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a b s t r a c t

Boundary representations (B-reps) using Non-Uniform Rational B-splines (NURBS) are the de facto
standard used in CAD, but their utility in deep learning-based approaches is not well researched. We
propose a differentiable NURBS module to integrate NURBS representations of CAD models with deep
learning methods. We mathematically define the derivatives of the NURBS curves or surfaces with
respect to the input parameters (control points, weights, and the knot vector). These derivatives are
used to define an approximate Jacobian used for performing the ‘‘backward’’ evaluation to train the
deep learning models. We have implemented our NURBS module using GPU-accelerated algorithms
and integrated it with PyTorch, a popular deep learning framework. We demonstrate the efficacy of
our NURBS module in performing CAD operations such as curve or surface fitting and surface offsetting.
Further, we show its utility in deep learning for unsupervised point cloud reconstruction and enforce
analysis constraints. These examples show that our module performs better for certain deep learning
frameworks and can be directly integrated with any deep-learning framework requiring NURBS.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

In modern CAD systems, a solid model is represented using
boundary representation (B-Rep), where the solid boundaries are
defined using spline surfaces. Non-Uniform Rational B-splines
(NURBS) are the standard representation used for defining the
spline surfaces [1]. NURBS surfaces offer a high level of control
and versatility; they can also compactly represent the surface
geometry. NURBS surfaces can represent more complex shapes
than Bèzier or B-splines due to the non-uniformity of the knot
vectors and the non-linear transformation due to the weights
assigned to the control points. In addition, the NURBS definition
allows for local control via the knots and the control points
and global control via the weights. On the other hand, deep
learning for 3D Euclidean geometry is emerging as a critical and
well-explored research area in engineering. This area includes
fundamental computer vision works such as 3D shape reconstruc-
tions from point clouds or multi-view stereo and 3D semantic
segmentation for shape understanding [2–10]. While NURBS are
the standard CAD representation in engineering, their utility in
deep learning-based approaches is not well researched. Current
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3D deep learning (DL) research focuses on converting standard
CAD representations to geometric representations that are more
amenable to machine learning (such as voxels, triangular meshes,
etc.) [11]. This conversion from the standard CAD geometries to
other representations is often irreversible and is not trivial to
incorporate with DL algorithms.

One of the main challenges in extending NURBS-based rep-
resentation to deep learning is the differentiable programming
of the NURBS evaluations. The main idea of differentiable pro-
gramming is to define each operation in a neural network in a
differentiable manner. Differentiable programming uses gradient-
based approaches to optimize the neural network parameters,
thereby obtaining the desired output through neural network
operations. This differentiable programming paradigm allows an
end-to-end programmable system that can be used to train deep
neural networks. This paradigm has found use in a large variety of
applications such as scientific computing [12–14], image process-
ing [15], physics engines [16], computational simulations [17],
and graphics [18,19].

For differentiable programming of NURBS, we need to com-
pute gradients of the NURBS surface points with respect to the
parameters of the NURBS representation (see Fig. 1). However,
since the NURBS surface points are a function of knots, control
points, and weights, the partial derivative with respect to each
input parameter needs to be computed, making the backward
evaluation challenging. Further, due to the use of basis functions
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Fig. 1. We propose a differentiable NURBS module that can be used for CAD

geometric modeling using standard deep learning systems. The NURBS param-

eters are input to the module during the forward evaluation, and we evaluate

the surface mesh. Once a loss is computed, and gradients for the surface mesh

are obtained, we perform a backward evaluation to enable backpropagation of

the losses to modify the input parameters.

(which are piecewise-continuous polynomials), gradients might

be discontinuous (or even zero) at the knots. The recursive def-

inition of the basis functions adds an additional challenge to

define derivatives with respect to the knot vectors. To allevi-

ate these issues, we exploit the recent theoretical advances in

the paradigm of differentiable programming. It has been the-

oretically proven that if a weak form of the Jacobian for the

‘‘forward’’ evaluation operator can be represented using a block-

sparse matrix, then this approximate Jacobian can be used to

perform the ‘‘backward’’ evaluation of that operation [20,21]. This

approach has been used to define approximate derivatives for op-

erations such as sorting [20,22], loops and algorithmic conditions,

and even derivatives for piecewise polynomial functions [23].

We use a similar approach by defining a block-sparse Jacobian

for NURBS surface evaluation. Existing differentiable program-

ming approaches for splines [24] mainly focus on optimizing the

control point locations. In this paper, we provide a complete

module for integrating NURBS with differentiable frameworks

that optimize not just the control points but also the knots for

reparameterization.

Formally, using the differentiable programming approach

explained above, we formulate a differentiable NURBS (‘‘NURBS-

Diff ’’) module, which enables deep learning frameworks to inte-

grate NURBS-based representation of B-Rep surfaces and perform

CAD operations using them. The forward pass of our NURBS

module uses the standard NURBS evaluation as explained in

Section 3.1. The backward pass uses the derivatives of the NURBS

curve or surface with respect to the input parameters of the

NURBS (Section 3.2). The derivatives are used to define the Jaco-

bian that is then used for backpropagation of the losses during

training. After defining NURBS-Diff , we validate our approach

by performing traditional CAD operations such as curve fitting,

surface fitting, and surface offsetting. Finally, we show the appli-

cability of NURBS-Diff in deep learning by using it as an additional

decoder for point cloud reconstruction.

In this paper, we have developed a differentiable NURBS mod-

ule that can be used in machine learning and CAD applications.

The key contributions of this work are:

1. A differentiable programming framework using NURBS rep-

resentation where the losses can be back-propagated using

the NURBS definitions. Specifically, we define the Jacobian

based on the derivatives of the NURBS with respect to its

input parameters.

2. A GPU-accelerated implementation of our NURBS mod-

ule in PyTorch for better integration with existing deep

learning programming frameworks.

3. A gradient descent-based optimization framework using

NURBS-Diff for performing CAD operations such as curve

or surface fitting and surface offsetting.

4. The applicability of our proposed differentiable program-

ming framework to extend the training process of unsu-

pervised point cloud reconstruction of NURBS surfaces.

The rest of the paper is arranged as follows. We outline some

close related work in point cloud reconstruction, machine learn-

ing approaches in CAD, and differentiable programming in Sec-

tion 2. We provide the mathematical details of our differentiable

NURBS module in Section 3. We show the application of NURBS-

Diff to CAD operations in Section 4 and to unsupervised point

cloud reconstruction in Section 5.

2. Related work

The problem of extracting concise geometry representations

from a spectrum of input data formats such as images, depth

maps, and point clouds has been extensively studied over the

last few decades. While methodologies that derive such represen-

tations are pervasive in 3D reconstruction literature today, our

NURBS module focuses on filling the gap between the NURBS-

based CAD representation and the other input formats used in

machine learning. In this context, we broadly categorize the prior

related work under differentiable programming and splines in

deep learning.

