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1 Introduction

Throughout the paper we work over a field k, occasionally specializing to a character-
istic zero field. We will often consider k−linear symmetric monoidal categories and
call them tensor categories. Note that this is different from the convention in [16],
where tensor categories are assumed to be abelian.

The Deligne category Rep(St ), where t ranges over elements of k, interpolates
between categories of finite-dimensional representations Rep(Sn) of the symmetric
group Sn over k, for various n [8, 10]. It is a rigid symmetric monoidal Karoubi-closed
k-linear category that depends on a parameter t ∈ k. The Deligne category is equipped
with a natural symmetric trace form tr that allows to form the ideal Jt ∈ Rep(St ) of
negligible morphisms. A morphism x : a → b is negligible if for any y : b → a the
trace tr(yx) = 0. The ideal Jt is non-trivial only when t = n is a non-negative integer,
and the quotient category

Rep(Sn) := Rep(Sn)/Jn (1)

is equivalent to the category of symmetric group representations in characteristic 0,
with some modifications needed in characteristic p [20]. For the other values of t the
ideal Jt is trivial and Rep(St ) is equivalent to Rep(St ).

As observed by Comes [7], there is a functor from the category Cob2 of oriented
two-dimensional cobordisms between one-manifolds to the Deligne category. Modi-
fications of this functor, coupled with the universal construction of two-dimensional
topological theories [3, 22], lead to generalizations of the Deligne category Rep(St )
and of its quotient Rep(St ) by the negligible ideal [29].

Objects in Cob2 are non-negative integers n ∈ Z+ and morphisms from n to m are
oriented two-dimensional cobordisms from the union of n circles to the union of m
circles, up to rel boundary diffeomorphisms [29].

Working over k, choose a rational function and its power series expansion (the
series of α)
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Zα(T ) = P(T )

Q(T )
=

∑

n≥0

αnT
n, αn ∈ k, α = (α0, α1, . . . ), (2)

where polynomials P(T ), Q(T ) ∈ k[T ] are relatively prime and

N = deg P(T ), M = deg Q(T ), K := max(N + 1, M). (3)

We may also write Pα(T ) and Qα(T ) in lieu of P(T ) and Q(T ) to emphasize depen-
dence on α, and normalize so that

Zα(T ) = Pα(T )

Qα(T )
=

∑

n≥0

αnT
n, (Pα(T ), Qα(T )) = 1, Qα(0) = 1. (4)

With this normalization, Pα(T ) and Qα(T ) are uniquely determined by α. We may
refer to α as a (rational) sequence and to Zα(T ) as its associated series. To keep track
of α, we may also denote

Nα = deg Pα(T ), Mα = deg Qα(T ), Kα := max(Nα + 1, Mα) (5)

in place of (3).
One can “linearize” the category Cob2 of two-dimensional cobordisms using the

sequence α. To do that, first allow linear combinations of cobordisms with coefficients
in k and also evaluate a closed connected oriented surface of genus g, when it is a
component of a cobordism, to αg ∈ k. This results in the k-linear tensor category
VCobα , which has the same objects n ∈ Z+ as Cob2 (this category is denoted Cob′

α

in [29]).
In the notation VCobα letter V stands for viewable or visible. A 2D cobordism x is

called viewable or visible if it has no closed components, that is, any connected compo-
nent of x has non-empty boundary. The above evaluation of closed components allows
to reduce a morphism from n to m to a linear combination of viewable cobordisms.
Thus, morphisms in VCobα are k-linear combinations of viewable cobordisms, with
the composition of morphisms given by composition of cobordisms and the above α-
evaluation applied to all closed components of the composition. Note that hom spaces
in VCobα are infinite-dimensional, since a component of a cobordism can have any
number of handles.

A further reduction in the size of the category is given by considering the ideal
Jα ⊂ VCobα of negligible morphisms, relative to the trace form trα associated with
α and forming the quotient category

Cobα := VCobα/Jα. (6)

In this paper we call Cobα the gligible quotient of VCobα . We choose this terminology
overmore cumbersome non-negligible quotient and over radical quotient, for the latter
may be somewhat ambiguous.



71 Page 4 of 68 M. Khovanov et al.

The trace form is given on a cobordism y from n to n by closing it via n annuli
connecting n top and n bottom circles of the boundary of y into a closed oriented
surface ŷ and applying α,

trα(y) := α(ŷ), (7)

see formula (11) in [29]. It is shown in [29] that the hom spaces in Cobα are finite-
dimensional over k iff the generating function Zα(T ) is rational, see formula (2),
although the category Cobα is defined for any sequence α.

Notation

Aα(n) := HomCobα (0, n) (8)

is used in [22] to denote the state space of n circles in the theory associated to α. Vector
space Aα(n) can be described as the quotient of the k-vector space with a basis {[S]}S
of viewable cobordisms S with n boundary circles modulo skein relations that hold in
the evaluation α for any closure of these n circles by a cobordism T on the other size,
so that T S are closed surfaces and evaluations α(T S) make sense as elements of k.
These state spaces are finite-dimensional for rational sequences α.

Category Cobα is a symmetric monoidal k-linear category with objects n ∈ Z+
and finite-dimensional hom spaces (recall the assumption that α is rational). One can
form the additive Karoubi closure

DCobα := Kar(Cob⊕
α ) (9)

by first allowing formal finite direct sums of objects in Cobα and extendingmorphisms
correspondingly to get the finite additive closure Cob⊕

α , then adding idempotents to
get a Karoubi-closed category.

Category DCobα is the analogue of the gligible quotient of the Deligne category.
It is a k-linear additive idempotent-complete rigid symmetric monoidal category with
finite-dimensional hom spaces. It carries nondegenerate bilinear pairings on its hom
spaces

Hom(a, b) ⊗ Hom(b, a) −→ k.

This category is the analogue of the category Rep(St ) above given by modding out
the Deligne category Rep(St ) by the ideal of negligible morphisms.

To recover the analogue of the Deligne category itself, one needs to insert an inter-
mediate category SCobα (skein cobordisms) into the chain of categories and functors
below, in between categories VCobα and Cobα:

Cob2 −→ VCobα −→ SCobα −→ Cobα −→ DCobα. (10)

In this additional intermediate step, instead of modding out by all negligible mor-
phisms, one can first form a skein relation (the handle relation) quotient of VCobα
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which reduces a component with K handles (K is given in formula (3)) to a linear
combination of components with fewer handles, using the relation

xK − b1 x
K−1 + b2 x

K−2 − . . . + (−1)MbM xK−M = 0, (11)

where x denotes addition of a handle to a component, and xm stands for adding m
handles.

Polynomial in the left hand side of (11) is the minimal polynomial of the handle
endomorphism x of the circle in the category Cobα . We call it the handle polynomial
of α and denote

Uα(x) := xK − b1 x
K−1 + b2 x

K−2 − . . . + (−1)MbM xK−M . (12)

The handle polynomial is monic. We use x to denote the handle operator, use formal
variable T in the power series, and switch between x and T as convenient throughout
the paper.

Coefficients bi of the handle polynomial are the coefficients of the polynomial in
the denominator of (2) in the reverse order:

Q(T ) = 1 − b1T + b2T
2 + . . . + (−1)MbMT M , bi ∈ k, (13)

also see [22, Sect. 2.4]. We have

Uα(x) = xK Q(1/x) = xK−M (xM − b1 x
M−1 + b2 x

K−2 − . . . + (−1)MbM ).

(14)

Recall that denominator Q(T ) is normalized to have constant term1, so that Q(0) =
1. Since Q(T ) is a denominator of the power series Zα(T ), it has a non-zero constant
term, which is rescaled to 1. Note that changing Zα(T ) to λZα(T ) for λ ∈ k∗ does
not change the above skein relation, but does change the evaluation and the resulting
categories VCobα,Cobα , and DCobα .

When P(T )/Q(T ) in (2) is a proper fraction, that is deg P(T ) < deg Q(T ), then
K = M and Uα(0) = (−1)MbM 
= 0.

We denote by SCobα the quotient of VCobα by the handle relation (11). This
category is denoted PCobα in [29]. The quotient of SCobα by the ideal of negligible
morphisms (the gligible quotient) is naturally isomorphic to Cobα (isomorphic and
not only equivalent, since objects of these categories are non-negative integers).

We see that SCobα has a place in (10) as an intermediate category between the
two categories in the middle. The additive Karoubi envelope of SCobα is denoted
by DCobα . It is the analogue of the Deligne category. There is a natural equivalence
between the category obtained from SCobα by first forming the additive Karoubi
closure and then modding out by negligible morphisms (two consecutive right arrows
then the down arrow in the square below) and the category obtained from SCobα by
first forming the quotient by negligible morphisms and then passing to the additive
Karoubi envelope (down arrow followed by two right arrows in the square below).
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We summarize the resulting collection of categories and functors between them in
the following diagram, with the square commutative.

Cob2 −−−−→ VCobα −−−−→ SCobα −−−−→ SCob⊕
α −−−−→ DCobα

⏐⏐�
⏐⏐�

⏐⏐�

Cobα −−−−→ Cob⊕
α −−−−→ DCobα

(15)

The four rightmost categories are additive, the three categories to the left of them
are k-linear and pre-additive (category Cob2 is neither pre-additive nor k-linear). All
eight categories are rigid symmetric monoidal. The six categories on the right each
have finite-dimensional hom spaces. The bottom three categories are gligible quotients
of the respective categories above them (that is, quotients by the ideals of negligible
morphisms), and their hom spaces carry non-degenerate bilinear forms. The table
below provides brief summaries for most of these categories.

Notation Category

Cob2 Oriented 2D cobordisms
VCobα Viewable cobordisms; evaluate closed components via α

SCobα “Skein” category; quotient of VCobα

by the handle relation (11)
Cobα “Gligible” quotient of SCobα

by the kernels of trace forms
(equivalently, by the negligible ideal)

DCobα Deligne category; additive Karoubi
completion of the skein category SCobα

DCobα Gligible quotient of the Deligne category;
equivalent to the additive Karoubi completion of Cobα

Category DCobα is the analogue of the Deligne category Rep(St ) and specializes
to it when the sequence α is constant,

α(t) = (t, t, . . . ), Zα(t) = t

1 − T
, t ∈ k. (16)

Category DCobα is the analogue of the quotient Rep(St ) of Rep(St ) by negligible
morphisms. It specializes to Rep(St ) when α is the constant sequence α(t).

In this paper we study generalized Deligne categories DCobα , their quotients
DCobα as well as categories SCobα and Cobα for other rational series α. We refer to
these categories as tensor envelopes of α.

For particular key rational generating functions Zα(T ) we establish or recall the
connection between tensor envelopes of α and the known representation categories:

• Generating function β/(1−λT ) relates to the Deligne category of representations
of symmetric group Rep(St ), t = βγ , see [29] and Sect. 6.1. For these series α

the category DCobα is equivalent to Rep(St ), inducing an equivalence of gligible
quotient categories as well, DCobα

∼= Rep(St ).
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• Tensor envelopes for the constant generating function Z(T ) = β, β ∈ k, relate
to the representation category of the Lie algebra osp(1|2), see Sect. 5 and Theo-
rem 5.5.

• Categories for the linear generating functionβ0+β1T relate to theDeligne category
Rep(Ot ) for the orthogonal group, also known as the unoriented Brauer category,
and to its gligible quotients, Sect. 7.1.

Below is a brief summary, section by section, of the constructions and results in the
paper.

• In Sect. 2 we discuss basic properties of tensor envelopes.

– Section 2.1 points out that the scaling Z(T ) −→ λ−1Z(λT ) for an invertible
λ = μ2 does not change the categories we consider.

– In Sect. 2.2 we explain that any commutative Frobenius algebra object in a
pre-additive tensor category gives rise to a power series α with coefficients in
the commutative ring End(1) of endomorphisms of the unit object.

– In Sect. 2.3 we recall the universal property of Cobα and Proposition 2.4.
– Section 2.4 studies direct sum decompositions of commutative Frobenius
algebra objects mirroring partial fraction decompositions of their rational gen-
erating series.

• Section 3 contains key semisimplicity and abelian realization criteria for the tensor
envelopes of α, including Theorems 3.2 and 3.7. In particular, we classify series
α with the semisimple category DCobα .

• Section 4 reviews properties of the endomorphism ring of the one-circle object in
categories SCobα and Cobα .

• Section 5 describes the structure of the gligible quotient category Cobα for the
constant function (seriesα = (β, 0, 0, . . . )). Theorem5.1 states that the dimension
of the state space A(n) of n circles for this function is the Catalan number, for k of
characteristic 0. A monoidal equivalence between the Karoubi envelope DCobα

of Cobα and a suitable category of finite-dimensional representations of the Lie
superalgebra osp(1|2) is established in Sect. 5.5.

• Section 6.1 studies Gram determinants of a natural spanning set of surfaces for
the function β/(1− γ T ), where tensor envelopes correspond to the Deligne cate-
gory. These are rank one theories. Determinant computations for various rank two
theories are given in Sect. 6.2.

• Section 7 considers the case of a polynomial generating function, beyond the con-
stant function case studied in Sect. 5.When the function is linear, associated tensor
envelopes can be expressed via the unoriented Brauer category and its gligible quo-
tient, due to the presence of a commutative Frobenius object in the Brauer category
with a linear generating function, see Sect. 7.1. Section 7.2 provides numerical data
for the Gram determinants in categories when the generating function is a polyno-
mial of degree two or three. Section 7.3 considers arbitrary degree polynomials.
A conjectural basis in the state space of n circles for the theory is proposed there,
and some properties of the Gram determinant for that set of vectors is established.

• In Sect. 8 we explain how to enrich category Cob2 of two-dimensional oriented
cobordisms by adding codimension two defects (dots). Presence of the handle
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cobordism allows one to add relations intertwining the handle cobordism with
dot decorations. Going from less general to more general examples, dots may be
viewed as fractional handles, elements of a commutative monoid, or elements of
a commutative algebra. Theory developed in the rest of this paper should extend
to least some of these generalizations.

We’d like to mention related papers [18, 33] that came out after this paper appeared
on arXiv.

2 Properties of ˛-theories

2.1 Scaling by invertible elements

Consider a theory α over k with generating function Zα(T ) and state spaces Aα(k)
of k circles. Choose an invertible element μ ∈ k∗, denote λ = μ2, and change the
sequence α = (α0, α1, . . . ) to

α′ = (λ−1α0, α1, λα2, λ
2α3, . . . ), (17)

that is, (α′)n = λn−1αn . The generating function for α′ is

Zα′(T ) = λ−1Zα(λT ) = λ−1α0 + α1T + λα2T
2 + λ2α3T

3 + . . . (18)

Note that Zα(T ) and Zα′(T ) have the same linear term α1.
Consider the k-vector space Fr(k) with a basis {[S]}S given by surfaces S without

closed components and with ∂S ∼= �kS
1, one for each diffeomorphism class rel

boundary of such surfaces. Sequence α determines a k-bilinear symmetric form on
Fr(k) with the pairing (, )α given on generators by

([S1], [S2])α = α((−S1) � S2) (19)

and extended by linearity, where (−S1) � S2 is the closed surface given by gluing S1
and S2 along the common boundary. Recall that the state space

Aα(k) := Fr(k)/ker((, )α) (20)

is the quotient of the free module by the kernel of this form.
Alternatively, consider the bilinear form on Fr(k) given by α′. The quotient of Fr(k)

by the kernel of this form is the state space for α′:

Aα′(k) := Fr(k)/ker((, )α′). (21)

Introduce the k-linear map

φ : Fr(k) −→ Fr(k), φ([S]) = μ−χ(S)[S]. (22)
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This map scales [S] by μ−χ(S), where χ(S) is the Euler characteristic of S. It inter-
twines the bilinear forms on these spaces

([S1], [S2])α′ = (φ([S1]), φ([S2]))α (23)

and induces an isomorphism of vector spaces

φ : Aα′(k) −→ Aα(k), (24)

also denoted φ. This isomorphism intertwines nondegenerate R-valued bilinear forms
(, )α′ and (, )α on these spaces and shows that α and α′ define equivalent topological
theories as defined in [22].

