Knowledge-Based Systems 235 (2022) 107593

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

The Stochastic Augmented Lagrangian method for domain adaptation N

Check for
updates

Zhanhong Jiang !, Chao Liu®"!, Young M. Lee ?, Chinmay Hegde ¢, Soumik Sarkar ¢,
Dongxiang Jiang”

2 Johnson Controls, Inc., Milwaukee, USA

b Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
¢ Tandon School of Engineering, New York University, NY, USA

4 Department of Mechanical Engineering, lowa State University, Ames, USA

ARTICLE INFO ABSTRACT

Article history:

Received 23 January 2021

Received in revised form 31 July 2021
Accepted 9 October 2021

Available online 19 October 2021

Among various topics explored in the transfer learning community, domain adaptation (DA) has been
of primary interest and successfully applied in diverse fields. However, theoretical understanding of
learning convergence in DA has not been sufficiently explored. To address such an issue, this paper
presents the Stochastic Augmented Lagrangian method (SALM) to solve the optimization problem
associated with domain adaptation. In contrast to previous works, the SALM is able to find the
optimal Lagrangian multipliers, as opposed to manually selecting the multipliers which could result
in significantly suboptimal solutions. Additionally, the SALM is the first algorithm which can find
a feasible point with arbitrary precision for domain adaptation problems with bounded penalty
parameters. We also observe that with unbounded penalty parameters, the proposed algorithm is
able to find an approximate stationary point of infeasibility. We validate our theoretical analysis with

Keywords:

Domain adaptation
Augmented Lagrangian
Optimization
Convergence

several experimental results using benchmark data sets including MNIST, SYNTH, SVHN, and USPS.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A common assumption made during the design of machine
learning algorithms is that the training and testing datasets share
the same feature space. However, such an assumption can be vio-
lated by many real-world scenarios where training data and test-
ing data come from different domains. The framework of transfer
learning has been developed to address this issue and has been
the focus of considerable recent attention [1-5]. Transfer learning
has demonstrated its wide efficacy in various problem domains,
including image classification [6], natural language processing [2],
biology [7], urban computing [8], and indoor localization [9].

While the proposed framework in this paper can be exten-
sively applied to related problems in transfer learning, we exclu-
sively focus on domain adaptation (DA). In DA, the ideal learned
feature descriptor learns transferable features from the source
domain that are applicable in the target domain. A discrepancy
metric is adopted between the source domain and the target
domain to minimize any additional loss incurred. Various ap-
proaches have been proposed and developed for DA, such as deep
adaptation networks (DAN) [10], domain separation networks
(DSN) [11], residual transfer networks (RTN) [12], Asymmetric

* Corresponding author.
E-mail address: cliu5@tsinghua.edu.cn (C. Liu).

1 The authors have contributed equally.

https://doi.org/10.1016/j.knosys.2021.107593
0950-7051/© 2021 Elsevier B.V. All rights reserved.

Transfer (ADDA) [13], joint adaptation networks (JAN) [14], as-
sociative adaptation [15], self-ensembling adaptation [16], and
partial domain adaptation [6]. It should be noted that in the DA
literature, there exist additional methods that are either adver-
sarial, such as GAN-based [17-19] or reconstruction-based [20].
However, the problem formulations associated with these meth-
ods can be quite different from what we will present next, and a
full investigation of methods such as [20] is out of scope.

The various DA methods listed above differ in their details,
but they are generally optimization formulations with a discrep-
ancy metric included within the loss function. Specifically, these
are problems of the form min£; + AL, where £ is the loss
function for operating in the source domain, while £, is the
loss function that represents the discrepancy metric. In prac-
tice, such an optimization problem has been solved by manually
tuning Lagrange multipliers, and using first-order methods such
as SGD [21], RMSprop [22], and Adam [23]. Very few studies
have addressed in a principled manner, how to choose the op-
timal multiplier A without resorting to manual tuning or grid
search. Moreover, theoretical analyses of convergence of such
relaxation-based methods are rare.

This gap in understanding is unfortunate, since the choice
of Lagrange multipliers in DA has been shown of significant
influence on performance [24,25]. In particular, for problems per-
taining to unsupervised DA, obtaining the optimal multipliers are
intractable since the performance on the unlabeled target domain

https://doi.org/10.1016/j.knosys.2021.107593
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107593&domain=pdf
mailto:cliu5@tsinghua.edu.cn
https://doi.org/10.1016/j.knosys.2021.107593

Z. Jiang, C. Liu, Y.M. Lee et al.

cannot be evaluated beforehand. This paper resolves this gap.
Since popular deep learning-based optimizers were generically
proposed for the unconstrained empirical risk minimization, in
this work, we leverage a popular nonlinear constrained opti-
mization method, ALGENCAN [26]. The Stochastic Augmented
Lagrangian method (SALM) is obtained by integrating mini-batch
SGD and Adam with ALGENCAN such that decision variables and
Lagrangian multipliers are optimized simultaneously in DA. We
summarize our specific contributions as follows.

e We propose the SALM based on ALGENCAN to solve the
constrained optimization problem for DA. The SALM has two
variants, including SGD and Adam, and it thus enables to
obtain the optimal model without the need to numerically
tune the multipliers.

e We prove that with bounded penalty parameters, the pro-
posed SALM with the variant of SGD is able to find a feasible
point with an arbitrary precision, which is an approximate
Karush-Kuhn-Tucker (KKT) point (see Definition 1 below).
Moreover, with an appropriate infeasibility measure and
unbounded penalty parameters, we also show that the SALM
can find an approximate stationary point of infeasibility (see
precise definition below). To the best of our knowledge, we
are the first to propose and theoretically analyze Augmented
Lagrangian methods for DA.

e We test the proposed algorithm on several benchmark
datasets (MNIST, USPS, SYNTH, and SVHN) and find that
the SALM avoids converging to significantly sub-optimal
solutions while also leading to better accuracy than the
state-of-the-art. The algorithm shows robustness in terms of
achieving fair accuracy on the target domain and avoiding
overfitting on the source domain, and flexibility in terms of
dealing with diverse discrepancy metrics (maximum mean
discrepancy (MMD), associative loss, self-ensembling loss)
for DA and different optimizers (mini-batch SGD and Adam).

Related Work: Most previous works for domain adaptation have
utilized SGD-type algorithms to solve the relevant optimization
problems. In [10] the authors formulated DA as an empirical risk
with a multi-kernel maximum mean discrepancy (MK-MMD)-
based multi-layer adaptation regularizer, and adopted mini-batch
SGD to solve the decision variable associated with the empirical
risk and quadratic programming to attain the optimal kernel
parameter for the multi-layer adaptation regularizer. However,
the coefficient before the regularizer still requires manual tuning.
Likewise, the optimization problem in [12] involves multiple
components including deep feature learning from the source
domain, the feature adaptation from the target domain, and clas-
sifier adaptation. The authors applied mini-batch SGD algorithm
to solve the problem, while selecting the tradeoff parameters
based on empirical results. Though the optimization scheme is
simple and straightforward, manual selections of tradeoff pa-
rameters for penalty terms may result in poor sub-optimal so-
lution. More recent works on joint adaptation networks [25]
and associative domain adaptation [15] similarly presented the
Lagrangian form of optimization problems, but the simple mini-
batch SGD algorithm has been adopted correspondingly such
that manual selection of Lagrangian multipliers was needed to
eventually achieve near-optimal performance. Another work [27]
established DA as an adaptive SVM to formulate the optimization
problem as a quadratic programming. Though the authors have
turned the primal problem into the dual problem with respect
to Lagrangian multipliers and solved it, there were no analysis
results reported to provide the theoretical guarantee. In more re-
cent works [28] and [29], the authors proposed model adaptation
and Fourier DA. While in both works solving the corresponding
optimization problems is based on Adam optimizer, all weighting

Knowledge-Based Systems 235 (2022) 107593

factors or multipliers were fixed a priori. In summary, almost all
existing works regarding DA have searched multipliers manually
and the theoretical guarantee for any optimization algorithm
used in DA is missing. In contrast, our framework automatically
discovers the correct multipliers, and we will prove that the
proposed scheme converges to approximate stationary points of
feasibility/infeasibility under various scenarios.