2.1. Differentiable programming

NURBS surfaces are obtained as a tensor product of two-

piecewise polynomial B-spline curves. To conceptualize end-to-

end trainable deep learning systems that can fit NURBS surfaces

to various input geometries, we require a framework that can

backpropagate over such piecewise polynomial functions. Several

recent works have been proposed that take advantage of the

differentiable programming paradigm to approximate gradients

for such functions. Cuturi et al. [20] and Blondel et al. [25] propose

differentiable operators for sorting based tasks. Similarly, Vlastel-

ica et al. [26] compute gradients for several optimization prob-

lems by constructing linear approximations to discrete-values

functions. We model our module on prior work that incorporates

structured priors as modules in the deep learning framework,

similar to Sheriffdeen et al. [27], Joshi et al. [28], and Djolonga and

Krause [29]. Beyond deep learning-based approaches, automatic

differentiation for NURBS parametric coordinates for obtaining

the surface derivatives for Adjoint-based sensitivity analysis has

been performed by Zhang [30]. Ugolotti et al. [31] performed a

gradient-based aerodynamic shape optimization using a robust

Machine Learning model, which is created to integrate the geom-

etry generation and the mesh generation process using one single

polynomial module for the volumetric mesh. Mykhaskiv et al. [32]

and Müller et al. [33] define a differentiated CAD kernel in Open-

CASCADE for applying algorithmic differentiation to a complete

CAD system for shape optimization and imposing constraints.

These works encourage us to pursue a similar research direction

in developing the NURBS-Diff module. However, their approach

for obtaining the gradients involves tedious operations such as

performing singular value decomposition (SVD) on the control

points to obtain the gradients. We also note that the mathemat-

ical definition of the derivatives for NURBS and its application

to fitting has been explored previously [34,35]. However, due to

discontinuities, a more stable and faster approach for computing

the derivatives is needed.
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2.2. Splines in deep learning

Several deep learning frameworks use splines. Minto et al.

[36] use NURBS surfaces fitted over the 3D geometry as an input

representation for the object classification task of ModelNet10

and ModelNet40 datasets. Erwinski et al. [37] presented a neural-

network-based contour error prediction method for NURBS paths.

Fey et al. [38] present a new convolution operator based on B-

splines for irregular structured and geometric input, e.g., graphs

or meshes. Balestriero et al. [39] build a theoretical link between

deep networks and spline functions and build end-to-end deep

learning systems using spline-based activation functions. Balu

et al. [40] propose a NURBS-aware convolutional neural network

that maintains the topological structure similar to a parametric

NURBS surface evaluation grid. Very recently, Sharma et al. [41]

performed point cloud reconstruction to predict a B-spline sur-

face, which is later processed to obtain a complete CAD model

with other primitives ‘‘stitched’’ together. In our work, we per-

form comparison between our approach and Sharma et al. [41]

in Section 5.

3. NURBS-Diff module

Modern CAD systems make use of boundary-representation

(B-Rep) for representing a solid geometry, Ω , which is embedded

in a 2D or 3D Euclidean space (ℜ2 or ℜ3). A B-Rep consists of a

set of surfaces dΩ representing the boundary of the solid. Each

surface S ⊂ dΩ in a standard CAD system is represented using a

Non-Uniform Rational B-spline (NURBS) surface. The NURBS rep-

resentation is a compact representation that uses a set of control

points, knot vectors, degrees, and weights to map a parametric

space to span the entire surface S in the Euclidean space. In this

work, we propose a differentiable NURBS module which could

evaluate the surface S given the control points, knot vectors,

degrees, and weights, usually obtained as an output from a deep

learning system, NN(θ ). This deep learning system is trained using

a loss function L(·, ·), computed between a target point cloud

P ∈ {ℜNx2 or ℜNx3} (where N is the number of points) and a set

of points S sampled (or evaluated) from the surface S . During the

training process, the gradient of the loss function with respect

to the parameters of the deep learning model, ∂L/∂θ is required

for back propagation. It is usually straightforward to compute the

derivative of the loss function ∂L/∂S for some of the standard loss

functions used, such as Chamfer distance, L2 distance, etc., since

they are differentiable. However, ∂L/∂θ requires a mathematically

consistent definition of ∂S/∂Ψ , where Ψ refers to the complete set

of NURBS parameters (i.e. the set of control points P, its corre-

sponding weights W, and the knot vectors U and V) that define

the surface. The gradient ∂S/∂Ψ is necessary because the deep

learning system NN(θ ) predicts this set of NURBS parameters Ψ

and computing ∂L/∂θ requires computing ∂S/∂Ψ , ∂L/∂S and finally,
∂Ψ/∂θ . Formally, this can be explained using the chain rule as:

∂L

∂θ
=

∂L

∂S

∂S

∂Ψ

∂Ψ

∂θ
(1)

The main challenge in this approach is computing ∂S/∂Ψ . To

this end, we propose a differentiable NURBS module imple-

mented as a forward and backward machine learning module.

While our module can handle both curve and surface point

computations, we limit the discussions of our forward and back-

ward algorithms to surfaces. As shown in the results section, the

approach can be directly used for curves embedded in both 2D

and 3D space by suitably adjusting the dimensions of the NURBS

parameters.

3.1. Forward evaluation for NURBS surface

The NURBS surface S is sampled over a finite parametric space

(u, v) where (u, v) ∈ ([0, 1] × [0, 1]), and this set of finite

points S representing the surface is used for performing the loss

computation and the backward gradient computation. This set S

is computed as a function of NURBS parameters Ψ = {P,U,V,W}.
Given the NURBS surface points are a function of the NURBS

parameters in Eq. (2), we compute the forward evaluation using

the NURBS formulation:

S = f (P ,U ,V ,W) (2)

3.1.1. NURBS formulation

Formally, a point in the NURBS surface parametrized using

(u, v) is defined as follows:

S(u, v) =
∑n

i=0

∑m

j=0 N
p

i (u)N
q

j (v)wijPij
∑n

i=0

∑m

j=0 N
p

i (u)N
q

j (v)wij

, (3)

Here, the basis functions of NURBS, (Ni,Nj) are polynomials

that are recursively computed using Cox–de Boor recursion for-

mula in Eq. (4), where u is the parameter value, N
p

i is the ith basis

function of degree p.

N
p

i (u) =
u − ui

ui+p − ui

N
p−1
i (u) +

ui+p+1 − u

ui+p+1 − ui+1

N
p−1
i+1 (u) (4)

N0
i (u) =

{

1 if ui ≤ u ≤ ui+1

0 otherwise
(5)

Here, ui (also known as knots) refers to the elements of the

knot vector U (similarly, vi ∈ V). The knot vector is a non-

decreasing sequence of parametric coordinates, which divides the

B-spline into non-uniform piecewise functions. The basis function

N
p

i spans over the parametric domain based on the knot vector

and degree as shown in Eqs. (4) and (5). Note that the formu-

lation explained in Eq. (3) uses the vector notation, where Pij is
embedded in ℜ3.

3.1.2. Surface point evaluation

The complete algorithm for forward evaluation of S(u, v) as

described in Piegl and Tiller [1] can be divided into three steps:

1. Finding the knot span of u ∈ [ui, ui+1) and the knot span

of v ∈ [vj, vj+1), where ui, ui+1 ∈ U and vj, vj+1 ∈ V. This is

required for the efficient computation of only the non-zero

basis functions.

2. Now, we compute the non-zero basis functions N
p

i (u) and

N
q

j (v) using the knot span. The basis functions have spe-

cific mathematical properties that help us evaluate them

efficiently. The partition of unity and the recursion formula

ensure that the basis functions are non-zero only over a

finite span of p + 1 control points. Therefore, we only

compute those p + 1 non-zero basis functions instead of

the entire n basis function. Similarly in the v direction we

only compute q + 1 basis functions instead of m.