On the level of categories, the scaling map φ in (22) induces k-linear isomorphisms
between the morphism spaces in VCobα and VCobα′

HomVCobα′ (n,m)
∼=−→ HomVCobα (n,m)

compatible with the composition in these categories and leading to an isomorphism
of categories VCobα′ ∼= VCobα . This isomorphism is compatible with the various
quotient and Karoubi envelope categories that follow and leads to isomorphisms or
equivalences of the corresponding categories, including isomorphisms SCobα′ ∼=
SCobα, Cobα′ ∼= Cobα and equivalences DCobα′ ∼= DCobα , DCobα′ ∼= DCobα .
We see that scaling by λ = μ2, μ ∈ k∗, gives isomorphic theories and isomorphic or
equivalent associated categories. This scaling changes the handle relation by rescaling
the handle.

2.2 Commutative Frobenius algebra objects in symmetric monoidal categories

Let C be a symmetric monoidal category. Let A = (A,m, ι) ∈ C be a commutative
algebra object in C, i.e. an object A ∈ C equipped with associative and commutative
multiplicationm : A⊗A → A such that ι : 1 → A satisfies the unit axiom, see e.g [16,
Sections 7.8.1 and 8.8.1].We say that A is a commutative Frobenius monoid in C if it is
equipped with a morphism ε : A → 1 such that the composition b : A⊗ A

m−→ A
ε−→ 1

is a non-degenerate pairing, i.e. there exists a morphism c : 1 → A ⊗ A such that the
morphisms b and c satisfy the axioms of evaluation and coevaluation maps, see e.g.
[16, 2.10.1]. Equivalently, the object A∗ exists and the morphism A → A∗ which is
the image of b under the natural isomorphism Hom(A ⊗ A, 1) 
 Hom(A, A∗) is an
isomorphism. We will often identify A and A∗ using this morphism. For example we
define the comultiplication morphism � : A → A ⊗ A as dual to the multiplication
morphism. Clearly� is coassociative. It is easy to see that� is amorphism of A×Aop-
objects. One shows that the morphism c equals to the composition of ι and �.

Given a Frobenius monoid A ∈ C and n ∈ Z≥0 we get a morphism an : 1
ι−→

A
�n−→ A⊗n mn−→ A

ε−→ 1 where �n : A → A⊗n is n−fold comultiplication and
mn : A⊗n → A is n−fold multiplication. Thus a0 = ε ι is the composition of ε and
ι, and a1 = ε m � ι = c b is the composition of c and b, that is the dimension of A.
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Equivalently, consider the handle endomorphism

x : A
�−→ A ⊗ A

m−→ A, (25)

which has a topological interpretation as a tube with a handle on it. Iterating this
morphism yields xn , a tube with n handles. The map an can be written as

an = ε xn ι. (26)

Elements an are endomorphisms of the unit object 1 of C.
We distinguish between the handle endomorphism x above and the handle mor-

phism. The latter is themorphism 1 −→ A given by xι. Handlemorphism corresponds
to a one-punctured torus, with the puncture circle on the target on the morphism, while
handle endomorphism corresponds to the twice-punctured torus, with one circle on
both the source and target cobordisms.

From here on we assume that C is a k−linear symmetric monoidal category and the
canonical map k → End(1) is an isomorphism. Then an = αn id1 for some αn ∈ k.
The sequence α = (αn)n∈Z≥0 will be called α−evaluation or just the evaluation of A.

Example 2.1 LetC be an additivek−linear symmetricmonoidal category and letV ∈ C
be an object equippedwith a non-degenerate symmetric pairing V ⊗V → 1.We define
aZ−graded commutative Frobenius algebra A = A(V ) as follows: A = A0⊕A1⊕A2
where A0 = A1 = 1 and A1 = V ; A0 is the image of the unit morphism, the
multiplication A1 ⊗ A1 → A2 is given by the symmetric pairing, and the linear form
ε : A → 1 factors through the projection A → A0⊕A2 and is nonzerowhen restricted
to A2. It is easy to verify that the α−evaluation of the algebra A(V ) has αi = 0 for
i > 1; also α1 = dim(A) = 2+dim(V ). Parameter α0 is the composition of ε and the
unit morphism and can be chosen to be any element of k. The generating function is
then Zα(T ) = α0 + (2 + dim(V ))T . Possible dimensions dim(V ) of such objects V
depend on C. For instance, when C is the category of k-vector spaces, these dimensions
belong to the image of Z+ ∈ k. When C is the unoriented Brauer category Rep(Ot )

with the parameter t ∈ k, dim(V ) = t for the standard generator V of C, see Sect. 7.1,
for instance, and references there.

Remark One can informally compare this setup with the problem of reconstructing
or understanding a system from observable data on it. Here one can imagine that the
system consists of an object A ∈ C, handle endomorphism x of A (and,more generally,
endomorphisms of A associated to arbitrary cobordisms from a circle to itself). Object
A is unknown to us, but we can observe values of closed cobordisms, which are αn for
a connected genus n cobordism. Then the universal pairing construction of [22, 29] in
dimension two (and its counterpart [3] in three dimensions) consists of recovering a
minimal model for x and C from the closed cobordism data. This toy example in two
dimensions can be compared to more complicated reconstructions in control theory.
We probe category C via evaluations of closed cobordisms, which allow us to fully
reconstruct it, in the universal pairing setup.
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Example 2.2 Given two commutative Frobenius algebra objects A1, A2 in C, their sum
A1 ⊕ A2 is naturally a commutative Frobenius algebra in C. If sequences α and β are
evaluations of A1 and A2, respectively, the evaluation of A1 ⊕ A2 is the sequence
α + β = (αn + βn)n∈Z+ .

Example 2.3 Hadamard product of power series α and β is the series αβ with (αβ)n =
αnβn , that is, we multiply the two series term-wise. Hadamard product of rational
power series is rational [31]. The tensor product A1 ⊗ A2 of commutative Frobenius
algebras in C is naturally a commutative Frobenius algebra in C. The evaluation of
A1 ⊗ A2 is the Hadamard product of evaluations of A1 and A2.

If char k = p, the p-th tensor power A⊗p of a commutative Frobenius algebra A
has evaluation α p equal to the application of the Frobenius endomorphism of k to
each term of α.

2.3 Universal property

It is well known (see e.g. [40, Theorem 0.1]) that the category Cob2 has the following
universal property: for a symmetric monoidal category C an evaluation of symmetric
monoidal functors on the circle object gives an equivalence of categories

{tensor functors Cob2 → C} → {commutative Frobenius algebras in C}.

One deduces easily a similar universal property of kCob2 where the categories C and
functors are assumed to be k−linear. Likewise,category VCobα has the following
universal property: for an k−linear symmetric category C an evaluation at the circle
object gives an equivalence of categories:

{k − linear tensor functors VCobα →C}→
{
commutative Frobenius algebras in C

with evaluation α

}

We pick an inverse equivalence of categories and for a commutative Frobenius
algebra A ∈ C we will denote by FA the corresponding tensor functor,

FA : VCobα → C. (27)

A sequence α is called linearly recurrent or homogeneously linearly recurrent if
αk+n+1 = anαk+n + an−1αk+n−1 · · · + a1αk+1 for all k ≥ N for some N and fixed
a1, . . . , an , see [17]. In this paper we refer to such α as recurrent sequences.

Assume that the sequence α is recurrent. Functor FA factors through the category
SCobα if and only if FA annihilates the handle polynomial in (12). If the category C
is Karoubian the functor FA extends uniquely to the category DCobα .

We will often use the following result, see [6, Lemma 2.6], specialized to DCobα:

Proposition 2.4 Assume that the category C is a k-linear additive Karoubian nonde-
generate symmetric monoidal category with finite-dimensional hom spaces and the
functor FA satisfies the following properties:
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(1) Any indecomposable object of C is a direct summand of FA(n) for some object n
in VCobα .

(2) The functor FA is full (i.e. surjective on Hom’s).

Then the functor FA induces an equivalence DCobα 
 C.

Here we say that C is nondegenerate if any negligible morphism is the zero mor-
phism between some objects.

2.4 Direct sums decompositions

Let A ∈ C be a commutative Frobenius algebra object in a k−linear symmetric
monoidal category C. Then the multiplication in A induces a commutative algebra
structure on the vector space A1 := Hom(1, A); this algebra acts on A via left (equiv-
alently, right) multiplications, so we get a natural injective homomorphism

φ : A1 → EndC(A). (28)

Let x0 ∈ A1 be the handle morphism; its image φ(x0) is the handle endomorphism of
A. Let A0 ⊂ A1 be the unital subalgebra generated by x0.

We assume that A0 is finite dimensional. Thus x0 is annihilated by a nonzero
polynomial. We letU (T ) ∈ k[T ] be the minimal polynomial of x0, which is assumed
monic. It factors

U (T ) = T aU (T ), (29)

with U (0) 
= 0 and a ≥ 0.
We recall that the idempotents e ∈ A0 are naturally labeled by factorizations

U (T ) = U1(T )U2(T ) such that the factors U1(T ) and U2(T ) are relatively prime.
Namely given such a factorization we can find a(T ), b(T ) ∈ k[T ] such that

a(T )U1(T ) + b(T )U2(T ) = 1,

and then

e = a(x0)U1(x0) ∈ A0 (30)

is an idempotent. Conversely for an idempotent e ∈ A0 let us choose a polynomial
s(T ) such that e = s(x0); then setting U1(T ) = gcd(U (T ), s(T )) and U2(T ) =
gcd(U (T ), 1 − s(T )) we get a factorization as above.

We furthermore assume that the category C is Karoubian. Let e ∈ A0 be an idem-
potent; then it is easy to see that the image of φ(e), see (28), is a Frobenius subalgebra
of A in C; moreover there is a decomposition

A = φ(e)A ⊕ φ(1 − e)A
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of A as a direct sum of its Frobenius subalgebras (direct sum as objects in C and
direct product as algebras). Note that the unit elements of these subalgebras become
idempotents in A.

Let us compute α−invariants of subalgebras φ(e)A and φ(1− e)A in terms of the
α−invariant of A. Recall that the generating function of A can be written as a rational
function

Z(T ) = P(T )

Q(T )
(31)

with Q(0) = 1, where Q(T ) is the polynomial given by

Q(T ) = T d U (T−1), d = deg(U (T )). (32)

Here d is the degree ofU (T ), and Q(T ) is the reverse polynomial ofU (T ). The orders
of the coefficients of Q(T ) and U (T ) are reversed. Note that Q(0) = 1 since U (T )

is monic.

Example 2.5 Let U (T ) = T 5 + 9T 4 − 6T 3 then d = 5, U (T ) = T 2 + 9T − 6 and
Q(T ) = −6T 2 + 9T + 1.

In particular, any factorization

U (T ) = U1(T )U2(T ) (33)

forU (T ) as above into two relatively primemonic polynomials induces a factorization

Q(T ) = Q1(T )Q2(T ), (34)

where Q1(T ) and Q2(T ) are determined from U1(T ) and U2(T ), respectively, in the
same way as Q(T ) is determined by U (T ), via relation (32).

Since polynomials U1(T ) and U2(T ) are relatively prime, at most one of them
is divisible by T . Thus we can and will assume that U2(T ) is not divisible by T .
Polynomial Q(T ) is divisible by T iff a 
= 0 in formula (29).

There is a unique partial fraction decomposition

Z(T ) = v1(T )

Q1(T )
+ v2(T )

Q2(T )
, (35)

where deg(v1) < deg(Q1). Denote the terms on the right hand side by Z1(T ) and
Z2(T ), respectively, and write

Z(T ) = Z1(T ) + Z2(T )

where v1(T ) = Z1(T )Q1(T ) and v2(T ) = Z2(T )Q2(T ) are polynomials and

deg v1(T ) = deg(Z1(T )Q1(T )) < deg Q1(T ).
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Thus, Z1(T ) is a proper fraction, but Z2(T )may not be proper. Recall idempotent e ∈
defined by (30).

Proposition 2.6 In the notations above, the generating functions of commutative
Frobenius algebra objects φ(e)A and φ(1 − e)A are Z1(T ) and Z2(T ) respectively.

Proof Let ′x0 and ′′x0 be the handle endomorphisms of the algebras φ(e)A and φ(1−
e)A, so that ′x0 = ex0 and ′′x0 = (1 − e)x0. The evaluation series α′ of φ(e)A has
n-th coefficient

α′
n = ε((′x0)n) = ε(exn0 ) = ε(s(x0)x

n
0 ), (36)

where s(T ) is a polynomial such that e = s(x0). This shows that the evaluation series
β and γ of φ(e)A and φ(1− e)A are uniquely determined by the factorization (33) of
U (T ). The expression (36) is somewhat implicit since we don’t write down a formula
for s(T ).

Pick commutative Frobenius algebras A′ ∈ C′ and A′′ ∈ C′′ with generating func-
tions Z1(T ) and Z2(T ), and such that their handle endomorphisms x ′

0 and x ′′
0 have

minimal polynomials U1(T ) and U2(T ) respectively. Here C′ and C′′ are k-linear
symmetric monoidal categories. Such algebras and categories exists in view of [22,
29].

Consider commutative Frobenius algebra

A′ � 1 ⊕ 1 � A′′ ∈ C′ � C′′, (37)

where C′ � C′′ is the external tensor product of C′ and C′′, see [37, Sect. 2.2]. This is
the naive tensor product of k-linear monoidal categories.

A more sophisticated exterior tensor product was defined by Deligne for abelian
monoidal categories, subject to additional assumptions, see [16] and references therein,
but it is not used here.

Objects of the naive tensor product C′ � C′′ are finite direct sums of external tensor
products V ′ � V ′′ of objects V ′ and V ′′ of C′ and C′′. The tensor product C′ � C′′ is
additive but C′, C′′ do not have to be additive, only k-linear.

The generating function of this algebra is Z1(T ) + Z2(T ) = Z(T ) and its handle
endomorphism x̃0 is x ′

0 ⊕ x ′′
0 , where x

′
0 and x ′′

0 are handle endomorphisms of A′ and
A′′, respectively. Hence, for any polynomial a(T ), we have a(x̃0) = a(x ′

0) ⊕ a(x ′′
0 ).