The rest of the paper is outlined as follows. We provide pre-
liminaries in Section 2 and problem formulation in Section 3,
respectively. In Section 4 we present the algorithmic framework
of the SALM, and study the convergence properties in Section 5.
Experimental results are used to validate the proposed scheme in
Section 6 and concluding remarks are given in Section 7.

2. Preliminaries

In this paper, we consider DA from a source domain to a
target domain. In this context, a domain D is represented by a
tuple of a feature space X and a marginal probability distribution
P(X), where, D = {X,P(X)}, X = {X1,X2,...,%:} € X. Given
a specific domain D, a task 7 is defined as a composition of a
label space,), and a hypothesis, f(-), i.e.,, T = {J, f(-)}, where
Y ={y1,¥2,...,¥n} € V.f(-)is used to predict the corresponding
label, f(x), given any new instance x. Alternatively, a task 7 can
be denoted by {, P(Y|X)}.

Denote by Ds and Dr the source and target domains. The set
Ds = {(x}, %), ..., (% ,¥;,)} signifies source domain data, and
the set Dr = {(x],¥]),.... (ng,yzr)} indicates target domain
data, where x; € Xs is a feature instance and y; € Vs is a
corresponding label. Likewise, we have x! € xp and y| € Yr.
We also assume that 0 < ny <« ng, which is suitable for most
practical cases. DA aims at helping improve the learning of the
target hypothesis fr(-) in Dy using the knowledge in Ds and Ts,
where Ds # Dr, or Ts # 7Tr. We next introduce a metric to
quantify the distance between two probability distributions for
problem formulation.

Denote by #, a reproducing kernel Hilbert space (RKHS) rep-
resented by a characteristic kernel z. The mean embedding of a
specific distribution p in #, is uniquely represented by w,(p), so
that we have Ex-,f(X) = (f(X), w;(p))«, for all f € H,. Therefore,
the MMD between two different probability distributions p and g
can be denoted as

r2(p,) = IEp[¢(°)] — Eqlp(x" I, (1)

which is the RKHS distance between the mean embeddings of p
and q [10,30]. ¢ is the feature map. When p = q, r;(p,q) = 0
and the relationship between the kernel z and the map ¢ is
z(x5, xT) = (p(x°), p(x")). Different kernels can be selected based
on specific problems, such as Gaussian, Laplace, and Cauchy [31].
Note that the specific form of MMD adopted in this paper will
be introduced in the experimental results section. Below, we
describe the generic optimization problem formulation for DA
with MMD, although our approach can be extended to other
discrepancy metrics, such as the joint MMD [14], the associative
similarity [15], and the self-ensembling [16].

3. Problem formulation

By denoting 6 as the parameters (i.e., weights in CNNs) to be
learned, the empirical risk is given by:

ng
1
minimize s E J(Fa(x). ¥7) 2)
i=1

where | is the loss function, e.g., the categorical cross-entropy
loss, and fy(x;) is the label prediction, y; is the true label cor-
responding to the feature xis. Due to the domain discrepancy

Z. Jiang, C. Liu, Y.M. Lee et al.

between the source and target domains when DA is applied,
based on the definition of MMD, Eq. (2) can be modified as:

ns
minimize — > IGa(x).¥) + Ar(Ds, Dr) (3)
¢ s i3

where A > 0 is a penalty parameter. Here, r,(Ds, Dr) indicates
the MMD evaluated using the source and target domain datasets.
This term resembles a quadratic penalty function used to solve
the unconstrained optimization problem. Eq. (3) has been used
broadly in the most popular DA methods [10,32,33]. Some more
sophisticated penalty terms have been proposed in [14] and [12],
but resulting in a similar problem formulation in terms of opti-
mization. We perceive the problem in another way and give a
generic constrained optimization formulation for this kind of DA
problems, which is expressed as:

minimize 7(0) s.t. g(#) <0 (4)
fe2

where 2 C R is a feasible solution set, F(0) = s Z 1o (x5 x3),
yf) and g is a constraint function. For characterizing the main
results, assumptions on the feasible set £2, 7, and g are imposed
as follows.

Assumption 1. (2 is non-empty and compact.

Assumption 2. 7 :RY — R is smooth; g : R* — R" is smooth.

In this context, N is the dimension of g(f) and N = 1 as
g2(0) = r,(Ds,Dr) — €, where € > 0 is defined to bound the
MMD between the source and target distributions after sufficient
number of iterations. For the sake of analysis, we still keep N in
our formulation. Such a generic form is modified from Eq. (3) to
adapt to other DA problems with constraints between the source
and target domains. We observe that the objective function F(6)
is still the empirical risk as in Eq. (2) and the constraint g(6) plays
a similar role as the penalty term in Eq. (3). Another difference
is that in Eq. (3), the decision variable is unconstrained while
in Eq. (4) it is constrained. Typically, it is difficult to determine
the feasible set, particularly when the models are deep neural
networks, such as CNNs. However, in practice, such a feasible set
can be written via a simple box constraint with sufficiently small
lower bound and sufficiently large upper bound.

4. Stochastic augmented Lagrangian method
4.1. Augmented Lagrangian

We next introduce an augmented Lagrangian form of the
objective function in Eq. (4). The Powell-Hestenes-Rockafellar
Augmented Lagrangian (PHRAL) form [26] is given by:

N 2
Z[max(O g(0)+ %)] (5)

where 6 € £, u € Rﬁ are the Lagrangian multipliers of PHRAL,
p > 0is a penalty parameter for PHRAL. To differentiate from the
penalty function in Eq. (3), we use u to denote the Lagrangian
multipliers as it avoids confusion between A and p to be opti-
mized. We discuss the difference between Egs. (3) and (5), which
motivates the proposed algorithms. The significant difference
between them is that using Eq. (5) yields the optimal Lagrangian
multipliers, while in most existing works instead adopting Eq. (3)
such multipliers have been pre-defined by the manual tuning. In
Section 6, we will show that depending on different use cases,
a pre-defined Lagrangian multiplier may lead to extremely sub-
optimal solutions. In what follows, we discuss how to use the
SALM to solve Eq. (5).

L0, n)=FO)+

N\b

Knowledge-Based Systems 235 (2022) 107593
4.2. Proposed algorithms

Algorithm 1 presents the framework overview of the SALM
by using a modified ALGENCAN, which applies the mini-batch
SGD and gives a different update law for py. It naturally divides
the iterations in two groups, external (Lagrangian) iterations and
internal iterations. In the external iterations (Line 9 - Line 15), the
multiplier x and the penalty parameter p are updated while the
internal iterations (Line 3 - Line 8) are dedicated to solving the
sub-problem for 6. In Algorithm 1, Pp(x) = argmin, ., ||x — v||
denotes the Euclidean projection. || - || is the Euclidean norm.
{pr} is a pre-defined sequence of positive numbers that tends to
infinity. From Algorithm 1, it can be observed that soft constraints
are moved up to the objective penalizing a shifted version of in-
feasibility measure, and that hard constraints are enforced inside
the inner solver which addresses the sub-problem:

minimize £, (6, ug), s.t.6 € £2, (6)

where pi, i are fixed. In next section, we present main results
to show why the SALM with mini-batch SGD is able to converge
to a stationary point. Before that, we discuss a few key points in
Algorithm 1 that affect the convergence.