3. We first compute the weighted control points Pw
ij for a

given control point Pij = {Px, Py, Pz} and weight wij as

{Pxw, Pyw, Pzw} representing the surface after homoge-

neous transformation for ease of computation. Once the

basis functions are computed we multiply the non-zero

basis functions with the corresponding weighted control

points, Pw
ij . This result, S′ is then used to compute S(u, v)

as {S ′
x/S

′
w, S ′

y/S
′
w, S ′

z/S
′
w}.

3
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3.1.3. Implementation
In a deep learning system, each module is considered an inde-

pendent unit that performs the computation. During the forward
pass, the module takes a batch of input and transforms them us-
ing the parameters of the module parameters. Further, to reduce
the computations needed during the backward pass, we store
extra information for computing the gradients during the forward
computation. The NURBS-Diff module takes as input the control
points, weights, and knot vectors for a batch of NURBS surfaces.
We define a parameter to control the number of points evaluated
from the NURBS surface. We define a mesh grid of a uniformly
spaced set of parametric coordinates ugrid × vgrid. We perform a
parallel evaluation of each surface point S(u, v) in the ugrid × vgrid

for all surfaces in the batch and store all the required information
for the backward computation. The complete algorithm is shown
in Algorithm 1.

Algorithm 1: Forward algorithm for multiple surfaces

Input : U, V, P, W, output resolution ngrid, mgrid

Output: S

Initialize a meshgrid of parametric coordinates
uniformly from [0, 1] using ngrid × mgrid : ugrid × vgrid

Initialize: S → 0

for k = 1 : surfaces in parallel do

for j = 1 : mgrid points in parallel do

for i = 1 : ngrid points in parallel do
Compute uspan and vspan for the corresponding ui

and vi using knot vectors Uk and Vk

Compute basis functions Ni and Nj basis functions
using uspan and vspan and knot vectors Uk and Vk

Compute surface point S(ui, vj) (in x, y, and z

directions).
Store uspan, vspan, N

p

i , N
q

j , and S(ui, vj) for backward
computation

Our implementation is robust and modular for different ap-
plications. For example, if an end-user desires to use this for
a B-spline evaluation, they need to set the knot vectors to be
uniform and weights W to be 1.0. In this case, the forward
evaluation can be simplified to S(u, v) = f(P). Further, we can
also pre-compute the knot spans and basis functions during the
initialization of the NURBS-Diff module. During computation, we
could use tensor comprehension that significantly increases the
computational speed. We can also handle NUBS (Non-Uniform
B-splines), where the knot vectors are still non-uniform, but the
weights W are set to 1.0. Note in the case of B-splines Ψ = {P}
(the output from the deep learning framework) and in the case
of NUBS Ψ = {P,U,V}.

3.2. Backward evaluation for NURBS surface

In a modular machine learning system, each computational
module requires the gradient of a loss function with respect to
the output tensor for the backward computation or the backprop-
agation. For our NURBS-Diff module this corresponds to ∂L/∂S.
As an output to the backward pass, we need to provide ∂L/∂Ψ .
While we represent S for the boundary surface, computationally,
we only compute S (the set of surface points evaluated from
S). Therefore, we would be using the notation of ∂S instead
of ∂S to represent the gradients with respect to the bound-
ary surface. Here, we assume that with increasing the num-
ber of evaluated points, ∂S will asymptotically converge to ∂S .
Now, we explain the computation of ∂S/∂Ψ in order to compute
∂L/∂Ψ using the chain rule. To explain the implementation of
the backward algorithm, we first explain the NURBS derivatives
for a given surface point with respect to the different NURBS
parameters.

3.2.1. NURBS derivatives

We rewrite the NURBS formulation as follows:

S(u, v) =
NR(u, v)

w(u, v)
(6)

where,

NR(u, v) =
n

∑

i=0

m
∑

j=0

N
p

i (u)N
q

j (v)wijPij

w(u, v) =
n

∑

i=0

m
∑

j=0

N
p

i (u)N
q

j (v)wij

For the forward evaluation of S(u, v) = f (P ,U ,V ,W), we can

define four derivatives for a given surface evaluation point: S,u :=
∂S(u,v)/∂u, S,v := ∂S(u,v)/∂v, S,P := ∂S(u,v)/∂P, and S,W := ∂S(u,v)/∂W.

Note that S,P and S,W are represented as a vector of gradients

{S,Pij∀Pij ∈ P} and {Swij
∀wij ∈ W}.

Now, we show the mathematical form of each of these four

derivatives. The first two derivatives are traditionally known as

the parametric surface derivatives, S,u and S,v . Here, N
p

i,u(u) refers

to the derivative of basis functions with respect to u and v,

respectively. These are the standard parametric derivatives, and

we do not repeat them here; they are provided in the Appendix

for completeness. These derivatives are useful in the sense of

differential geometry of NURBS for several CAD applications [42].

However, we do not use it in our module since many deep

learning applications such as surface fitting are not dependent on

the (u, v) parametric coordinates. Also, note that S,u and S,v are

not the same as S,U and S,V. The formulation for S,U and S,V is

provided later in this section.

Now, let us define S,pij (u, v):

S,Pij (u, v) =
N

p

i (u)N
q

j (v)wij
∑n

k=0

∑m

l=0 N
p

k (u)N
q

l (v)wkl

(7)

where S,Pij (u, v) is the rational basis functions themselves. Com-

puting S,wij
(u, v) is more involved with wij terms in both the

numerator and the denominator of the evaluation.

S,wij
(u, v) =

NR,wij
(u, v)w(u, v) − NR(u, v)w,wij

(u, v)

w(u, v)2
(8)

where,

NR,wij
(u, v) = N

p

i (u)N
q

j (v)Pij

w,wij
(u, v) = N

p

i (u)N
q

j (v)

For the forward evaluation of S(u, v) = f (P ,U ,V ,W), we

have defined S,P(u, v) and S,W(u, v) along with the derivatives

S,u(u, v) and S,v(u, v). However, computing the S,U(u, v) and

S,V(u, v) is not trivial. S,U(u, v) and S,V(u, v) refer to the ∂S(u,v)/∂ui,

s.t.ui ∈ U and ∂S(u,v)/∂vi, s.t.vi ∈ V. U and V influence the

computation of the basis functions, and these derivatives are

helpful for reparameterization of the surfaces by changing the

knot vectors. However, due to the recursive computation of the

basis functions, the derivatives for U and V are not defined.

Therefore, we need a more rigorous approach for defining the

differentiable programming of knot vectors.

First, let us decompose the derivative ∂S(u,v)/∂ui, s.t.ui ∈ U1

into the derivative of ∂S(u,v)/∂N
p
i
(u) and the partial derivative of

∂N
p
i
(u)/∂ui. The derivative ∂S(u,v)/∂N

p
i
(u) can be easily computed from

chain rule as shown here:

1 We explain the formulation for U; a similar formulation exists for V.

4
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∂S(u, v)

∂N
p

i (u)
=

∑m

j=0 N
q

j (v)wijPij
∑n

r=0

∑m

j=0 N
p
r (u)N

q

j (v)wrj

−
∑n

r=0

∑m

j=0 N
p
r (u)N

q

j (v)wrjPrj

(
∑n

r=0

∑m

j=0 N
p
r (u)N

q

j (v)wrj)2

(

m
∑

j=0

N
q

j (v)wij

)

(9)

Now, we evaluate the derivative of N
p

i (u) with respect to the
knot points {ui}. We observe that due to the recursive nature
of the definition, we can accordingly compute the derivatives of
N

p

i (u) in a recursive fashion using chain rule, provided we can
evaluate:

∂N0
i (u)

∂ui

=
∂1([ui, ui+1])

∂ui

(10)

(and likewise for ui+1) where 1 denotes the indicator function
over an interval. However, this derivative is not well-defined
since the gradient is zero everywhere and undefined at the in-
terval edges.