Since the polynomialsU1(T ) andU2(T ) are relatively prime, the minimal polynomial
of x̃0 is U1(T )U2(T ) = U (T ). Moreover it is clear that the idempotents determined
by the factorization U (T ) = U1(T )U2(T ) are precisely the unit elements of A′ � 1
and 1� A′′. Thus, the α−invariants of the algebras A′ �1 and 1� A′′ can be computed
via formula (36) applied to them. The result follows. ��
Example 2.7 Assume that char k 
= 2 and the generating function of A is

Zα(T ) = T 3 + 1

1 − 3T + 2T 2 . (38)
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Then the handle polynomialU (T ) = Uα(T ) = T 2(T 2−3T+2) = T 2(T−1)(T−2).
Note that T 2 − 3T + 2 is the reciprocal if 1− 3T + 2T 2. The degree of U (T ) equals
Kα = max(deg Pα + 1, deg Qα) = max(3 + 1, 2) = 4, see (5).

Consider the factorization (33) with Q1(T ) = T 2(T − 1) and Q2(T ) = T − 2.
Then, see formula (30), e = 1

4 (x
3
0 − x20 ) and

Z1(T ) = 9/4

1 − 2T
, Z2(T ) = −T 2/2 − T /4 − 5/4

1 − T
.

Rational series β and γ give rise to commutative Frobenius objects Aβ and Aγ

in the skein categories SCobβ and SCobγ , respectively. Consider the tensor product
category

SCobβ,γ := SCobβ � SCobγ (39)

with the Frobenius object

Aβ,γ := Aβ � 1 ⊕ 1 � Aγ , (40)

see also (37). Let

Zβ(T ) = Pβ(T )

Qβ(T )
, Zγ (T ) = Pγ (T )

Qγ (T )
(41)

be the standard presentations of rational series for β and γ , see formulas (4), (13),
with Qβ(0) = Qγ (0) = 1 and co-prime numerators and denominators in each of
the two fractions. Polynomials Uβ(x) and Uγ (x) describe handle skein relations for
series β and γ , respectively. They are reciprocal polynomials of Qβ(x) and Qγ (x),
respectively, scaled by suitable powers of x when the fractions are not proper.

Lemma 2.8 The handle polynomial of the Frobenius object Aβ,γ in SCobβ,γ is

Uβ,γ (x) := lcm(Uβ(x),Uγ (x)), (42)

the least common multiple of Uβ(x) and Uγ (x).

Proof The handle endomorphism of Aβ,γ is the sum of handle endomorphisms of its
direct summands Aβ � 1 and 1 � Aγ . ��

To understand the handle polynomial for β + γ , we convert the series for β and γ

into sums of proper fractions and polynomial terms:

Zβ(T ) = Pβ(T )

Qβ(T )
+ Rβ(T ), deg Pβ(T ) < deg Qβ(T ),

Zγ (T ) = Pγ (T )

Qγ (T )
+ Rγ (T ), deg Pγ (T ) < deg Qγ (T ).
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The handle polynomials for β and γ are the reciprocals of Qβ(T ) and Qγ (T ) multi-
plied by T to the exponent the degree of Rβ(T ) and Rγ (T ), respectively.

From the corresponding decomposition for the series of β + γ ,

Zβ+γ (T ) = Zβ(T ) + Zγ (T ) = Pβ+γ (T )

Qβ+γ (T )
+ Rβ(T ) + Rγ (T ), (43)

with the reduced fraction

Pβ+γ (T )

Qβ+γ (T )
= Pβ(T )Qγ (T ) + Pγ (T )Qβ(T )

Qβ(T )Qγ (T )
, (44)

one sees that Qβ+γ (T ) is a divisor of lcm(Qβ(T ), Qγ (T )) and Rβ+γ (T ) =
Rβ(T ) + Rγ (T ). Consequently, the handle polynomial Uβ+γ (x) is the reciprocal
of a divisor of lcm(Qβ(x), Qγ (x)) times a power of x of degree deg(Rβ + Rγ ) ≤
max(deg Rβ, deg Rγ ).

Corollary 1 The handle polynomial Uβ+γ (x) of β + γ is a divisor of the polynomial
Uβ,γ (x) in (42).

Definition 2.9 A pair (β, γ ) of rational sequences is called regular if Uβ+γ (x) =
Uβ,γ (x).

Proposition 2.10 (β, γ ) is regular (and Uβ,γ (x) = Uβ+γ (x)) iff there is a functor

FS
β,γ : SCobβ+γ −→ SCobβ � SCobγ (45)

taking the circle object Aβ+γ of SCobβ+γ to the object Aβ,γ , see (40), and the Frobe-
nius structure of Aβ+γ to that of Aβ,γ . In particular, the handle endomorphism of
Aβ+γ must go to that of Aβ,γ .

Proof The handle polynomial of Aβ+γ isUβ+γ (x), while that of Aβ,γ isUβ,γ (x). For
the functor to exist, one needs Uβ,γ (x0) = 0, where x0 is the handle endomorphism
of Aβ+γ . ��

IfUβ+γ (x) is a proper divisor ofUβ,γ (x), then the handle endomorphism of Aβ+γ

satisfies a stronger relation than that of the handle endomorphism of Aβ,γ , and such a
functor cannot be set up.

Note that the category SCobβ+γ in (45) is not additive, while the target category is
additive. To remedy that, one can first pass to finite additive closures of these categories
to get an additive functor

F⊕
β,γ : SCob⊕

β+γ −→ SCob⊕
β � SCob⊕

γ
∼= SCobβ � SCobγ . (46)

Proposition 2.11 If at least one of the fractions in (41) is proper and Qβ(T ), Qγ (T )

are relatively prime then the pair (β, γ ) is regular, so that Uβ+γ (x) = Uβ,γ (x).
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Proof A fraction P(T )/Q(T ) is proper if deg P(T ) < deg Q(T ). This is equiva-
lent to the condition that the handle polynomial U (x) for this rational series is not
divisible by x , that is, U (0) 
= 0. Proposition follows by considering partial fraction
decompositions for series Zβ(T ) and Zγ (T ). Then

Uβ,γ (x) = lcm(Uβ(x),Uγ (x)) = Uβ(x)Uγ (x) = Uβ+γ (x). (47)

��
Remark 2.12 The implication in the above proposition goes only one way, as one can
see by taking β = γ when char k 
= 2. The pair (β, β) is regular then.

Proposition 2.11 gives a sufficient condition for the functor FS
β,γ in (45) to exist.

Now we will show that for any regular pair (β, γ ) functors FS
β,γ and F⊕

β,γ are fully
faithful.

Proposition 2.13 For a regular (β, γ ), functor FS
β,γ , see (45), induces a fully faithful

functor

Cobβ+γ −→ Cobβ � Cobγ (48)

Proof Observe that the category Cobβ �Cobγ is nondegenerate. Indeed let X �Y and
Z�T be someobjects ofCobβ�Cobγ . The trace formHom(X�Y , Z�T )×Hom(Z�
T , X�Y ) → k is the tensor product of the trace formsHom(X , Z)×Hom(Z , X) → k
and Hom(Y , T ) × Hom(T ,Y ) → k. Since the tensor product of non-degenerate
pairings is non-degenerate, we see that Hom(X�Y , Z�T ) has no nonzero negligible
morphisms and the result follows.

The functor FS
β,γ induces a full functor SCobβ+γ −→ Cobβ � Cobγ . Since the

category Cobβ � Cobγ is nondegenerate, this functor factors through Cobβ+γ and
gives rise to the fully faithful functor in (48) . ��

Passing to additive Karoubi envelopes results in an equivalence of categories:

Proposition 2.14 For a regular pair (β, γ ) and upon passing to additive Karoubi
envelopes, functor FS

β,γ induces an equivalence of tensor categories

FD
β,γ : DCobβ+γ 
 DCobβ � DCobγ . (49)

Further passage to gligible quotients produces a tensor equivalence

Fβ,γ : DCobβ+γ 
 DCobβ � DCobγ . (50)

Note that the tensor products � above are still the naive tensor products of additive
k-linear tensor categories.

Proof The category SCobβ � SCobγ has a commutative Frobenius algebra Aβ,γ , see
(40), so there is a tensor functor SCobα → SCobβ � SCobγ sending Aα to Aβ+γ by
the universal property from Sect. 2.3, with α = β + γ .
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Let U (T ) be the polynomial representing the handle skein relation in the category
SCobα . We have a factorizationU (T ) = U1(T )U2(T ) corresponding to factorization
of the denominator of Z(T ) into product of the denominators of Z1(T ) and Z2(T ) (in
particular we assume thatU1(T ) is not divisible by T ). Thus we have a corresponding
idempotent e ∈ Hom(1, Aα) and decomposition Aα = φ(e)Aα ⊕ φ(1− e)Aα where
the generating functions of the algebras φ(e)Aα and φ(1− e)Aα are precisely Z1(T )

and Z2(T ).
By the universal property there are tensor functors SCobβ → DCobα andSCobγ →

DCobα from the skein categories to the Deligne category (additive Karoubi closure
of the skein category) for α sending Aβ to φ(e)Aα and Aγ to φ(1 − e)Aα . Thus
by the universal property of the external tensor product, see e.g. [37, 2.2], there is a
tensor functor SCobβ � SCobγ → DCobα sending Aβ � 1 to φ(e)Aα and 1� Aγ to
φ(1 − e)Aα .

Passing to the additive Karoubi closure of the source category gives a tensor functor

F : DCobβ � DCobγ −→ DCobα.

The composition of the above tensor functors

DCobα

FD
β,γ−→ DCobβ � DCobγ

F−→ DCobα

sends Aα to itself and thus is isomorphic to the identity functor. Similarly, the com-
position

DCobβ � DCobγ
F−→ DCobα

FD
β,γ−→ DCobβ � DCobγ

sends Aβ � 1 and 1 � Aγ to themselves and thus is also isomorphic to the identity
functor.

These functors intertwine the Frobenius structures of Aα and Aβ,γ , so the isomor-
phisms are that of tensor functors. This completes the proof. ��
Remark 2.15 A similar argument can be applied in a slightly more general situation
where thepolynomial relationU (x) = 0 is replacedby thepolynomial relation Ũ (x) =
0, with U (t) a factor of the polynomial Ũ (t). This allows to generalize the skein
category SCobα to a category S̃Cobα that maps onto SCobα . Notice that such a skein
relation is still compatible with evaluation α.

Considering these categories S̃Cobα with handle skein relations of a fixed degree n
gives a family of tensor categories that depend on 2n parameters, that is, the coefficients
of the polynomial Ũ (T ) = T n + l.o.t and the evaluations α0 = α(1), . . . , αn−1 =
α(xn−1). This is a flat family of tensor categories, in a suitable sense.

Starting with Zα(T ) as in (4), let us extract the polynomial term by writing

Zα(T ) = P(T )

Q(T )
= P(T )

Q(T )
+ R(T ), R(T ) ∈ k[T ], deg P(T ) < deg Q(T ),

(51)
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so that P(T )/Q(T ) is a proper fraction. Factor Q(T ) over k into

Q(T ) = Q1(T ) . . . Q�(T ), (52)

where each factor is a power of an irreducible polynomial over k, the factors are
mutually coprime, (Qi (T ), Q j (T )) = 1 for i 
= j and Qi (0) = 1 for all i . Each
Qi (T ) is a power of an irreducible polynomial over k, with distinct polynomials for
different i . Now form the partial fraction decomposition

Zα(T ) =
�∑

i=1

Pi (T )

Qi (T )
+ R(T ), deg Pi (T ) < deg Qi (T ), (53)

with Qi (T ) and R(T ) as above. Denote by α[i] the sequence associated to the rational
function Pi (T )/Qi (T ), so that Zα[i](T ) = Pi (T )/Qi (T ), and by α[0] the sequence
of coefficients of R(T ), so that Zα[0](T ) = R(T ). There is a functor

FS
α : SCobα −→ SCobα[0] � SCobα[1] � · · · � SCobα[�] = ��

i=0 SCobα[i]
(54)

taking the circle object Aα to the direct sum of objects 1⊗(i−1) ⊗ Aα[i] ⊗ 1⊗(�−i), for
i = 0, . . . , �.

This functor induces an additive functor with the same target category from the
additive closure of the source category:

F⊕
α : SCobα −→ ��

i=0 SCob
⊕
α[i] ∼= ��

i=0 SCobα[i], (55)

as well as functors

FD
α : DCobα −→ ��

i=0 DCobα[i] (56)

F α : DCobα −→ ��
i=0 DCobα[i] (57)

Proposition 2.16 Functors FD
α and F α are equivalences of categories for any rational

α over a field k.

Proof This follows by iteratively applying the previous proposition. ��

3 Abelian realizations

Let α = {αi , i ∈ Z≥0} be a sequence of elements of k. We say that a Frobenius algebra
A in a symmetric monoidal category C defined over some field extension L of k (not
necessarily a finite extension) is a realization of α if the evaluation of A is α, see [22].
Category C is then an L-linear category. We say that the realization of α is finite if the
Hom spaces in C are finite dimensional over L . Sequence α is called recognizable if
it admits a finite realization. The following result closely mirrors the one in [22].
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Theorem 3.1 A sequence α admits a finite realization if and only if it is recurrent.

Proof Let x = m ◦ � be the handle endomorphism of A. Note that tr(xn) = αn ∈ k
for n ∈ Z≥0. If HomC(A, A) is finite dimensional over L then there exists a nonzero
polynomial U (X) ∈ L[X ] such that U (x) = 0. This implies xiU (x) = 0 for any
i ∈ Z≥0. Computing the traces of all terms in this relation we get a recurrent relation
with constant coefficients in L satisfied by αi for i � 0. Eventual recurrence property
can be written as vanishing of suitable Hankel determinants, see references in [22],
and computing a determinant made of αi ’s gives the same answer in L and k. Thus,
the sequence α is recurrent over k.

Conversely, assume α is recurrent. Then the category C = SCobα or its additive
Karoubi closure DCobα , see diagram (15), with Frobenius object A given by one circle
is a finite realization of α. ��

We say that a realization of α is abelian if C is a symmetric abelian tensor category
in the sense of [16, 4.1.1] (the hom spaces are finite-dimensional, all objects have
finite length, EndC(1) = L and C is rigid).

In particular, an abelian realization is finite in the above sense.

Theorem 3.2 A sequence α admits an abelian realization if and only if the category
DCobα is semisimple.

Proof Assume that the category DCobα is semisimple. Then the object A ∈ DCobα

gives an abelian realization of α. Conversely, the existence of an abelian realization
implies that the quotient of DCobα by the negligible morphisms is semisimple, see [1,
Theorem 1]. ��
Remark 3.3 (i) The above theorem shows that if a sequence α admits an abelian

realization over a field extension L ⊃ k then it also admits an abelian realization
over k.

(ii) Assume that a sequenceα admits an abelian realizationoverfieldk and let L ⊃ k be
a finite separable extension of k. Then the sequence α admits an abelian realization
over L . This follows from the construction of scalars extension of a tensor category,
see [11, 5.3]. It is not clear, though, what can happen when L ⊃ k is inseparable.

The following result gives necessary conditions for a sequenceα to admit an abelian
realizations in terms of its generating function Z(T ) = Zα(T ), see (2). Below, in
Theorem 3.6, it is shown that these conditions are also sufficient.

Theorem 3.4 Assume that a sequence α admits an abelian realization. Then

(1) The generating function Z(T ) is rational, so Z(T ) = P(T )
Q(T )

where P(T ), Q(T ) ∈
k[T ] are relatively prime.