Similar to [26], the condition that ||Po(6k — Vi, L, 0k, tk)) —
6kll < oy, is used as a stopping criterion for the analysis and im-
plementation. {o}} is a non-negative sequence that tends to zero.
From the algorithmic approach, we observe that the progress in
terms of feasibility and complementarity in each outer iteration
is evaluated as:

IVill < zlViall - (7)

When this condition holds during the update, the penalty param-
eters would decrease accordingly as 0 < 7 < 1. On the other
hand, we impose a sequence {p,} to guarantee that when the con-
dition fails to hold infinitely many times, the penalty parameters
tend toward infinity. In practice, the sequence {px} slowly tends
to infinity and it can be obtained by max{y pk, y "% p1}, where
vy = 0 and vgq = v + 1. Another multiplier u; at every step
k is updated by using a maximum function that compares the
accumulative value of p,g(6) to 0. This can be obtained from
Eq. (5) by calculating the derivative of £,(6, i) with respect to p.
From Line 9 we can observe that Vj is attained by applying the
maximum function to select between the inequality constraint
function g(6;) and the quotient between u, and pg, which thus
infers that the update of p, affects the condition in Eq. (7).

Algorithm 1 SALM with mini-batch SGD

1. Input: umex > 0,y > 1,0 < 7 < 1,0 < /“‘]1 < WUmaxs] =
12 Np1>00l,b,90,D

2: for k =1:Mdo

3: 0 = Ok

4: Randomly split D into batches of size b

5: for each batch do

6: 0 = Po(0 — aVeLy (0, 1))

7: end for

8 O =06

. i
9: Define: Vi = max{g;(6k), —‘;—,’:},j =1,..,N
10: if k=1, or [|[Vi]| < 7|[Vk_1] then

1
11 Prt1 = 5 Pk
12: else
13: Pl = Prt
14: end if

150, = max(0, 1+ pigi6).j = 1,2, .., N
16: end for

When solving the internal sub-problem for 8, we use an SGD-
type update. Other first-order methods can be used as well, such

Z. Jiang, C. Liu, Y.M. Lee et al.

as Adam [23], AdaGrad [34], and RMSProp [35]. We extend the
SALM by replacing SGD with Adam as a variation of Algorithm 1,
[1-p%
1-pk

and « can be chosen with different values in implementation.
Adam has been shown effective in numerous applications and
is able to achieve faster and better convergence. We follow the
default settings from Adam for 8 and 3, in Algorithm 2 (i.e., 81 =
0.9, B> = 0.999), which are the exponential moving average
coefficients for the first and second moments of VyL, (6,).
Similarly, the internal iterations for 6 are conducted from Line
4 to Line 13. The loop between Line 7 and Line 10 is specifi-
cally for the explicit coordinate-wise update. Hence, theoretically
speaking, the step size could also vary for each coordinate, but in
practice, we can keep the same step size for all coordinates for
simplicity, which still produces decent results. In our implemen-
tation, we also set an upper bound pn.x for the value of pj as
pr at the beginning can increase significantly before decreasing.
This is due to the fact that the condition in Eq. (7) begins to
hold only after a certain number of iterations. Therefore, this
algorithmic fix can prevent fake divergence scenarios effectively.
It also corresponds to the scenario where {p} is bounded in the
analysis.

Algorithm 2 SALM with Adam

which is presented in Algorithm 2. &y in Algorithm 2 is «

1 Input: ppey > 0,y > 1,0 < 7 < 1,0 < i < pmansj =
1,2, ...,N, pP1 > 0,0 < ﬂ],ﬁz < 1,(¥k,$,b, 90,'D

2: Setwg=0,v9=0

3: fork=1:Mdo

4 0 =0, W=w1, V=10

5: Randomly split D into batches of size b

6: for each batch do

7: forz=1,2,...,ddo

8: W, = ,3111)2 + (1 - /31)(Vgﬁpk(9, :u'k))z

o B = Babs + (1 — B2)(Va Ly (6. 1))

10: 0, = Po(0,

11: end for

12: end for

13: O =0, w, = w, Vk = v

—_ _wz
U Tiv)

. j
14: Define: Vi = max{gj(6k), —%},j =1,.,N
15: if k=1, or [|Vi|l < 7]|Vk_1]| then

16: Pr+1 = %Pk

17: else

18: Pl = Pt

19: end if)

200 i, = max(0, wj + ;kg(6k)). i = 1,2, .., N
21: end for

5. Main results

This section characterizes the convergence of stationary point
in a finite number of iterations. Additionally, we provide a feasi-
bility/infeasibility analysis of the proposed scheme. We defer the
detailed proof to the Appendix and refer interested readers to it.
First, we define an infeasibility measure as

1
R(0) = Ellg(9)+ll2 (8)

for all & € £, where g(0); = [max{0, g:(0)}, ..., max{0, gy
(0T It follows that

VR(0) = Vg(0)g(6)+ (9)

which leads to the following lemma taking into account the
scenario px < 0o, Yk.

Knowledge-Based Systems 235 (2022) 107593

Lemma 1. Let Assumption 1 and 2 hold. Suppose that sequence
{0k} is bounded and ¢ > 0. Then, for {6y} generated by Algorithm 1,
there exists ko such that

E[g@)+ 11 < ¢, (10)
for all k > k.

In practice, if Eq. (7) fails to hold sufficiently many times,
we can infer that the feasible region is empty. By the following
lemma, if Algorithm 1 fails to find feasible solutions, then a
stationary point of infeasibility up to an arbitrary precision can
be found within a finite number of iterations. This has practi-
cal implications as deep learning models in domain adaptation
are typically computationally intensive. Moreover, complex yet
limited target domain data increases the difficulties of finding a
feasible solution or even determining whether or not negative
transfer is induced. Therefore, an analytical infeasibility detection
condition can be critical to help stop the algorithm and save
computational costs.

Lemma 2. Let Assumption 1 and 2 hold. For {6} generated by
Algorithm 1 and arbitrary n > 0, there exists a sequence of infinitely
many indices K € N, such that for k € K the following holds

E[||P2(6k — VR(6k)) — Okll] < . (11)

As mentioned above, the condition [|Po(6x — Vg, L, (6k, k) —
Okll < oy is paired with mini-batch SGD to provide a guarantee
for the convergence of the SALM. The sequence {o}} is used
to form this condition that should satisfy for each iterate 6.
Intuitively, for mini-batch SGD, this condition can be achieved
after a certain number of epochs. Therefore, we can choose a
sequence {oy} tending to zero such that the condition holds true
to continue updating the Lagrangian multiplier and the penalty
parameter. We are now ready to state the main theorem to show
the behavior of Algorithm 1 in a finite number of iterations.

Theorem 1. Let Assumption 1 and 2 hold. Suppose that there
exist arbitrary constants that satisfy ny, 1o, nc > 0 and that {6y}
is generated by Algorithm 1. Then, there exists kg € N, if {px} is
bounded, the following holds

E[Ig(0)+ 1] < n (12)

and

E[||Pg(ek—[w(9k)+ > ukang(ek)]>—ek||]5no (13)
&(Ok)=—nc

for all k > k.
If {p} is unbounded, and limyck p, = oo, there exists kg € N
such that

E[||P2(6k — VR(6k)) — Okll] < nf (14)
and Eq. (13) holds for all k € K, k > ko.