We propose to approximate this derivative using Gaussian

smoothing by rewriting the interval as the difference between
step functions convolved with deltas shifted by ui and ui+1 re-
spectively:

1([ui, ui+1))(u) = sign(u) ⋆ δ(u − ui) − sign(u) ⋆ δ(u − ui+1) (11)

and approximate the delta function with a Gaussian of sufficiently
small (but constant) bandwidth:

1([ui, ui+1])(u) = sign(u) ⋆Gσ (u−ui)− sign(u) ⋆Gσ (u−ui+1) (12)

where

Gσ (u − µ) =
1

√
2πσ 2

exp(−
(u − µ)2

2σ 2
) (13)

The derivative with respect to µ is therefore given by:

G′
σ (u = µ) =

(u − µ)

2σ 2
Gσ (u − µ) (14)

which means that the approximate gradient introduces a multi-
plicative (u − µ) factor with the original basis function.

Therefore, now we can compute ∂N
p
i
(u)/∂ui by recursively defin-

ing the derivatives ∂N0
i
(u)/∂ui, ∂N1

i
(u)/∂ui, until ∂N

p−1
i

(u)/∂ui. The deriva-
tive of ∂N

p
i
(u)/∂N

p−1
i

(u) can easily be obtained from chain rule of

Eq. (4). Now, we perform the same operations of ∂N
p
i
(u)/∂ui∀ui ∈ U

to obtain ∂N
p
i
(u)/∂U and finally obtain ∂S(u,v)/∂U. Same operations can

be performed to obtain ∂S(u,v)/∂V. With all these operations for
each point parameterized in the surface by (u, v), we extend this
to all the surfaces as explained in the next section.

3.2.2. Jacobian for surface evaluation

We define the Jacobian for the NURBS evaluation, which is
then directly used for the backward evaluation. The Jacobian for
each surface evaluation point Si,j is represented as the vector:

Bi,j =

⎛

⎜

⎝

{S,pij (u, v)}∀i ∈ [1,m], ∀j ∈ [1, n]
{S,wij

(u, v)}∀i ∈ [1,m], ∀j ∈ [1, n]
{S,ui (u, v)}∀ui, ∈ U

{S,vj (u, v)}∀vj, ∈ V

⎞

⎟

⎠
(15)

Each Jacobian vector represented here is the contribution of
the gradient from one evaluation point at the grid locations (i, j)
in the parametric coordinate space. These Jacobian vectors are
each of length 4 nm. However, as noted in the previous section
on forward evaluation, the basis functions satisfy the partition
of unity and span only p + 1 control points starting from uspan

(correspondingly, q + 1 control points starting from vspan in the
other parametric direction). Therefore, the total number of non-
zero elements in a 4 nm size Jacobian vector is 4(p + 1)(q + 1),

making it sparse. However, note that this Jacobian is for only one

surface point. The complete Jacobian for the backward pass is

given as:

J =

⎛

⎜

⎜

⎝

B1,1

B1,2

...

Bmgrid,ngrid

⎞

⎟

⎟

⎠

. (16)

The size of this Jacobian is ngridmgrid × 4 nm. Here, Bi,j is

the Jacobian for one surface point evaluation. As the parametric

coordinates keep changing, the position of uspan and vspan keep

changing, and the location of the non-zero elements keeps shift-

ing to form a block diagonal matrix. This Jacobian is ∂S/∂Ψ . For

completing the backward pass, we multiply ∂L/∂S to ∂S/∂Ψ , giving

us ∂L/∂Ψ . Since, each module in the deep learning framework

is independent and modular, we just return this output for the

NURBS backward evaluation.

3.2.3. Implementation

For the implementation of the backward pass, since the basis

functions are block sparse, we make use of the stored information

of uspan and vspan for identifying the index of the control points

derivative and we use the stored basis functions information

for computing the Jacobian explained above. This computation

is performed for all the surfaces in the batch. This complete

algorithm is explained in detail in Algorithm 2.

Algorithm 2: Backward Algorithm

Input : S′

Output: P′, W′

Initialize: P′ → 0
Initialize: W′ → 0
for k = 1 : surfaces do

for j = 1 : mgrid do

for i = 1 : ngrid do

Retrieve uspan, vspan, N
p

i , N
q

j , S(u, v)

for r = 0 : p + 1 do

for h = 0 : q + 1 do
P′

uspan+r,vspan+h = S,pij (ui, vj)

W′
uspan+r,vspan+h = S,wij

(ui, vj)

U′
uspan+r = S,uspan+r (ui, vj)

V′
vspan+h = S,vspan+h(ui, vj)

3.3. GPU implementation

We implemented the code in Python 3.6 [43]. The backend for

the GPU-accelerated code is written in C++ using the Pybind11

API [44] and CUDA toolkit [45] for GPU acceleration and is in-

tegrated with PyTorch [46] using a custom layer definition. The

forward evaluation can be performed for each surface in the batch

for each tuple (u, v) in the mesh grid of ugrid × vgrid in parallel.

Further, the three coordinates x, y, z are evaluated simultane-

ously. This enables an embarrassingly parallel implementation on

the GPU for the forward evaluation of the NURBS-Diff module.

Each x, y, and z component is mapped to a separate thread on

the GPU using the 3D block and grid structure in CUDA. The

same process is employed in the backward algorithm with one

additional operation. Each surface point gradient needs to be

added to several control points that lie in the evaluated point’s

span during the backward pass. Hence we perform this operation

of the gradient update using a scatter operation by using the

indices stored from uspan and vspan.
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4. CAD applications using the NURBS-Diff module

The differentiable programming approach explained above is
designed mainly for deep learning applications. However, we
can also use the framework for standard CAD operations, such
as curve fitting, surface fitting, and surface offsetting. Note that
some of these operations could be performed much faster using
traditional approaches explicitly optimized for each application.
However, using NURBS-Diff along with gradient-descent-based
optimization approaches for these CAD applications is not well
explored. Moreover, this shows the versatility of the NURBS-Diff

module in handling traditional CAD operations as constraints in
a deep learning system.

To use our differentiable programming approach for CAD ap-
plications, we have to define two key elements: a loss function
L for computing the gradients and an optimization algorithm.
We consider four loss functions: L1 loss, L2 loss (also called as
mean squared error), the Chamfer distance LCD, and the Hausdorff
distance LHD.

The L1 loss can be mathematically defined as:

L1(P,Q) =
1

npoints

(

∑

(Pi,Qi)∈(P,Q)

∥Pi − Qi∥1

)

(17)

Here, ∥Pi−Qi∥1 refers to the L1 norm of the difference between
the two points Pi and Qi. Similarly, we can define L2 loss based
on the L2 norm.