(2) The denominator Q(T ) is separable, i.e., it has no multiple roots in an algebraic
closure of k.

(3) deg P(T ) ≤ deg Q(T ) + 1.
(4) Assume that char k = p > 0. Then all the residues of the form Z(T ) dT

T 2 (computed

over the algebraic closure k) lie in the prime subfield Fp ⊂ k.
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Note that conditions (2) and (3) say that the form Z(T ) dT
T 2 has no poles of order

≥ 2 (including at T = ∞) except, possibly, the point T = 0.

Proof Statement (1) is implied by Theorem 3.1 as any abelian realization is finite.
To prove (2) let us consider the morphism x = m ◦ � ∈ EndC(A) as in the Proof

of Theorem 3.1. Let p ∈ k[X ] be a nonzero polynomial such that p(x) = 0 (this
polynomial exists since the Hom spaces in the category C are finite dimensional). Let
p0 be the product of all irreducible factors of p, each appearing with multiplicity 1.
Then for any i ∈ Z≥0 the endomorphism xi p0(x) is a nilpotent element of EndC(A)

as some power of p0 is divisible by p. Thus we have tr(xi p0(x)) = 0 which gives a
linear recurrent relation with constant coefficients for αn with n sufficiently large. This
relation implies that the generating function Z(T ) can be written as a fraction with
denominator p0(T ). Thus we proved that the factorization of Q(T ) into irreducible
factors is square free.

A related property is that in a rigid abelian k-linear tensor category the trace of a
nilpotent endomorphism is zero, see e.g. [10, Corollaire 3.6].

We still have to show that each irreducible factor of Q(T ) is separable in the case
char k = p > 0. Observe that the tensor power A⊗p ∈ C is a commutative Frobenius
algebra object that gives an abelian realization of the sequence Fr(α) = {α p

0 , α
p
1 , . . .},

see Example 2.3. The generating function of the sequence Fr(α) is Fr(Z(T )) where
Fr(Z(T )) is obtained from Z(T ) by applying the Frobenius endomorphism λ �→ λp

to all the coefficients of Z(T ). Now for the sake of contradiction assume that one of the
irreducible factors of Q(T ) is not separable. We recall that a nonseparable irreducible
polynomial is of the form r(T ) = ∑k

i=0 ci T
pi . Thus, one of the factors of Fr(Q(T ))

is Fr(r(T )) = ∑k
i=0 c

p
i T

pi = (
∑k

i=0 ci T
i )p and Fr(Q(T )) is not square free. This

is a contradiction (note that the polynomials Fr(P(T )) and Fr(Q(T )) are relatively
prime). Thus (2) is proved.

Recall that the relation tr(xi p0(x)) = 0 holds for any i ∈ Z≥0, where the polyno-
mial p0 = p0(T ) is square free. In particular the multiplicity of factor T in p0(T ) is
≤ 1. It follows that the sequence α2, α3, . . . satisfies a linear recurrent relation with
constant coefficients, which implies (3).

Let us prove (4). We can assume that the denominator Q(T ) = ∏r
i=1(1− γi T ) for

distinct nonzero constants γi ∈ L , where L is a finite separable field extension of k.
Let Z(T ) = βi

1−γi T
+ Z ′ where βi ∈ L and Z ′ has no poles at T = γi

−1, 1 ≤ i ≤ r .
Let us consider an abelian realization of α over L , see Remark 3.3(2). For a suitable
idempotent e the algebra φ(e)Awill have the generating function βi

1−γi T
, see Sect. 2.4.

Thus βiγi = dim(φ(e)A) must be an element of the prime subfield Fp ⊂ L , see [14,
Lemma 2.2]. Observe that −βiγi is precisely the residue of the 1-form Z(T ) dT

T 2 at

T = γi
−1. Thus the statement (4) is proved for all finite nonzero poles of Z(T ). The

residue at T = 0 is α1 = dim(A), and we can apply [14, Lemma 2.2] again. Finally in
the remaining case T = ∞we use the Residue Theorem, which holds in characteristic
p as well [19, Corollary 2.5.4]. ��
Example 3.5 Sequence α = (1, 2, 3, 4, 5, . . .) describing the function Z(T ) = 1/(1−
T )2 does not admit an abelian realization over any field, see condition (2) of the above
theorem. More explicitly, the handle endomorphism x satisfies (x − 1)2 = 0 in Cobα
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for this α. However, tr(x − 1) = α2 −α1 = 3− 2 = 1 
= 0. This is a contradiction: in
any abelian category trace of a nilpotent endomorphism is zero [16, Proposition 4.7.5].

If k is algebraically closed, decomposition (53) can be refined to

Zα(T ) =
�∑

i=1

Pi (T )

(1 − γi T )mi
+ R(T ), deg Pi (T ) < mi , (58)

with distinct γ1, . . . , γ� ∈ k and polynomial R(T ). Conditions (2)-(4) of Theorem 3.4
translate to

• mi = 1 for all i , 1 ≤ i ≤ �.
• deg R(T ) ≤ 1, that is, the polynomial R(T ) is at most linear, R(T ) = r0 + r1T ,
and r1 ∈ Fp if char k = p.

• Due to mi = 1 we restrict to a constant polynomial Pi (T ) = pi ∈ k, simplifying
the residue to

res
γ −1
i

(
pidT

(1 − γi T )T 2

)
= −piγi . (59)

Thus, condition (4) can be rewritten as piγi ∈ Fp.

Summarizing, over an algebraically closed k, a rational function Z(T ) admits an
abelian realization iff

Zα(T ) =
�∑

i=1

pi
1 − γi T

+ r0 + r1T , piγi ∈ Fp, r1 ∈ Fp, (60)

for distinct γ1, . . . , γ�.
In characteristic 0, one can use Remark 3.3(i) to pass from k to its algebraic closure.

In characteristic p, irreducible inseparable factors in the denominator also constitute
an obstruction to existence of an abelian realization, by condition (2) of Theorem 3.4.

Theorem 3.6 Assume that a sequence α satisfies conditions (1)–(4) from Theorem 3.4.
Then α admits an abelian realization.

Proof ByRemark 3.3 (i) we can andwill assume that the field k is algebraically closed.
We start by giving abelian realizations for some special sequences.

(1) Assume Z(T ) = α0 + α1T and char k = p > 0 with α1 ∈ Fp. Then we can
choose C = Veck and use Example 2.1 with vector space V of suitable dimension.

(2) Assume Z(T ) = α0 + α1T and char k = 0. Again we use Example 2.1; however
in all cases when dim(V ) /∈ Z≥0 we use the abelian specialization of the Deligne
category C = Rep(Ot ) (see e.g. [10, 9]) with t = dim(V ).

(3) Assume Z(T ) = β
1−γ T with βγ = 1. We choose C = Veck and A = k such that

ε(1) = β.
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(4) Assume Z(T ) = β
1−γ T and char k = p > 0, with βγ ∈ Fp\{0}. We choose

C = Veck and take A to be a direct sum of several copies of the algebra from (3).
(5) Assume Z(T ) = β

1−γ T and char k = 0, with t = βγ 
= 0. We take A to be the
standard Frobenius algebra in the semisimple quotient of the Deligne category
C = Rep(St ), see [10, Théorèmes 2.18, 6.2].

Any sequence α satisfying the conditions (1)–(4) from Theorem 3.4 is a sum of
sequences considered in (1), (2), (4), (5) above. Thus the following result completes
the Proof of the Theorem. ��

The last two theorems together are equivalent to the following result.

Theorem 3.7 A sequence α over a field k admits an abelian realization if and only if
it satisfies conditions (1)–(4) in Theorem 3.4.

Lemma 3.8 Assume that sequences α′ and α′′ admit abelian realizations over an alge-
braically closed field k. Then the sequence α′ +α′′ also admits an abelian realization
over k.

Proof By Theorem 3.2 there are semisimple categories C′ and C′′ with Frobenius
algebras A′ ∈ C′ and A′′ ∈ C′′ giving the realizations of α′ and α′′. Then the algebra

A′ � 1 ⊕ 1 � A′′ ∈ C′ � C′′

gives a realization of α in a semisimple (and hence abelian) category C′ � C′′. ��

Remark 3.9 The Proof of Theorem 3.6 shows that in the case of algebraically closed
field k of positive characteristic the sequence α admits an abelian realization if and
only if it admits a realization with C = Veck.

Example 3.10 (a) Let α = (1, 1, 2, 3, 5, 8, . . .) be the Fibonacci sequence, with the
generating function Z(T ) = 1/(1−T −T 2). Then α admits an abelian realization
in characteristic zero. It admits an abelian realization in positive characteristic p
if p 
= 5 and 5 is a quadratic residue modulo p, i.e., p = 2 or p ≡ ±1(mod 5).
Indeed, in characteristic 5 the denominator is (1+2T )2, hence has a multiple root
and is not separable. If 5 is not a quadratic residue modulo p, the differential form
residue of condition (4) in either of the two roots of the denominator does not lie
in the prime subfield.

(b) Let β = (−1, 2, 1, 3, 4, 7, 11, . . .) be the (shifted) Lucas sequence. It satisfies
the Fibonacci relation βn+2 = βn+1 + βn for n ≥ 0 but with a different initial

condition. The generating function Z(T ) = φ−1

1−φT + φ̄−1

1−φ̄T
where φ = 1+√

5
2 is the

golden ratio and φ̄ = 1−√
5

2 its Galois conjugate. Both residues of the one-form in
Theorem 3.4 (4) equal 1 in this case. Thus, β admits an abelian realization in any
characteristic.
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4 Endomorphisms of object 1

4.1 Algebras BS and B

Define the rank K of a rational theory α by formula (3). Rank is the maximum of
the degree of the numerator P(T ) of Z(T ) plus one and the degree of the denomi-
nator Q(T ). For a theory of rank K , elements 1, x, . . . , xK−1 of Aα(1) are linearly
independent and there is a linear relation (11), reproduced below

Uα(x) := xK − b1 x
K−1 + b2 x

K−2 − . . . + (−1)MbM xK−M = 0, (61)

where bi ’s are the coefficients of the denominator Q(T ), see (13), normalized so that
Q(0) = 1, and pα(x) = xK Q(x−1).

Recall that category Cobα is the quotient of the skein category SCobα by the ideal
of negligible morphisms. In the category SCobα we evaluate closed components via
α and reduce K handles on a connected component via (12). In Cobα we further mod
out by all negligible morphisms.

Consider the endomorphism algebras

BS := EndSCobα (1) ∼= HomSCobα (0, 2), (62)

B = EndCobα (1) ∼= Aα(2). (63)

Both algebras are commutative unital k-algebras, under the pants cobordism multipli-
cation. Isomorphisms on the right are those of k-vector spaces, given by moving the
bottom circle of a (1, 1)-cobordism to the top. Algebra B is the quotient of BS by the
two-sided ideal Jneg of negligible endomorphisms,

B ∼= BS/Jneg. (64)

Elements u, x in Fig. 1 generate the algebra BS .
It is easy to write down a basis in each hom space of the category SCobα , see [29].

A basis in B = EndSCobα (1) is given by the set of tube cobordisms with at most K −1
dots on them and the cup-cap cobordisms u decorated by at most K − 1 dots on each
connected component.

Proposition 4.1 Elements

xn, 0 ≤ n < K , xnuxk, 0 ≤ n, k < K (65)

constitute a basis of BS, and dim(BS) = K 2 + K .

Fig. 1 Generators u and x of BS
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Fig. 2 One of the defining
relations in BS

Fig. 3 Element x of A(1) on the left is a one-holed torus (or a handlewith one hole). Element x of B(1) ⊂ BS
on the right is a two-holed torus (a handle with two holes). Both have the same defining relationUα(x) = 0
in A(1) and B(1), respectively. Left x is obtained from the right x by capping off the bottom circle with a
disk

Proposition 4.2 The following is a set of defining relations in BS on generators u, x:

uxnu = αnu, n ≥ 0, (66)

Uα(x) = 0. (67)

Defining relations of the first type are shown in Fig. 2.
Algebra BS has the bar anti-involution a �−→ a given by the identity on the gener-

ators, x = x, u = u, and xnuxk = xkuxn .
The trace form on BS is defined by closing up a (1, 1)-cobordism and evaluating it

via α. The trace is given in the above basis by

tr(xn) = αn+1, tr(xnuxk) = αn+k .

Recall the hom space

A(1) = HomCobα (0, 1) ∼= HomSCobα (0, 1) ∼= k[x]/(Uα(x)) (68)

of dimension K , with the commutative algebra structure given by the pants cobordism.
Denote by B(1) ⊂ BS the subalgebra of BS generated by the handle endomorphism.

There is an algebra isomorphism

B(1) ∼= A(1) (69)

given by taking the handle endomorphism in B(1) to the corresponding handle ele-
ment of A(1), see Fig. 3. The skein relation on powers of the handle holds on linear
combinations of powers of handle on a disk as well as on an annulus. For this reason
the algebras are isomorphic. The geometric definitions of multiplications in the two
algebras are slightly different: in A(1) it is given by the pants cobordism, while in
B(1) and BS it is the composition of (1, 1)-cobordisms.
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Relatedly, we maintain a slight abuse of notation, also shown in Fig. 3, where x
is used to denote handle cobordisms with either one or two boundary components,
respectively, generating algebras A(1) and B(1) ⊂ BS .

The two-sided ideal (u) of BS is

(u) = BuB = B(1)uB(1) ∼= B(1) ⊗k B(1)op, (70)

where the second isomorphism is that of B(1)-bimodules. It is spanned by cobordisms
with two connected viewable components, and there is a split exact sequence of this
2-sided ideal of BS and the quotient ring

0 −→ B(1)uB(1) −→ BS −−→←−− B(1) −→ 0. (71)

The quotient by the 2-sided ideal is spanned by powers of x and is naturally isomorphic
to the subring B(1) spanning by cobordisms with one connected component, via the
inclusion B(1) ⊂ BS , which is a section of the surjection above.

Recall that B is the quotient of BS given by (64). BS acts on the space A(1) by
left multiplication by cobordisms, see isomorphisms (68) for equivalent descriptions
of that space. The action takes a cobordism from 0 to 1 (that can be assumed to be
connected and of genus less than K ) and composes with a cobordism from 1 to 1.
Closed components that may result are removed via α-evaluation and the genus is
reduced to at most K − 1. The action factors through that of B, since negligible
endomorphisms act by 0.

Passing to gligible quotients results in a short exact sequence

0 −→ B(1)uB(1)
φ−→ B −→ B/im(φ) −→ 0, (72)

of a two-sided ideal, algebra, and the quotient algebra. Map φ is injective, and the
quotient B/im(φ) is trivial iff α is multiplicative, that is, if the product map A(1) ⊗
A(1) −→ A(2), which corresponds to φ, is an isomorphism, also see [22].

4.2 Examples

Example: K = 1. In this case a handle on a component reduces to a multiple of the
component without the handle and Z(T ) is either the constant function, Z(T ) = α0,
or

Z(T ) = α0

1 − γ T
= α0 + α0γ T + α0γ

2T 2 + . . . (73)

The ring BS has a basis {1, u}with u2 = α0u. The trace on BS is tr(1) = α0γ, tr(u) =
α0.

