity (Fig. 10). Furthermore, there is only a small change in 

Fig. 9. Hydraulic tortuosity against permeability for A) group I, B) group II, and C) group III. The red dotted line is the best data fit which is power law.  

Table 2 
Statistical analysis of hydraulic tortuosity.  

Group Mean pore size (μm) Standard deviation of PSD (μm) Mean Hydraulic Tortuosity CV of Hydraulic Tortuosity Skewness Kurtosis 

I 10 0 2.05 10% 0.62 3.82 
II 10 5 2.16 13% 1.05 5.93 
III 10 11 2.38 25% 1.21 5.94  
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mean hydraulic tortuosity across the three groups, implying that PTSD 
resulting from the random connectivity of pores does not have a sig
nificant effect on hydraulic tortuosity. However, it is noteworthy the 
results in Table 2 indicates that hydraulic tortuosity of rocks will 
generally vary even if the porosity and PSD is the same. 

3.3. Permeability and hydraulic tortuosity predictability with neural 
networks 

Fig. 11 compares direct pore-scale simulations and NN predictions of 
permeability and hydraulic tortuosity. The coefficient of determination 
(R2) of permeability and hydraulic tortuosity are 0.94 (Fig. 11.A) and 
0.23 (Fig. 11.C) respectively. 

The high coefficient of determination obtained with the use of the 
NN to predict permeability indicates NN algorithms trained using PTSD 
data and surface area parameters can significantly capture the stochastic 
nature of pore connectivity of real rocks. Furthermore, the addition of 
hydraulic tortuosity as a parameter in permeability prediction improves 
the R2 metric from 0.94 to 0.98 (Fig. 11.A and 11.B). 

Hydraulic tortuosity prediction with the corresponding NN model is 
poor. However, the coefficient of determination for hydraulic tortuosity 
prediction increases from 0.24 to 0.50 when permeability is added to the 
training parameters (Fig. 11.C and 11.D). It is worth noting that the 
mean absolute error of the test data is only 0.23 without permeability as 
a parameter and 0.17 when permeability is added as a parameter. These 
errors are very small compared to the ranges of possible hydraulic tor
tuosity, up to 4.5 (Fig. 10) for a single porosity value that was used in 
this study, underlying the merits of using NN with parameters selected in 
this study compared to model equations that estimate hydraulic tortu
osity directly from porosity. 

The use of NN model for prediction of permeability and hydraulic 
tortuosity as used in this study is practical since PTSD data, surface area 
parameters, and domain length can be obtained from MICP measure
ments and routine analysis. The inclusion of permeability-hydraulic 
tortuosity relationship in the respective NN models has been shown to 
be beneficial (Fig. 11); however, it might also have a negative effect on 
performance if model is not properly trained (Fig. 12). At smaller 
epochs, the inclusion of permeability-hydraulic tortuosity relationships 
in both NN models could worsen performance (Fig. 12). Hence, estab
lishing an optimal number of epoch is very vital. 

4. Conclusions 

This study has employed a stochastic pore-scale simulation approach 
to statistically elucidate the effect of stochastic pore connectivity on 
permeability and hydraulic tortuosity of highly heterogeneous porous 
media such as carbonate rocks. Furthermore, we assessed the capacity of 
NN to capture the stochastic nature of pore connectivity. The novelty of 
this study lies in the generation of multiple pore microstructures where 
the only pore microstructural feature changing is pore connectivity, 
allowing the explicit study of the role of pore connectivity on flow 
without the interference of other factors. The key findings from this 
novel approach are as follow: 

1. An increase in heterogeneity (pore size distribution) drives the dis
tribution of permeability farther from normal distribution towards 
lognormal distribution. This can be crucial when introducing 
permeability heterogeneity into reservoir scale models of perme
ability. Like permeability, hydraulic tortuosity also deviates from 
normal distribution; however, the degree of divergence from normal 
distribution is insignificant.  

2. Pore-throat size distribution and pore surface area obtainable from 
rock MICP data can be leveraged in machine learning algorithms 
such as feedforward neural networks to make predictions of 
permeability with a high degree of accuracy. On the other hand, 
hydraulic tortuosity is poorly predicted using the same approach 

Fig. 10. A lognormal density function (red line) fitted on histograms of hy
draulic tortuosity distribution for the stochastically generated 3D pore micro
structures: (A) group I, (B) group II, and (C) group III. 
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Fig. 11. Pore-scale simulations versus NN predictions of permeability and hydraulic tortuosity data. A) Permeability predictions made from surface are parameters 
(pS, bS), domain length scale, standard deviation of PTSD, and PTSD percentiles (1st, 10th, 25th, 50th, 75th, and 90th). B) Permeability predictions made with 
tortuosity added as a 11th parameter. C) Hydraulic tortuosity predictions made from pore microstructure parameters: pS, bS, domain length scale, standard deviation 
of PTSD, and PTSD percentiles (1st, 10th, 25th, 50th, 75th, and 90th). D) Hydraulic tortuosity predictions made with permeability added as a 11th parameter. The 
number of data point in each plot is 558. 

