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ABSTRACT

Boundary representations (B-reps) using Non-Uniform Rational B-splines (NURBS) are the de facto
standard used in CAD, but their utility in deep learning-based approaches is not well researched. We
propose a differentiable NURBS module to integrate NURBS representations of CAD models with deep
learning methods. We mathematically define the derivatives of the NURBS curves or surfaces with
respect to the input parameters (control points, weights, and the knot vector). These derivatives are
used to define an approximate Jacobian used for performing the “backward” evaluation to train the
deep learning models. We have implemented our NURBS module using GPU-accelerated algorithms
and integrated it with PyTorch, a popular deep learning framework. We demonstrate the efficacy of
our NURBS module in performing CAD operations such as curve or surface fitting and surface offsetting.
Further, we show its utility in deep learning for unsupervised point cloud reconstruction and enforce
analysis constraints. These examples show that our module performs better for certain deep learning

frameworks and can be directly integrated with any deep-learning framework requiring NURBS.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

In modern CAD systems, a solid model is represented using
boundary representation (B-Rep), where the solid boundaries are
defined using spline surfaces. Non-Uniform Rational B-splines
(NURBS) are the standard representation used for defining the
spline surfaces [1]. NURBS surfaces offer a high level of control
and versatility; they can also compactly represent the surface
geometry. NURBS surfaces can represent more complex shapes
than Bézier or B-splines due to the non-uniformity of the knot
vectors and the non-linear transformation due to the weights
assigned to the control points. In addition, the NURBS definition
allows for local control via the knots and the control points
and global control via the weights. On the other hand, deep
learning for 3D Euclidean geometry is emerging as a critical and
well-explored research area in engineering. This area includes
fundamental computer vision works such as 3D shape reconstruc-
tions from point clouds or multi-view stereo and 3D semantic
segmentation for shape understanding [2-10]. While NURBS are
the standard CAD representation in engineering, their utility in
deep learning-based approaches is not well researched. Current
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3D deep learning (DL) research focuses on converting standard
CAD representations to geometric representations that are more
amenable to machine learning (such as voxels, triangular meshes,
etc.) [11]. This conversion from the standard CAD geometries to
other representations is often irreversible and is not trivial to
incorporate with DL algorithms.

One of the main challenges in extending NURBS-based rep-
resentation to deep learning is the differentiable programming
of the NURBS evaluations. The main idea of differentiable pro-
gramming is to define each operation in a neural network in a
differentiable manner. Differentiable programming uses gradient-
based approaches to optimize the neural network parameters,
thereby obtaining the desired output through neural network
operations. This differentiable programming paradigm allows an
end-to-end programmable system that can be used to train deep
neural networks. This paradigm has found use in a large variety of
applications such as scientific computing [ 12-14], image process-
ing [15], physics engines [16], computational simulations [17],
and graphics [18,19].

For differentiable programming of NURBS, we need to com-
pute gradients of the NURBS surface points with respect to the
parameters of the NURBS representation (see Fig. 1). However,
since the NURBS surface points are a function of knots, control
points, and weights, the partial derivative with respect to each
input parameter needs to be computed, making the backward
evaluation challenging. Further, due to the use of basis functions
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Fig. 1. We propose a differentiable NURBS module that can be used for CAD
geometric modeling using standard deep learning systems. The NURBS param-
eters are input to the module during the forward evaluation, and we evaluate
the surface mesh. Once a loss is computed, and gradients for the surface mesh
are obtained, we perform a backward evaluation to enable backpropagation of
the losses to modify the input parameters.

(which are piecewise-continuous polynomials), gradients might
be discontinuous (or even zero) at the knots. The recursive def-
inition of the basis functions adds an additional challenge to
define derivatives with respect to the knot vectors. To allevi-
ate these issues, we exploit the recent theoretical advances in
the paradigm of differentiable programming. It has been the-
oretically proven that if a weak form of the Jacobian for the
“forward” evaluation operator can be represented using a block-
sparse matrix, then this approximate Jacobian can be used to
perform the “backward” evaluation of that operation [20,21]. This
approach has been used to define approximate derivatives for op-
erations such as sorting [20,22], loops and algorithmic conditions,
and even derivatives for piecewise polynomial functions [23].
We use a similar approach by defining a block-sparse Jacobian
for NURBS surface evaluation. Existing differentiable program-
ming approaches for splines [24] mainly focus on optimizing the
control point locations. In this paper, we provide a complete
module for integrating NURBS with differentiable frameworks
that optimize not just the control points but also the knots for
reparameterization.

Formally, using the differentiable programming approach
explained above, we formulate a differentiable NURBS (“NURBS-
Diff’) module, which enables deep learning frameworks to inte-
grate NURBS-based representation of B-Rep surfaces and perform
CAD operations using them. The forward pass of our NURBS
module uses the standard NURBS evaluation as explained in
Section 3.1. The backward pass uses the derivatives of the NURBS
curve or surface with respect to the input parameters of the
NURBS (Section 3.2). The derivatives are used to define the Jaco-
bian that is then used for backpropagation of the losses during
training. After defining NURBS-Diff, we validate our approach
by performing traditional CAD operations such as curve fitting,
surface fitting, and surface offsetting. Finally, we show the appli-
cability of NURBS-Diff in deep learning by using it as an additional
decoder for point cloud reconstruction.

In this paper, we have developed a differentiable NURBS mod-
ule that can be used in machine learning and CAD applications.
The key contributions of this work are:

1. A differentiable programming framework using NURBS rep-
resentation where the losses can be back-propagated using
the NURBS definitions. Specifically, we define the Jacobian
based on the derivatives of the NURBS with respect to its
input parameters.

2. A GPU-accelerated implementation of our NURBS mod-
ule in PyTorch for better integration with existing deep
learning programming frameworks.
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3. A gradient descent-based optimization framework using
NURBS-Diff for performing CAD operations such as curve
or surface fitting and surface offsetting.

4, The applicability of our proposed differentiable program-
ming framework to extend the training process of unsu-
pervised point cloud reconstruction of NURBS surfaces.

The rest of the paper is arranged as follows. We outline some
close related work in point cloud reconstruction, machine learn-
ing approaches in CAD, and differentiable programming in Sec-
tion 2. We provide the mathematical details of our differentiable
NURBS module in Section 3. We show the application of NURBS-
Diff to CAD operations in Section 4 and to unsupervised point
cloud reconstruction in Section 5.

2. Related work

The problem of extracting concise geometry representations
from a spectrum of input data formats such as images, depth
maps, and point clouds has been extensively studied over the
last few decades. While methodologies that derive such represen-
tations are pervasive in 3D reconstruction literature today, our
NURBS module focuses on filling the gap between the NURBS-
based CAD representation and the other input formats used in
machine learning. In this context, we broadly categorize the prior
related work under differentiable programming and splines in
deep learning.

