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a b s t r a c t

Among various topics explored in the transfer learning community, domain adaptation (DA) has been
of primary interest and successfully applied in diverse fields. However, theoretical understanding of
learning convergence in DA has not been sufficiently explored. To address such an issue, this paper
presents the Stochastic Augmented Lagrangian method (SALM) to solve the optimization problem
associated with domain adaptation. In contrast to previous works, the SALM is able to find the
optimal Lagrangian multipliers, as opposed to manually selecting the multipliers which could result
in significantly suboptimal solutions. Additionally, the SALM is the first algorithm which can find
a feasible point with arbitrary precision for domain adaptation problems with bounded penalty
parameters. We also observe that with unbounded penalty parameters, the proposed algorithm is
able to find an approximate stationary point of infeasibility. We validate our theoretical analysis with
several experimental results using benchmark data sets including MNIST, SYNTH, SVHN, and USPS.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

A common assumption made during the design of machine
earning algorithms is that the training and testing datasets share
he same feature space. However, such an assumption can be vio-
ated by many real-world scenarios where training data and test-
ng data come from different domains. The framework of transfer
earning has been developed to address this issue and has been
he focus of considerable recent attention [1–5]. Transfer learning
as demonstrated its wide efficacy in various problem domains,
ncluding image classification [6], natural language processing [2],
iology [7], urban computing [8], and indoor localization [9].
While the proposed framework in this paper can be exten-

ively applied to related problems in transfer learning, we exclu-
ively focus on domain adaptation (DA). In DA, the ideal learned
eature descriptor learns transferable features from the source
omain that are applicable in the target domain. A discrepancy
etric is adopted between the source domain and the target
omain to minimize any additional loss incurred. Various ap-
roaches have been proposed and developed for DA, such as deep
daptation networks (DAN) [10], domain separation networks
DSN) [11], residual transfer networks (RTN) [12], Asymmetric
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950-7051/© 2021 Elsevier B.V. All rights reserved.
Transfer (ADDA) [13], joint adaptation networks (JAN) [14], as-
sociative adaptation [15], self-ensembling adaptation [16], and
partial domain adaptation [6]. It should be noted that in the DA
literature, there exist additional methods that are either adver-
sarial, such as GAN-based [17–19] or reconstruction-based [20].
However, the problem formulations associated with these meth-
ods can be quite different from what we will present next, and a
full investigation of methods such as [20] is out of scope.

The various DA methods listed above differ in their details,
but they are generally optimization formulations with a discrep-
ancy metric included within the loss function. Specifically, these
are problems of the form minL1 + λL2, where L1 is the loss
function for operating in the source domain, while L2 is the
loss function that represents the discrepancy metric. In prac-
tice, such an optimization problem has been solved by manually
tuning Lagrange multipliers, and using first-order methods such
as SGD [21], RMSprop [22], and Adam [23]. Very few studies
have addressed in a principled manner, how to choose the op-
timal multiplier λ without resorting to manual tuning or grid
search. Moreover, theoretical analyses of convergence of such
relaxation-based methods are rare.

This gap in understanding is unfortunate, since the choice
of Lagrange multipliers in DA has been shown of significant
influence on performance [24,25]. In particular, for problems per-
taining to unsupervised DA, obtaining the optimal multipliers are
intractable since the performance on the unlabeled target domain

https://doi.org/10.1016/j.knosys.2021.107593
http://www.elsevier.com/locate/knosys
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annot be evaluated beforehand. This paper resolves this gap.
ince popular deep learning-based optimizers were generically
roposed for the unconstrained empirical risk minimization, in
his work, we leverage a popular nonlinear constrained opti-
ization method, ALGENCAN [26]. The Stochastic Augmented
agrangian method (SALM) is obtained by integrating mini-batch
GD and Adam with ALGENCAN such that decision variables and
agrangian multipliers are optimized simultaneously in DA. We
ummarize our specific contributions as follows.

• We propose the SALM based on ALGENCAN to solve the
constrained optimization problem for DA. The SALM has two
variants, including SGD and Adam, and it thus enables to
obtain the optimal model without the need to numerically
tune the multipliers.

• We prove that with bounded penalty parameters, the pro-
posed SALM with the variant of SGD is able to find a feasible
point with an arbitrary precision, which is an approximate
Karush–Kuhn–Tucker (KKT) point (see Definition 1 below).
Moreover, with an appropriate infeasibility measure and
unbounded penalty parameters, we also show that the SALM
can find an approximate stationary point of infeasibility (see
precise definition below). To the best of our knowledge, we
are the first to propose and theoretically analyze Augmented
Lagrangian methods for DA.

• We test the proposed algorithm on several benchmark
datasets (MNIST, USPS, SYNTH, and SVHN) and find that
the SALM avoids converging to significantly sub-optimal
solutions while also leading to better accuracy than the
state-of-the-art. The algorithm shows robustness in terms of
achieving fair accuracy on the target domain and avoiding
overfitting on the source domain, and flexibility in terms of
dealing with diverse discrepancy metrics (maximum mean
discrepancy (MMD), associative loss, self-ensembling loss)
for DA and different optimizers (mini-batch SGD and Adam).