L2(P,Q) =
1

npoints

(

∑

(Pi,Qi)∈(P,Q)

∥Pi − Qi∥2

)

(18)

While both the L1 and L2 loss functions are pairwise distance
metrics, the Chamfer distance (LCD) and the Hausdorff distance
(LHD) are global distance metrics between two sets of points as
shown below:

LCD =
∑

Pi∈P

min
Qj∈Q

∥Pi − Qj∥2 +
∑

Qj∈Q

min
Pi∈P

∥Pi − Qj∥2 (19)

LHD = max
Pi∈P

(

min
Qj∈Q

∥Pi − Qj∥2

)

+ max
Qj∈Q

(

min
Pi∈P

∥Pi − Qj∥2

)

(20)

For each CAD application, a target point cloud Q is obtained
directly from measurements (for the case of fitting from point
clouds) or from analytical computations (for CAD operations such
as surface offsetting). While our formulation works well when
we initialize the control points and weights to random values
(Gaussian distributed), we can also initialize it using a prior for
faster convergence. After we initialize the control points P and
weights W, we initialize the knot vectors U and V. While the
knot vectors are fixed in most applications we demonstrate, we
show one example where we could reparameterize the surface
to obtain a better fit. We evaluate the surface using P, W, U,
and V and compute the loss between the evaluated surface S and
Q using the appropriate loss function L. We perform an update
using gradient descent algorithms and their variants. We can
write a simple update for the NURBS parameters as:

Ψ = Ψ − α
∂L

∂Ψ
(21)

While our formulation can use a simple gradient descent al-
gorithm, in our work, we use more sophisticated algorithms
such as stochastic gradient descent (SGD), SGD with momen-
tum, Adam [47], and Adagrad [48]. Our experiments illustrated
in the Appendix show that SGD with momentum and Adam
perform well in all scenarios and have faster convergence. Now,
we discuss the specific CAD applications using our NURBS-Diff

module.

Table 1

Performance (LCD) of fitting different curves using the NURBS-Diff module with

and without curve length regularization.

Curve No regularization Regularization

Analytical 0.0025 0.0016

Helix 0.0370 0.0320

Apple 8.5267 1.6863

Flower 23.2484 0.8383

Bunny 50.0020 1.4099

4.1. Curve fitting

We first demonstrate curve fitting using our NURBS-Diff mod-

ule. While the problem of fitting splines to point clouds using

data-driven techniques has been extensively studied, we show

curve fitting to validate our approach and provide insights (such

as the convergence of the optimization, behavior of the fit with

the variation in control points, evaluation points, etc.). In this

validation case, we initialize a uniform knot vector U (which is

kept fixed) and compute the non-zero basis functions N(u) and

uspan as a pre-computation step before evaluating the points on

the curve. This pre-computation step reduces the computational

time significantly (due to the removal of repeated basis function

evaluations). This approach can be used when we are trying to fit

a B-spline curve/surface where the basis functions do not change

or if the user does not want to change the parameterization of

the curve or surface.

For a simple validation, we sample points from an analytically

defined curve y = sin(x)+2sin(2x)+sin(4x) and obtain the best-fit

curves for different control points and evaluation points as shown

in Fig. 2. Similarly, for points sampled from a 3D helical curve, we

fit a B-Spline curve as shown in Fig. 3. The behavior of our fitting

method with different loss functions and the number of control

points is shown in Fig. 4. While all the loss functions converge

well with the number of iterations, L2 loss and LCD losses have

better convergence characteristics. LCD loss plateaus after some

iterations since that is the best error that could be achieved for

a given number of control points and evaluation points. Please

note that the LCD also reduces the oscillations that might occur

in fitting a higher degree curve.

We extend the curve fitting framework to a more general fit-

ting of random unordered point cloud data. For the 2D point cloud

data, we use the images from the Pixel dataset of the Skelneton

challenge [49] and sample points from the object boundaries as

shown in Fig. 5. Since the problem is ill-posed (due to the un-

ordered aspect of the point cloud), we initialize the control points

using randomly sampled points from the point cloud. To avoid

unnecessary loops and self-intersections in our output curve, we

use a curve-length regularization term in addition to the LCD. As

shown in Fig. 5 our framework fits the target well for point clouds

that are not excessively complex. Some complex point cloud data

that had self-intersections are illustrated in Appendix.

We also analyze the performance of our fitting method for dif-

ferent curves in Table 1. For a consistent comparison, we use the

LCD between a dense set of points evaluated on the fitted curve

(using 16 control points) and the input point cloud. We set the

number of evaluation points to be twice the number of points in

the input. Our NURBS-Diff module achieves better fitting results

with the curve length regularization added. While this difference

is less evident for simple analytical curves, the advantage of using

a curve length regularization is more pronounced over curves

fitted using the Pixel dataset.
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Fig. 2. Curve fitting to points from an analytically generated curve y = sin(x) + 2sin(2x) + sin(4x) with different number of control points.

Fig. 3. Curve fitting for points sampled from a 3D helical curve in R
3 for different numbers of control points and evaluated points.

Fig. 4. The loss performance with the number of iterations for fitting the 3D helical curve shown in Fig. 3. The behavior of the loss is shown for different loss

functions and different numbers of control points used for the fitting.

Fig. 5. Curve fitting on point cloud data obtained from binary images. We convert the image data into a point cloud using the pixel size and the locations of the

pixels. Once we obtain the point cloud, we use a curve-fitting module with Chamfer distance loss function and regularization to obtain these results.

4.2. Surface fitting

We extend the validation of our NURBS-Diff module to the

fitting of NURBS surfaces. In this case, we consider two scenarios

for testing the fitting process. In the first scenario, we keep the

knot vectors U and V fixed. In this scenario, we can precompute

the basis functions N
p

i (u) and N
q

j (v) along with their respective

span indices, uspan and vspan . In the second scenario, we allow

the knot vectors to be changed, leading to the reparameterization

of the surface to obtain a better fit. We cannot precompute the

basis functions in the second scenario since the knot vector is up-

dated each iteration. We define a set of points sampled from the

analytical surface z = xysin(x)cos(y) to compare both scenarios.

The control points and weights are initialized randomly for the

7
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Fig. 6. Surface fitting using NURBS for points sampled from an analytical surface z = sin(x) ∗ cos(y).

Fig. 7. NURBS surface fitting for point cloud representation of Ducky’s body.

Table 2

Performance L2 of the different surface CAD applications using the NURBS-

Diff module. B-Spline refers to fixed uniform knot vector, and NURBS refers

to non-uniform knot vector obtained through optimization.

Test case B-spline NURBS

Analytical 0.039528 0.005262

Ducky 0.000195 0.000180

fitting, while the knot vectors are initialized as uniformly spaced.
Using the L2 loss for the optimization, we perform the fitting for
both the scenarios as shown in Fig. 6. While the first scenario
provides a good fit, we can reduce the minor oscillation errors
in the surface fit with the knot optimization to obtain an order
of magnitude lower L2 loss for the second scenario, as shown in
Table 2. Note that both the surface fits look similar and fit the
target surface well, but the surface reparameterization reduces
the overall error. The changes in the knot vector are depicted
using the gridlines on the heatmap showing the error.