2.1. Differentiable programming

NURBS surfaces are obtained as a tensor product of two-
piecewise polynomial B-spline curves. To conceptualize end-to-
end trainable deep learning systems that can fit NURBS surfaces
to various input geometries, we require a framework that can
backpropagate over such piecewise polynomial functions. Several
recent works have been proposed that take advantage of the
differentiable programming paradigm to approximate gradients
for such functions. Cuturi et al. [20] and Blondel et al. [25] propose
differentiable operators for sorting based tasks. Similarly, Vlastel-
ica et al. [26] compute gradients for several optimization prob-
lems by constructing linear approximations to discrete-values
functions. We model our module on prior work that incorporates
structured priors as modules in the deep learning framework,
similar to Sheriffdeen et al. [27], Joshi et al. [28], and Djolonga and
Krause [29]. Beyond deep learning-based approaches, automatic
differentiation for NURBS parametric coordinates for obtaining
the surface derivatives for Adjoint-based sensitivity analysis has
been performed by Zhang [30]. Ugolotti et al. [31] performed a
gradient-based aerodynamic shape optimization using a robust
Machine Learning model, which is created to integrate the geom-
etry generation and the mesh generation process using one single
polynomial module for the volumetric mesh. Mykhaskiv et al. [32]
and Miiller et al. [33] define a differentiated CAD kernel in Open-
CASCADE for applying algorithmic differentiation to a complete
CAD system for shape optimization and imposing constraints.
These works encourage us to pursue a similar research direction
in developing the NURBS-Diff module. However, their approach
for obtaining the gradients involves tedious operations such as
performing singular value decomposition (SVD) on the control
points to obtain the gradients. We also note that the mathemat-
ical definition of the derivatives for NURBS and its application
to fitting has been explored previously [34,35]. However, due to
discontinuities, a more stable and faster approach for computing
the derivatives is needed.
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2.2. Splines in deep learning

Several deep learning frameworks use splines. Minto et al.
[36] use NURBS surfaces fitted over the 3D geometry as an input
representation for the object classification task of ModelNet10
and ModelNet40 datasets. Erwinski et al. [37] presented a neural-
network-based contour error prediction method for NURBS paths.
Fey et al. [38] present a new convolution operator based on B-
splines for irregular structured and geometric input, e.g., graphs
or meshes. Balestriero et al. [39] build a theoretical link between
deep networks and spline functions and build end-to-end deep
learning systems using spline-based activation functions. Balu
et al. [40] propose a NURBS-aware convolutional neural network
that maintains the topological structure similar to a parametric
NURBS surface evaluation grid. Very recently, Sharma et al. [41]
performed point cloud reconstruction to predict a B-spline sur-
face, which is later processed to obtain a complete CAD model
with other primitives “stitched” together. In our work, we per-
form comparison between our approach and Sharma et al. [41]
in Section 5.

3. NURBS-Diff module

Modern CAD systems make use of boundary-representation
(B-Rep) for representing a solid geometry, £2, which is embedded
in a 2D or 3D Euclidean space (%2 or %3). A B-Rep consists of a
set of surfaces dS2 representing the boundary of the solid. Each
surface S C d$2 in a standard CAD system is represented using a
Non-Uniform Rational B-spline (NURBS) surface. The NURBS rep-
resentation is a compact representation that uses a set of control
points, knot vectors, degrees, and weights to map a parametric
space to span the entire surface S in the Euclidean space. In this
work, we propose a differentiable NURBS module which could
evaluate the surface S given the control points, knot vectors,
degrees, and weights, usually obtained as an output from a deep
learning system, NN(6). This deep learning system is trained using
a loss function £(-, -), computed between a target point cloud
P € {%M2 or %¥3} (where N is the number of points) and a set
of points S sampled (or evaluated) from the surface S. During the
training process, the gradient of the loss function with respect
to the parameters of the deep learning model, 9£/s6 is required
for back propagation. It is usually straightforward to compute the
derivative of the loss function 9£/ss for some of the standard loss
functions used, such as Chamfer distance, L, distance, etc., since
they are differentiable. However, 9£/4¢ requires a mathematically
consistent definition of 9S/sw, where ¥ refers to the complete set
of NURBS parameters (i.e. the set of control points P, its corre-
sponding weights W, and the knot vectors U and V) that define
the surface. The gradient 95/sw is necessary because the deep
learning system NN(0) predicts this set of NURBS parameters ¥
and computing 9£/s6 requires computing 95/sw, 9£/3s and finally,
3¥/s60. Formally, this can be explained using the chain rule as:

oL 0L 3S oW 1
30 S AW 90 (0

The main challenge in this approach is computing 9S/3w. To
this end, we propose a differentiable NURBS module imple-
mented as a forward and backward machine learning module.
While our module can handle both curve and surface point
computations, we limit the discussions of our forward and back-
ward algorithms to surfaces. As shown in the results section, the
approach can be directly used for curves embedded in both 2D
and 3D space by suitably adjusting the dimensions of the NURBS
parameters.
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3.1. Forward evaluation for NURBS surface

The NURBS surface S is sampled over a finite parametric space
(u, v) where (u,v) € ([0,1] x [0, 1]), and this set of finite
points S representing the surface is used for performing the loss
computation and the backward gradient computation. This set S
is computed as a function of NURBS parameters ¥ = {P, U, V, W}.
Given the NURBS surface points are a function of the NURBS
parameters in Eq. (2), we compute the forward evaluation using
the NURBS formulation:

S=fP,U,V,W) (2)

3.1.1. NURBS formulation

Formally, a point in the NURBS surface parametrized using
(u, v) is defined as follows:

S(u, v) = Lizo Yo MUON (0P (3)

, >ico Zjn;o Nf(u)l\qu(v)w,j ’

Here, the basis functions of NURBS, (N;, N;) are polynomials
that are recursively computed using Cox-de Boor recursion for-
mula in Eq. (4), where u is the parameter value, Nip is the ith basis
function of degree p.

u—u Uippg1 —U
NP(u) = ———— N} () + —"=——Nf () (4)
Uiyp — Ui Uitp+1 — Ui
1 ifuyy<u=<uy
0 _ i =4 = Ui+l
N; (u) = {O otherwise )

Here, u; (also known as knots) refers to the elements of the
knot vector U (similarly, v; € V). The knot vector is a non-
decreasing sequence of parametric coordinates, which divides the
B-spline into non-uniform piecewise functions. The basis function
Nf’ spans over the parametric domain based on the knot vector
and degree as shown in Egs. (4) and (5). Note that the formu-
lation explained in Eq. (3) uses the vector notation, where Py is
embedded in %3,

3.1.2. Surface point evaluation
The complete algorithm for forward evaluation of S(u, v) as
described in Piegl and Tiller [1] can be divided into three steps:

1. Finding the knot span of u € [u;, uj11) and the knot span
of v € [vj, vj41), where u;, ui11 € U and vj, vjyq € V. This is
required for the efficient computation of only the non-zero
basis functions.

2. Now, we compute the non-zero basis functions Nip (u) and
qu(v) using the knot span. The basis functions have spe-
cific mathematical properties that help us evaluate them
efficiently. The partition of unity and the recursion formula
ensure that the basis functions are non-zero only over a
finite span of p + 1 control points. Therefore, we only
compute those p + 1 non-zero basis functions instead of
the entire n basis function. Similarly in the v direction we
only compute q + 1 basis functions instead of m.