elated Work: Most previous works for domain adaptation have
tilized SGD-type algorithms to solve the relevant optimization
roblems. In [10] the authors formulated DA as an empirical risk
ith a multi-kernel maximum mean discrepancy (MK-MMD)-
ased multi-layer adaptation regularizer, and adopted mini-batch
GD to solve the decision variable associated with the empirical
isk and quadratic programming to attain the optimal kernel
arameter for the multi-layer adaptation regularizer. However,
he coefficient before the regularizer still requires manual tuning.
ikewise, the optimization problem in [12] involves multiple
omponents including deep feature learning from the source
omain, the feature adaptation from the target domain, and clas-
ifier adaptation. The authors applied mini-batch SGD algorithm
o solve the problem, while selecting the tradeoff parameters
ased on empirical results. Though the optimization scheme is
imple and straightforward, manual selections of tradeoff pa-
ameters for penalty terms may result in poor sub-optimal so-
ution. More recent works on joint adaptation networks [25]
nd associative domain adaptation [15] similarly presented the
agrangian form of optimization problems, but the simple mini-
atch SGD algorithm has been adopted correspondingly such
hat manual selection of Lagrangian multipliers was needed to
ventually achieve near-optimal performance. Another work [27]
stablished DA as an adaptive SVM to formulate the optimization
roblem as a quadratic programming. Though the authors have
urned the primal problem into the dual problem with respect
o Lagrangian multipliers and solved it, there were no analysis
esults reported to provide the theoretical guarantee. In more re-
ent works [28] and [29], the authors proposed model adaptation
nd Fourier DA. While in both works solving the corresponding
ptimization problems is based on Adam optimizer, all weighting
 r

2

factors or multipliers were fixed a priori. In summary, almost all
existing works regarding DA have searched multipliers manually
and the theoretical guarantee for any optimization algorithm
used in DA is missing. In contrast, our framework automatically
discovers the correct multipliers, and we will prove that the
proposed scheme converges to approximate stationary points of
feasibility/infeasibility under various scenarios.

The rest of the paper is outlined as follows. We provide pre-
liminaries in Section 2 and problem formulation in Section 3,
respectively. In Section 4 we present the algorithmic framework
of the SALM, and study the convergence properties in Section 5.
Experimental results are used to validate the proposed scheme in
Section 6 and concluding remarks are given in Section 7.

2. Preliminaries

In this paper, we consider DA from a source domain to a
target domain. In this context, a domain D is represented by a
tuple of a feature space X and a marginal probability distribution
P(X), where, D = {X , P(X)}, X = {x1, x2, . . . , xn} ∈ X . Given
a specific domain D, a task T is defined as a composition of a
label space, Y , and a hypothesis, f (·), i.e., T = {Y, f (·)}, where
Y = {y1, y2, . . . , yn} ∈ Y . f (·) is used to predict the corresponding
label, f (x), given any new instance x. Alternatively, a task T can
be denoted by {Y, P(Y |X)}.

Denote by DS and DT the source and target domains. The set
DS = {(xS1, y

S
1), . . . , (x

S
nS , ySnS )} signifies source domain data, and

the set DT = {(xT1, y
T
1), . . . , (x

T
nT , y

T
nT )} indicates target domain

data, where xSi ∈ XS is a feature instance and ySi ∈ YS is a
corresponding label. Likewise, we have xTi ∈ XT and yTi ∈ YT .
We also assume that 0 < nT ≪ nS , which is suitable for most
practical cases. DA aims at helping improve the learning of the
target hypothesis fT (·) in DT using the knowledge in DS and TS ,
where DS ̸= DT , or TS ̸= TT . We next introduce a metric to
quantify the distance between two probability distributions for
problem formulation.

Denote by Hz a reproducing kernel Hilbert space (RKHS) rep-
resented by a characteristic kernel z. The mean embedding of a
specific distribution p in Hz is uniquely represented by ωz(p), so
that we have Ex∼pf (x) = ⟨f (x), ωz(p)⟩Hz for all f ∈ Hz . Therefore,
the MMD between two different probability distributions p and q
can be denoted as

rz(p, q) := ∥Ep[φ(xS)] − Eq[φ(xT )]∥2
Hz

, (1)

which is the RKHS distance between the mean embeddings of p
and q [10,30]. φ is the feature map. When p = q, rz(p, q) = 0
and the relationship between the kernel z and the map φ is
z(xS, xT ) = ⟨φ(xS), φ(xT )⟩. Different kernels can be selected based
on specific problems, such as Gaussian, Laplace, and Cauchy [31].
Note that the specific form of MMD adopted in this paper will
be introduced in the experimental results section. Below, we
describe the generic optimization problem formulation for DA
with MMD, although our approach can be extended to other
discrepancy metrics, such as the joint MMD [14], the associative
similarity [15], and the self-ensembling [16].

3. Problem formulation

By denoting θ as the parameters (i.e., weights in CNNs) to be
learned, the empirical risk is given by:

minimize
θ

1
nS

nS∑
i=1

J(fθ (xSi ), y
S
i ) (2)

where J is the loss function, e.g., the categorical cross-entropy
loss, and fθ (xSi ) is the label prediction, ySi is the true label cor-
esponding to the feature xS . Due to the domain discrepancy
i
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etween the source and target domains when DA is applied,
ased on the definition of MMD, Eq. (2) can be modified as:

inimize
θ

1
nS

nS∑
i=1

J(fθ (xSi ), y
S
i ) + λrz(DS,DT ) (3)

where λ > 0 is a penalty parameter. Here, rz(DS,DT ) indicates
he MMD evaluated using the source and target domain datasets.
his term resembles a quadratic penalty function used to solve
he unconstrained optimization problem. Eq. (3) has been used
roadly in the most popular DA methods [10,32,33]. Some more
ophisticated penalty terms have been proposed in [14] and [12],
ut resulting in a similar problem formulation in terms of opti-
ization. We perceive the problem in another way and give a
eneric constrained optimization formulation for this kind of DA
roblems, which is expressed as:

inimize
θ∈Ω

F(θ ) s. t. g(θ ) ≤ 0 (4)

here Ω ⊆ Rd is a feasible solution set, F(θ ) =
1
nS

∑nS
i=1 J(fθ (x

S
i ),

ySi ) and g is a constraint function. For characterizing the main
results, assumptions on the feasible set Ω , F , and g are imposed
as follows.

Assumption 1. Ω is non-empty and compact.

Assumption 2. F : Rd
→ R is smooth; g : Rd

→ RN is smooth.