The only possible functions in this case are Zα = α0, α0 
= 0 and Zα =
α0

1−γ T , α0, γ 
= 0.
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The quotient map BS −→ B is an isomorphism iff the Gram matrix

(
α2
0 α0

α0 α0γ

)
(74)

of the basis {1, u} of BS is nondegenerate. It has determinant α2
0(α0γ −1). We see that

the quotient map BS −→ B is an isomorphism (and the theory is not multiplicative)
iff γ 
= α−1

0 .
Example: Linear function. Let Z(T ) = β0 +β1T , β1 
= 0. Then BS has a spanning

set {1, x, u, xu, ux}, which is a basis iff β1 
= 2, see Sect. 7.1 and [22]. Let us assume
the latter case. The multiplication rules in BS follow from the relations

uxu = β1u, xux = β1x, u2 = β0u, x2 = 0,

and the quotient of BS by the 2-sided ideal BuB is one-dimensional. The action of B
on the left ideal Bu = ku ⊕ kxu ∼= B(1) surjects B onto the matrix algebra Mat2(k)

and leads to the direct product decomposition

B ∼= Mat2(k) × k. (75)

It is given explicitly as follows. Let z = xu + ux − β0x − β1. Then z2 = −β1z and
−β−1

1 z is a central idempotent splitting off k from B. The complementary factor is
given by the (non-unital) homomorphism Mat2(k) −→ B,

(
1 0
0 0

)
−→ β−1

1 ux,

(
0 1
0 0

)
−→ β−1

1 (u − β0β
−1
1 ux),

(
0 0
1 0

)
−→ x,

(
0 0
0 1

)
−→ β−1

1 (xu − β0x).

On the other hand, if β1 = 2, the map φ in (72) is an isomorphism, the theory is
multiplicative (A(2) ∼= A(1)⊗2), and B is isomorphic to the matrix algebra of size 2
over k, see [22].

5 Constant generating function ˇ

5.1 State spaces, partitions, and Catalan numbers

Consider the evaluation corresponding to the series

Z(T ) = β, β ∈ k∗, (76)

which is just the constant function, so the associated sequence α = (β, 0, 0, . . . ).
Scaling invariance explained in Sect. 2.1 allows us to set β = 1 without “changing”
any categories. We keep β arbitrary, but this is just a matter of preference.
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Fig. 4 Constant series evaluations

For α describing a constant function, see Fig. 4, any closed surface S which has
a component of genus greater than zero evaluates to 0. Otherwise, S (which is then
necessarily the disjoint union of 2-spheres) evaluates to

S �→ α(S) = β dim H0(S,k),

that is, β to the power the number of components of S.
Define the genus of a connected surface with boundary as the genus of a surface

obtained by attaching 2-disks to all boundary components.
Consider the space state of n circles A(n) = Aα(n) in this theory α as discussed in

[22, Sect. 2.7]. For an arbitrary α the state space is defined by the formula (20), also
see [22]. Recall from the latter reference that the circles are ordered and numbered
by 1, 2, . . . , n; their union is denoted �nS

1. All surfaces with a component of genus
greater than zero are in the kernel of the bilinear form, so that A(n) is spanned by
diffeomorphism classes of viewable surfaces S, with each component of genus 0, and
the boundary diffeomorphic to the disjoint union of n circles.

Such surfaces can be canonically identified with partitions of the set {1, 2, . . . , n}.
Denote the set of partitions by D(n). Cardinality of D(n) is known as the Bell number
Bn and it has the following generating function:

∑

n≥0

Bn

n! t
n = exp(exp(t) − 1).

To a partition λ ∈ D(n) there is associated a viewable surface Sλ as above, with each
component of genus 0. Recall that by viewable surface we mean a surface without
closed components.

Consider the vector space kD(n) with a basis of vectors vλ, over all partitions
λ ∈ D(n). Form the linear map

kD(n) −→ A(n), vλ �→ [Sλ] (77)

into the state space of n circles which takes basis vectors to corresponding surfaces
Sλ. This map is surjective, as follows from the discussion above.

For n ≤ 3 the map (77) is an isomorphism, that is, the induced bilinear form is
nondegenerate on kD(n), see [22, Sect. 2.7].

However, starting from n = 4 map (77) has a nontrivial kernel, and the dimension
of the state space (if char k = 0) is equal to the Catalan number

cn = 1

2n + 1

(
2n

n

)
. (78)
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n 0 1 2 3 4 5 6 7

Bn 1 1 2 5 15 52 203 877
cn = dim A(n) 1 1 2 5 14 42 132 429

Theorem 5.1 Over a field k of characteristic zero the state space A(n) for the theory
with the constant generating function (76) has dimension equal to the Catalan number
cn:

dim A(n) = cn .

It has a basis PSn of crossingless surfaces, as described below in Sect. 5.2.

One proof of this theorem is given starting here and through Sect. 5.3. Another
proof is contained in Sect. 5.5, via a connection to representations of osp(1|2).

Recall notations from [22], where yi j denotes a surface that consists of a tube
connecting circles i and j and n − 2 disks that cap off the remaining circles. More
generally, for 1 ≤ i1 < . . . ir ≤ n denote by yJ = yi1,i2,...,ir the surface that consists
of a 2-sphere with r holes bounding circles i1, i2, . . . , ir and n − r disks capping off
the remaining n − r circles. Here J = {i1, . . . , ir }. Figure 5 shows examples of these
surfaces for n = 3 and Fig. 6 shows examples for larger n. Note also that A(n) is
naturally a commutative associative unital algebra under the multiplication given by
composing two diagrams via the disjoint union of n pants cobordisms.

Fifteen elements of this spanning set for A(4) can be separated into five types, as
follows and see Fig. 7:

(1) Unit cobordism 1.
(2) Six cobordisms yi j , i < j .
(3) Three cobordisms yi j ykl with i, j, k, l distinct: y12y34, y13y24, y14y23, each a

disjoint union of two tubes.
(4) Four cobordisms yi jk , each a union of a 3-holed sphere and a disk.
(5) Cobordism y1234, which is a 4-holed sphere.

Fig. 5 A spanning set (in fact, a basis) of A(3): the unit element, tubes yi j , and connected surface y123 =
y12y13

Fig. 6 Examples of surfaces yJ
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Fig. 7 Elements 1, y1234 and examples of elements of types yi j , yi j ykl , yi jk in A(4)

Fig. 8 Two tubes in the diagram
of y13y24 overlap

Recall from [22, Sect. 2.7] that there is an S4-invariant skein relation on the eight
vectors of the last three types:

(y12y34 + y13y24 + y14y23) − (y123 + y124 + y134 + y234) + β y1234 = 0 (79)

Among these eight vectors, only y13y24 has a diagram with an “intersection” of its
surfaces, see Fig. 8. In fact, the remaining fourteen elements of this spanning set all
have “planar” diagrams without overlapping components, see examples in Fig. 7.

Consequently, element y13y24 of the spanning set for A(4) can be written as a
linear combination of “crossingless” cobordisms. Informally, we call a surface with
n boundary circles crossingless if it can be drawn such that the components do not
interlace.

5.2 Planar partitions, crossingless matchings, and crossingless surfaces

Planar partitions and crossingless matchings. Recall that Bn denotes the set of cross-
ingless matchings of 2n points on a horizontal line. It has cardinality cn , the n-th
Catalan number, see formula (78).

Consider the set PDn of planar partitions of an n-element set. These are decom-
positions of {1, . . . , n} into non-empty subsets such that the configuration of these
subsets can be drawn in the lower half-plane by connecting points in each subset by
arcs and without arcs from different subsets intersecting. Equivalently, there should
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Fig. 9 Diagram of the planar
partition ({1, 4, 6}, {2, 3}, {5}) in
PD

6. Points in the lower
half-plane where the arcs end are
shown in red

Fig. 10 Left: non-crossing partition λ as in Fig. 9, here shown in red, and its regular neighbourhood N (λ),
shaded in yellow. Right: Arcs on the boundary of N (λ) constitute a crossingless matching 
0(λ)

exist no quadruple of numbers 1 < i1 < i2 < i3 < i4 ≤ n with i1, i3 in one subset
and i2, i4 in another.

Given a planar partition λ ∈ PD
n , it can be depicted by connecting points in

each m-element subset (these points lies on the horizontal line with n marked points
p1, . . . , pn) bym arcs to a central point somewhere in the lower half-plane. In this con-
figuration there are n non-intersecting arcs connecting n points on the horizontal line
to k points in the lower half-plane, where k is the number of sets in the planar partition.
Figure 9 shows an example of the diagram for the planar partition ({1, 4, 6}, {2, 3}, {5})
in PD6.

To a planar partition λ ∈ PD
n , also called a non-crossing partition, we assign a

crossingless matching 
0(λ) ∈ B
n as follows. Take a planar diagram of λ and form

a standard retract closed neighbourhood in R
2− of the configuration of n arcs and k

inner points. This neighbourhood N (λ) consists of k connected components. Each
component deformation retracts onto the corresponding tree of the diagram of λ. The
intersection of N (λ) with the horizontal line R consists of n closed intervals, one for
each point p1, . . . , pn .

The boundary of these intervals constitute 2n points p′
1, . . . , p

′
2n , with points

p′
2i−1, p

′
2i being the boundaries of the interval that contains the point pi . Bound-

ary of N (λ) consists of these n intervals together with n arcs that lie in the lower
half-plane and constitute a crossingless matching of points p′

1, . . . , p
′
2n . Denote this

matching by 
0(λ). This map


0 : PD
n −→ B

n (80)

is a bijection between planar partitions and crossingless matchings.
An example of the bijection 
0 is depicted in Fig. 10. To construct the inverse

bijection 
−1
0 , start with a crossingless matching b. The matching decomposes the

lower half-planeR2− into n+1 connected regions. Label these regions by colors 1 and
2 in a checkerboard fashion so that the outer region (the unique unbounded region)
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Fig. 11 Checkerboard coloring in the complement of a crossingless matching

Fig. 12 Bijection between (isotopy classes of) crossingless surfaces and matchings

is labelled 1, see Fig. 11. Each region colored 2 has a boundary that is a union of
horizontal intervals and inner arcs in R

2−. Given a region that contains m horizontal
intervals, choose a point inside each interval, a point u inside the region, and connect
them points to the point u bym non-intersecting arcs. The region deformation retracts
onto the union of these arcs. Taking these unions over all regions of b colored 2 gives
a diagram of planar partition. This is the planar partition 
−1

0 (b).
Crossingless surfaces and crossingless matchings. For an accurate definition, posi-

tion n circles, each of diameter 1, on the xy-planeR2 so that their centers are located on
the x-axis, at points with the x-coordinate 2, 4, . . . , 2n, respectively, and denote this
collection of circlesCn . The circles intersect the x-axis at 2n points 2± 1

2 , . . . , 2n± 1
2 .

PlaceR2 inR3 in the usual way, by adding the third coordinate z and takingR2 to be
the plane z = 0. This plane splitsR3 into half-spacesR3+ andR3−.We consider surfaces
S properly embedded in R

3− with the boundary Cn . Form the intersection S ∩ R
2
xz of

S with the xz-coordinate plane. Upon a slight deformation of S while keeping its
boundary on the xy-plane fixed we can assume that the intersection S ∩R

2
xz is a one-

manifold which is the union of circles and n arcs with boundary the above 2n points
on the x-axis: 2 ± 1

2 , 4 ± 1
2 , . . . , 2n ± 1

2 .
Thesen arcs in the lower half-planeR2

xz,− constitute a crossinglessmatchingb ∈ B
n

of 2n points.
Vice versa, to a crossingless matching b ∈ B

n we can associate a 2-manifold
S(b). First, color the regions of the lower half-plane R2− = R

2
xz,− which contains the

matching by colors 1 and 2 in a checkerboard fashion so that the outer color is 1.
Regions of R2− colored 2 are bounded. Each one has a boundary that is a union of
horizontal intervals and inner arcs in R

2−. Horizontal intervals connect points 2i ± 1
2

for various i , 1 ≤ i ≤ n. To associate a surface S(b) to b we thicken each region V
colored 2 into a 3-dimensional region in R

3− = R
2− × R. One way to do that is by

forming V ×[0, 1] ⊂ R
3− and then smoothing its corner arcs to get a region bounding

a smooth surface in R
3−. Each horizontal interval [2i − 1

2 , 2i + 1
2 ] in V first gets

multiplied by I = [0, 1] and then smoothed out to a circle of diameter one. In this way
n pairs of consecutive points on the boundary of the matching b turn into n circles on
the plane R2 = ∂R3−. Each region V of b colored 2 turns into a 3-dimensional region
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that bounds the union of disks, each of diameter 1, in R
2 and a surface S(V ) in R

3−.
Now to b assign the union S(b) of surfaces S(V ) over all regions V labelled 2. The
boundary of S(b) consists of the union Cn of n circles.

We refer to S(b) as a crossingless surface associated to the matching b. Denote by
PS

n the set of crossingless surfaces associated to matchings b ∈ B
n and by 
1 the

corresponding bijection


1 : B
n −→ PS

n . (81)

This assignment is inverse to the map depicted in Fig. 12.
Isotopy classes of surfaces S(b) = �1(b) that result from this construction are in a

bijectionwith planar partitions of n. These surfaces are determined by their intersection
with the lower half-plane R2− ⊂ R

3−. This intersection is a crossingless matching b.
Composing the two bijections above results in the bijection 
 from the set PDn of

non-crossing partitions to the set of crossingless surfaces:


 : PD
n 
0−→ B

n 
1−→ PS
n (82)

Any oriented surface S with a component of genus greater than 0 and ∂S ∼= �nS
1

evaluates to the zero vector, [S] = 0 in A(n) for our series α. Relation (79) allows
to reduce y13y24, which can be viewed as a crossing, to a linear combination of
crossingless diagrams. Inductive application of this relation shows that A(n) is spanned
by vectors [S(b)] associated to crossingless surfaces S(b), for b ∈ B

n . In particular,

dim A(n) ≤ cn (83)

for any field k and β ∈ k∗.

5.3 Meander determinants and size of A(n)

To prove the opposite inequality to (83) when k has zero characteristic, it is enough
to show that the bilinear form is nondegenerate on the subspace with a basis {[S(b)]},
b ∈ B

n .
It turns out that the matrix of this bilinear form in the spanning set of crossingless

matchings is the same as one of the auxiliary matrices appearing in [25], namely, the
matrix for the deformed meander determinant.

Consider two matchings a, b ∈ B
n , their surfaces S(a), S(b) and the closed surface

S(a, b) := S(b)S(a) given by reflecting the surface S(b) about the horizontal plane
R
2 and composing with S(a) along the common n circles.
To matchings a, b there is also associated a collection ba of circles in the plane,

which has a unique checkerboard coloring of its connected components (regions) by
{1, 2} with the outer component colored 1. Define h1(a, b), h2(a, b) as the number of
connected components of colors 1 and 2 respectively.(Fig. 13).
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Fig. 13 Diagram ba with h1(a, b) = 1. Note that regions colored 2 have no “holes”, that is, each one is
homeomorphic to a disk

A component of the closed surface S(a, b) has genus 0 if and only if the correspond-
ing region of the planar diagram ba colored 2 is a disk. All components of S(a, b) have
genus 0 iff no region of ba of color 2 contains a region of color 1 inside. Equivalently,
all color 2 regions are non-nested disks and there is a unique region of color 1 (the
outer region). This happens iff h1(a, b) = 1.