Fig. 12. Variation in MSE of validation data with epoch for A) the permeability NN model and B) the hydraulic tortuosity NN model.  
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which suggests that pore-throats or surface area are not the key 
controls of hydraulic tortuosity.  

3. The use of NN could serve as an efficient alternative to direct pore- 
scale simulations of permeability which are computationally 
intensive.  

4. In comparison to model equations that employ porosity and/or pore 
size distribution as the key predictive parameter for permeability and 
hydraulic tortuosity, the use of feedforward neural network provides 
a better prediction given the variability in permeability and hy
draulic tortuosity obtained at a fixed porosity and pore size distri
bution particularly when heterogeneity is high. 

5. The relationship between permeability and hydraulic tortuosity de
teriorates with increase in heterogeneity. Therefore, deterministic 
equations that relate permeability and hydraulic tortuosity (for 
example, the Kozeny-Carman equation) might be less reliable at 
higher degrees of heterogeneity in rocks. 

In general, the outcome of this statistical and neural network analysis 
helps improve our understanding about the effect of heterogeneity and 
pore connectivity on fluid flow and solutes transport. This insight has a 
broader significance in enhanced oil recovery, geological carbon stor
age, petroleum produced water disposal, resource exploration and pro
duction, as well as the management of subsurface environment. 
Furthermore, it introduces a way to leverage the use of MICP data to 
make relatively accurate predictions of permeability and hydraulic 
tortuosity. In a follow up study, the established pore-scale stochastic 
approach will be used to predict permeability of actual carbonate rocks 
at Darcy’s scale. 
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Bernabé, Y., Li, M., Maineult, A., 2010. Permeability and pore connectivity: a new model 
based on network simulations. J. Geophys. Res. 115 (B10). 

Bijeljic, B., Mostaghimi, P., Blunt, M.J., 2013. Insights into non-Fickian solute transport 
in carbonates. Water Resour. Res. 49 (5), 2714–2728. 

Blunt, M.J., et al., 2013. Pore-scale imaging and modelling. Adv. Water Resour. 51, 
197–216. 

Carman, P., 1937. Fluid flow through granular beds. Chem. Eng. Res. Des. (15), 150–166. 
Chen, Y., et al., 2014. Role of pore structure on liquid flow behaviors in porous media 

characterized by fractal geometry. In: Chemical Engineering and Processing: Process 
Intensification. 

Chen, Y., et al., 2015. Role of pore structure on liquid flow behaviors in porous media 
characterized by fractal geometry. Chem. Eng. Process: Process Intensif. 87, 75–80. 

Cheng, Z., et al., 2019. The effect of pore structure on non-Darcy flow in porous media 
using the lattice Boltzmann method. J. Petrol. Sci. Eng. 172, 391–400. 

Choquette, P.W., Pray, L.C., 1970. Geologic Nomenclature and Classification of Porosity 
in Sedimentary Carbonates. 

Clennell, M.B., 1997. Tortuosity: a guide through the maze. Geol. Soc. London Special 
Publ. 122 (1), 299–344. 

Darcy, H., 1856. Les fontaines publiques de la Ville de Dijon V. Dalmont.  
Dastidar, R., Sondergeld, C.H., Rai, C.S., 2007. An improved empirical permeability 

estimator from mercury injection for tight clastic rocks. Petrophysics 48 (3), 
186–190. 

Ding, B., et al., 2015. Effects of pore size distribution and coordination number on the 
prediction of filtration coefficients for straining from percolation theory. Chem. Eng. 
Sci. 127, 40–51. 

Duda, A., Koza, Z., Matyka, M., 2011. Hydraulic tortuosity in arbitrary porous media 
flow. Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. 84 (3 Pt 2), 036319. 

Dutton, S.P., Loucks, R.G., 2010. Diagenetic controls on evolution of porosity and 
permeability in lower Tertiary Wilcox sandstones from shallow to ultradeep 
(200–6700m) burial, Gulf of Mexico Basin. U.S.A. Mar. Petrol. Geol. 27 (1), 69–81. 
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Shabani, B., Vilcáez, J., 2017. Prediction of CO2-CH4-H2S-N2 gas mixtures solubility in 
brine using a non-iterative fugacity-activity model relevant to CO2-MEOR. J. Petrol. 
Sci. Eng. 150, 162–179. 
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