3. We first compute the weighted control points Py for a
given control point P; = {Py, P,,P,} and weight w; as
{Pyw, P,w, P,w} representing the surface after homoge-
neous transformation for ease of computation. Once the
basis functions are computed we multiply the non-zero
basis functions with the corresponding weighted control
points, P}f. This result, §’ is then used to compute S(u, v)
as {S,/S,,, S,/5,,+ S./5,,}-

w? vz
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3.1.3. Implementation

In a deep learning system, each module is considered an inde-
pendent unit that performs the computation. During the forward
pass, the module takes a batch of input and transforms them us-
ing the parameters of the module parameters. Further, to reduce
the computations needed during the backward pass, we store
extra information for computing the gradients during the forward
computation. The NURBS-Diff module takes as input the control
points, weights, and knot vectors for a batch of NURBS surfaces.
We define a parameter to control the number of points evaluated
from the NURBS surface. We define a mesh grid of a uniformly
spaced set of parametric coordinates ugiq X vgrig. We perform a
parallel evaluation of each surface point S(u, v) in the ugig X vgria
for all surfaces in the batch and store all the required information
for the backward computation. The complete algorithm is shown
in Algorithm 1.

Algorithm 1: Forward algorithm for multiple surfaces

Input : U, V, P, W, output resolution ngiq, Mgria

Output: S

Initialize a meshgrid of parametric coordinates
uniformly from [0, 1] using nNgrig X Mgrid : Ugrid X Vgrid

Initialize: S — 0

for k = 1 : surfaces in parallel do

for j = 1: mgq points in parallel do

for i = 1: ngq points in parallel do

Compute Uspan and vspan for the corresponding u;
and v; using knot vectors Uy and Vy

Compute basis functions N; and N; basis functions
using Uspqn and vgye, and knot vectors Uy and Vi

Compute surface point S(u;, v;) (in x, y, and z
directions).

Store Uspan, Vspan, N/, qu, and S(u;, vj) for backward
computation

Our implementation is robust and modular for different ap-
plications. For example, if an end-user desires to use this for
a B-spline evaluation, they need to set the knot vectors to be
uniform and weights W to be 1.0. In this case, the forward
evaluation can be simplified to S(u, v) = f(P). Further, we can
also pre-compute the knot spans and basis functions during the
initialization of the NURBS-Diff module. During computation, we
could use tensor comprehension that significantly increases the
computational speed. We can also handle NUBS (Non-Uniform
B-splines), where the knot vectors are still non-uniform, but the
weights W are set to 1.0. Note in the case of B-splines ¥ = {P}
(the output from the deep learning framework) and in the case
of NUBS ¥ = {P, U, V}.

3.2. Backward evaluation for NURBS surface

In a modular machine learning system, each computational
module requires the gradient of a loss function with respect to
the output tensor for the backward computation or the backprop-
agation. For our NURBS-Diff module this corresponds to 9£/ss.
As an output to the backward pass, we need to provide 9£/3w.
While we represent S for the boundary surface, computationally,
we only compute S (the set of surface points evaluated from
S). Therefore, we would be using the notation of 9S instead
of S to represent the gradients with respect to the bound-
ary surface. Here, we assume that with increasing the num-
ber of evaluated points, S will asymptotically converge to 9S.
Now, we explain the computation of 95/sw in order to compute
3L/pw using the chain rule. To explain the implementation of
the backward algorithm, we first explain the NURBS derivatives
for a given surface point with respect to the different NURBS
parameters.
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3.2.1. NURBS derivatives
We rewrite the NURBS formulation as follows:

S(u, v) = R, ) 6)
w(u, v)
where,
NR(u, v) = > Y " NP(u)N/(v)w;iP;
i=0 j=0
w(u, v) = Nf(u)Nf(v)w,-j
i=0 j=0

For the forward evaluation of S(u, v) = f (P, U, V, W), we can
define four derivatives for a given surface evaluation point: S ;, ==
aS(u.v)/gu, S, = W)/, Sp = 9Swv)/sp, and Sy = ISw.V)/Hw.
Note that Sp and S are represented as a vector of gradients
{S.p;VP; € P} and {S,,,Yw; € W}.

Now, we show the mathematical form of each of these four
derivatives. The first two derivatives are traditionally known as
the parametric surface derivatives, S, and S ;.. Here, Nf (u) refers
to the derivative of basis functions with respect to u and v,
respectively. These are the standard parametric derivatives, and
we do not repeat them here; they are provided in the Appendix
for completeness. These derivatives are useful in the sense of
differential geometry of NURBS for several CAD applications [42].
However, we do not use it in our module since many deep
learning applications such as surface fitting are not dependent on
the (u, v) parametric coordinates. Also, note that S, and S, are
not the same as Sy and Sy. The formulation for Sy and Sy is
provided later in this section.

Now, let us define S p; (U, v):

NP (N (v)w
Yo 2o Ne N (v)wig
where S p,(u, v) is the rational basis functions themselves. Com-
puting S,wij(u, v) is more involved with wj terms in both the
numerator and the denominator of the evaluation.
NR,wiJ.(u, v)w(u, v) — NR(u, v)w,wij(u, v)

w(u, v)?

(7)

S,Pij(”? U) =

(8)

S,wij(u» U) =

where,

NR (1, v) = N ()N} (v)P;

W,y (1, v) = NP(WNY(v)

For the forward evaluation of S(u,v) = f(P,U,V,W), we
have defined Sp(u, v) and Sw(u, v) along with the derivatives
S.u(u,v) and S ,(u, v). However, computing the S y(u,v) and
S.v(u, v) is not trivial. S y(u, v) and S y(u, v) refer to the 5t v)/gy;,
s.t.u; € U and 9wv)/ay, s.t.v; € V. U and V influence the
computation of the basis functions, and these derivatives are
helpful for reparameterization of the surfaces by changing the
knot vectors. However, due to the recursive computation of the
basis functions, the derivatives for U and V are not defined.
Therefore, we need a more rigorous approach for defining the
differentiable programming of knot vectors.

First, let us decompose the derivative #(.v)/ay, s.t.u; € U!
into the derivative of 95w.v)/sn’(u) and the partial derivative of
9N,P(u)/au,-. The derivative 95.v)/an’u) can be easily computed from
chain rule as shown here:

1 we explain the formulation for U; a similar formulation exists for V.
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aS(u, v) _ ZJ 0 ] v)wP;
E)Nf( ) Zr OZ] oNp )N (v)wy
PR OZ] o NP (u) wr} 1j q
N( 9
(Zr OZ} o NE(WIN (v)wy)? (Z ) )

Now, we evaluate the derivative of Nip (u) with respect to the
knot points {u;}. We observe that due to the recursive nature
of the definition, we can accordingly compute the derivatives of
Nf’(u) in a recursive fashion using chain rule, provided we can

evaluate:
AN (u) _ 01([u;, uig1]) (10)

Bu,- 311,'

(and likewise for u;,1) where 1 denotes the indicator function
over an interval. However, this derivative is not well-defined
since the gradient is zero everywhere and undefined at the in-
terval edges.

We propose to approximate this derivative using Gaussian
smoothing by rewriting the interval as the difference between
step functions convolved with deltas shifted by u; and u;,; re-
spectively:

1([wi, uir1))(u) = sign(u) * 6(u — u;) — sign(u) * 6(u — ui1)  (11)

and approximate the delta function with a Gaussian of sufficiently
small (but constant) bandwidth:

1([u;, ujq])(u) = sign(u) x G (u — u;) — sign(u) » Gy (u — ujy1) (12)

where

(u— p)?