In this context, N is the dimension of g(θ ) and N = 1 as
g(θ ) = rz(DS,DT ) − ϵ, where ϵ > 0 is defined to bound the
MMD between the source and target distributions after sufficient
number of iterations. For the sake of analysis, we still keep N in
our formulation. Such a generic form is modified from Eq. (3) to
adapt to other DA problems with constraints between the source
and target domains. We observe that the objective function F(θ )
is still the empirical risk as in Eq. (2) and the constraint g(θ ) plays
a similar role as the penalty term in Eq. (3). Another difference
is that in Eq. (3), the decision variable is unconstrained while
in Eq. (4) it is constrained. Typically, it is difficult to determine
the feasible set, particularly when the models are deep neural
networks, such as CNNs. However, in practice, such a feasible set
can be written via a simple box constraint with sufficiently small
lower bound and sufficiently large upper bound.

4. Stochastic augmented Lagrangian method

4.1. Augmented Lagrangian

We next introduce an augmented Lagrangian form of the
objective function in Eq. (4). The Powell–Hestenes–Rockafellar
Augmented Lagrangian (PHRAL) form [26] is given by:

Lρ(θ, µ) = F(θ ) +
ρ

2

N∑
j=1

[
max

(
0, gj(θ ) +

µj

ρ

)]2

(5)

where θ ∈ Ω , µ ∈ RN
+

are the Lagrangian multipliers of PHRAL,
ρ > 0 is a penalty parameter for PHRAL. To differentiate from the
penalty function in Eq. (3), we use µ to denote the Lagrangian
multipliers as it avoids confusion between λ and µ to be opti-
mized. We discuss the difference between Eqs. (3) and (5), which
motivates the proposed algorithms. The significant difference
between them is that using Eq. (5) yields the optimal Lagrangian
multipliers, while in most existing works instead adopting Eq. (3)
such multipliers have been pre-defined by the manual tuning. In
Section 6, we will show that depending on different use cases,
a pre-defined Lagrangian multiplier may lead to extremely sub-
optimal solutions. In what follows, we discuss how to use the
SALM to solve Eq. (5).
3

4.2. Proposed algorithms

Algorithm 1 presents the framework overview of the SALM
by using a modified ALGENCAN, which applies the mini-batch
SGD and gives a different update law for ρk. It naturally divides
the iterations in two groups, external (Lagrangian) iterations and
internal iterations. In the external iterations (Line 9 - Line 15), the
multiplier µ and the penalty parameter ρ are updated while the
internal iterations (Line 3 - Line 8) are dedicated to solving the
sub-problem for θ . In Algorithm 1, PΩ (x) = argminv∈Ω∥x − v∥

denotes the Euclidean projection. ∥ · ∥ is the Euclidean norm.
{ρ̂k} is a pre-defined sequence of positive numbers that tends to
infinity. From Algorithm 1, it can be observed that soft constraints
are moved up to the objective penalizing a shifted version of in-
feasibility measure, and that hard constraints are enforced inside
the inner solver which addresses the sub-problem:

minimize Lρk (θ, µk), s.t. θ ∈ Ω, (6)

where ρk, µk are fixed. In next section, we present main results
to show why the SALM with mini-batch SGD is able to converge
to a stationary point. Before that, we discuss a few key points in
Algorithm 1 that affect the convergence.

Similar to [26], the condition that ∥PΩ (θk − ∇θkLρk (θk, µk)) −

θk∥ ≤ σk, is used as a stopping criterion for the analysis and im-
plementation. {σk} is a non-negative sequence that tends to zero.
From the algorithmic approach, we observe that the progress in
terms of feasibility and complementarity in each outer iteration
is evaluated as:

∥Vk∥ ≤ τ∥Vk−1∥ . (7)

When this condition holds during the update, the penalty param-
eters would decrease accordingly as 0 < τ < 1. On the other
hand, we impose a sequence {ρ̂k} to guarantee that when the con-
dition fails to hold infinitely many times, the penalty parameters
tend toward infinity. In practice, the sequence {ρ̂k} slowly tends
to infinity and it can be obtained by max{γ ρk, γ

νkρ1}, where
ν1 = 0 and νk+1 = νk + 1. Another multiplier µk at every step
k is updated by using a maximum function that compares the
accumulative value of ρkg(θk) to 0. This can be obtained from
Eq. (5) by calculating the derivative of Lρ(θ, µ) with respect to µ.
From Line 9 we can observe that Vk is attained by applying the
maximum function to select between the inequality constraint
function g(θk) and the quotient between µk and ρk, which thus
infers that the update of µk affects the condition in Eq. (7).

Algorithm 1 SALM with mini-batch SGD

1: Input: µmax > 0, γ > 1, 0 < τ < 1, 0 < µ
j
1 < µmax, j =

1, 2, ...,N, ρ1 > 0, α, b, θ0,D
2: for k = 1 : M do
3: θ = θk−1
4: Randomly split D into batches of size b
5: for each batch do
6: θ = PΩ (θ − α∇θLρk (θ, µk))
7: end for
8: θk = θ

9: Define: V j
k = max{gj(θk), −

µ
j
k

ρk
}, j = 1, ...,N

10: if k = 1, or ∥Vk∥ ≤ τ∥Vk−1∥ then
1: ρk+1 =

1
γ
ρk

12: else
13: ρk+1 ≥ ρ̂k+1
14: end if
15: µ

j
k+1 = max(0, µj

k + ρkgj(θk)), j = 1, 2, ...,N
16: end for

When solving the internal sub-problem for θ , we use an SGD-
type update. Other first-order methods can be used as well, such
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s Adam [23], AdaGrad [34], and RMSProp [35]. We extend the
ALM by replacing SGD with Adam as a variation of Algorithm 1,

hich is presented in Algorithm 2. αk in Algorithm 2 is α

√
1−βk

2

1−βk
1

and α can be chosen with different values in implementation.
Adam has been shown effective in numerous applications and
is able to achieve faster and better convergence. We follow the
default settings from Adam for β1 and β2 in Algorithm 2 (i.e., β1 =

0.9, β2 = 0.999), which are the exponential moving average
coefficients for the first and second moments of ∇θLρk (θ, µk).
Similarly, the internal iterations for θ are conducted from Line
4 to Line 13. The loop between Line 7 and Line 10 is specifi-
cally for the explicit coordinate-wise update. Hence, theoretically
speaking, the step size could also vary for each coordinate, but in
practice, we can keep the same step size for all coordinates for
simplicity, which still produces decent results. In our implemen-
tation, we also set an upper bound ρmax for the value of ρk as
ρk at the beginning can increase significantly before decreasing.
This is due to the fact that the condition in Eq. (7) begins to
hold only after a certain number of iterations. Therefore, this
algorithmic fix can prevent fake divergence scenarios effectively.
It also corresponds to the scenario where {ρk} is bounded in the
analysis.