In Theorem 1, we discuss two scenarios in which the penalty
parameters are bounded and unbounded, respectively. When {0}
is bounded, Algorithm 1 is able to converge to a feasible point
with an arbitrary precision, which is essentially an approximate
Karush-Kuhn-Tucker (KKT) point. In contrast, when {p} is un-
bounded, it is observed that the algorithm can find an approx-
imate stationary point of infeasibility up to arbitrary precision.
For such a result, constraint qualifications are not required. The
update law for /ﬂk may not always enable Eq. (26) to hold true
when it is larger than pumax so in the real implementation, to
guarantee the feasibility, before obtaining the /ﬂk +1» the condition

pL’k € (0, umax) is ensured. These two scenarios will be validated
by using empirical results. Next we show that an approximate KKT
point can be obtained as follows based on Theorem 1.

Z. Jiang, C. Liu, Y.M. Lee et al.

Definition 1. A feasible point 8* is an approximate KKT point if
there exists {6} C RY, {ix} € RN such that the following holds

lim 6 = 6% lim [|[VF(6k) + V(6)rll = 0;
k—00 k—o00

j
lim max{g;(@k), —M"} =0,j=1,2,...,N.
k—o00 Pk

Therefore, according to Definition 1, the following corollary
can be immediately obtained.

Corollary 1. Let Assumption 1 and 2 hold. Suppose that {6} is
generated by Algorithm 1. Then, for all ko € N and k > ko, if
{pr} is bounded, the feasible point 0* = limy_ o 6y satisfies the
Approximate KKT condition.

The proof of Corollary 1 follows from the proof of Theorem 1.
In this context, we only present the learning convergence results
for the SALM with SGD, which could be the limitation of this
work, as in practice, other variants would be adopted instead of
SGD. However, for the variant with Adam, we defer the relevant
theoretical analysis to the future work, while still evaluating
its empirical performance on DA. Different from the theoretical
results presented in [36], which focused on the learning error
bounds for the target domain, we study the convergence to the
optimal solution for some defined sequence generated by a spe-
cific algorithm, leveraging the optimization theory. In the future,
we will also investigate the connection between the learning
error bounds and the convergence to the optimal solution for
facilitating the theoretical understanding of DA. In the sequel,
the experimental results are presented to show the efficacy and
effectiveness of the proposed approach.

6. Experiments

This section presents experimental results for validating the
proposed algorithm. Benchmark data sets including MNIST,
SYNTH, SVHN, and USPS are applied with the Salad package [37].
The code for the Algorithm 1 and Algorithm 2 is available in
github.com/cliu08/SAL.

6.1. Experiment settings

Data sets. The data sets mentioned above are prepared follow-
ing the same way as suggested in the Salad package. For compar-
ison purposes, the learning rate is fixed at 0.0005 for all experi-
ments. The batch size is 128, and the number of epochs is 2000.
The labels for the target domain are only used for evaluating the
performance, and are not applied in the training process.

CNN architecture. The CNN architecture applied in this work
is the same as that in the Salad package, including 3 sets of
convolutional layers. Each set consists of three 2-d convolutional
layers with kernel size (3, 3) and stride size (1, 1). Maxpooling
layers (with kernel size (2, 2)) are applied after each set of
convolutional layers and dropout layers (ratio 0.5) are used after
the first two sets of convolutional layers. Batch normalization is
added after each convolutional layer, and the classifier is with
128 input units and 10 output units (for 10 digits in the data sets
applied in this work).

Discrepancy metric for unsupervised DA. For the DA frame-
work, a discrepancy metric is needed to measure the difference
between the source domain and the target domain. The MMD
metric with I, norm is used in this paper due to the wide accep-
tance of MMD and its variants in the community [14,24,25,38].
We also consider other metrics including association loss (noted
as Assoc) [15] and self-ensembling loss (noted as Teach) [16] for
comparison with existing literature.

Knowledge-Based Systems 235 (2022) 107593

Optimizer. As the SALM intends to find the optimal Lagrangian
multipliers, which are used to replace the fixed penalty parameter
in unsupervised domain adaptation, the SALM can be formulated
on mini-batch SGD or Adam (as shown in Algorithms 1 and 2).
Therefore, experiments with both mini-batch SGD and Adam have
been carried out.

Penalty parameter A for traditional DA algorithms. Although
X is known to have significant influence on model accuracy [25],
there is still no known optimal method to optimize it. This is
especially true in unsupervised DA problems, as no labels for
training samples in the target domain are available. This work
uses a set of A values within range [0.01 100.0].

6.2. Experimental results

6.2.1. SALM convergence

Fig. 1(a) shows the convergence process of the SALM on the
transferring task from MNIST to SYNTH with MMD metric and
Adam optimizer. It shows that the MMD loss decreases as well as
the cross entropy loss, and the accuracies on the source domain
and target domain increase. Consequently, such experimental
results match the theoretical analysis in Theorem 1 where the
SALM is able to find a feasible point. Fig. 1(b) shows a divergence
case in which Eq. (7) cannot hold along all the iterations. It
can be observed that the value of p, keeps increasing and that
the gradient does not vanish. Similarly, the cross-entropy loss
increases while accuracies for both the source and target domains
eventually decrease.

Experiments on different transferring tasks are listed in Ta-
ble 1. Note that for comparison we have selected fixed A values
for either SGD or Adam. Though a wide spectrum of A needs to
be considered to attain fair comparison, the fixed values used
in this context have been chosen in other publications for the
best performance [10,39]. Results shown in the table are obtained
by averaging multiple runs. It shows that the SALM outperforms
or is comparable to fixed A method (used in traditional DA) in
most cases. Although when the optimizer is Adam, the proposed
SALM cannot outperform entirely (while still being close to the
best performance) the fixed A method, one advantage is that the
SALM avoids manual selection of the A value. Moreover, it can
also be observed that depending on different datasets, optimal A
may not have the same value, which demonstrates the difficulty
in choosing A manually.

6.2.2. Comparison

Comparison of the SALM to two recently proposed approaches
(associative domain adaptation [15] and self ensembling for vi-
sual domain adaptation [16]) are summarized in Table 2. For
the transferring task from MNIST to USPS, the SALM with Adam
outperforms the baseline results presented in [37]. For the task
MNIST to SYNTH, the SALM is better based on Teach, and compa-
rable to Salad based on Assoc. Note that there are three penalty
parameters in the associative loss, and we only apply the SALM
on the first one (which is the penalty for the summation of two
additional loss terms).

SALM vs Fixed). The proposed SALM overcomes the problem
of the intractable parameter A, which could improve the applica-
tion of unsupervised domain adaptation methods. Here, further
analysis on the influence of A is carried out on the transferring
task from MNIST to USPS with 10 different values of A (Fig. 2(a)).
The performance varies significantly with different values of A,
and the SALM outperforms all of the cases with fixed A. Addi-
tionally, overfitting can occur with improper A (0.5, 1.0, 2.0, 5.0 in
this case). Unfortunately, in traditional DA algorithms, one cannot
monitor this kind of overfitting due to unlabeled target domain
data. However, the SALM overcomes this, as seen in the additional
cases plotted in Fig. 2(b).