1
e
V2mo? 202
The derivative with respect to u is therefore given by:

(u—p)
202
which means that the approximate gradient introduces a multi-

plicative (u — u) factor with the original basis function.

Therefore, now we can compute N/ (u)/ay; by recursively defin-
ing the derivatives IN’()/ay;, ON} (w)/au;, until aN'~'(w)/au;. The deriva-
tive of 3Nf’(u)/aNlP*1(u) can easily be obtained from chain rule of
Eq. (4). Now, we perform the same operations of N/ )/3u,Vu; € U
to obtain 3N/ ()/au and finally obtain 85(w.v)/3u. Same operations can
be performed to obtain 95(t.v)/3v. With all these operations for
each point parameterized in the surface by (u, v), we extend this
to all the surfaces as explained in the next section.

Go(u—p)=

xp(— ) (13)

G (u=p)= Golu — 1) (14)

3.2.2. Jacobian for surface evaluation

We define the Jacobian for the NURBS evaluation, which is
then directly used for the backward evaluation. The Jacobian for
each surface evaluation point S;; is represented as the vector:

{S,pij(u, v)}Vi e [1,m],Vj € [1,n]
{S.uw;(u, v)}vie [1,m],Vj € [1,n]
{S.u;(u, v)}Vu;, e U
{S,y;(u, V)}V;, €V

B = (15)

Each Jacobian vector represented here is the contribution of
the gradient from one evaluation point at the grid locations (i, j)
in the parametric coordinate space. These Jacobian vectors are
each of length 4 nm. However, as noted in the previous section
on forward evaluation, the basis functions satisfy the partition
of unity and span only p + 1 control points starting from uspan
(correspondingly, g + 1 control points starting from v, in the
other parametric direction). Therefore, the total number of non-
zero elements in a 4 nm size Jacobian vector is 4(p + 1)(q + 1),
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making it sparse. However, note that this Jacobian is for only one
surface point. The complete Jacobian for the backward pass is
given as:

By,
B>
J= : . (16)

Bmgrid SMNgrid

The size of this Jacobian is ngigmgi¢ x 4 nm. Here, B;; is
the Jacobian for one surface point evaluation. As the parametric
coordinates keep changing, the position of usa, and vspa, keep
changing, and the location of the non-zero elements keeps shift-
ing to form a block diagonal matrix. This Jacobian is 9/sw. For
completing the backward pass, we multiply 3£/ss to /3w, giving
us 9£/3w. Since, each module in the deep learning framework
is independent and modular, we just return this output for the
NURBS backward evaluation.

3.2.3. Implementation

For the implementation of the backward pass, since the basis
functions are block sparse, we make use of the stored information
of Ugpan and vspg, for identifying the index of the control points
derivative and we use the stored basis functions information
for computing the Jacobian explained above. This computation
is performed for all the surfaces in the batch. This complete
algorithm is explained in detail in Algorithm 2.

Algorithm 2: Backward Algorithm

Input :S

Output: P/, W

Initialize: P — 0

Initialize: W — 0

for k = 1 : surfaces do

forj=1: mg do

fori=1:ng do

Retrieve uspan, Vspan, NI, qu, S(u, v)

forr=0:p+ 1do

forh=0:q+ 1do

P/uspan+r-vspan+h = S,p,‘j(uiv Uj)
W apantr vspanth = S, (Ui Vj)
U/Uspan+r = Svuspan+r(ui7 vj)
V' spanth = S.vspan+h(Uis Vj)

3.3. GPU implementation

We implemented the code in Python 3.6 [43]. The backend for
the GPU-accelerated code is written in C++ using the Pybind11
API [44] and CUDA toolkit [45] for GPU acceleration and is in-
tegrated with PyTorch [46] using a custom layer definition. The
forward evaluation can be performed for each surface in the batch
for each tuple (u, v) in the mesh grid of ugig X vgiq in parallel.
Further, the three coordinates x, y, z are evaluated simultane-
ously. This enables an embarrassingly parallel implementation on
the GPU for the forward evaluation of the NURBS-Diff module.
Each x, y, and z component is mapped to a separate thread on
the GPU using the 3D block and grid structure in CUDA. The
same process is employed in the backward algorithm with one
additional operation. Each surface point gradient needs to be
added to several control points that lie in the evaluated point’s
span during the backward pass. Hence we perform this operation
of the gradient update using a scatter operation by using the
indices stored from ugyq, and vgpan.
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4. CAD applications using the NURBS-Diff module

The differentiable programming approach explained above is
designed mainly for deep learning applications. However, we
can also use the framework for standard CAD operations, such
as curve fitting, surface fitting, and surface offsetting. Note that
some of these operations could be performed much faster using
traditional approaches explicitly optimized for each application.
However, using NURBS-Diff along with gradient-descent-based
optimization approaches for these CAD applications is not well
explored. Moreover, this shows the versatility of the NURBS-Diff
module in handling traditional CAD operations as constraints in
a deep learning system.

To use our differentiable programming approach for CAD ap-
plications, we have to define two key elements: a loss function
L for computing the gradients and an optimization algorithm.
We consider four loss functions: £; loss, £, loss (also called as
mean squared error), the Chamfer distance £¢p, and the Hausdorff
distance Lyp.

The £ loss can be mathematically defined as:

(Y ) (17)

Mpoints *p, gpe(p.@)

Here, ||P;—Qj||; refers to the L; norm of the difference between
the two points P; and Q;. Similarly, we can define £; loss based
on the L, norm.

(Y r-alk) (18)

Mpoints *p, g)e(P.@)

While both the £1 and £, loss functions are pairwise distance
metrics, the Chamfer distance (£¢p) and the Hausdorff distance
(Lyp) are global distance metrics between two sets of points as
shown below:

Lo=) &_aeignpi—anﬁqzﬂgeig IPi — Qll> (19)

PjeP

El(Pa Q) =

L"Z(Ps Q) =

Lhp = max <&ggllh Q.IIz) + max <§fé‘3 [IP; Q.IIz) (20)

For each CAD application, a target point cloud Q is obtained
directly from measurements (for the case of fitting from point
clouds) or from analytical computations (for CAD operations such
as surface offsetting). While our formulation works well when
we initialize the control points and weights to random values
(Gaussian distributed), we can also initialize it using a prior for
faster convergence. After we initialize the control points P and
weights W, we initialize the knot vectors U and V. While the
knot vectors are fixed in most applications we demonstrate, we
show one example where we could reparameterize the surface
to obtain a better fit. We evaluate the surface using P, W, U,
and V and compute the loss between the evaluated surface S and
Q using the appropriate loss function £. We perform an update
using gradient descent algorithms and their variants. We can
write a simple update for the NURBS parameters as:

oL
=9 —qg— (21)
v

While our formulation can use a simple gradient descent al-
gorithm, in our work, we use more sophisticated algorithms
such as stochastic gradient descent (SGD), SGD with momen-
tum, Adam [47], and Adagrad [48]. Our experiments illustrated
in the Appendix show that SGD with momentum and Adam
perform well in all scenarios and have faster convergence. Now,
we discuss the specific CAD applications using our NURBS-Diff
module.
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Table 1
Performance (L¢p) of fitting different curves using the NURBS-Diff module with
and without curve length regularization.