The number of color 2 components is h2(a, b). The bilinear form on A(n) for the
constant series Zα(T ) = β in the spanning set of crossingless surfaces [S(b)] is given
by

([S(a)], [S(b)]) = δ1,h1(a,b)β
h2(a,b), a, b ∈ B

n, (84)

where

δi, j =
{
1, i = j

0, i 
= j .

Denote by Dn(β) this matrix of size Bn × B
n .

In [25] the authors study the determinant of Bn × B
n matrix M(y1, y2) with the

(a, b)-entry

yh1(a,b)
1 yh2(a,b)

2 ,

where y1, y2 are formal variables, and show that it can be expressed in terms of
Chebyshev polynomials of the second kind. Namely, let

Mn(y) =
n∏

h=1

Uh(y)
cn,h−cn,h+1 , where

cn,h =
(

2n

n − h

)
−

(
2n

n − h − 1

)
, Uh(2 cos θ) = sin(h + 1)θ

sin θ
.
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Chebyshev polynomial Uh(y) of the second kind is a polynomial of degree h in y
with integer coefficients. Then (see [25])

det(M(y1, y2)) = (y1y2)
|Bn |/2 · Mn(

√
y1y2). (85)

For any a, b

h1(a, b), h2(a, b) ≥ 1,

so that

Dn(β) = lim
y1→0

1

y1
M(y1, β). (86)

We need to prove that the following limit is nonzero, when the ground field has
characteristic 0:

lim
y1→0

det(M(y1, β))

y|Bn |
1

, (87)

so that the determinant below does not vanish:

det(Dn(β)) = lim
y1→0

(
β

y1

)|Bn |/2
Mn(

√
y1β). (88)

At the point y = 0 even-indexed Chebyshev polynomials U2h(y) do not vanish,
while odd-indexed polynomials U 2h+1(y) have simple poles, when char k = 0:

y → 0 ⇒ U 2h(y) ∼ 1, U2h+1(y) ∼ y.

The order of vanishing of Mn(y) is

n∑

i=1,odd

(cn,i − cn,i+1) =
(

2n

n − 1

)
− 2

(
2n

n − 2

)
+ 2

(
2n

n − 3

)
+ . . . + (−1)n2

(
2n

0

)
.

Lemma 5.2

(
2n

n

)
= 2

n∑

i=1

(−1)i−1
(

2n

n − i

)
,

Proof The lemma follows from the identity

(1 + t)2n =
(
2n

n

)
tn +

n∑

i=1

(
2n

n − k

)(
tn−k + tn+k

)
,
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evaluated at t = −1.
It follows from the lemma that the order of vanishing can be rewritten as

(
2n

n

)
−

(
2n

n − 1

)
,

which equals the Catalan number cn . ��
This completes the Proof of Theorem 5.1. Note that, over a field k of characteristic

p, dim A(n) = cn if p does not divide the corrresponding product of the values of
even Chebyshev polynomials U2h(0) for h ≤ n/2 and derivatives of odd Chebyshev
polynomials U′

2h+1(0) for h ≤ (n − 1)/2. Otherwise, dim A(n) < cn . ��

5.4 Graded case and the Narayana numbers

5.4.1 Non-crossing partitions and Narayana numbers

Consider points 1, 2, . . . , n placed in this order on a circle. A partition of them into a
disjoint union

{1, 2, . . . , n} = {i1, . . . , it }
⊔

{ j1, . . . , js}
⊔

. . .

is called non-crossing (or planar, see earlier) if the parts avoid interlaps, when drawn
via trees in the disk. Instead of the circle and the disk it bounds one can use the x-axis
and the lower half-plane, see earlier.

The number of non-crossing partitions of n points on a circle with exactly k parts,
1 ≤ k ≤ n, is called the Narayana number [35]:

N (n, k) = 1

n

(
n

k

)(
n

k − 1

)
.

Narayana numbers provide a distinguished refinement of Catalan numbers

cn =
n∑

k=1

N (n, k)

and have the following generating function

∑

n≥0,1≤k≤n

N (n, k)zntk−1 = 1 − z(t + 1) − √
1 − 2z(t + 1) + z2(t − 1)2

2t z
.

5.4.2 Graded dimensions of A(n)

The vector space A(n) is spanned by diffeomorphism classes of viewable surfaces
(elements of PSn , see formula (81)) with the boundary diffeomorphic to the disjoint
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union of n disks and each component of genus 0. Assume that char k = 0. Then
surfaces in PS

n constitute a basis of A(n) and carry a natural degree. The degree of
[S] ∈ A(n), for S ∈ PS

n , is

deg[S] = n − χ(S), (89)

where χ(S) is the Euler characteristic of S. In this way A(n) becomes a 2Z+-graded
vector space and even a2Z+-graded commutative associative algebra.Theunit element
of A(n), viewed as an algebra, is given by the union of n disks and has degree 0. Other
basis elements [S] of A(n) have positive even degrees.

This can be written via the action of the grading operator

qn−χ : A(n) → A(n) ⊗ k[q±1], qn−χ [S] = qn−χ(S)[S].

It is natural to consider the trace of qn−χ as a Laurent polynomial in q. Since the
homogeneous summands have non-negative gradings, the trace of qn−χ is a genuine
polynomial in q2 rather than a Laurent polynomial. This polynomial depends on n
and describes the graded dimension of A(n) with the above grading.

Proposition 5.3 If char k = 0, the space A(n) is naturally graded. Dimensions of
its homogeneous components (i.e. the coefficients of the polynomial trA(n)qn−χ ) are
Narayana numbers:

trA(n)q
n−χ =

n−1∑

k=0

N (n, n − k)q2k .

Proof Crossingless surfaces correspond to non-crossing partitions. The connected
components of a crossingless surface provide a partition of the set of the boundary
components. From the discussion in earlier subsections, crossingless surfaces form
a basis of the set A(n). A crossingless surface S ∈ PS

n with k components gives a
decomposition

n = i1 + . . . + ik .

The Euler characteristic of a component with i boundary circles is 2 − i . Thus,

n − χ(S) = n −
k∑

j=1

(2 − i j ) = 2(n − k).

��
Remark 5.4 Commutative algebra A(n) is naturally a Frobenius algebra, via the trace
map of capping off a surface S by n disks and evaluating the resulting closed surface.
The trace map does not respect the grading. To make the trace map homogeneous,
one can make β a formal variable with deg(β) = −2 and change from a field k to a
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polynomial ring k[β]. The resulting pairing on A(n), defined over k[β], is not perfect,
though.

5.5 A commutative Frobenius algebra in Rep(osp(1|2))

In this Section we give an alternative derivation of Theorem 5.1 and relate the category
DCobα for the constant series α with the representation category of Lie superalgebra
osp(1|2).

Start with the category C′ of finite-dimensional representations of osp(1|2), viewed
as a Lie superalgebra over a field k of characteristic 0, see [4, 5, 13, 30, 38, 41] and
[15, Theorem A.3]. An object of C′ is a Z/2-graded representation of U (osp(1|2)).
The defining representation V ∼= k1|2 generates a Karoubi-closed tensor subcategory
C of C′. One can think of C as “one-half” of the category C′. An irreducible object of
C′ is either isomorphic to an irreducible object of C or to such an object tensored with
the odd one-dimensional representation of osp(1|2). Both C and C′ are semisimple
k-linear categories.

Category C is similar to the category of representations of the Lie group SO(3).
Namely, it has one irreducible representation V2n in each odd dimension 2n + 1,
n = 0, 1, . . . , just like SO(3), and the tensor product decomposition

V2n ⊗ V2m ∼= V2|n−m| ⊕ V2|n−m|+2 ⊕ · · · ⊕ V2(n+m)

has the same multiplicities as for the corresponding representations of SO(3). In par-
ticular, takingW = V0⊕V2, the dimension of the space of invariants HomC(V0,W⊗n)

equals to the correspondingmultiplicity for representations of SO(3). In the latter case,
the analogue ofW is the four-dimensional representation W̃ of SO(3) isomorphic, as
a representation of sl(2), to Ṽ1 ⊗ Ṽ1 ∼= Ṽ0 ⊕ Ṽ2, where Ṽ1 is the fundamental repre-
sentation of sl(2), and Ṽn is the irreducible representation of sl(2) of dimension n+1.
Multiplicities for these representations are the same in the categories of SO(3) and
sl(2) representations. The identity representations 1 in these categories are isomorphic
to V0 and Ṽ0, respectively. One obtains that

dim HomC(1,W⊗n) = dimHomSO(3)(1, W̃⊗n) = dimHomsl(2)(1, Ṽ
⊗2n
1 ) = cn,

(90)

where cn is the n-th Catalan number.
Let E be a 2-dimensional k-vector space with the basis {a, b}. Consider the exterior

algebra

A = �∗E,

thus, a2 = b2 = 0 and ab = −ba in A. Algebra A has the following super-derivations:

x = (ab + 1)∂a, y = (ab + 1)∂b.
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These super-derivations act on the left in the basis {1, a, b, ab + 1} of A as
follows:

x y [x, x] = 2x2 [x, y] = xy + yx [y, y] = 2y2

1 0 0 0 0 0
a ab+1 0 2b −a 0
b 0 ab+1 0 b −2a
ab+1 b −a 0 0 0

Thus, x and y generate an action of the Lie super-algebra osp(1|2) on A. As an
osp(1|2)-module, A ∼= 1 ⊕ V2, where 1 is the trivial module spanned by 1 ∈ A and
V2 ∼= k1|2 is irreducible of dimension (1|2) spanned by a, b, ab + 1. In particular, A
is an object of C.

The multiplication A ⊗ A −→ A is a map of osp(1|2)-modules, since osp(1|2)
acts by super-derivations. The unit map ι : 1 −→ A is an osp(1|2)-module map as
well. Being the exterior algebra, the algebra A is a commutative algebra object in the
category of super-vector spaces and, consequently, in the category C.

The algebra object A ∈ C is Frobenius with respect to the linear form A → 1
sending 1 ∈ A to a non-zero constant β ∈ 1 and a, b, ab + 1 to zero.

Assume β = 1. Then the Frobenius comultiplication A → A ⊗ A is given by

1 �→ 1 ⊗ ab − a ⊗ b + b ⊗ a + ab ⊗ (1 + ab)

a �→ a ⊗ ab + ab ⊗ a

b �→ b ⊗ ab + ab ⊗ a

ab �→ ab ⊗ ab (91)

Composing with the multiplication, we see that the composition m� : A −→ A,
which is the handle endomorphism, is the zero map. One computes immediately that
α0 = β = 1, αi = 0 for i > 0, so that the generating function for A is Z(T ) = 1.
For arbitrary invertible β one should insert β−1 after the arrow in each line in the map
(91) above. Then α0 = β and αi = 0 for i > 0, with Z(T ) = β.

Consider the skein category SCobα for the constant series Zα(T ) = β, its gligible
quotient Cobα , and the Karoubi envelope DCobα of the latter. The skein category has
the relations that the handle is equal to 0 while the 2-sphere evaluates to β.

There is a functor FA : SCobα −→ C taking the circle object 1 to A as explained
in Sect. 2.3, see (27). To apply Proposition 2.4, note that C is semisimple and that any
object of C is a direct summand of A⊗n for some n. To show that FA is surjective on
homomorphisms, it suffices to check that the maps

Hom(n,m)
FA−→ HomC(A⊗n, A⊗m)

induced by FA are surjective. Furthermore, by duality, it is enough to establish surjec-
tivity of maps
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Hom(0, n)
FA−→ HomC(1, A⊗n). (92)

The image FA(Hom(0, n)) is a subspace of dimension bounded from below by the
rank of the matrix Dn(β) from Sect. 5.3, see (84),

dim(FA(Hom(0, n))) ≥ rk(Dn(β)).

We proved in that section that Dn(β) has nonzero determinant over a characteristic
zero field and has rank equal to the Catalan number cn . Therefore,

dim(FA(Hom(0, n))) ≥ cn . (93)

From Eq. (90) we know that dimension of HomC(1, A⊗n) is also cn . Consequently,
the inequality in (93) is equality and the map (92) is an isomorphism. We conclude
that FA is surjective on homomorphisms. By Proposition 2.4 it induces an equivalence
from the Karoubi completion of the negligible quotient Cobα of SCobα to C.
Theorem 5.5 Over a field k of characteristic zero, the category DCobα is equivalent,
as a symmetric monoidal category, to the above category C of representations of
osp(1|2):

DCobα
∼= C. (94)

This gives an alternative proof that dim A(n) = cn over a characteristic zero field,
which is part of Theorem 5.1 .

Remark 5.6 (Vera Serganova) Let G be a supergroup and g = g(G) = g0 ⊕g1, where
g1 is the odd part of the corresponding Lie superalgebra. Assume that the top exterior
power �topg1 = �dim(g1)g1 is the trivial representation V0 of g0. Then the ring of
functions A = Spec(G/G0) on G/G0 is a super-commutative Frobenius algebra
isomorphic to the exterior algebra �∗g1. A is a commutative Frobenius algebra object
in the category of G-modules (the category of super vector spaces with an action of
G).

As a G-module, A is isomorphic to the induced representation Indgg0(V0),

A ∼= �∗g1 ∼= Indgg0(V0). (95)

The G−invariant trace map ε : A −→ k comes from the Frobenius reciprocity via
the identity map of g0-modules from the trivial representation V0 to itself.

For our case of G = OSp(1|2) and G0 ∼= SL(2) this gives an alternative construc-
tion of the commutative Frobenius algebra as considered in this section.

6 Gram determinants for theories of rank one and two

Recall that the rank K = dim A(1) of the theory with Z(T ) = P(T )/Q(T ) is
max(deg P + 1, deg Q).
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Fig. 14 Handle relation for the
generating function in (98)

6.1 Generating functionˇ/(1− �T) and the Deligne category

Generating function of a rank one theory has the form

Zα(T ) = β

1 − γ T
= β + βγ T + βγ 2T 2 + . . . (96)

with β ∈ k∗ and γ ∈ k. When γ = 0, the generating function is constant and the
theory is studied in Sect. 5.

Assume now γ 
= 0. Rescaling T �−→ λT and Z(T ) �−→ λ−1Z(λT ) by invertible
λ leads to isomorphic theories, see Sect. 2.1. Rescaling T to γ −1T and Z(T ) to
γ Z(γ −1T ) reduces the theory to that for the generating function

Z(T ) = βγ

1 − T
(97)

and allows us to restrict to the case γ = 1 and generating function

Z(T ) = β

1 − T
= β + βT + βT 2 + . . . , (98)

with the handle relation in this case shown in Fig. 14 (note that the rescaling above
changes the handle relation, in general, by rescaling x).

The skein category SCobα for this sequence α = (β, β, β, . . . ) is equivalent to the
partition category Paβ , the category DCobα to the Deligne category Rep(Sβ), and the
gligible quotient DCobα is equivalent to the gligible quotient Rep(Sβ).