We extend this surface fitting to a more complicated surface
(the Ducky shown in Fig. 7). We have the target control points,
weights, and knot vectors for this geometry. Using this informa-
tion, we sample points from the geometry uniformly and then use
that as a target for performing the surface fitting. We only show
the results for the best fit surface with knot vector optimization
for brevity. We observe improvement in the fit by performing
knot optimization as shown in Table 2. However, in this case,
the improvement is not as pronounced as seen in the analytical

geometry. Finally, we study the performance of our NURBS-Diff

module for fitting the analytical surface shown in Fig. 6 using a
variety of control point sizes, evaluation point sizes, and degrees.
To benchmark the performance of our module, we study the first
500 iterations of the optimization (both forward and backward
pass) and report the L2 loss. The results of these experiments are
highlighted under Tables 3–5. We observe that 12 control points
are required to fit the surface properly. As expected, increasing
the number of control points reduces the L2 error. For the number
of evaluation points, a similar trend is observed, where increasing
the number of evaluation points reduces the L2 error. Similarly,
the L2 error decreases as the degree of the surface is increased
until it stabilizes, after which it shows a slight increase in the
error probably due to overfitting oscillations. Particularly, in Ta-
ble 5, we notice that the error is higher with a lower degree due
to being an underdetermined system. With increasing the degree,
the fit improves, and then finally, at degree 4, the system becomes
overdetermined and hence overfits.

4.3. Surface offsetting

Generating an offset surface is one of the fundamental CAD
operations. Traditionally an offset surface for NURBS is generated
by first performing a Bèzier decomposition of the NURBS surface
and performing the offset for each patch. However, this changes
the parameterization of the resulting offset surfaces. However,
specific applications might require an offset surface with the
same parameterization. We can easily use our NURBS-Diff module

8
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Fig. 8. Test cases for NURBS surface offset (a) Double curved surface, (b) C0 continuous multi patch, (c) C1 continuous multi patch, and (d) C1 continuous patches

of the aerofoil profile of a wind turbine blade.

Table 3

L2 error for fitting different control point mesh sizes for the analytical surface

with 128 × 128 evaluation points and surface degree 3.

Control points L2 error

6 × 6 2.2719 × 10+1

9 × 9 3.9528 × 10−2

12 × 12 6.9547 × 10−4

24 × 24 3.7953 × 10−7

48 × 48 1.0997 × 10−7

Table 4

L2 error for fitting a 9 × 9 control mesh to the analytical surface for degree 3

with different numbers of evaluated points.

Evaluation points L2 error

64 × 64 0.0402

128 × 128 0.0395

256 × 256 0.0391

512 × 512 0.0389

to perform such an offset operation. Note that this approach only
works for small offset distances such that the topology of the
offset surface does not change.

To perform the offset operation, we first compute a dense set
of points and normals at specific (u, v) and calculate the points
on the corresponding offset surface by moving the points along
the normal by the offset distance. We then fit a NURBS surface for
the offset point cloud data using the same parameterization of the
base surface using the surface fitting method (see Section 4.2).

Using our offsetting method, we can also generate offsets of
objects consisting of multiple NURBS surfaces. Generating off-
set surfaces from multiple base surfaces requires applying con-
straints on the control points on the common edges of the base
surfaces. While computing the surface normals, we identify the
surface points along the shared edge. We then compute the aver-
age normals of these common points and then normalize them.
Calculating the average normal allows us to ensure the continuity
of the offset point cloud data. We then apply the constraints on
the fitted control points of the common edges to be the same
on both the surfaces that share the common edge. To ensure
this continuity for the NURBS surfaces, we create a list of the
shared control points. After the surface fitting iteration, the con-
trol points are updated; based on the shared list, i.e., the control
points of the common edge are assigned the same coordinates.
We perform this by computing the average of all the common
points and setting them the same on both surfaces.

Fig. 8 shows examples of the surface offsets generated using
our NURBS-Diff module. Fig. 8(a) is a single surface patch with a
double-curved surface. Fig. 8(b) is a set of C0 continuous surfaces
with a single shared edge. Fig. 8(c) is a set of C1 continuous conic
section surfaces. Fig. 8(d) is a set of surfaces from a wind turbine
blade model. To compare the accuracy of our NURBS-Diff module
approach for offset surfaces, we computed a simpler offset by

Table 5

L2 error for different degrees of a 9 × 9 control mesh to the analytical surface

using 128 × 128 evaluation points.

Degree L2 error

1 0.3615

2 0.0702

3 0.0395

4 0.0585

offsetting the control points along the average normal direction

of the control mesh. This approach works well for surfaces with

low curvature. We then evaluated the computed offset surface at

25× denser points than the number of points used for fitting and

computed the LCD with the input offset points. We find that our

fitting approach achieves a lower LCD than the control point offset

approach for all cases, as seen in Table 6.

4.4. Timings for NURBS-Diff

In the previous sections, we demonstrate how the NURBS-Diff

module can perform CAD operations such as curve fitting, surface

fitting, and surface offsetting. In this section, we assess the com-

putational performance of our module. For brevity, we restrict

our analysis to surface fitting operation and analyze the timings

with variations in the number of control points, evaluation points,

and surface degree. We only study the first 500 iterations (which

include both the forward and backward pass). We perform all

our experiments on a desktop with a 32 core 2.4 GHz Intel Xeon

processor, 64 GB RAM, and an NVIDIA Titan Black GPU with 6 GB

RAM.

We analyze the timings against the different number of control

points as shown in Table 7. We begin with the minimum number

of control points we would get meaningful surfaces for the given

experiment (i.e., 6 × 6 control points). We observe that the

timings increase with the number of control points. Variations in

iteration times for different evaluation point sizes are shown in

Table 8. Similar to Table 7, there is a steady increase in iteration

times with an increase in the number of evaluation points. Note

that, while the iteration time is increasing drastically (especially

when going from 256 × 256 to 512 × 512), the performance

of the fit does not improve much, as seen in Table 4. Therefore,

the end-user must judiciously choose the number of evaluation

points sampled for the NURBS-Diff module to get an accurate

fit of the surface while not increasing the computational time.

Finally, increasing the degree also increases the time required to

fit a surface, as shown in Table 9. However, for most cases, it

can be seen the NURBS-Diff module can perform 5–10 iterations

per second, which makes it tractable for fitting a large number of

surfaces.
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Table 6

Normalized Chamfer distance between the offset surface and the offset point cloud using our NURBS-Diff

module and SGD compared to a direct offset of the control points (CP offset). The Chamfer distance is

normalized using the minimum size of the bounding box of the base surface along the offset direction.

Test case Min BB size Offset distance LCD NURBS-Diff offset LCD CP offset

Double curve 11.54 1.50 0.0235 0.0239

Multi patch - C0 0.75 0.10 0.0006 0.0008

Multi patch - C1 6.32 2.00 0.0389 0.0390

Aerofoil surface 0.66 0.25 0.0529 0.0545

Table 7

Time to fit a surface for different numbers of control points.

Control points Iteration time (s)

6 × 6 0.098

12 × 12 0.106

24 × 24 0.110

48 × 48 0.110

Table 8

Time to fit a surface for different numbers of evaluation points.

Evaluation points Iteration time (s)

64 × 64 0.074

128 × 128 0.120

256 × 256 0.170

512 × 512 0.266

Table 9

Computation time to fit a surface of different degrees.

Degree Iteration time (s)

1 0.074

2 0.120

3 0.170

4 0.266

5. Point cloud reconstruction

In this section, we show the utility of the NURBS-Diff module
for unsupervised point cloud reconstruction. We use the exper-
iments performed by Sharma et al. [41] as our baseline, which
is a supervised learning framework for surface reconstruction
framework. Sharma et al. [41] introduced an end-to-end trainable
network called ParSeNet that fits an assembly of geometric prim-
itives, including B-spline patches, to a segmented point cloud.
In the ParSeNet framework, the authors develop a spline fit-
ting module (called SplineNet) which takes an input point cloud
and reconstructs a spline surface. This surface, however, is ob-
tained using a supervised learning approach, as we highlight later.
Therefore, to improve the framework and obtain a better fit with-
out the supervised labels, we integrate our NURBS-Diff module
with SplineNet to develop an unsupervised training approach for
spline fitting.