Curve No regularization Regularization
Analytical 0.0025 0.0016
Helix 0.0370 0.0320
Apple 8.5267 1.6863
Flower 23.2484 0.8383
Bunny 50.0020 1.4099

4.1. Curve fitting

We first demonstrate curve fitting using our NURBS-Diff mod-
ule. While the problem of fitting splines to point clouds using
data-driven techniques has been extensively studied, we show
curve fitting to validate our approach and provide insights (such
as the convergence of the optimization, behavior of the fit with
the variation in control points, evaluation points, etc.). In this
validation case, we initialize a uniform knot vector U (which is
kept fixed) and compute the non-zero basis functions N(u) and
Uspan AS @ pre-computation step before evaluating the points on
the curve. This pre-computation step reduces the computational
time significantly (due to the removal of repeated basis function
evaluations). This approach can be used when we are trying to fit
a B-spline curve/surface where the basis functions do not change
or if the user does not want to change the parameterization of
the curve or surface.

For a simple validation, we sample points from an analytically
defined curve y = sin(x)-+2sin(2x)+sin(4x) and obtain the best-fit
curves for different control points and evaluation points as shown
in Fig. 2. Similarly, for points sampled from a 3D helical curve, we
fit a B-Spline curve as shown in Fig. 3. The behavior of our fitting
method with different loss functions and the number of control
points is shown in Fig. 4. While all the loss functions converge
well with the number of iterations, £, loss and Lcp losses have
better convergence characteristics. Lcp loss plateaus after some
iterations since that is the best error that could be achieved for
a given number of control points and evaluation points. Please
note that the L£qp also reduces the oscillations that might occur
in fitting a higher degree curve.

We extend the curve fitting framework to a more general fit-
ting of random unordered point cloud data. For the 2D point cloud
data, we use the images from the Pixel dataset of the Skelneton
challenge [49] and sample points from the object boundaries as
shown in Fig. 5. Since the problem is ill-posed (due to the un-
ordered aspect of the point cloud), we initialize the control points
using randomly sampled points from the point cloud. To avoid
unnecessary loops and self-intersections in our output curve, we
use a curve-length regularization term in addition to the Lcp. As
shown in Fig. 5 our framework fits the target well for point clouds
that are not excessively complex. Some complex point cloud data
that had self-intersections are illustrated in Appendix.

We also analyze the performance of our fitting method for dif-
ferent curves in Table 1. For a consistent comparison, we use the
Lcp between a dense set of points evaluated on the fitted curve
(using 16 control points) and the input point cloud. We set the
number of evaluation points to be twice the number of points in
the input. Our NURBS-Diff module achieves better fitting results
with the curve length regularization added. While this difference
is less evident for simple analytical curves, the advantage of using
a curve length regularization is more pronounced over curves
fitted using the Pixel dataset.
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Fig. 2. Curve fitting to points from an analytically generated curve y = sin(x) + 2sin(2x) + sin(4x) with different number of control points.
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Fig. 3. Curve fitting for points sampled from a 3D helical curve in R> for different numbers of control points and evaluated points.
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Fig. 4. The loss performance with the number of iterations for fitting the 3D helical curve shown in Fig. 3.

functions and different numbers of control points used for the fitting.
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Fig. 5. Curve fitting on point cloud data obtained from binary images. We convert the image data into a point cloud using the pixel size and the locations of the
pixels. Once we obtain the point cloud, we use a curve-fitting module with Chamfer distance loss function and regularization to obtain these results.

4.2. Surface fitting

We extend the validation of our NURBS-Diff module to the
fitting of NURBS surfaces. In this case, we consider two scenarios
for testing the fitting process. In the first scenario, we keep the
knot vectors U and V fixed. In this scenario, we can precompute
the basis functions Nip (u) and qu(v) along with their respective

span indices, Uspan and vgpan . In the second scenario, we allow
the knot vectors to be changed, leading to the reparameterization
of the surface to obtain a better fit. We cannot precompute the
basis functions in the second scenario since the knot vector is up-
dated each iteration. We define a set of points sampled from the
analytical surface z = xysin(x)cos(y) to compare both scenarios.
The control points and weights are initialized randomly for the
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z= xysin(x)cos(y)
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Fig. 6. Surface fitting using NURBS for points sampled from an analytical surface z = sin(x) * cos(y).

0.80 1% -
e ) 0.005
0.60
> : :
0.40
r N -0.005
0.20 14 —
0.00
0.00 020 0.40 0.60 0.80 1.00
u
1.00
0.82
0.005
0.57
>
0.41
0.25 -0.005
0.00
. e 0.000.14 037 0.610.75 1.00
(with reparameterization) u
Pointwise Normalized MSE
1.0
0.8
B o 0.001
0.6 .
> 0.000
0.4“.‘.' ) '.‘
-0.001
0.2
0.0+ : . - -
00 02 04 06 08 10

—— Predicted Surface
Predicted Control Points

—— Target Surface
Target Control Points

u

Fig. 7. NURBS surface fitting for point cloud representation of Ducky’s body.

Table 2

Performance £, of the different surface CAD applications using the NURBS-
Diff module. B-Spline refers to fixed uniform knot vector, and NURBS refers
to non-uniform knot vector obtained through optimization.

Test case B-spline NURBS
Analytical 0.039528 0.005262
Ducky 0.000195 0.000180

fitting, while the knot vectors are initialized as uniformly spaced.
Using the £, loss for the optimization, we perform the fitting for
both the scenarios as shown in Fig. 6. While the first scenario
provides a good fit, we can reduce the minor oscillation errors
in the surface fit with the knot optimization to obtain an order
of magnitude lower £, loss for the second scenario, as shown in
Table 2. Note that both the surface fits look similar and fit the
target surface well, but the surface reparameterization reduces
the overall error. The changes in the knot vector are depicted
using the gridlines on the heatmap showing the error.

We extend this surface fitting to a more complicated surface
(the Ducky shown in Fig. 7). We have the target control points,
weights, and knot vectors for this geometry. Using this informa-
tion, we sample points from the geometry uniformly and then use
that as a target for performing the surface fitting. We only show
the results for the best fit surface with knot vector optimization
for brevity. We observe improvement in the fit by performing
knot optimization as shown in Table 2. However, in this case,
the improvement is not as pronounced as seen in the analytical

geometry. Finally, we study the performance of our NURBS-Diff
module for fitting the analytical surface shown in Fig. 6 using a
variety of control point sizes, evaluation point sizes, and degrees.
To benchmark the performance of our module, we study the first
500 iterations of the optimization (both forward and backward
pass) and report the £; loss. The results of these experiments are
highlighted under Tables 3-5. We observe that 12 control points
are required to fit the surface properly. As expected, increasing
the number of control points reduces the £, error. For the number
of evaluation points, a similar trend is observed, where increasing
the number of evaluation points reduces the £, error. Similarly,
the £, error decreases as the degree of the surface is increased
until it stabilizes, after which it shows a slight increase in the
error probably due to overfitting oscillations. Particularly, in Ta-
ble 5, we notice that the error is higher with a lower degree due
to being an underdetermined system. With increasing the degree,
the fit improves, and then finally, at degree 4, the system becomes
overdetermined and hence overfits.