Z. Jiang, C. Liu, Y.M. Lee et al.

Knowledge-Based Systems 235 (2022) 107593

le8
3
2
Q
14
01 T T T T T T
0 200 400 600 800 1000
= 100
0.03 5
3
£ 0.02 5 501
g
2
6 0.0 01 T T T T T T
0.00 0 200 400 600 800 1000
0 200 400 600 800 1000 1200 1400 1600 5
o —— CrossEntropy
— MMD @
[=}
"
802 g1
2 —— CrossEntropy
— MMD
0.0 01 T T T T T
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000
1o r — acc_s
075 — acc_t
508 ; 1
£ g 0.50
0.6 — accs
— acct 0.25
0 200 400 600 800 1000 1200 1400 1600 : . . , . !
Epoch 0 200 400 600 800 1000
Epoch

Fig. 1. (a) Gradients, losses and accuracy values of the SALM during the training process. The discrepancy metric (MMD) decreases as the training goes on, and the
gradient of the backpropagation process also decreases to <5e-5; (b) A divergence case: py increases as the training goes on, and the gradient of the backpropagation

(a) Convergence

process cannot converge. The cross-entropy loss increases and both accuracy values decrease.

(b) Divergence

Table 1

Accuracy of SALM on unsupervised domain adaptation with MMD metric.
Source Target SGD Adam

A fixed SALM A fixed SALM

MNIST USPS 0.611 £ 0.06 0.788-0.02 0.928-+0.03 0.887 £ 0.01
MNIST SYNTH 0.132 £ 0.05 0.460-£0.06 0.700 £ 0.14 0.861+£0.02
MNIST SVHN 0.126 + 0.01 0.277+0.02 0.248 £ 0.03 0.443+0.02
SYNTH SVHN 0.617 £ 0.01 0.739+0.03 0.766 £+ 0.01 0.774+0.01
SYNTH MNIST 0.489 + 0.24 0.905£0.01 0.944+0.01 0.909 + 0.01
SYNTH USPS 0.480 + 0.04 0.649-£0.02 0.719 £ 0.09 0.746£0.02
USPS MNIST 0.429 + 0.05 0.732+0.01 0.926+0.01 0.923 + 0.01
USPS SYNTH 0.315 + 0.07 0.3354-0.02 0.495 £ 0.07 0.6954-0.02
USPS SVHN 0.209 + 0.02 0.244+0.03 0.271 £ 0.07 0.432+0.03
SVHN MNIST 0.710 £ 0.05 0.722+0.03 0.744 £ 0.03 0.804+0.02
SVHN USPS 0.518 £ 0.02 0.562+0.04 0.521 £+ 0.03 0.576+0.01
SVHN SYNTH 0.949+0.01 0.948 + 0.01 0.960 £ 0.01 0.960-£0.01

For A fixed, the average is computed by 2 = 0.1 and 1.0, and 5 runs are implemented for each case with different random seeds.

0.8

0.6

Acc.

0.4

0.3

A=0.01

A=10.0

750 1000

Epoch

1250

2000

0.2 A=0.1 — A=20.0
— A=0.5 A=50.0
— A=1.0 —— A=100.0
0.1 — A=2.0 — SALM 0.5
— A=5.0
T T T r T T T 1 T T T v v T y
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Epoch Epoch
(a) (b)

Fig. 2. (a) Accuracies on USPS data set with domain transferred from MNIST data set using MMD metric with mini-batch SGD and A in range [0.01, 100]. (b)
Accuracies on MNIST— USPS transferring task on 10 experiments using mini-batch SGD (top panel) and Adam (bottom panel) optimizers, where the hyperparameters
are randomly selected within the recommended range.

Z. Jiang, C. Liu, Y.M. Lee et al.

Knowledge-Based Systems 235 (2022) 107593

0.8

0.6

Acc

04

02
— Training

—— Testing

Training: 95% CI
Testing: 95% CI
0.0

W“\WWM\WMWW

\&

0.0 0.2

08

0.8

06 \

Acc.

0.4

02
— Training

— Testing

Training: 95% CI
Testing: 95% CI
0.0

11

0.8

06 W)

Acc,

0.4

0.2
— Training

—— Testing

Training: 95% CI
Testing: 95% CI

0.0

0.2 0.4

T

0.8

Fig. 3. Multiple trials on the selection of hyperparameters.

Table 2
Comparison with baseline methods.
Method MNIST—USPS MNIST—SYNTH
Benchmark® 0.941 0.348
Assoc? SALM w SGD 0.989 0.320
SALM w Adam 0.990 0.338
Benchmark® 0.984 0.956
Teach® SALM w SGD 0.990 0.891
SALM w Adam 0.991 0.993

4Associative DA.
bSelf-ensembling DA.
‘The benchmark is based on github/domainadaptation/salad.

6.2.3. Application in fault diagnosis of wind turbines

The SALM is applied in a wind turbine data set, including 12
conditions tested in the test rig. The data has been collected for
testing the efficacy of the fault diagnosis method in different
scenarios [40-43]. Detailed description for the test rig and the
dataset can refer to [44,45].

For the transfer learning setting, the data collected in varying
wind speeds are divided in to two sets. One is used as the source
domain (with the same range of wind speed), and the other is
used as the target domain (where the wind speeds are different
from the source domain). In this setup, the SALM is applied and
the results are listed in Table 3. The results validate the efficacy
of the proposed algorithm. Since there is no rule of thrum for
selecting the proper value of A, and the results show that the
performance is greatly influenced by X (the accuracy varies from
0.08 to 0.7 for SGD, and 0.17 to 0.9 for Adam). Therefore, when
applying the domain adaptation in real cases, the parameter se-
lection of A is critical and the proposed SALM method tackles this
problem and attains stable performance in both cases listed in
Table 3. The same observation is also reported in [39], where Fig.
5(b) shows that the loss varies significantly with different values
of A (A is treated as a tradeoff parameter in [39]).

It should be noted that the SALM intends to find out an optimal
or suboptimal setting for balancing the two loss terms in the
domain adaptation (as listed in Eq. (3)). The accuracy obtained by

SALM may not be always better than that with a fixed A value,
as when multiple A values are tested, the accuracy varies and
can be close to the best performance. That said, as the domain
adaptation is not able to find out the labels for the target domain,
one could not optimize the selection of the A. This also shows the
superiority of the proposed SALM as it can optimize the training
process and make it converge to an optimal point.

6.2.4. Discussions

Selection of hyperparameters in SALM. As shown in Algo-
rithms 1 and 2, the hyperparameters in the SALM include pmax,
7, ¥, and pmax. SALM performs well over tens of trials using the
recommended hyperparameters (Fig. 2(b)). 1128 more rounds of
experiments are implemented based on the domain adaptation
task from MNIST to USPS, where the hyperparameters are set in
quite a large range to investigate the performance of the proposed
algorithm, and the results are shown in Fig. 3. Here, for each
subplot, the accuracies on the training and testing sets are plotted
with the listed parameter in x-axis. It should be noted that the
hyperparameters are randomly picked and the average of 5 trials
with the same (or close) hyperparameter in x axis are applied
(where the other hyperparameters could be different).