Algorithm 2 SALM with Adam

1: Input: µmax > 0, γ > 1, 0 < τ < 1, 0 < µ
j
1 < µmax, j =

1, 2, ...,N, ρ1 > 0, 0 < β1, β2 < 1, αk, ξ , b, θ0,D
2: Set w0 = 0, v0 = 0
3: for k = 1 : M do
4: θ = θk−1, w̃ = wk−1, ṽ = vk−1
5: Randomly split D into batches of size b
6: for each batch do
7: for z = 1, 2, ..., d do
8: w̃z = β1w̃z + (1 − β1)(∇θLρk (θ, µk))z
9: ṽz = β2ṽz + (1 − β2)((∇θLρk (θ, µk))z)2

10: θz = PΩ (θz − αk
w̃z√
ṽz+ξ

)
11: end for
12: end for
13: θk = θ , wk = w̃, vk = ṽ

14: Define: V j
k = max{gj(θk), −

µ
j
k

ρk
}, j = 1, ...,N

5: if k = 1, or ∥Vk∥ ≤ τ∥Vk−1∥ then
6: ρk+1 =

1
γ
ρk

7: else
8: ρk+1 ≥ ρ̂k+1
9: end if
0: µ

j
k+1 = max(0, µj

k + ρkgj(θk)), j = 1, 2, ...,N
1: end for

5. Main results

This section characterizes the convergence of stationary point
n a finite number of iterations. Additionally, we provide a feasi-
ility/infeasibility analysis of the proposed scheme. We defer the
etailed proof to the Appendix and refer interested readers to it.
irst, we define an infeasibility measure as

(θ ) =
1
2
∥g(θ )+∥

2 (8)

for all θ ∈ Ω , where g(θ )+ = [max{0, g1(θ )}, . . . ,max{0, gN
θ )}]T . It follows that

R(θ ) = ∇g(θ )g(θ )+ (9)

hich leads to the following lemma taking into account the
cenario ρk < ∞, ∀k.
4

emma 1. Let Assumption 1 and 2 hold. Suppose that sequence
{ρk} is bounded and ζ > 0. Then, for {θk} generated by Algorithm 1,
there exists k0 such that

E[∥g(θk)+∥] ≤ ζ , (10)

for all k ≥ k0.

In practice, if Eq. (7) fails to hold sufficiently many times,
we can infer that the feasible region is empty. By the following
lemma, if Algorithm 1 fails to find feasible solutions, then a
stationary point of infeasibility up to an arbitrary precision can
be found within a finite number of iterations. This has practi-
cal implications as deep learning models in domain adaptation
are typically computationally intensive. Moreover, complex yet
limited target domain data increases the difficulties of finding a
feasible solution or even determining whether or not negative
transfer is induced. Therefore, an analytical infeasibility detection
condition can be critical to help stop the algorithm and save
computational costs.

Lemma 2. Let Assumption 1 and 2 hold. For {θk} generated by
Algorithm 1 and arbitrary η > 0, there exists a sequence of infinitely
many indices K ∈ N, such that for k ∈ K the following holds

E[∥PΩ (θk − ∇R(θk)) − θk∥] ≤ η. (11)

As mentioned above, the condition ∥PΩ (θk −∇θkLρk (θk, µk))−
θk∥ ≤ σk is paired with mini-batch SGD to provide a guarantee
for the convergence of the SALM. The sequence {σk} is used
to form this condition that should satisfy for each iterate θk.
Intuitively, for mini-batch SGD, this condition can be achieved
after a certain number of epochs. Therefore, we can choose a
sequence {σk} tending to zero such that the condition holds true
to continue updating the Lagrangian multiplier and the penalty
parameter. We are now ready to state the main theorem to show
the behavior of Algorithm 1 in a finite number of iterations.

Theorem 1. Let Assumption 1 and 2 hold. Suppose that there
exist arbitrary constants that satisfy ηf , ηo, ηc > 0 and that {θk}
is generated by Algorithm 1. Then, there exists k0 ∈ N, if {ρk} is
bounded, the following holds

E[∥g(θk)+∥] ≤ ηf (12)

and

E
[
∥PΩ (θk − [∇F(θk) +

∑
gj(θk)≥−ηc

µ
j
k+1∇g j(θk)]) − θk∥

]
≤ ηo (13)

for all k ≥ k0.
If {ρk} is unbounded, and limk∈K ρk = ∞, there exists k0 ∈ N

such that

E[∥PΩ (θk − ∇R(θk)) − θk∥] ≤ ηf (14)

and Eq. (13) holds for all k ∈ K , k ≥ k0.

In Theorem 1, we discuss two scenarios in which the penalty
parameters are bounded and unbounded, respectively. When {ρk}

is bounded, Algorithm 1 is able to converge to a feasible point
with an arbitrary precision, which is essentially an approximate
Karush–Kuhn–Tucker (KKT) point. In contrast, when {ρk} is un-
bounded, it is observed that the algorithm can find an approx-
imate stationary point of infeasibility up to arbitrary precision.
For such a result, constraint qualifications are not required. The
update law for µ

j
k may not always enable Eq. (26) to hold true

when it is larger than µmax so in the real implementation, to
guarantee the feasibility, before obtaining the µ

j
k+1, the condition

µ
j
k ∈ (0, µmax) is ensured. These two scenarios will be validated

by using empirical results. Next we show that an approximate KKT
point can be obtained as follows based on Theorem 1.
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efinition 1. A feasible point θ∗ is an approximate KKT point if
there exists {θk} ⊂ Rd, {µk} ⊂ RN such that the following holds

lim
k→∞

θk = θ∗
; lim

k→∞

∥∇F(θk) + ∇g(θk)µk∥ = 0;

lim
k→∞

max
{
gj(θk), −

µ
j
k

ρk

}
= 0, j = 1, 2, . . . ,N.