4.3. Surface offsetting

Generating an offset surface is one of the fundamental CAD
operations. Traditionally an offset surface for NURBS is generated
by first performing a Bézier decomposition of the NURBS surface
and performing the offset for each patch. However, this changes
the parameterization of the resulting offset surfaces. However,
specific applications might require an offset surface with the
same parameterization. We can easily use our NURBS-Diff module
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Fig. 8. Test cases for NURBS surface offset (a) Double curved surface, (b) C° continuous multi patch, (c) C' continuous multi patch, and (d) C' continuous patches

of the aerofoil profile of a wind turbine blade.

Table 3
£, error for fitting different control point mesh sizes for the analytical surface
with 128 x 128 evaluation points and surface degree 3.

Table 5
L, error for different degrees of a 9 x 9 control mesh to the analytical surface
using 128 x 128 evaluation points.

Control points L, error Degree L, error
6 x 6 2.2719 x 10! 1 0.3615
9x9 3.9528 x 102 2 0.0702
12 x 12 6.9547 x 10~ 3 0.0395
24 x 24 3.7953 x 1077 4 0.0585
48 x 48 1.0997 x 1077

Table 4

L, error for fitting a 9 x 9 control mesh to the analytical surface for degree 3
with different numbers of evaluated points.

Evaluation points L, error
64 x 64 0.0402
128 x 128 0.0395
256 x 256 0.0391
512 x 512 0.0389

to perform such an offset operation. Note that this approach only
works for small offset distances such that the topology of the
offset surface does not change.

To perform the offset operation, we first compute a dense set
of points and normals at specific (u, v) and calculate the points
on the corresponding offset surface by moving the points along
the normal by the offset distance. We then fit a NURBS surface for
the offset point cloud data using the same parameterization of the
base surface using the surface fitting method (see Section 4.2).

Using our offsetting method, we can also generate offsets of
objects consisting of multiple NURBS surfaces. Generating off-
set surfaces from multiple base surfaces requires applying con-
straints on the control points on the common edges of the base
surfaces. While computing the surface normals, we identify the
surface points along the shared edge. We then compute the aver-
age normals of these common points and then normalize them.
Calculating the average normal allows us to ensure the continuity
of the offset point cloud data. We then apply the constraints on
the fitted control points of the common edges to be the same
on both the surfaces that share the common edge. To ensure
this continuity for the NURBS surfaces, we create a list of the
shared control points. After the surface fitting iteration, the con-
trol points are updated; based on the shared list, i.e., the control
points of the common edge are assigned the same coordinates.
We perform this by computing the average of all the common
points and setting them the same on both surfaces.

Fig. 8 shows examples of the surface offsets generated using
our NURBS-Diff module. Fig. 8(a) is a single surface patch with a
double-curved surface. Fig. 8(b) is a set of C° continuous surfaces
with a single shared edge. Fig. 8(c) is a set of C! continuous conic
section surfaces. Fig. 8(d) is a set of surfaces from a wind turbine
blade model. To compare the accuracy of our NURBS-Diff module
approach for offset surfaces, we computed a simpler offset by

offsetting the control points along the average normal direction
of the control mesh. This approach works well for surfaces with
low curvature. We then evaluated the computed offset surface at
25x denser points than the number of points used for fitting and
computed the Lp with the input offset points. We find that our
fitting approach achieves a lower L than the control point offset
approach for all cases, as seen in Table 6.

4.4, Timings for NURBS-Diff

In the previous sections, we demonstrate how the NURBS-Diff
module can perform CAD operations such as curve fitting, surface
fitting, and surface offsetting. In this section, we assess the com-
putational performance of our module. For brevity, we restrict
our analysis to surface fitting operation and analyze the timings
with variations in the number of control points, evaluation points,
and surface degree. We only study the first 500 iterations (which
include both the forward and backward pass). We perform all
our experiments on a desktop with a 32 core 2.4 GHz Intel Xeon
processor, 64 GB RAM, and an NVIDIA Titan Black GPU with 6 GB
RAM.

We analyze the timings against the different number of control
points as shown in Table 7. We begin with the minimum number
of control points we would get meaningful surfaces for the given
experiment (i.e., 6 x 6 control points). We observe that the
timings increase with the number of control points. Variations in
iteration times for different evaluation point sizes are shown in
Table 8. Similar to Table 7, there is a steady increase in iteration
times with an increase in the number of evaluation points. Note
that, while the iteration time is increasing drastically (especially
when going from 256 x 256 to 512 x 512), the performance
of the fit does not improve much, as seen in Table 4. Therefore,
the end-user must judiciously choose the number of evaluation
points sampled for the NURBS-Diff module to get an accurate
fit of the surface while not increasing the computational time.
Finally, increasing the degree also increases the time required to
fit a surface, as shown in Table 9. However, for most cases, it
can be seen the NURBS-Diff module can perform 5-10 iterations
per second, which makes it tractable for fitting a large number of
surfaces.
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Normalized Chamfer distance between the offset surface and the offset point cloud using our NURBS-Diff
module and SGD compared to a direct offset of the control points (CP offset). The Chamfer distance is
normalized using the minimum size of the bounding box of the base surface along the offset direction.

Test case Min BB size Offset distance Lcp NURBS-DIff offset Lcp CP offset
Double curve 11.54 1.50 0.0235 0.0239
Multi patch - co 0.75 0.10 0.0006 0.0008
Multi patch - C! 6.32 2.00 0.0389 0.0390
Aerofoil surface 0.66 0.25 0.0529 0.0545

Table 7
Time to fit a surface for different numbers of control points.

Control points

Iteration time (s)

6 x 6 0.098

12 x 12 0.106

24 x 24 0.110

48 x 48 0.110
Table 8

Time to fit a surface for different numbers of evaluation points.
Evaluation points Iteration time (s)

64 x 64 0.074

128 x 128 0.120

256 x 256 0.170

512 x 512 0.266
Table 9

Computation time to fit a surface of different degrees.

Degree Iteration time (s)
1 0.074
2 0.120
3 0.170
4 0.266

5. Point cloud reconstruction

In this section, we show the utility of the NURBS-Diff module
for unsupervised point cloud reconstruction. We use the exper-
iments performed by Sharma et al. [41] as our baseline, which
is a supervised learning framework for surface reconstruction
framework. Sharma et al. [41] introduced an end-to-end trainable
network called ParSeNet that fits an assembly of geometric prim-
itives, including B-spline patches, to a segmented point cloud.
In the ParSeNet framework, the authors develop a spline fit-
ting module (called SplineNet) which takes an input point cloud
and reconstructs a spline surface. This surface, however, is ob-
tained using a supervised learning approach, as we highlight later.
Therefore, to improve the framework and obtain a better fit with-
out the supervised labels, we integrate our NURBS-Diff module
with SplineNet to develop an unsupervised training approach for
spline fitting.

The ParSeNet framework is divided into three stages. The
first stage incorporates prior work done in point cloud segmen-
tation [50] to decompose the input point cloud into segments
classified under a parametric patch type. The second stage is the
spline fitting SplineNet that generates B-spline patches to the
segmented point cloud data. The final stage performs geometric
optimizations to seamlessly stitch the collection of predicted
primitives together into a single object. We are interested in re-
placing the surface evaluation performed in the SplineNet stage of
their network with our NURBS-Diff module for the experiments in
this section. For training and testing our experiments, we use the
SplineDataset provided by Sharma et al. [41]. The SplineDataset
is a diverse collection of open and closed splines that have been
extracted from one million CAD geometries included in the ABC
dataset. A random set of points is sampled from the surfaces as
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the input for the point cloud reconstruction task. We run our
experiments on open splines split into 24 K, 4 K, and 4 K for
training, testing, and validation.