From Fig. 3, the algorithm is robust with the hyperparameters.
To avoid the extreme combinations of the hyperparameters, the
recommended values are listed in Table 4. In the table, we also
list out values recommended for w1, p1, and €, although in the
experiments, they are not rigorously hyperparameters. Since
and p; are only the initialization and € tends to zero eventually.
As discussed above, pmax is to prevent fake divergence, which
is set sufficiently large typically. For umayx, it can be observed
that from the algorithmic framework it is used for the update
to find out the optimal multiplier. Therefore, in a generic way,
it can be also set sufficiently large while in this paper, we rec-
ommend its value to be large enough compared with the initial
value of the multiplier. Regarding t, it is critical to determine
whether the progress has been made in terms of feasibility and
complementarity in the outer iteration. The selection of t partly
depends on the loss function which in our case is highly nonlinear
and nonconvex. When the loss function is linear and convex, one
can choose a smaller value for 7 as the globally optimal solution

Z. Jiang, C. Liu, Y.M. Lee et al.

Knowledge-Based Systems 235 (2022) 107593

Table 3
Case studies on wind turbine fault diagnosis.
Optimizer A =0.01 A =0.1 A=1 A=10 A =50 A =100 SALM
SGD 0.69 0.7 0.63 0.34 0.16 0.08 0.66
Adam 0.89 0.9 0.89 0.89 0.42 0.17 0.91
1.000 1.000
09751 ¥ ki WY iy ha 09751 &
0.950 + 0.950 1 N
§ 0.9251 g 09251
0.900 0.900 1
0.875 0.875
0.850 0.850
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
1.000 Epoch 1.000 Epoch
g N aan =
0.975 4 0.9751f; 0 v e .
TP P e et A
0.950 4 0.950 Sty A T A
; ; L
2 0.925 1 2 0.925 1 \
0.900 0.900 \{Hq
0.875 0.875 4|
0.850 T T T T T T T 0.850 (T T T T T T T
250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

Epoch

(a) With association loss metric

Epoch

(b) With self-ensembling loss metric

Fig. 4. Accuracies on MNIST—USPS transferring task on 10 experiments using mini-batch SGD (top panel) and Adam (bottom panel) optimizers respectively. The
hyperparameters of SALM are randomly selected within the range as recommended in Table 4.

is obtainable. y plays a critical role in controlling the penalty
parameter. As mentioned above, y in most of the cases should
be chosen close to 1. More experiments are implemented with
different loss functions and the results are shown in Fig. 4.

Computational cost. Compared to traditional unsupervised
domain adaptation methods, the additional computational cost of
the SALM is from the update laws for the Lagrangian multiplier
u and the penalty parameter o and the computational cost is
negligibly small. The other computation costs in Algorithms 1
and 2, such as loss in measuring the discrepancy between the
source domain and the target domain (MMD, Assoc, Teach, etc.),
the gradient of the loss function, and the sum of the loss terms are
all required for both traditional unsupervised domain adaptation
methods and the proposed method. Therefore, the additional
computational overhead is quite small, and the running time for
each epoch of the traditional unsupervised domain adaptation
methods and the proposed method is similar. The running time
for the algorithm is listed in Table 5, which is measured in
the case MNIST—USPS. MMD loss is applied and the optimizer
is mini-batch SGD. Nvidia Tesla P40 is used. The results show
that the additional running time for the SALM is relatively small
compared to the loss computation and the gradient computation.

SALM for multiple penalty parameters. In this context, we
have applied the SALM to solve the optimal multiplier problem
where there is only one penalty parameter. However, in some
cases such as JDA and Associative domain adaptation that include
more than one loss terms in the discrepancy metric, whether the
proposed SALM could still be used is unknown. Note that this
work only adapts the summation of the two loss terms in the
Associative domain adaptation, while the multiplier between the
walker loss and visitor loss is left as default. Although we do
not have extensive results for such cases, the answer is positive.
Even with multiple penalty parameters, PHRAL can still be used to
formulate the problem. In that case, different constraints would
be combined in a vector form such that the multiplier to be
optimized is a vector instead of a scalar. Then, similar analysis and
approach apply immediately to satisfy the problem with multiple
penalty parameters. More comprehensive results about this topic
will be deferred as future work.

Table 4

Recommended settings for the hyperparameters in SALM.
Parameter Recommendation
23} [0.01,0.1]
P1 10pq
Mmax]03l/«1
T [0.995, 0.999]
14 [0.994, 0.995]
€ [1.0, 1.2] with Jk diminishing ratio
pmax]03

Table 5

Computational cost. The traditional domain adaptation takes the first and third
items for each updating, and the SALM takes all of the three items.

Item Running time (seconds)

Loss computation (cross entropy and MMD) 1.266
Backpropagation (gradient computation) 0.0107
SALM (parameter updating) 0.000687

7. Conclusions and future work

We address the optimization problem associated with do-
main adaptation, which can be cast as nonlinear programming
by presenting a stochastic augmented Lagrangian method. We
establish the optimization framework based on mini-batch SGD
as well as Adam optimizer which originally was proposed for the
unconstrained problem. We show that when the external param-
eters are bounded, and the proposed scheme can find a feasible
point with arbitrary precision, which is also an approximate KKT
point. When the external parameters are unbounded, with an
appropriate infeasibility measure, the algorithm converges to an
approximate stationary point of infeasibility. Several benchmark
datasets are used to validate the efficacy of the proposed method.
Beyond this work, several future research directions include: (i)
adding equality constraints in the problem formulation to present
a more generic framework; (ii) extending the proposed frame-
work to tasks such as natural language processing and time-series
inference; (iii) relaxing the assumption that the inequality con-
straint is smooth in order to incorporate more complex learning
problems.

Z. Jiang, C. Liu, Y.M. Lee et al.
CRediT authorship contribution statement

Zhanhong Jiang: Conceptualization, Methodology,
Formal analysis, Validation, Investigation, Writing - original draft,
Writing - review & editing. Chao Liu: Conceptualization, Method-
ology, Formal analysis, Validation, Investigation, Writing - origi-
nal draft, Writing - review & editing. Young M. Lee: Methodology,
Writing - review & editing. Chinmay Hegde: Formal analysis,
Methodology, Writing - review & editing. Soumik Sarkar: For-
mal analysis, Methodology, Writing — review & editing. Dongxi-
ang Jiang: Conceptualization, Methodology, Writing - review &
editing, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was partly supported by National Key Research and
Development Program of China (Grant No. 2019YFF0216104 and
2019YFF0216101).

Appendix

This section presents additional proof for the main results in
Section 5.

Proof of Lemma 1

Proof. As when Eq. (7) does not hold, we have o1 > py1 and
limy_, o, ox — o0. The boundedness of {p;} suggests that there
exists a kg € N for all k > kg such that Eq. (7) should hold. Thus,
we have

limy, o E[[|Vk[I] = 0,
which results in

j
limkﬁwmax{ﬂi[gj(@k) , —ﬂ} =0 (15)
Pk

forallj=1,2,...,N. Then we can know lim;_, E[g(6k)+] = O,
which completes the proof. O

Proof of Lemma 2

Proof. We will consider two scenarios in the proof, i.e., {px} is
bounded or not.
First scenario: {p;} is bounded. By Lemma 1, we have

lim E[|Ig(6k)+] = 0.
k— o0

As g is continuous and the set §2 is compact, there exists a
constant C such that

V@l = C

for all k € N. By the last two inequality, we have the following
relationship

Jim E[)IVg(@h)g(0)+ 111 = 0 (16)

which implies that limy_, . E[||[VR(6k)|]] = 0 due to Eq. (9). As
Ok € £2, then the desired result is obtained.