The ParSeNet framework is divided into three stages. The
first stage incorporates prior work done in point cloud segmen-
tation [50] to decompose the input point cloud into segments
classified under a parametric patch type. The second stage is the
spline fitting SplineNet that generates B-spline patches to the
segmented point cloud data. The final stage performs geometric
optimizations to seamlessly stitch the collection of predicted
primitives together into a single object. We are interested in re-
placing the surface evaluation performed in the SplineNet stage of
their network with our NURBS-Diff module for the experiments in
this section. For training and testing our experiments, we use the
SplineDataset provided by Sharma et al. [41]. The SplineDataset
is a diverse collection of open and closed splines that have been
extracted from one million CAD geometries included in the ABC
dataset. A random set of points is sampled from the surfaces as

the input for the point cloud reconstruction task. We run our
experiments on open splines split into 24 K, 4 K, and 4 K for
training, testing, and validation.

In our work, we focus only on the SplineNet module of the
ParSeNet framework to illustrate the applicability of our proposed
NURBS-Diff module. SplineNet is a module for performing super-
vised learning of B-spline surfaces using the SplineDataset. The
training procedure includes a loss definition as follows:

LSplineNet = LCD + λ1LLapMat + λ2LCP . (22)

Here, LCD refers to the Chamfer distance between the input point
cloud and the surface points evaluated on the target surface.
LLapMat is the Laplacian matching loss where the difference in
the Laplacian (the second derivative of the control points mesh
obtained using a Sobel filter) of the fitted control points and
the target control points is minimized. LCP is the control point
regression loss which is L2 error between the predicted and the
target control points. λ1 and λ2 are used for weighting different
loss functions. For brevity, we use the same values for these
constants as reported in Sharma et al. [41].

In the SplineNet approach, the LLapMat and the LCP make the
framework supervised since they require a target fitted con-
trol point mesh to compute these losses. In real life, obtaining
the target control point mesh for point clouds is challenging.
Therefore, we need an unsupervised learning approach for point
cloud reconstruction of spline surfaces. To make the framework
unsupervised and not require the target control points of the
spline surface, we modify the framework to the following:

LNURBS-Diff = LCD + λ1LLap + λ2LHD. (23)

Here, LCD and LHD refer to the Chamfer distance and the Haus-
dorff distance between the input point cloud and the surface
points evaluated using the NURBS-Diff module. LLap is a modified
loss of LLapMat where instead of matching the Laplacian of the
predicted control points and actual control points, we minimize
the Laplacian itself. Further, we scale down the contribution of
LLap by an order of magnitude to reduce any adverse effects from
minimizing the Laplacian. In addition, to fit the edges of the
surfaces well, we add a Hausdorff distance loss to the objective
function. We use different scale factors λ1, λ2 for LLap and LHD to
tune the objective function to obtain the best possible results.

Apart from the loss function defined above, the baseline su-
pervised approach is restricted to non-rational B-spline surfaces
because of no target weights. Here, in our case, we can per-
form the fitting for rational B-Spline surfaces or even B-Spline
surfaces with reparameterized knots. Since the dataset available
is very primitive and does not contain many complex struc-
tures, we restrict our analysis to just studying rational B-Splines
reconstruction from the point clouds in an unsupervised manner.

Table 10 illustrates all the experiments we have performed for
choosing an appropriate loss function. Performing surface recon-
struction under no supervision is very challenging, and therefore
several metrics have to be compared together to understand the
performance. In Fig. 9, we illustrate how LCD alone provides a
bad fit by not covering the edges of the surfaces. Similarly, LHD

alone does not perform well. Therefore, we need a loss func-
tion that performs well in combination. We compare the results
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Table 10

Comparison between SplineNet [41] and our NURBS-Diff implementation (with different number of control points). We compare the two-sided Chamfer distance

(scaled by 100, 100×LCD), the two-sided Hausdorff distance (scaled by 100, 100×LHD) between the input point cloud and a dense set of points sampled on the

fitted surface, and also the Laplacian of the predicted control points LLap (scaled by 100, 100×LLap).

Loss function Baseline (20 × 20) NURBS-Diff (20 × 20) NURBS-Diff (5 × 5) NURBS-Diff (4 × 4)

LCD LHD LLap LCD LHD LLap LCD LHD LLap LCD LHD LLap

LCD + LLapMat + LCP 1.184 0.994 1.340

LCD + 0.1LLap + 10LHD 0.018 0.234 0.202 0.020 0.256 2.462 0.028 0.274 3.356

LCD + 0.1LLap + LHD 0.027 0.725 0.106 0.032 0.805 1.972 0.047 1.173 3.606

LCD + 0.1LLap 0.098 2.914 0.189 0.105 3.511 1.296 0.113 3.602 2.637

LCD 0.012 0.329 42.288 0.013 0.446 21.236 0.015 0.499 28.212

LHD 0.018 0.192 30.877 0.018 0.210 23.076 0.026 0.282 32.443

Fig. 9. Comparison of the reconstructed B-spline surfaces obtained using NURBS-Diff module for different loss functions using a 5 × 5 control mesh.

Fig. 10. Point clouds and unsupervised reconstruction of B-spline surfaces (20 × 20 and 5 × 5) predicted by SplineNet using the NURBS-Diff module.

obtained from our approach with the baseline results obtained
from Sharma et al. [41], as illustrated in Table 10. We observe
that our approach performs an order of magnitude better than
the baseline architecture in terms of LCD. Further, unlike Table 3
where we have a complex analytical surface, the SplineDataset in-
cludes a collection of simpler open and closed surfaces. Therefore,
we observe that reducing the number of control points required
for representing the surface does not affect the fitting error as
demonstrated by the (5 × 5) and (4 × 4) columns in Table 10.
Also, we note that using just LCD and LHD is not recommended
due to high laplacian loss. Further, the combination of LCD +
0.1LLap + 10LHD gives the best result in terms of combined loss.
We can also verify the same visually from Fig. 9. We also visualize
a few anecdotal predicted surfaces along with the input point
cloud in Fig. 10. We see that the surfaces in the SplineNet dataset
are not complex enough to require a large 20 × 20 control point
mesh and can be easily fitted with a small 4 × 4 control point
mesh.

6. Geometric constraints using NURBS-Diff

One of the advantages of our NURBS-Diff module is the ease

of enforcing surface constraints in deep-learning applications.

We showcase the utility of our module in enforcing constraints

using the example of valve deformation analysis. Analyzing bio-

prosthetic heart valves is essential for obtaining diagnostic in-

formation such as estimating the remaining life, fatigue, and

patient-specific design. Traditionally, analysis of deformation be-

havior is performed using finite element or isogeometric analy-

sis. However, such analyses are often computationally intensive.

Recently, Balu et al. [40] proposed a deep learning framework

for performing finite element analysis (called DLFEA) using a

NURBS-aware convolutional neural network. Each heart valve is

represented using three NURBS surface patches, and isogeometric

analysis is performed to obtain the deformations for each control

point under constant pressure applied during the valve closure.
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Fig. 11. Visualization of an anecdotal bioprosthetic heart valve for DLFEA-

BC from the test dataset. We show the input geometry, the target deformed

geometry, and the predicted deformed geometry.