In our work, we focus only on the SplineNet module of the
ParSeNet framework to illustrate the applicability of our proposed
NURBS-Diff module. SplineNet is a module for performing super-
vised learning of B-spline surfaces using the SplineDataset. The
training procedure includes a loss definition as follows:

LsplineNet = Lcp + M Liapmat + A2Lcp. (22)

Here, Lcp refers to the Chamfer distance between the input point
cloud and the surface points evaluated on the target surface.
Ligpmae 1S the Laplacian matching loss where the difference in
the Laplacian (the second derivative of the control points mesh
obtained using a Sobel filter) of the fitted control points and
the target control points is minimized. Lcp is the control point
regression loss which is £, error between the predicted and the
target control points. A, and A, are used for weighting different
loss functions. For brevity, we use the same values for these
constants as reported in Sharma et al. [41].

In the SplineNet approach, the £igpme: and the £cp make the
framework supervised since they require a target fitted con-
trol point mesh to compute these losses. In real life, obtaining
the target control point mesh for point clouds is challenging.
Therefore, we need an unsupervised learning approach for point
cloud reconstruction of spline surfaces. To make the framework
unsupervised and not require the target control points of the
spline surface, we modify the framework to the following:

Lurss-piff = Lcp + A1Liap + A2LHD- (23)

Here, £cp and Lyp refer to the Chamfer distance and the Haus-
dorff distance between the input point cloud and the surface
points evaluated using the NURBS-Diff module. L4, is a modified
loss of Lispmar Where instead of matching the Laplacian of the
predicted control points and actual control points, we minimize
the Laplacian itself. Further, we scale down the contribution of
Liqp by an order of magnitude to reduce any adverse effects from
minimizing the Laplacian. In addition, to fit the edges of the
surfaces well, we add a Hausdorff distance loss to the objective
function. We use different scale factors A4, A, for £;4p and Lyp to
tune the objective function to obtain the best possible results.
Apart from the loss function defined above, the baseline su-
pervised approach is restricted to non-rational B-spline surfaces
because of no target weights. Here, in our case, we can per-
form the fitting for rational B-Spline surfaces or even B-Spline
surfaces with reparameterized knots. Since the dataset available
is very primitive and does not contain many complex struc-
tures, we restrict our analysis to just studying rational B-Splines
reconstruction from the point clouds in an unsupervised manner.
Table 10 illustrates all the experiments we have performed for
choosing an appropriate loss function. Performing surface recon-
struction under no supervision is very challenging, and therefore
several metrics have to be compared together to understand the
performance. In Fig. 9, we illustrate how L¢p alone provides a
bad fit by not covering the edges of the surfaces. Similarly, £yp
alone does not perform well. Therefore, we need a loss func-
tion that performs well in combination. We compare the results
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Comparison between SplineNet [41] and our NURBS-Diff implementation (with different number of control points). We compare the two-sided Chamfer distance
(scaled by 100, 100x Lcp), the two-sided Hausdorff distance (scaled by 100, 100x £yp) between the input point cloud and a dense set of points sampled on the
fitted surface, and also the Laplacian of the predicted control points £q, (scaled by 100, 100X Lgp).

Loss function Baseline (20 x 20)

NURBS-Diff (20 x 20)

NURBS-Diff (5 x 5) NURBS-DIff (4 x 4)

Lcp Lup Liap Lcp Lyp Liap Lcp Lyp Liap Lcp Lyp Liap

Lep + Ligpmar + Lcp 1.184 0.994 1.340

Lep+0.1L1gp + 10Lpp 0.018 0.234 0.202 0.020 0.256 2.462 0.028 0.274 3.356
Lep +0.1L1p + Lup 0.027 0.725 0.106 0.032 0.805 1.972 0.047 1.173 3.606
L +0.1Lgp 0.098 2914 0.189 0.105 3511 1.296 0.113 3.602 2.637
Lcp 0.012 0.329 42.288 0.013 0.446 21.236 0.015 0.499 28.212
Lup 0.018 0.192 30.877 0.018 0.210 23.076 0.026 0.282 32.443

Point Cloud Baseline Lep*0.1L4+10Lp Lep*0.1L oo+ Liyp Lep*0.1L 4 Lep Lyp

I Predicted Surface

Predicted Control Mesh

Fig. 9. Comparison of the reconstructed B-spline surfaces obtained using NURBS-Diff module for different loss functions using a 5 x 5 control mesh.

NURBS-Diff 20x20

NURBS-DIff 4x4

e Input Point Cloud

I Predicted Surface

Predicted Control Mesh

Fig. 10. Point clouds and unsupervised reconstruction of B-spline surfaces (20 x 20 and 5 x 5) predicted by SplineNet using the NURBS-Diff module.

obtained from our approach with the baseline results obtained
from Sharma et al. [41], as illustrated in Table 10. We observe
that our approach performs an order of magnitude better than
the baseline architecture in terms of L£cp. Further, unlike Table 3
where we have a complex analytical surface, the SplineDataset in-
cludes a collection of simpler open and closed surfaces. Therefore,
we observe that reducing the number of control points required
for representing the surface does not affect the fitting error as
demonstrated by the (5 x 5) and (4 x 4) columns in Table 10.
Also, we note that using just Lcp and Lyp is not recommended
due to high laplacian loss. Further, the combination of Lo +
0.1L1qp + 10Lyp gives the best result in terms of combined loss.
We can also verify the same visually from Fig. 9. We also visualize
a few anecdotal predicted surfaces along with the input point
cloud in Fig. 10. We see that the surfaces in the SplineNet dataset
are not complex enough to require a large 20 x 20 control point
mesh and can be easily fitted with a small 4 x 4 control point
mesh.
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6. Geometric constraints using NURBS-Diff

One of the advantages of our NURBS-Diff module is the ease
of enforcing surface constraints in deep-learning applications.
We showcase the utility of our module in enforcing constraints
using the example of valve deformation analysis. Analyzing bio-
prosthetic heart valves is essential for obtaining diagnostic in-
formation such as estimating the remaining life, fatigue, and
patient-specific design. Traditionally, analysis of deformation be-
havior is performed using finite element or isogeometric analy-
sis. However, such analyses are often computationally intensive.
Recently, Balu et al. [40] proposed a deep learning framework
for performing finite element analysis (called DLFEA) using a
NURBS-aware convolutional neural network. Each heart valve is
represented using three NURBS surface patches, and isogeometric
analysis is performed to obtain the deformations for each control
point under constant pressure applied during the valve closure.
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Target Deformed
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Fig. 11. Visualization of an anecdotal bioprosthetic heart valve for DLFEA-
BC from the test dataset. We show the input geometry, the target deformed
geometry, and the predicted deformed geometry.

Table 11

Performance comparison of DLFEA, DLFEA-SR, and DLFEA-BC. We compare the
error on the test dataset for control points reconstruction, NURBS surface
reconstruction, and boundary condition enforcement.