Knowledge-Based Systems 235 (2022) 107593

Second scenario: {p;} is unbounded. Then there exists an
infinite sequence of indices K € N such that limgek px — 00. We
next prove by contradiction. Suppose that there exists an infinite
set of indices K; C K such that

E[IP2(6k — VR(61)) — Okll] = n (17)

for all k € Kj. As £2 is compact, then it can be immediately
obtained that the sequence {f}iek, contains a convergent sub-
sequence {O}rex,, K2 C K. Suppose that limyeg, Oy = 6% € £2.
Taking the limit for Eq. (17) for k € K3, we have

E[[|Po(6" — VR(6%)) — 6*]I1 = n (18)
Thus, there exists " > 0 such that
E[[|Po(6" — VR(™)) — 0ol = 1’ (19)

As we have E[||Po(6k — k) — Gklloo] < or and oy — 0 as well
as px = oo for k € K, then there exists kg € N such that for all
keK, k> ko, pp > 1and

E[IP2(6k — sk) — klloc] < 1'/2 (20)

Substituting sy = Vj, £, (6k, Ax) into the last inequality leads to
the following relationship

E[IPo(0 — [V F(6k) + ok VE(Ok X&) + 1k / pic)+1) — Orclloo] < 1'/2
(21)

As pr > 1, then the last inequality becomes
1 ,
E[”P.Q(9k_(E)[VF(GI<)+kag(ek)(g(ek)+ch/plc)+])_9k||oo] =n/2
(22)
which results in

E[IPo(6k — [VF(6k)/(pr) + VE(O)E (k) + 1x/ o)+ 1) — Oiclloc] < 1'/2

(23)
We now take the limit for k € K, for the left hand side such that
E[[|P(8" — Vg(0*)g(0")4) — 6 llec] < 1'/2 (24)

It can be observed that this contracts Eq. (19), which also implies
that

E[lIPe(6k — VR(OK)) — 6lll <7 (25)
for all sufficiently large k € K. This completes the proof. O

Proof of Theorem 1

Proof. Recalling the condition defined in Lemma 2

E[|IP2(6k — Vo, Lo Ok, tk)) — Okll] < o
which leads to

N

E[npg(ek — [VFO) + Y ey, VE(O)]) — ekn] < o (26)
j=1

for all k. As £2 is compact, and Vg is continuous, there exists a

constant B > 0 such that ||[Vg;(0)|| < B for all & € £2. We now

consider two scenarios for {p}.

First scenario: {o} is bounded. By Lemma 1, it can be ob-
tained that there exists k; € N such that Eq. (12) holds for all
k > ky. Moreover, we can know that there exists ko > k; such that
IVkll < t||Vk—1ll holds for all k > kg. Therefore, limy_,, Vx = O.
Forallj=1,2,...,N, we define K; C N by

Kj = {k € N|gj(6) < —nc}

Z. Jiang, C. Liu, Y.M. Lee et al.

Therefore, if K; contains infinitely many indices, as V,{ tends to
zero, we have that

lim .. = 0.
keKj k+1

Then, combining with the boundedness of [|Vg;(6k)ll, we can
obtain

lim
k— o0

> 1y VeEB) =0.
&Or)<—nc

By Eq. (26), we have
E [n Po(Bc— [VFO)+ Y iy VE(oe)
&(O)=—nc

+ Y 1y VEOI) - b ||]sak
&j(6k)<—nc

(27)

Combine the last two relationships and the continuity of projec-
tion, the following can be obtained

lim E[upg(ek—[wwm P> u’kﬂv&(ek)])—eku] =0 (28)
gO)=—nc

which suggests that the Eq. (13) follows when k is sufficiently
large.

Second Scenario: p; is unbounded. It can be immediately
obtained that there exists an infinite sequence of indices K C N
such that limycg px = o0o. Based on Lemma 2, there exists kg € N
such that for all k € K, k > kg, Eq. (14) holds and

u’,; = prne < 0.
forallj=1,2,..., N. Therefore, by the update

Mhpr = min{max(0,), + ougi(6)). tmax}.j = 1.2, ..., N

and gi(6x) < —ne, if k € K, k > ko, it can be acquired that

V“]k+1 =0.

Similarly, according to the analysis in the first scenario, we can

know that Eq. (26) holds such that Eq. (13) follows. This com-
pletes the proof. O

References

[1] B. Heo, M. Lee, S. Yun, J.Y. Choi, Knowledge transfer via distillation of
activation boundaries formed by hidden neurons, in: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 3779-3787.
A. Siddhant, A. Goyal, A. Metallinou, Unsupervised transfer learning for
spoken language understanding in intelligent agents, in: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 4959-4966.
F.L. Da Silva, AH.R. Costa, A survey on transfer learning for multiagent
reinforcement learning systems, J. Artificial Intelligence Res. 64 (2019)
645-703.

[4] J. Jiao,]. Lin, M. Zhao, K. Liang, Double-level adversarial domain adaptation
network for intelligent fault diagnosis, Knowl.-Based Syst. 205 (2020)
106236.

F. Shoeleh, M.M. Yadollahi, M. Asadpour, Domain adaptation-based transfer
learning using adversarial networks, Knowl. Eng. Rev. 35 (2020) e7.

Z. Cao, K. You, M. Long, J. Wang, Q. Yang, Learning to transfer examples
for partial domain adaptation, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 2985-2994.

[7]].S. Smith, B.T. Nebgen, R. Zubatyuk, N. Lubbers, C. Devereux, K. Barros,
S. Tretiak, O. Isayev, A.E. Roitberg, Approaching coupled cluster accuracy
with a general-purpose neural network potential through transfer learning,
Nature Commun. 10 (1) (2019) 1-8.

Y. Wei, Y. Zheng, Q. Yang, Transfer knowledge between cities, in: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, 2016, pp. 1905-1914.

SJ. Pan, VW. Zheng, Q. Yang, D.H. Hu, Transfer learning for wifi-based
indoor localization, in: Association for the Advancement of Artificial
Intelligence (AAAI) Workshop, vol. 6, The Association for the Advancement
of Artificial Intelligence Palo Alto, 2008.

[2]

3]

[5

[6]

8]

[9

10

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Knowledge-Based Systems 235 (2022) 107593

M. Long, Y. Cao,]. Wang, M. Jordan, Learning transferable features with
deep adaptation networks, 2015, arXiv preprint arXiv:1502.02791.

K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, D. Erhan, Do-
main separation networks, in: Advances in Neural Information Processing
Systems, 2016, pp. 343-351.

M. Long, H. Zhu,]J. Wang, M.L. Jordan, Unsupervised domain adaptation
with residual transfer networks, in: Advances in Neural Information
Processing Systems, 2016, pp. 136-144.

E. Tzeng,]. Hoffman, K. Saenko, T. Darrell, Adversarial discriminative
domain adaptation, in: Computer Vision and Pattern Recognition, CVPR,
vol. 1, 2017, p. 4.

M. Long, H. Zhu, J. Wang, M.L Jordan, Deep transfer learning with joint
adaptation networks, 2016, arXiv preprint arXiv:1605.06636.

P. Haeusser, T. Frerix, A. Mordvintsev, D. Cremers, Associative domain
adaptation, in: International Conference on Computer Vision, ICCV, vol.
2, (5) 2017, p. 6.

G. French, M. Mackiewicz, M. Fisher, Self-ensembling for visual domain
adaptation, 2017, arXiv preprint arXiv:1706.05208.

B. Benjdira, Y. Bazi, A. Koubaa, K. Ouni, Unsupervised domain adaptation
using generative adversarial networks for semantic segmentation of aerial
images, Remote Sens. 11 (11) (2019) 1369.

O. Tasar, S. Happy, Y. Tarabalka, P. Alliez, Colormapgan: Unsuper-
vised domain adaptation for semantic segmentation using color mapping
generative adversarial networks, 2019, arXiv preprint arXiv:1907.12859.
S.-W. Huang, C.-T. Lin, S.-P. Chen, Y.-Y. Wu, P.-H. Hsu, S.-H. Lai, Auggan:
Cross domain adaptation with gan-based data augmentation, in: Proceed-
ings of the European Conference on Computer Vision, ECCV, 2018, pp.
718-731.