Therefore, according to Definition 1, the following corollary
an be immediately obtained.

orollary 1. Let Assumption 1 and 2 hold. Suppose that {θk} is
enerated by Algorithm 1. Then, for all k0 ∈ N and k ≥ k0, if
ρk} is bounded, the feasible point θ∗

= limk→∞ θk satisfies the
pproximate KKT condition.

The proof of Corollary 1 follows from the proof of Theorem 1.
n this context, we only present the learning convergence results
or the SALM with SGD, which could be the limitation of this
ork, as in practice, other variants would be adopted instead of
GD. However, for the variant with Adam, we defer the relevant
heoretical analysis to the future work, while still evaluating
ts empirical performance on DA. Different from the theoretical
esults presented in [36], which focused on the learning error
ounds for the target domain, we study the convergence to the
ptimal solution for some defined sequence generated by a spe-
ific algorithm, leveraging the optimization theory. In the future,
e will also investigate the connection between the learning
rror bounds and the convergence to the optimal solution for
acilitating the theoretical understanding of DA. In the sequel,
he experimental results are presented to show the efficacy and
ffectiveness of the proposed approach.

. Experiments

This section presents experimental results for validating the
roposed algorithm. Benchmark data sets including MNIST,
YNTH, SVHN, and USPS are applied with the Salad package [37].
he code for the Algorithm 1 and Algorithm 2 is available in
ithub.com/cliu08/SAL.

.1. Experiment settings

Data sets. The data sets mentioned above are prepared follow-
ng the same way as suggested in the Salad package. For compar-
son purposes, the learning rate is fixed at 0.0005 for all experi-
ents. The batch size is 128, and the number of epochs is 2000.
he labels for the target domain are only used for evaluating the
erformance, and are not applied in the training process.
CNN architecture. The CNN architecture applied in this work

s the same as that in the Salad package, including 3 sets of
onvolutional layers. Each set consists of three 2-d convolutional
ayers with kernel size (3, 3) and stride size (1, 1). Maxpooling
ayers (with kernel size (2, 2)) are applied after each set of
onvolutional layers and dropout layers (ratio 0.5) are used after
he first two sets of convolutional layers. Batch normalization is
dded after each convolutional layer, and the classifier is with
28 input units and 10 output units (for 10 digits in the data sets
pplied in this work).
Discrepancy metric for unsupervised DA. For the DA frame-

ork, a discrepancy metric is needed to measure the difference
etween the source domain and the target domain. The MMD
etric with l2 norm is used in this paper due to the wide accep-

ance of MMD and its variants in the community [14,24,25,38].
e also consider other metrics including association loss (noted

s Assoc) [15] and self-ensembling loss (noted as Teach) [16] for

omparison with existing literature. c

5

Optimizer. As the SALM intends to find the optimal Lagrangian
ultipliers, which are used to replace the fixed penalty parameter

n unsupervised domain adaptation, the SALM can be formulated
n mini-batch SGD or Adam (as shown in Algorithms 1 and 2).
herefore, experiments with both mini-batch SGD and Adam have
een carried out.
Penalty parameter λ for traditional DA algorithms. Although
is known to have significant influence on model accuracy [25],

here is still no known optimal method to optimize it. This is
specially true in unsupervised DA problems, as no labels for
raining samples in the target domain are available. This work
ses a set of λ values within range [0.01 100.0].

.2. Experimental results

.2.1. SALM convergence
Fig. 1(a) shows the convergence process of the SALM on the

ransferring task from MNIST to SYNTH with MMD metric and
dam optimizer. It shows that the MMD loss decreases as well as
he cross entropy loss, and the accuracies on the source domain
nd target domain increase. Consequently, such experimental
esults match the theoretical analysis in Theorem 1 where the
ALM is able to find a feasible point. Fig. 1(b) shows a divergence
ase in which Eq. (7) cannot hold along all the iterations. It
an be observed that the value of ρk keeps increasing and that
he gradient does not vanish. Similarly, the cross-entropy loss
ncreases while accuracies for both the source and target domains
ventually decrease.
Experiments on different transferring tasks are listed in Ta-

le 1. Note that for comparison we have selected fixed λ values
for either SGD or Adam. Though a wide spectrum of λ needs to
be considered to attain fair comparison, the fixed values used
in this context have been chosen in other publications for the
best performance [10,39]. Results shown in the table are obtained
by averaging multiple runs. It shows that the SALM outperforms
or is comparable to fixed λ method (used in traditional DA) in
most cases. Although when the optimizer is Adam, the proposed
SALM cannot outperform entirely (while still being close to the
best performance) the fixed λ method, one advantage is that the
ALM avoids manual selection of the λ value. Moreover, it can
lso be observed that depending on different datasets, optimal λ
ay not have the same value, which demonstrates the difficulty

n choosing λ manually.