Going back to the rational function in (96)with γ 
= 0, we obtain three equivalences
of categories and a commutative diagram

SCobα −−−−→ DCobα −−−−→ DCobα

∼=
⏐⏐� ∼=

⏐⏐� ∼=
⏐⏐�

Paβγ −−−−→ Rep(Sβγ ) −−−−→ Rep(Sβγ )

(99)

where in the bottom row appear the partition category, the Deligne category, and its
gligible quotient, respectively, going from left to right, for the parameter t = βγ , and
α = (β, βγ, βγ 2, . . . ).

When char k = 0 and βγ /∈ Z+ ⊂ k, the negligible ideal is zero, the quotient does
not change the category, and there are equivalences

DCobα
∼= DCobα

∼= Rep(Sβγ ) ∼= Rep(Sβγ ), (100)
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Table 1 Determinants of the bilinear form on A(n) for the generating function Z(T ) = β
1−γ T

n Bn det

1 1 β

2 2 β2 (β γ − 1)

3 5 β5 (β γ − 1)4 (β γ − 2)

4 15 β15 γ (β γ − 1)14 (β γ − 2)7 (β γ − 3)

5 52 β52γ 10 (β γ − 1)51 (β γ − 2)36 (β γ − 3)11 (β γ − 4)

6 203 β203γ 73 (β γ − 1)202 (β γ − 2)171 (β γ − 3)81 (β γ − 4)16 (β γ − 5)

7 877 β877γ 490 (β γ − 1)876 (β γ − 2)813 (β γ − 3)512 (β γ − 4)162 (β γ − 5)22 (β γ − 6)

between the four categories in the middle and on the right of the diagram (99), see
[10, Théorème 2.8].

When βγ = n and char k = 0, the category DCobα is equivalent to the category of
finite-dimensional representations of the symmetric group Sn over k. If char k = p,
one should replace Sn by Sm , where m is the remainder after the division of n by p.

For the generating function in (96) the handle relation is obtained from that in
Fig. 14 by replacing β by γ .

The n-circle state space Aα(n) of that theory is spanned by visible cobordisms
with every connected component of genus zero. Diffeomorphism classes of these
cobordisms are in a bijectionwith set-theoretic partitions ofn. Properties of theDeligne
category imply that for γ 
= 0 and βγ not the image of an integer in k the set of these
genus zero surfaces is a basis of Aα(n), so that in this case

dim Aα(n) = Bn, (101)

where Bn is the Bell number, see Sect. 5.1. Recall from Sect. 5 that for γ = 0 genus
zero surfaces span Aα(n) and constitute a basis of the latter when char k = 0 and
β 
= 0, leading to the formula (101) in this case as well.

Bilinear form data.Wenext compute the bilinear form on this spanning set, keeping
β, γ as formal variables, for small values of n. Table 1 below describes determinants
of Gram matrices Gn of size Bn × Bn , with rows and columns enumerated by set
partitions λ and μ of n. To each set partition λ we assign a surface S(λ) that matches
n boundary circles into genus zero connected components via parts of the partition.
These surfaces span Aα(n) for all values of β, γ ∈ k and constitute a basis in the
generic case.

Two surfaces S(λ), S(μ) share the common boundary of n circles and can be glued
into a closed surface S(μ)S(λ). Evaluating this surface via the generating function
Zα(T ) in (96) gives a monomial in β and γ that we put as the (λ, μ)-entry of the
matrix Gn and then compute its determinant.

For instance, for n = 2 there are two partitions, and the Gram matrix is

(
β2 β

β βγ

)
,

with the determinant β2(βγ − 1).
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Exponents of γ . The main surprising feature of the above table is given by
terms that are powers of γ . Nonzero powers of γ in the above determinant for
β/(1 − γ T ) start on line four. Adding zero as the power of γ on line three gets us
the sequence (0, 1, 10, 73, 490) matching the Sloan sequence A200580, see https://
oeis.org/A200580. It relates to the supercharacters of the finite group of unipotent
upper-triangular matrices over the 2-element field [2, 9] and can also be expressed as
the combination −2Bn+2 + (n + 4)Bn+1 of two Bell numbers.

Exponents of determinant factors βγ − k. The exponents of factors of det Gn are
related to representation theory of the symmetric group. Namely, for n shown in the
table, the difference between the Bell number Bn (the dimension of A(n) in the generic
case) and the exponent bk,n of βγ − k in det Gn , for k ≥ 1, is equal to the dimension
of invariants in V⊗n , where V is the natural k-dimensional representation of Sk :

Bn − bk,n = dim
(
V⊗n)inv . (102)

We expect this pattern to hold for all n, see Fig. 2.
The dimension of invariants can be calculated via characters. Conjugacy classes in

Sk are parametrized by cycle types of permutations, which are in a bijective corre-
spondence with Young diagrams with k boxes. The diagram λ = (λ1, λ2, . . . , λl(λ))

corresponds to the conjugacy class of permutations with cycle lengths given by λ. The
trace of such permutation on V equals to n− l(λ). Hence, the multiplicity of the trivial
representation in V⊗n is

dim
(
V⊗n)inv =

∑

|λ|=k

1

zλ
(m1(λ))n ,

where

λ = (1m1(λ)2m2(λ) . . .).

For k = 1 representation V of S1 is trivial, and (102) specializes to

Bn − b1,n = dim(V⊗n)inv = 1, n > 0.

Exponents of β. Denote by b0,n the exponent of β in detGn , see Table 1. The
sequence (1, 2, 5, 15, 52, 203, 877) of exponents of β in that table is the Bell numbers
sequence A000110, see https://oeis.org/A000110, and we expect this pattern to hold
for all n, so that b0,n = Bn . Furthermore,

b0,n − b1,n = 1, n > 0.

which matches the data in Table 1 (difference in exponents of β and βγ − 1 is 1), so
we expect

b0,n = b1,n + 1 = Bn, n > 0.

https://oeis.org/A200580
https://oeis.org/A200580
https://oeis.org/A000110
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Table 2 Prediction for the exponents of linear factors are given in the last three columns, for n = 8, 9, 10

factor Group A(0) A(1) A(2) A(3) A(4) A(5) A(6) A(7) A(8) A(9) A(10)

βγ − 1 S1 0 0 1 4 14 51 202 876 4139 21146 115974

βγ − 2 S2 0 0 0 1 7 36 171 813 4012 20891 115463

βγ − 3 S3 0 0 0 0 1 11 81 512 3046 17866 106133

βγ − 4 S4 0 0 0 0 0 1 16 162 1345 10096 72028

βγ − 5 S5 0 0 0 0 0 0 1 22 295 3145 29503

βγ − 6 S6 0 0 0 0 0 0 0 1 29 499 6676

βγ − 7 S7 0 0 0 0 0 0 0 0 1 37 796

βγ − 8 S8 0 0 0 0 0 0 0 0 0 1 46

βγ − 9 S9 0 0 0 0 0 0 0 0 0 0 1

βγ − 10 S10 0 0 0 0 0 0 0 0 0 0 0

Table 3 Two-colored Bell
numbers and Gram determinants
for the function
Z(T ) = β/(1 − γ T )2

n B(2)
n det

1 2 −β2

2 6 −β10γ 12

3 22 −β50γ 66

4 94 −β266γ 376

5 454 −β1522γ 2270

6.2 Gram determinants for rank two theories

1. Consider the generating function

Z(T ) = β

(1 − γ T )2
, β, γ ∈ k∗. (103)

This theory has K = 2 and the handle relation (x − γ )2 = 0. Sequence α for this
theory has no abelian realizations (Table 2).

The space A(n) has a spanning set consisting of viewable surfaces with �nS
1 as

the boundary and each component of genus at most one. Elements of the spanning set
are set partitions of n carrying labels 0, 1 (the genus of a component), and their count
is the generalized (two-colored) Bell number B(2)

n , see [32, 36], with the generating
exponential function

∑

n≥0

B(2)
n

tn

n! = exp (2(exp(x) − 1)) . (104)

The first few values of B(2)
n are listed in Tables 3 and 7.
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Table 4 Dimensions and
determinants for the function
Z(T ) = (β0 +β1T )/(1− γ T )2.
The difference with the previous
table is β0γ + β1 taking place of
β

n dim det

1 2 − (β0γ + β1)
2

2 6 −γ 2 (β0γ + β1)
10

3 22 −γ 16 (β0γ + β1)
50

4 94 −γ 110 (β0γ + β1)
266

5 454 −γ 748 (β0γ + β1)
1522

Values of the determinant of the Gram matrix for this spanning set, from computer
computations, are shown in Table 3. For each n ≤ 5 the determinant is the negative
product of powers of β and γ .

The following guess works for the powers of β in the table: it is the total number
of components of all elements of the spanning set, that is, of two-colored partitions of
n. More explicitly, the exponent of β matches the sequence B(2)

n+1 − 2B(2)
n .

Consider a sequence with the terms given by half of the power of β in the n-
th Gram determinant plus B(2)

n , see Table 3. The sequence of exponents has the form
(1, 3, 11, 47, 227, 1215, . . . ), with the first few termsmatching the sequenceA035009
in the Sloan encyclopedia, see https://oeis.org/A035009. Multiplying terms of the
latter sequence by 2 recovers the sequence (B(2)

n )n , with the index shifted by one.
The degree of γ in the tablematches the product of numbers in the first two columns

of the table, that is, nB(2)
n .

2. Table 4 below shows the Gram determinants of the same spanning set of cobor-
disms with components of genus at most one for the generating function

Z(T ) = β0 + β1T

(1 − γ T )2
(105)

that deforms the function in (103) without changing the parameter K = 2 = dim A(1)
of the theory, that is, its rank.

3. Gram determinants for the generating function

Z(T ) = β

(1 − T )(1 − γ T )
(106)

are given in Table 5.
4. Consider the most general generating function, over an algebraically closed k,

for a theory of rank two (K = 2) :

Z(T ) = β0 + β1T

(1 − γ1T )(1 − γ2T )
. (107)

Its partial fraction decomposition is given by

Z(T ) = β0γ1 + β1

γ1 − γ2

1

1 − γ1T
+ β0γ2 + β1

γ2 − γ1

1

1 − γ2T
.

https://oeis.org/A035009


71 Page 46 of 68 M. Khovanov et al.

Table 5 Determinants of the bilinear form on A(n) for the generating function Z(T ) = β
(1−T )(1−γ T )

n det

1 −γ β2

2 −γ 4β8 (γ + β − 1)
(
β γ 2 − γ + 1

)

3 −γ 17β34 (γ + β − 1)7
(
β γ 2 − γ + 1

)7
(β + 2 γ − 2)

(
β γ 2 − 2 γ + 2

)

4
−γ 80β158 (γ + β − 1)42

(
β γ 2 − γ + 1

)42
(β + 2 γ − 2)11

(
β γ 2 − 2 γ + 2

)11 ·
· (β + 3 γ − 3)

(
β γ 2 − 3 γ + 3

)

5
−γ 417β804 (γ + β − 1)251

(
β γ 2 − γ + 1

)251
(β + 2 γ − 2)91

(
β γ 2 − 2 γ + 2

)91 ·
(β + 3 γ − 3)16

(
β γ 2 − 3 γ + 3

)16
(β + 4 γ − 4)

(
β γ 2 − 4 γ + 4

)

Table 6 Dimensions and determinants for the function Z(T ) = (β0 + β1T )/((1 − γ1T )(1 − γ2T ))

n dim det

1 2 − (β0γ1 + β1) (β0γ2 + β1)

2 6 − (β0γ1 + β1)
4
(
β0γ

2
1 + β1γ1 − γ1 + γ2

)
(β0γ2 + β1)

4
(
β0γ

2
2 + β1γ2 − γ2 + γ1

)

3 22
− (β0γ1 + β1)

17
(
β0γ

2
1 + β1γ1 − γ1 + γ2

)
7
(
β0γ

2
1 + β1γ1 − 2γ1 + 2γ2

)

(β0γ2 + β1)
17

(
β0γ

2
2 + β1γ2 − γ2 + γ1

)
7
(
β0γ

2
2 + β1γ2 − 2γ2 + 2γ1

)

4 94

−γ1γ2 (β0γ1 + β1)
79

(
β0γ

2
1 + β1γ1 − γ1 + γ2

)
42

(
β0γ

2
1 + β1γ1 − 2γ1 + 2γ2

)
11

(
β0γ

2
1 + β1γ1 − 3γ1 + 3γ2

)
(β0γ2 + β1)

79
(
β0γ

2
2 + β1γ2 − γ2 + γ1

)
42

(
β0γ

2
2 + β1γ2 − 2γ2 + 2γ1

)
11

(
β0γ

2
2 + β1γ2 − 3γ2 + 3γ1

)

5 454

−γ 15
1 γ 15

2 (β0γ1 + β1)
402

(
β0γ

2
1 + β1γ1 − γ1 + γ2

)
251

(
β0γ

2
1 + β1γ1 − 2γ1 + 2γ2

)
91

(
β0γ

2
1 + β1γ1 − 3γ1 + 3γ2

)
16

(
β0γ

2
1 + β1γ1 − 4γ1 + 4γ2

)

(β0γ2 + β1)
402

(
β0γ

2
2 + β1γ2 − γ2 + γ1

)
251

(
β0γ

2
2 + β1γ2 − 2γ2 + 2γ1

)
91

(
β0γ

2
2 + β1γ2 − 3γ2 + 3γ1

)
16

(
β0γ

2
2 + β1γ2 − 4γ2 + 4γ1

)

Table 6 shows values of the Gram determinant for the same spanning set of A(n).
Powers of β0γi + β1, i = 1, 2 are given by the sequence (1, 4, 17, 79, 402), which

matches the beginning of the Sloan sequence A289924, see https://oeis.org/A289924.
The differences between total dimensions, shown in the middle column, and these
exponents, for the simplest factors β0γi + β1, give the sequence (1, 2, 5, 15, 52),
matching Bell numbers.

For the factor
(
β0γ

2
1 + β1γ1 − γ1 + γ2

)
and its image under the index transposition

γ1 ↔ γ2 the differences are given by the sequence (2, 5, 15, 52, 203) matching the
shifted sequence of Bell numbers.

For the factor
(
β0γ

2
1 + β1γ1 − 2γ1 + 2γ2

)
and its transposition under γ1 ↔ γ2, the

sequence of differences is (2, 6, 21, 83, 363), which can be represented as 1
2 (Bn+2 −

Bn+1 + Bn).

https://oeis.org/A289924
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We expect that various patterns observed above hold for all n.

7 Polynomial generating functions

In this section the categories DCobα are investigated for polynomial generating func-
tions Z(T ) = Zα(T ), i.e. αi = 0 for i � 0. The case of the constant function
Z(T ) = β was studied in Sect. 5, so we will assume that the degree of the polynomial
Z(T ) is at least one. There are two main cases:

• Function Z(T ) is linear. Its tensor envelopes are closely related to the unoriented
Brauer category Rep(Ot ).

• Function Z(T ) has degree at least two. Its series α has no abelian realizations, see
condition (3) in Theorem 3.4. Experimental data, discussed below, indicates that
dim Aα(n) depends only on the degree of the polynomial Z(T ).

Note that a theory of degree K has a skein relation that reduces the K -th power
of a handle to a linear combination of lower degree powers. Consequently, the state
space A(n) has a spanning set given by partitions with an integer between 0 and K −1
(inclusive) assigned to each component.