M. Wang, W. Deng, Deep visual
Neurocomputing 312 (2018) 135-153.
L. Bottou, Large-scale machine learning with stochastic gradient descent,
in: Proceedings of COMPSTAT 2010, Springer, 2010, pp. 177-186.

G. Hinton, N. Srivastava, K. Swersky, Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent, 2012, Cited on 14.
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

SJ. Pan, LW. Tsang, J.T. Kwok, Q. Yang, Domain adaptation via transfer
component analysis, IEEE Trans. Neural Netw. 22 (2) (2011) 199-210.

M. Long, H. Zhu,]J. Wang, M.L. Jordan, Deep transfer learning with joint
adaptation networks, in: Proceedings of the 34th International Conference
on Machine Learning, vol. 70, JMLR. org, 2017, pp. 2208-2217.

E.G. Birgin, J.M. Martinez, Augmented Lagrangian method with nonmono-
tone penalty parameters for constrained optimization, Comput. Optim.
Appl. 51 (3) (2012) 941-965.

N. Sarafianos, M. Vrigkas, I.A. Kakadiaris, Adaptive svm+: Learning with
privileged information for domain adaptation, in: Proceedings of the
IEEE International Conference on Computer Vision Workshops, 2017, pp.
2637-2644.

R. Li, Q. Jiao, W. Cao, H.-S. Wong, S. Wu, Model adaptation: Unsuper-
vised domain adaptation without source data, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,
pp. 9641-9650.

Y. Yang, S. Soatto, Fda: Fourier domain adaptation for semantic segmenta-
tion, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 4085-4095.

D. Sejdinovic, B. Sriperumbudur, A. Gretton, K. Fukumizu, Equivalence
of distance-based and RKHS-based statistics in hypothesis testing, Ann.
Statist. (2013) 2263-2291.

K. Muandet, K. Fukumizu, B. Sriperumbudur, B. Scholkopf, et al., Kernel
mean embedding of distributions: A review and beyond, Found. Trends
Mach. Learn. 10 (1-2) (2017) 1-141.

M. Long, Y. Cao, Z. Cao,]. Wang, M.I. Jordan, Transferable representation
learning with deep adaptation networks, IEEE Trans. Pattern Anal. Mach.
Intell. 41 (12) (2018) 3071-3085.

Z. Han, L. Guo, Z. Lu, X. Wen, W. Zheng, Deep adaptation networks
based gesture recognition using commodity wifi, in: 2020 IEEE Wireless
Communications and Networking Conference, WCNC, IEEE, 2020, pp. 1-7.

domain adaptation: A survey,

[34]]. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online

[35]

[36]

[37]

[38]

learning and stochastic optimization, J. Mach. Learn. Res. 12 (Jul) (2011)
2121-2159.

T. Tieleman, G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude, COURSERA: Neural Netw. Mach.
Learn. 4 (2) (2012) 26-31.

S. Ben-David,]. Blitzer, K. Crammer, A. Kulesza, F. Pereira,].W. Vaughan,
A theory of learning from different domains, Mach. Learn. 79 (1-2) (2010)
151-175.

S. Schneider, A.S. Ecker, J.H. Macke, M. Bethge, Salad: A toolbox for
semi-supervised adaptive learning across domains, 2018, URL: https://
openreview.net/forum?id=S1ITifykqm.

A. Gretton, K.M. Borgwardt, MJ. Rasch, B. Scholkopf, A. Smola, A kernel
two-sample test, J. Mach. Learn. Res. 13 (Mar) (2012) 723-773.

http://refhub.elsevier.com/S0950-7051(21)00855-8/sb1
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb1
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb1
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb1
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb1
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb2
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb2
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb2
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb2
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb2
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb3
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb3
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb3
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb3
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb3
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb4
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb4
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb4
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb4
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb4
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb5
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb5
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb5
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb7
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb7
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb7
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb7
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb7
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb7
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb7
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb8
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb8
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb8
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb8
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb8
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb9
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb9
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb9
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb9
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb9
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb9
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb9
http://arxiv.org/abs/1502.02791
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb11
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb11
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb11
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb11
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb11
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb12
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb12
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb12
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb12
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb12
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb13
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb13
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb13
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb13
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb13
http://arxiv.org/abs/1605.06636
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb15
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb15
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb15
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb15
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb15
http://arxiv.org/abs/1706.05208
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb17
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb17
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb17
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb17
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb17
http://arxiv.org/abs/1907.12859
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb20
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb20
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb20
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb21
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb21
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb21
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb22
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb22
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb22
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb24
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb24
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb24
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb25
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb25
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb25
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb25
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb25
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb26
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb26
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb26
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb26
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb26
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb30
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb30
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb30
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb30
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb30
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb31
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb31
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb31
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb31
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb31
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb32
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb32
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb32
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb32
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb32
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb33
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb33
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb33
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb33
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb33
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb34
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb34
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb34
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb34
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb34
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb35
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb35
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb35
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb35
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb35
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb36
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb36
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb36
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb36
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb36
https://openreview.net/forum?id=S1lTifykqm
https://openreview.net/forum?id=S1lTifykqm
https://openreview.net/forum?id=S1lTifykqm
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb38
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb38
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb38

Z. Jiang, C. Liu, Y.M. Lee et al.

[39]

[40]

[41]

B. Yang, C.-G. Lee, Y. Lei, N. Li, N. Lu, Deep partial transfer learning
network: A method to selectively transfer diagnostic knowledge across
related machines, Mech. Syst. Signal Process. 156 (2021) 107618.

H. Wang, C. Liu, D. Jiang, Z. Jiang, Collaborative deep learning framework
for fault diagnosis in distributed complex systems, Mechanical Systems
and Signal Processing 156 (2021) 107650.

T. Han, C. Liu, L. Wu, S. Sarkar, D. Jiang, An adaptive spatiotemporal feature
learning approach for fault diagnosis in complex systems, Mech. Syst.
Signal Process. 117 (2019) 170-187.

11

Knowledge-Based Systems 235 (2022) 107593

[42] T. Han, C. Liu, W. Yang, D. Jiang, A novel adversarial learning framework in

deep convolutional neural network for intelligent diagnosis of mechanical
faults, Knowl.-Based Syst. 165 (2019) 474-487.

[43] T. Han, C. Liu, W. Yang, D. Jiang, Deep transfer network with joint

distribution adaptation: A new intelligent fault diagnosis framework for
industry application, ISA Trans. 97 (2020) 269-281.

[44]]. Lei, C. Liu, D. Jiang, Fault diagnosis of wind turbine based on long

short-term memory networks, Renew. Energy 133 (2019) 422-432.

[45] W. Yang, C. Liu, D. Jiang, An unsupervised spatiotemporal graphical

modeling approach for wind turbine condition monitoring, Renewable
energy 127 (2018) 230-241.

http://refhub.elsevier.com/S0950-7051(21)00855-8/sb39
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb39
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb39
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb39
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb39
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb40
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb40
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb40
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb40
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb40
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb41
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb41
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb41
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb41
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb41
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb42
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb42
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb42
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb42
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb42
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb43
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb43
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb43
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb43
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb43
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb44
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb44
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb44
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb45
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb45
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb45
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb45
http://refhub.elsevier.com/S0950-7051(21)00855-8/sb45

	The Stochastic Augmented Lagrangian method for domain adaptation
	Introduction
	Preliminaries
	Problem formulation
	Stochastic augmented Lagrangian method
	Augmented Lagrangian
	Proposed algorithms

	Main results
	Experiments
	Experiment settings
	Experimental results
	SALM convergence
	Comparison
	Application in fault diagnosis of wind turbines
	Discussions

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1

	References