.2.2. Comparison
Comparison of the SALM to two recently proposed approaches

associative domain adaptation [15] and self ensembling for vi-
ual domain adaptation [16]) are summarized in Table 2. For
he transferring task from MNIST to USPS, the SALM with Adam
utperforms the baseline results presented in [37]. For the task
NIST to SYNTH, the SALM is better based on Teach, and compa-

able to Salad based on Assoc. Note that there are three penalty
arameters in the associative loss, and we only apply the SALM
n the first one (which is the penalty for the summation of two
dditional loss terms).
SALM vs Fixed λ. The proposed SALM overcomes the problem

f the intractable parameter λ, which could improve the applica-
ion of unsupervised domain adaptation methods. Here, further
nalysis on the influence of λ is carried out on the transferring
ask from MNIST to USPS with 10 different values of λ (Fig. 2(a)).
he performance varies significantly with different values of λ,
nd the SALM outperforms all of the cases with fixed λ. Addi-
ionally, overfitting can occur with improper λ (0.5, 1.0, 2.0, 5.0 in
his case). Unfortunately, in traditional DA algorithms, one cannot
onitor this kind of overfitting due to unlabeled target domain
ata. However, the SALM overcomes this, as seen in the additional

ases plotted in Fig. 2(b).
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p

Fig. 1. (a) Gradients, losses and accuracy values of the SALM during the training process. The discrepancy metric (MMD) decreases as the training goes on, and the
gradient of the backpropagation process also decreases to <5e-5; (b) A divergence case: ρk increases as the training goes on, and the gradient of the backpropagation
rocess cannot converge. The cross-entropy loss increases and both accuracy values decrease.
Table 1
Accuracy of SALM on unsupervised domain adaptation with MMD metric.
Source Target SGD Adam

λ fixed SALM λ fixed SALM

MNIST USPS 0.611 ± 0.06 0.788±0.02 0.928±0.03 0.887 ± 0.01
MNIST SYNTH 0.132 ± 0.05 0.460±0.06 0.700 ± 0.14 0.861±0.02
MNIST SVHN 0.126 ± 0.01 0.277±0.02 0.248 ± 0.03 0.443±0.02
SYNTH SVHN 0.617 ± 0.01 0.739±0.03 0.766 ± 0.01 0.774±0.01
SYNTH MNIST 0.489 ± 0.24 0.905±0.01 0.944±0.01 0.909 ± 0.01
SYNTH USPS 0.480 ± 0.04 0.649±0.02 0.719 ± 0.09 0.746±0.02
USPS MNIST 0.429 ± 0.05 0.732±0.01 0.926±0.01 0.923 ± 0.01
USPS SYNTH 0.315 ± 0.07 0.335±0.02 0.495 ± 0.07 0.695±0.02
USPS SVHN 0.209 ± 0.02 0.244±0.03 0.271 ± 0.07 0.432±0.03
SVHN MNIST 0.710 ± 0.05 0.722±0.03 0.744 ± 0.03 0.804±0.02
SVHN USPS 0.518 ± 0.02 0.562±0.04 0.521 ± 0.03 0.576±0.01
SVHN SYNTH 0.949±0.01 0.948 ± 0.01 0.960 ± 0.01 0.960±0.01

For λ fixed, the average is computed by λ = 0.1 and 1.0, and 5 runs are implemented for each case with different random seeds.
Fig. 2. (a) Accuracies on USPS data set with domain transferred from MNIST data set using MMD metric with mini-batch SGD and λ in range [0.01, 100]. (b)
Accuracies on MNIST→USPS transferring task on 10 experiments using mini-batch SGD (top panel) and Adam (bottom panel) optimizers, where the hyperparameters
are randomly selected within the recommended range.
6



Z. Jiang, C. Liu, Y.M. Lee et al. Knowledge-Based Systems 235 (2022) 107593

T
C

c
t
s
d

w
d
u
f
t
o
s
p
0
a
l
p
T
5
o

o
d

Fig. 3. Multiple trials on the selection of hyperparameters.
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able 2
omparison with baseline methods.
Method MNIST→USPS MNIST→SYNTH

Assoca
Benchmarkc 0.941 0.348
SALM w SGD 0.989 0.320
SALM w Adam 0.990 0.338

Teachb
Benchmarkc 0.984 0.956
SALM w SGD 0.990 0.891
SALM w Adam 0.991 0.993

aAssociative DA.
bSelf-ensembling DA.
cThe benchmark is based on github/domainadaptation/salad.

6.2.3. Application in fault diagnosis of wind turbines
The SALM is applied in a wind turbine data set, including 12

onditions tested in the test rig. The data has been collected for
esting the efficacy of the fault diagnosis method in different
cenarios [40–43]. Detailed description for the test rig and the
ataset can refer to [44,45].
For the transfer learning setting, the data collected in varying

ind speeds are divided in to two sets. One is used as the source
omain (with the same range of wind speed), and the other is
sed as the target domain (where the wind speeds are different
rom the source domain). In this setup, the SALM is applied and
he results are listed in Table 3. The results validate the efficacy
f the proposed algorithm. Since there is no rule of thrum for
electing the proper value of λ, and the results show that the
erformance is greatly influenced by λ (the accuracy varies from
.08 to 0.7 for SGD, and 0.17 to 0.9 for Adam). Therefore, when
pplying the domain adaptation in real cases, the parameter se-
ection of λ is critical and the proposed SALM method tackles this
roblem and attains stable performance in both cases listed in
able 3. The same observation is also reported in [39], where Fig.
(b) shows that the loss varies significantly with different values
f λ (λ is treated as a tradeoff parameter in [39]).
It should be noted that the SALM intends to find out an optimal

r suboptimal setting for balancing the two loss terms in the
omain adaptation (as listed in Eq. (3)). The accuracy obtained by
 c

7

SALM may not be always better than that with a fixed λ value,
s when multiple λ values are tested, the accuracy varies and
an be close to the best performance. That said, as the domain
daptation is not able to find out the labels for the target domain,
ne could not optimize the selection of the λ. This also shows the
uperiority of the proposed SALM as it can optimize the training
rocess and make it converge to an optimal point.

.2.4. Discussions
Selection of hyperparameters in SALM. As shown in Algo-

ithms 1 and 2, the hyperparameters in the SALM include µmax,
, γ , and ρmax. SALM performs well over tens of trials using the
ecommended hyperparameters (Fig. 2(b)). 1128 more rounds of
xperiments are implemented based on the domain adaptation
ask from MNIST to USPS, where the hyperparameters are set in
uite a large range to investigate the performance of the proposed
lgorithm, and the results are shown in Fig. 3. Here, for each
ubplot, the accuracies on the training and testing sets are plotted
ith the listed parameter in x-axis. It should be noted that the
yperparameters are randomly picked and the average of 5 trials
ith the same (or close) hyperparameter in x axis are applied
where the other hyperparameters could be different).