Table 11

Performance comparison of DLFEA, DLFEA-SR, and DLFEA-BC. We compare the

error on the test dataset for control points reconstruction, NURBS surface

reconstruction, and boundary condition enforcement.

Test case CP loss SR loss BC loss

DLFEA 7.79 × 10−3 4.47 × 10−3 37.69

DLFEA-SR 12.84 × 10−3 4.76 × 10−3 46.14

DLFEA-BC 12.83 × 10−3 5.69 × 10−3 10.90

Fixed boundary conditions are applied on the valve edges that
will be sutured to the aorta. Their previous work generated a large
dataset of input geometry, pressure, thickness, and corresponding
target deformations of the control points. However, their work
does not perform a NURBS surface reconstruction loss for ob-
taining the deformations, which are more physically meaningful.
Further, they did not explore the application of the fixed bound-
ary conditions; it was implicitly enforced by modifying the loss
function.

In this work, we use the dataset and deep learning frame-
work available from their work to demonstrate the utility of our
NURBS-Diff module in performing an evaluation of the deforma-
tions for the leaflets of the bioprosthetic heart valve. We perform
a comparison between DLFEA, DLFEA with additional surface
reconstruction loss (DLFEA-SR), and DLFEA with additional sur-
face reconstruction loss and boundary condition enforcement
loss (DLFEA-BC). We show the visualization of DLFEA-BC along
with the input geometry, the target deformed geometry, and the
predicted deformed geometry in Fig. 11. In DLFEA-BC, apart from
the surface reconstruction loss, we add a constraint (BC loss) that
the Dirichlet boundary conditions on the edge which is sutured
to the aorta must be satisfied (i.e., the edges closest to the blue
region in Fig. 11 must have zero deformation).

In Table 11, we show the results obtained on a test dataset (not
used during the training). The CP loss is the L2 loss between the
input control points and the target control points, whereas the
surface reconstruction (SR) loss represents the L2 loss between
the NURBS surface reconstruction of the target deformed shape
and the actual deformed shape. We observe that DLFEA performs
very well for CP loss (naturally because it was originally trained
using that loss) but does not do well on the BC loss. The DLFEA-SR
performs comparably for SR loss but has worse performance for
BC loss. At the same time, DLFEA-BC performs the best for BC loss
while performing comparably (although worse) on CP loss and
SR loss. While the DLFEA-BC performs worse, the enforcement
of boundary conditions makes it more physically meaningful.
Further, in this ablation study, we show the result for each loss
function applied independently. In general, we use a combined
loss with several loss functions in tandem as done in Section 5.

7. Conclusions

We have developed a differentiable NURBS module that can be
directly integrated with existing machine learning frameworks.

We have developed a mathematical framework that enables both
forward evaluation and backpropagation of the losses while train-
ing. Our module is GPU-accelerated to allow fast evaluation of
NURBS surface points and fast backpropagation of the derivatives.
We have demonstrated the utility of our NURBS module for
several CAD applications and deep learning applications. NURBS-
Diff performs at the same level as existing standalone spline
solutions used previously in the literature. Future work on the
NURBS module includes developing support for trimmed NURBS
surfaces and integrating complex curve constraints along trim
edges for the watertight representation of CAD models. We have
released the code for our NURBS module along with this paper.
We believe this NURBS module will be the first step to better
integrate deep learning with CAD and would lead to more diverse
machine learning CAD applications.
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Appendix A. Parametric derivatives

Here we provide the parametric surface derivatives with re-
spect to the parameters u and v for completeness. Please refer
to Piegl and Tiller [1] for details.

S,u(u, v) =
NR,u(u, v)w(u, v) − NR(u, v)w,u(u, v)

w(u, v)2
(A.1)

where,

NR,u(u, v) =
n

∑

i=0

m
∑

j=0

N
p

i,u(u)N
q

j (v)wijPij

w,u(u, v) =
n

∑

i=0

m
∑

j=0

N
p

i,u(u)N
q

j (v)wij

Appendix B. Test surface details

Table B.12 shows geometrical details for each surface used for
the fitting and surface offset tests. The surface fitting examples
(Analytical and Ducky) are evaluated at 1282 and 5122 points,
respectively. The surface offset test examples are evaluated at 202

points each.

Table B.12

Test NURBS surface parameters.

Surface model p q n m

Analytical 3 3 12 12

Ducky 3 3 14 13

Double curve 3 3 6 6

Multi patch - C0 3 3 4 4

Multi patch - C1 3 3 6 6

Aerofoil 3 3 50 24
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Fig. C.12. Without consolidated normals may lead to discontinuous surfaces, especially for C0 connectivity (shown on the left). Normals consolidation ensures

connectivity for the offset surfaces (shown on the right).

Fig. D.13. Results of the curve-fitting on a 3D helix point data with different optimizers.

Fig. D.14. Curve fitting test performed on various skeleton geometry which results in an invalid curve generation due to self-intersecting geometry.

Appendix C. Computing normals on the common edge

For C0 continuous surfaces, the surface normals at the com-
mon edge of two surfaces point in different directions. Hence, if
the individual surface normals are used for the offset operation,
it might lead to a gap or self-intersection between the offset
surfaces. To deal with this case, we identify the common control
points at the surface edges, and we recompute the resulting
normal as the average of both the individual surface normals as
shown in Fig. C.12. We then use this average normal to move the
points on the common edges to generate the offset points.

Appendix D. Additional curve fitting results

We tested the curve fitting example of the 3D helix shown in
Fig. 3 with different optimizers. Fig. D.13 shows the results for
four different optimizers used in this test. We can see that all
the optimizers converge to the same value for the L2 loss, but
the Adagrad optimizer converges to a different value for the L1

and LCD loss. In addition, SGD with momentum has the fastest
convergence rates for all losses.

For some complex shapes, our method cannot generate a
curve without self-intersections and loops for the Pixel dataset.
This is because the weightage of the curve length regularization
parameter needs to be tuned for each object based on its com-
plexity. Fig. D.14 shows the results from 3 curve fitting tests
where the curves generated are self-intersecting. Adding addi-
tional constraints to prevent this is a possible future research
direction.

Appendix E. NURBS-Diff implementation details

Our NURBS-Diff module was implemented using Pytorch li-
brary, which allows us to implement custom deep learning layers
that we can use alongside traditional deep learning layers such as
convolution, max-pooling, dense layers, etc. torch.nn.module
gives us an interface to create our custom layers; however, the
functions have to be defined in an automatically differentiable
manner. In our application, we use torch.autograd.Function
to define our custom forward and backward pass computations
for the NURBS basis functions evaluation and curve/surface eval-
uation. This function is now used in the torch.nn.module to
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create the layer. The actual code for the forward and backward
pass (for evaluation) is written in C++ Language with CUDA in-
tegration for GPU acceleration. These modules (written in C++)
are compiled along with PyBind11 package to use in Python
(supported by Pytorch). The compilation is performed using a
simple setup from torch.utils.cpp_extension. The main
source code of NURBS-Diff module will be made public.

We create two different layers: (i) B-Spline evaluation (ii)
NURBS evaluation. Although the functions used in both are the
same, in B-Spline evaluation, we avoid computing the basis func-
tions every forward pass. Instead, we precompute the basis func-
tions initially and only perform the forward evaluation of the
curve/surface. This saves us computational time during the for-
ward and backward pass.
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