Test case CP loss SR loss BC loss
DLFEA 7.79 x 1073 447 x 1073 37.69
DLFEA-SR 12.84 x 1073 476 x 1073 46.14
DLFEA-BC 12.83 x 1073 569 x 1073 10.90

Fixed boundary conditions are applied on the valve edges that
will be sutured to the aorta. Their previous work generated a large
dataset of input geometry, pressure, thickness, and corresponding
target deformations of the control points. However, their work
does not perform a NURBS surface reconstruction loss for ob-
taining the deformations, which are more physically meaningful.
Further, they did not explore the application of the fixed bound-
ary conditions; it was implicitly enforced by modifying the loss
function.

In this work, we use the dataset and deep learning frame-
work available from their work to demonstrate the utility of our
NURBS-Diff module in performing an evaluation of the deforma-
tions for the leaflets of the bioprosthetic heart valve. We perform
a comparison between DLFEA, DLFEA with additional surface
reconstruction loss (DLFEA-SR), and DLFEA with additional sur-
face reconstruction loss and boundary condition enforcement
loss (DLFEA-BC). We show the visualization of DLFEA-BC along
with the input geometry, the target deformed geometry, and the
predicted deformed geometry in Fig. 11. In DLFEA-BC, apart from
the surface reconstruction loss, we add a constraint (BC loss) that
the Dirichlet boundary conditions on the edge which is sutured
to the aorta must be satisfied (i.e., the edges closest to the blue
region in Fig. 11 must have zero deformation).

In Table 11, we show the results obtained on a test dataset (not
used during the training). The CP loss is the £, loss between the
input control points and the target control points, whereas the
surface reconstruction (SR) loss represents the £, loss between
the NURBS surface reconstruction of the target deformed shape
and the actual deformed shape. We observe that DLFEA performs
very well for CP loss (naturally because it was originally trained
using that loss) but does not do well on the BC loss. The DLFEA-SR
performs comparably for SR loss but has worse performance for
BC loss. At the same time, DLFEA-BC performs the best for BC loss
while performing comparably (although worse) on CP loss and
SR loss. While the DLFEA-BC performs worse, the enforcement
of boundary conditions makes it more physically meaningful.
Further, in this ablation study, we show the result for each loss
function applied independently. In general, we use a combined
loss with several loss functions in tandem as done in Section 5.

7. Conclusions

We have developed a differentiable NURBS module that can be
directly integrated with existing machine learning frameworks.
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We have developed a mathematical framework that enables both
forward evaluation and backpropagation of the losses while train-
ing. Our module is GPU-accelerated to allow fast evaluation of
NURBS surface points and fast backpropagation of the derivatives.
We have demonstrated the utility of our NURBS module for
several CAD applications and deep learning applications. NURBS-
Diff performs at the same level as existing standalone spline
solutions used previously in the literature. Future work on the
NURBS module includes developing support for trimmed NURBS
surfaces and integrating complex curve constraints along trim
edges for the watertight representation of CAD models. We have
released the code for our NURBS module along with this paper.
We believe this NURBS module will be the first step to better
integrate deep learning with CAD and would lead to more diverse
machine learning CAD applications.
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Appendix A. Parametric derivatives

Here we provide the parametric surface derivatives with re-
spect to the parameters u and v for completeness. Please refer
to Piegl and Tiller [1] for details.

_ NR(u, v)w(u, v) — NR(u, v)w u(u, v)

S.u(u,v)= Al
(i, v) R (A1)
where,

n m
NR (1, v) =Y Y " NP (N (v)w;P;

i=0 j=0

n m
wu(t, v) = Y NF N (v)wy

i=0 j=0

Appendix B. Test surface details

Table B.12 shows geometrical details for each surface used for
the fitting and surface offset tests. The surface fitting examples
(Analytical and Ducky) are evaluated at 1282 and 5122 points,
respectively. The surface offset test examples are evaluated at 20%
points each.

Table B.12

Test NURBS surface parameters.
Surface model p q n m
Analytical 3 3 12 12
Ducky 3 3 14 13
Double curve 3 3 6 6
Multi patch - C° 3 3 4 4
Multi patch - C! 3 3 6 6
Aerofoil 3 3 50 24




A. Deva Prasad, A. Balu, H. Shah et al.

]

Without normals
consolidation

Computer-Aided Design 146 (2022) 103199

Base Surface

Offset surface
Base surface normal
Consolidated normal

Surface from
consolidated normal

With normals
consolidation

Fig. C.12. Without consolidated normals may lead to discontinuous surfaces, especially for C° connectivity (shown on the left). Normals consolidation ensures

connectivity for the offset surfaces (shown on the right).
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Fig. D.13. Results of the curve-fitting on a 3D helix point data with different optimizers.
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Fig. D.14. Curve fitting test performed on various skeleton geometry which results in an invalid curve generation due to self-intersecting geometry.

Appendix C. Computing normals on the common edge

For C° continuous surfaces, the surface normals at the com-
mon edge of two surfaces point in different directions. Hence, if
the individual surface normals are used for the offset operation,
it might lead to a gap or self-intersection between the offset
surfaces. To deal with this case, we identify the common control
points at the surface edges, and we recompute the resulting
normal as the average of both the individual surface normals as
shown in Fig. C.12. We then use this average normal to move the
points on the common edges to generate the offset points.

Appendix D. Additional curve fitting results

We tested the curve fitting example of the 3D helix shown in
Fig. 3 with different optimizers. Fig. D.13 shows the results for
four different optimizers used in this test. We can see that all
the optimizers converge to the same value for the £, loss, but
the Adagrad optimizer converges to a different value for the £;
and Lp loss. In addition, SGD with momentum has the fastest
convergence rates for all losses.

13

For some complex shapes, our method cannot generate a
curve without self-intersections and loops for the Pixel dataset.
This is because the weightage of the curve length regularization
parameter needs to be tuned for each object based on its com-
plexity. Fig. D.14 shows the results from 3 curve fitting tests
where the curves generated are self-intersecting. Adding addi-
tional constraints to prevent this is a possible future research
direction.

Appendix E. NURBS-Diff implementation details

Our NURBS-Diff module was implemented using Pytorch li-
brary, which allows us to implement custom deep learning layers
that we can use alongside traditional deep learning layers such as
convolution, max-pooling, dense layers, etc. torch.nn.module
gives us an interface to create our custom layers; however, the
functions have to be defined in an automatically differentiable
manner. In our application, we use torch.autograd.Function
to define our custom forward and backward pass computations
for the NURBS basis functions evaluation and curve/surface eval-
uation. This function is now used in the torch.nn.module to
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create the layer. The actual code for the forward and backward
pass (for evaluation) is written in C++ Language with CUDA in-
tegration for GPU acceleration. These modules (written in C++)
are compiled along with PyBind11 package to use in Python
(supported by Pytorch). The compilation is performed using a
simple setup from torch.utils.cpp_extension. The main
source code of NURBS-Diff module will be made public.

We create two different layers: (i) B-Spline evaluation (ii)
NURBS evaluation. Although the functions used in both are the
same, in B-Spline evaluation, we avoid computing the basis func-
tions every forward pass. Instead, we precompute the basis func-
tions initially and only perform the forward evaluation of the
curve/surface. This saves us computational time during the for-
ward and backward pass.
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