From Fig. 3, the algorithm is robust with the hyperparameters.
o avoid the extreme combinations of the hyperparameters, the
ecommended values are listed in Table 4. In the table, we also
ist out values recommended for µ1, ρ1, and ϵ, although in the
xperiments, they are not rigorously hyperparameters. Since µ1
nd ρ1 are only the initialization and ϵ tends to zero eventually.
s discussed above, ρmax is to prevent fake divergence, which
s set sufficiently large typically. For µmax, it can be observed
hat from the algorithmic framework it is used for the update
o find out the optimal multiplier. Therefore, in a generic way,
t can be also set sufficiently large while in this paper, we rec-
mmend its value to be large enough compared with the initial
alue of the multiplier. Regarding τ , it is critical to determine
hether the progress has been made in terms of feasibility and
omplementarity in the outer iteration. The selection of τ partly
epends on the loss function which in our case is highly nonlinear
nd nonconvex. When the loss function is linear and convex, one

an choose a smaller value for τ as the globally optimal solution
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Table 3
Case studies on wind turbine fault diagnosis.
Optimizer λ = 0.01 λ = 0.1 λ = 1 λ = 10 λ = 50 λ = 100 SALM

SGD 0.69 0.7 0.63 0.34 0.16 0.08 0.66
Adam 0.89 0.9 0.89 0.89 0.42 0.17 0.91
Fig. 4. Accuracies on MNIST→USPS transferring task on 10 experiments using mini-batch SGD (top panel) and Adam (bottom panel) optimizers respectively. The
yperparameters of SALM are randomly selected within the range as recommended in Table 4.
s obtainable. γ plays a critical role in controlling the penalty
parameter. As mentioned above, γ in most of the cases should
e chosen close to 1. More experiments are implemented with
ifferent loss functions and the results are shown in Fig. 4.
Computational cost. Compared to traditional unsupervised

domain adaptation methods, the additional computational cost of
the SALM is from the update laws for the Lagrangian multiplier
µ and the penalty parameter ρ and the computational cost is
negligibly small. The other computation costs in Algorithms 1
and 2, such as loss in measuring the discrepancy between the
source domain and the target domain (MMD, Assoc, Teach, etc.),
the gradient of the loss function, and the sum of the loss terms are
all required for both traditional unsupervised domain adaptation
methods and the proposed method. Therefore, the additional
computational overhead is quite small, and the running time for
each epoch of the traditional unsupervised domain adaptation
methods and the proposed method is similar. The running time
for the algorithm is listed in Table 5, which is measured in
the case MNIST→USPS. MMD loss is applied and the optimizer
is mini-batch SGD. Nvidia Tesla P40 is used. The results show
that the additional running time for the SALM is relatively small
compared to the loss computation and the gradient computation.

SALM for multiple penalty parameters. In this context, we
have applied the SALM to solve the optimal multiplier problem
where there is only one penalty parameter. However, in some
cases such as JDA and Associative domain adaptation that include
more than one loss terms in the discrepancy metric, whether the
proposed SALM could still be used is unknown. Note that this
work only adapts the summation of the two loss terms in the
Associative domain adaptation, while the multiplier between the
walker loss and visitor loss is left as default. Although we do
not have extensive results for such cases, the answer is positive.
Even with multiple penalty parameters, PHRAL can still be used to
formulate the problem. In that case, different constraints would
be combined in a vector form such that the multiplier to be
optimized is a vector instead of a scalar. Then, similar analysis and
approach apply immediately to satisfy the problem with multiple
penalty parameters. More comprehensive results about this topic
will be deferred as future work.
8

Table 4
Recommended settings for the hyperparameters in SALM.
Parameter Recommendation

µ1 [0.01, 0.1]
ρ1 10µ1
µmax 103µ1
τ [0.995, 0.999]
γ [0.994, 0.995]
ϵ [1.0, 1.2] with

√
k diminishing ratio

ρmax 103

Table 5
Computational cost. The traditional domain adaptation takes the first and third
items for each updating, and the SALM takes all of the three items.
Item Running time (seconds)

Loss computation (cross entropy and MMD) 1.266
Backpropagation (gradient computation) 0.0107
SALM (parameter updating) 0.000687

7. Conclusions and future work

We address the optimization problem associated with do-
main adaptation, which can be cast as nonlinear programming
by presenting a stochastic augmented Lagrangian method. We
establish the optimization framework based on mini-batch SGD
as well as Adam optimizer which originally was proposed for the
unconstrained problem. We show that when the external param-
eters are bounded, and the proposed scheme can find a feasible
point with arbitrary precision, which is also an approximate KKT
point. When the external parameters are unbounded, with an
appropriate infeasibility measure, the algorithm converges to an
approximate stationary point of infeasibility. Several benchmark
datasets are used to validate the efficacy of the proposed method.
Beyond this work, several future research directions include: (i)
adding equality constraints in the problem formulation to present
a more generic framework; (ii) extending the proposed frame-
work to tasks such as natural language processing and time-series
inference; (iii) relaxing the assumption that the inequality con-
straint is smooth in order to incorporate more complex learning
problems.
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ppendix

This section presents additional proof for the main results in
ection 5.

roof of Lemma 1

Proof. As when Eq. (7) does not hold, we have ρk+1 ≥ ρ̂k+1 and
imk→∞ ρ̂k → ∞. The boundedness of {ρk} suggests that there
exists a k0 ∈ N for all k ≥ k0 such that Eq. (7) should hold. Thus,
e have

imk→∞E[∥Vk∥] = 0,

hich results in

imk→∞max
{
E[gj(θk)], −

µ
j
k

ρk

}
= 0 (15)

or all j = 1, 2, . . . ,N . Then we can know limk→∞E[g(θk)+] = 0,
hich completes the proof. □

roof of Lemma 2

roof. We will consider two scenarios in the proof, i.e., {ρk} is
bounded or not.

First scenario: {ρk} is bounded. By Lemma 1, we have

lim
k→∞

E[∥g(θk)+∥] = 0.

As g is continuous and the set Ω is compact, there exists a
onstant C such that

∥∇g(θk)∥ ≤ C

for all k ∈ N. By the last two inequality, we have the following
relationship

lim
k→∞

E[∥∇g(θk)g(θk)+∥] = 0 (16)

hich implies that limk→∞ E[∥∇R(θk)∥] = 0 due to Eq. (9). As
∈ Ω , then the desired result is obtained.
k

9

Second scenario: {ρk} is unbounded. Then there exists an
infinite sequence of indices K ∈ N such that limk∈K ρk → ∞. We
next prove by contradiction. Suppose that there exists an infinite
set of indices K1 ⊂ K such that

E[∥PΩ (θk − ∇R(θk)) − θk∥] ≥ η (17)

for all k ∈ K1. As Ω is compact, then it can be immediately
obtained that the sequence {θk}k∈K1 contains a convergent sub-
sequence {θk}k∈K2 , K2 ⊂ K . Suppose that limk∈K2 θk = θ∗

∈ Ω .
Taking the limit for Eq. (17) for k ∈ K2, we have

E[∥PΩ (θ∗
− ∇R(θ∗)) − θ∗

∥] ≥ η (18)

Thus, there exists η′ > 0 such that

E[∥PΩ (θ∗
− ∇R(θ∗)) − θ∗

∥∞] ≥ η′ (19)

As we have E[∥PΩ (θk − sk) − θk∥∞] ≤ σk and σk → 0 as well
as ρk = ∞ for k ∈ K , then there exists k0 ∈ N such that for all
k ∈ K , k ≥ k0, ρk ≥ 1 and

E[∥PΩ (θk − sk) − θk∥∞] ≤ η′/2 (20)

Substituting sk = ∇θkLρk (θk, λk) into the last inequality leads to
the following relationship

E[∥PΩ (θk −[∇F(θk)+ρk∇g(θk)(g(θk)+µk/ρk)+])− θk∥∞] ≤ η′/2
(21)

As ρk ≥ 1, then the last inequality becomes

E[∥PΩ (θk − (
1
ρk

)[∇F(θk)+ρk∇g(θk)(g(θk)+µk/ρk)+])−θk∥∞] ≤ η′/2

(22)

which results in

E[∥PΩ (θk − [∇F(θk)/(ρk) + ∇g(θk)(g(θk) + µk/ρk)+]) − θk∥∞] ≤ η′/2

(23)

We now take the limit for k ∈ K2 for the left hand side such that

E[∥PΩ (θ∗
− ∇g(θ∗)g(θ∗)+) − θ∗

∥∞] ≤ η′/2 (24)

It can be observed that this contracts Eq. (19), which also implies
that

E[∥PΩ (θk − ∇R(θk)) − θk∥] ≤ η (25)

for all sufficiently large k ∈ K . This completes the proof. □

Proof of Theorem 1

Proof. Recalling the condition defined in Lemma 2

E[∥PΩ (θk − ∇θkLρk (θk, µk)) − θk∥] ≤ σk

which leads to

E
[
∥PΩ (θk − [∇F(θk) +

N∑
j=1

µ
j
k+1∇gj(θk)]) − θk∥

]
≤ σk (26)

for all k. As Ω is compact, and ∇g is continuous, there exists a
constant B > 0 such that ∥∇gj(θ )∥ ≤ B for all θ ∈ Ω . We now
consider two scenarios for {ρk}.

First scenario: {ρk} is bounded. By Lemma 1, it can be ob-
tained that there exists k1 ∈ N such that Eq. (12) holds for all
k ≥ k1. Moreover, we can know that there exists k0 ≥ k1 such that
∥Vk∥ ≤ τ∥Vk−1∥ holds for all k ≥ k0. Therefore, limk→∞ Vk = 0.
For all j = 1, 2, . . . ,N , we define Kj ⊂ N by

K = {k ∈ N|g (θ ) < −η }
j j k c
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herefore, if Kj contains infinitely many indices, as V j
k tends to

ero, we have that

im
∈Kj

µ
j
k+1 = 0.

hen, combining with the boundedness of ∥∇gj(θk)∥, we can
obtain

lim
k→∞

∑
g j(θk)<−ηc

µ
j
k+1∇gj(θk) = 0.

By Eq. (26), we have

E
[
∥ PΩ (θk − [∇F(θk) +

∑
g j(θk)≥−ηc

µ
j
k+1∇gj(θk)

+

∑
gj(θk)<−ηc

µ
j
k+1∇gj(θk)]) − θk ∥

]
≤ σk (27)

Combine the last two relationships and the continuity of projec-
tion, the following can be obtained

lim
k→∞

E
[
∥PΩ (θk−[∇F(θk)+

∑
g j(θk)≥−ηc

µ
j
k+1∇gj(θk)])−θk∥

]
= 0 (28)

which suggests that the Eq. (13) follows when k is sufficiently
large.

Second Scenario: ρk is unbounded. It can be immediately
obtained that there exists an infinite sequence of indices K ⊂ N
such that limk∈K ρk = ∞. Based on Lemma 2, there exists k0 ∈ N
such that for all k ∈ K , k ≥ k0, Eq. (14) holds and

µ
j
k − ρkηc < 0.

for all j = 1, 2, . . . ,N . Therefore, by the update

µ
j
k+1 = min{max(0, µj

k + ρkgj(θk)), µmax}, j = 1, 2, . . . ,N

and gj(θk) < −ηc , if k ∈ K , k ≥ k0, it can be acquired that
j
k+1 = 0.

imilarly, according to the analysis in the first scenario, we can
now that Eq. (26) holds such that Eq. (13) follows. This com-
letes the proof. □
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