Generalized Bell numbers B(k)
n count set partition of n together with an assign-

ment of an integer between 0 and k − 1 (inclusive) to each part of the partition [32,
36]. Elements of the latter set are in a bijection with diffeomorphism classes of view-
able surfaces with n fixed boundary components and at most k − 1 handles on each
component.

For a given k, generalized Bell numbers have the following exponential generating
function:

exp(k(exp(t) − 1)) =
∞∑

n=0

B(k)
n

tn

n! . (108)

When Z(T ) is a polynomial P(T ), rank K of the theory is 1 + deg P .

7.1 Linear generating function and the unoriented Brauer category

Here we consider the case

Z(T ) = β0 + β1T (109)

of a linear generating function, with β0, β1 ∈ k and β1 
= 0. Evaluations of connected
surfaces for this α are shown in Fig. 15. Alternatively, one can treat this theory as
defined over a ring that contains k[β0, β1], in which case β1 may not be invertible.

Scaling by λ = μ2 as in Sect. 2.1 changes Z(T ) to λ−1β0 + β1T . Consequently, if
every invertible element of k is a square, we can reduce to one of the two cases:

(1) Z0(T ) = β1T , (2) Z1(T ) = 1 + β1T .
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Fig. 15 Evaluation is zero beyond genus one, β1 
= 0

Fig. 16 Two or more dots on a connected component evaluate to zero, so for a spanning set one can reduce
to each connected component carrying at most one dot. Handles in diagrams can be converted to dots for
convenience

Fig. 17 Six vectors that span Aα(2). Notation xi denotes a dot on the i-th cup, while y stands for the tube

Fig. 18 Skein relation on diagrams with two boundary circles. One can either exclude two cups with dots
or exclude a tube with dots. If not working over a field, only transformation on the left may be allowed

Skein relations. For now, consider the general case, with both β0, β1 ∈ k, β1 
= 0.
Recall that a dot on a connected component is a shorthand for a handle. Due to the
particular evaluation we are considering, two or more dots on a component evaluate
the entire diagram to zero, see Fig. 16.

The state space of two circles A(2) = Aα(2) for this theory was considered in [22,
Sect. 6.2]. It has a spanning set of six vectors, shown in Fig. 17: a pair of disks, each
with no dots or a single dot, and a tube, either dotless or with a dot.

One skein relation on these six vectors, shown in Fig. 18, holds for all values of the
parameters and allows to exclude the vector x1x2 from the list. To verify this relation
observe that the pairing of the both sides with any vector from Fig. 17 except for the
vector 1 is zero; and it is easy to see that the pairings of both sides with vector 1 are
β2
1 . Thus the difference of the left hand side and the right hand side is a negligible

morphism, so it vanishes in categories Cobα and DCobα .
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Fig. 19 Sphere with 3 holes as a linear combination of seven terms. The expression on the RHS is invariant
under the permutation action of S3 and terms permuted under the action are grouped together into sets of
three. Terms in the first group of 3 differ in dot placement

The Gram determinant for the remaining five vectors is β6
1 (β1 − 2). In particular,

if β1 
= 2, these five vectors constitute a basis of A(2) and dim A(2) = 5.
The case β1 = 2 gives a multiplicative theory discussed at the end of [22, Sect.

2.5]. Note that when β1 = 2, we have char k 
= 2 since β1 
= 0.
Let us now assume that β1 
= 2. Figure 18 relation allows to reduce a component

of genus one with more than one boundary circle to components of genus one with
just one boundary circle each.

Consider the state space A(3) = Aα(3) for three circles. These reductions give a
spanning set of cobordisms with each component of genus at most one (equivalently,
of genus 0 with at most one dot), and genus one components with only one boundary
circle each. Furthermore, a direct computation shows that a genus zero component
with three boundary circles is a linear combination of other cobordisms from this
spanning set, see Fig. 19.

Relation in Fig. 19 implies the relation in Fig. 18 by capping off one of the three
boundary circles with a one-holed torus. Inductive application of these relations,
together with the one in Fig. 16, allows to reduce any connected component with
three or more boundary circles to a linear combination of surfaces where

• each component has at most one boundary circle,
• all components have genus zero or one,
• each genus one component bounds one circle.

Proposition 7.1 The space A(n) has a spanning set A (n) that consists of viewable
cobordisms with n boundary circles, with each connected component having one or
two boundary circles, all genus one components with one boundary circle and no
components of genus two or higher. The cardinality an of the above set A (n) of
cobordisms satisfies the following recurrent relation

an = 2an−1 + (n − 1)an−2, (110)

and has the following generating function

∞∑

n=0

an
n! t

n = exp

(
2t + t2

2

)
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Table 7 Determinants of the bilinear form on A(n) for the generating function Z(T ) = β0 + β1T . Notice
the appearance of the term β1 + 2 in the last two lines

n B(2)
n dim A(n) det

1 2 2 −β2
1

2 6 5 (β1 − 2) β8
1

3 22 14 − (β1 − 2) 6β30
1

4 94 43 (β1 − 3) 2 (β1 − 2) 27β113
1

5 454 142 − (β1 − 3) 20 (β1 − 2) 110β440
1

6 2430 499 (β1 − 4) 5 (β1 − 3) 134 (β1 − 2) 435β1774
1 (β1 + 2)

7 14214 1850 − (β1 − 4) 70 (β1 − 3) 756 (β1 − 2) 1722β7406
1 (β1 + 2) 14

Proof Using the relations in Figs. 18 and 19 we can express any cobordism as a
linear combination of the elements ofA (n). Let us show that the relation (110) holds.
Consider the first boundary circle of a cobordism fromA (n). If it is the only boundary
circle of its connected componentC then the cobordism is a union of this component of
genus zero or one and an element ofA (n− 1), giving 2an−1 possibilities. Otherwise,
C has genus zero and two boundary circles. There are n − 1 options for the second
circle, giving (n − 1)an−2 possibilities in this case and proving (110). The derivation
of the generating function from the recurrence relation is standard. ��
Corollary 2 dim A(n) ≤ an for an as above, for any field k and β0 ∈ k, β1 ∈ k∗.

Remark 7.2 The sequence (an)n≥0 is the Sloan sequence A005425, see https://oeis.
org/A005425,

(a0, a1, a2, . . . ) = (1, 1, 2, 5, 14, 43, 142, 499, 1850, 7193, . . .).

Numerical data for dim A(n) for generic values of β0, β1 and the Gram determinant
for the spanning set A (n) with n ≤ 7 is given in Table 7. The third column shows
dim A(n) for generic values of β0, β1. The last column shows the values of the Gram
determinant for the set of vectors in the above spanning set A (n). Observe that the
determinants do not depend on β0 and can vanish only when β1 is in the image of Z in
k. Note that non-vanishing of the determinants implies that dim A(n) = an for n ≤ 7
and generic β’s. We are going to show that the same is true for any n.

Consider the Deligne orthogonal category Rep(Ot ), t ∈ k, see e.g. [10, Sect. 9].
Let V ∈ Rep(Ot ) be the generating object corresponding to one element set in [10,
Definition 9.2]. By definition, we have

inv
(
V⊗2n

)
:= dimHomRep(Ot )(1, V

⊗2n) = (2n − 1)!!,
inv

(
V⊗2n+1

)
= dimHomRep(Ot )(1, V

⊗2n+1) = 0,

where (2n − 1)!! = (2n − 1) . . . 3 · 1 is the odd factorial.

https://oeis.org/A005425
https://oeis.org/A005425
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Proposition 7.3 an is the dimension of invariants of the n-th tensor power of the object
1 ⊕ 1 ⊕ V ∈ Rep(Ot ),

an = dimHomRep(Ot )(1, (1
2 ⊕ V )⊗n). (111)

Proof Let us compute the exponential generating function of dimensions of invariants

∑

n≥0

dim
(
inv

(
(12 ⊕ V )⊗n

)) un

n! = dim(inv exp(2u + Vu))

= dim(inv exp(2u)) exp(Vu)

= exp(2u)
∑

n≥0

un

n! dim(inv V⊗n) = exp(2u)
∑

n≥0

u2n

2n! (2n − 1)!!

= exp

(
2u + u2

2

)
. (112)

Here for a G-representation V we denote by

exp(Vu) =
∑

n≥0

un

n! V
⊗n ∈ K (G)[[u]],

where K (G) is the representation ring (tensored with Q) of the group G. ��
Proposition 7.3 motivates the following construction. Let A ∈ Rep(Ot ) be the

commutative Frobenius algebra obtained from a symmetrically self-dual object V ∈
Rep(Ot ) by the construction in Example 2.1 in Sect. 2.2. The generating function of
the α−invariant of algebra A is α0 + α1T where α0 can be chosen arbitrarily and
α1 = t + 2. It is also easy to see that the skein relation x2 = 0 holds for the handle
morphism of the algebra A. Thus by the universal property from Sect. 2.3 there is a
symmetric tensor functor Fα : DCobα → Rep(Oβ1−2) sending the circle object to
A = 12 ⊕ V (we assume here that β1 
= 0 since the skein relation is different in the
case β1 = 0). The following simple result is crucial:

Proposition 7.4 Assume β1 
= 0. Then the functor Fα is full and essentially surjective.

Proof By definition, the image of the functor Fα contains A = 12 ⊕ V . This implies
the essential surjectivity, as any object of Rep(Ot ) is a direct summand of a direct sum
of tensor powers of V .

Let us show that the functor Fα is full. Since the object A is self-dual it is sufficient
to show that anymorphism fromHom(1, A⊗n) is in the image of the functor Fα . Using
the decomposition

A⊗n = (12 ⊕ V )⊗n =
⊕

S⊂[1,...,n]

n⊗

i=1

XS
i
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where XS
i = 12 if i ∈ S and XS

i = V if i /∈ S, we see that the space Hom(1, A⊗n) is
spanned by the tensor products of morphisms from Hom(1, A) and the pairing 1 →
V ⊗ V → A⊗ A. Thus it is sufficient to check that Fα is surjective on Hom(1, A⊗n)

for n = 1, 2. This is clear for n = 1 since the space Hom(1, A) is two dimensional
and the image of the functor Fα is at least two dimensional (by the first row of Table
7), as Fα does not annihilate non-negligible morphisms. The same argument (based
on the second row of Table 7) works for n = 2 provided that β1 
= 2. Finally in the
case n = 2, β1 = 2 and char k 
= 2 one verifies by an explicit computation that the
unique up to scaling negligible morphism in Hom(1, A⊗2) is not annihilated by Fα . ��
Remark 7.5 One verifies that the functor Fα annihilates relations in Figs. 18 and 19.
Let DCob•

α be the quotient of DCobα by these relations. It is clear that the inequality
from Corollary 2 holds in the category DCob•

α . Thus Proposition 7.4 implies that the
functor DCob•

α → Rep(Oβ1−2) is also faithful. Hence, there is an equivalence of
tensor categories DCob•

α 
 Rep(Oβ1−2).

Combining Propositions 7.4 and 2.4 results the following:

Theorem 7.6 Assume Zα = β0 + β1T with β1 
= 0. The functor Fα induces an
equivalence of tensor categories DCobα 
 Rep(Oβ1−2), where Rep(Oβ1−2) is the
gligible quotient of the Deligne category Rep(Oβ1−2).

Here is a special case. Assume that char k = 0. By a theorem of H. Wenzl (see
e.g. [10, Théorèm 9.7]) we have Rep(Oβ1−2) = Rep(Oβ1−2) when β1 /∈ Z. It follows
fromProposition 7.3 that in this case dim A(n) = an , and the setA (n) is linearly inde-
pendent. We have the following implications for the determinant detn of the bilinear
form on A(n):

Proposition 7.7 The polynomial detn is nonzero and depends only on β1 (and not on
β0); moreover its irreducible factors are of the form β1 − s, s ∈ Z.

Proof It is clear that detn is a polynomial in variables β0 and β1 with integer coeffi-
cients. As explained above this polynomial can vanish only when β1 ∈ Z, so that detn
does not depend on β0, by elementary algebraic geometry. ��

In the case char k = 0 and t ∈ Z, the gligible quotients Rep(Ot ) are computed in
[10, Théorèm 9.6]. Recall that

Rep(Ot ) ∼= Rep(G, ε),

where G is one of the super groups O(n) (if t = n ≥ 0), Sp(2m) (if t = −2m is
negative and even), OSp(1, 2m) (if t = 1 − 2m is negative and odd) and ε ∈ G is a
suitable involution. Thus we get the following examples illustrating Theorem 7.6:

Example 7.8 (char k = 0)

(1) Assume Zα = β0 + 2T . Then DCobα is the category Vec and the circle object
corresponds to the Frobenius algebra k[x]/(x2) with ε(1) = β0 and ε(x) = 1.
Note that in this case dim A(n) = 2n .
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(2) Assume Zα = β0+3T . ThenDCobα is the categoryRep(Z/2) and the circle object
corresponds to the Frobenius algebra A = k[x]/(x3) with ε(1) = β0, ε(x) = 0,
ε(x2) = 1, and the group Z/2 acting on A via x �→ −x . Thus the character of
the Z/2−representation A takes values 3 and 1 on the elements 0, 1 ∈ Z/2, and
dim A(n) = 3n+1

2 .
(3) Assume Zα = β0 − 2T . Then DCobα is the category Rep(Sp(4)) (with the modi-

fied commutativity constraint), and the circle object corresponds to the Frobenius
algebra H∗(�2,k), where �2 is a oriented closed connected surface of genus
two. Here Sp(4) acts trivially on Heven(�2,k) and via the natural representation
on H1(�2,k). The commutativity constraint in Rep(Sp(4), ε) is modified in a
way making the natural representation into an odd vector space, so the algebra
H∗(�2,k) is commutative in the category Rep(Sp(4), ε).

We will see later (Proposition 7.12) that the leading coefficient of the polynomial
detn is ±1. It follows that detn is nonzero even if char k > 0; moreover its roots lie in
the prime subfield of k. Thus there is an equivalence DCobα

∼= Rep(Oβ1−2) provided
that β1 is not an element of the prime subfield. Note that in this case the category
Rep(Oβ1−2) is not semisimple by [14, Lemma 2.2].

Corollary 3 Assume char k > 0 and t is not in the prime subfield of k. Then the
category Rep(Ot ) is non-degenerate (i.e. has no nonzero negligible morphisms) and
non-semisimple.

In the case char k > 0 and β1 is in the prime subfield we expect that the categories
DCobα are equivalent to the fusion categories associated with super groups (G, ε) as
above (i.e. gligible quotients of suitable tilting modules categories). In particular, the
categories DCobα should have finitely many simple objects up to isomorphism.

We discuss now the multiplicities of the roots of polynomials detn . Here are some
patterns that can be observed in Table 7:

• The differences dim A(n) − un , where un is the exponent of β1 − 2, are given by
powers of two: (2, 4, 8, 16, 32, 64).

• The differences dim A(n) − wn , where wn is the exponent of β1 − 3, are given by
(2, 5, 14, 41, 122, 365). These exponents match the sequence (3n + 1)/2.

Comparing this patterns with Example 7.8 (1) and (2) we arrive at the following

Conjecture 7.9 Let s 
= 0 be an integer. The exponent of the factor β1 − s in the
polynomial detn is given by

an − dim Aα(s)(n)

where α(s) = (β0, s, 0, 0, . . . ), so that the generating function Zα(s)(T ) = β0 + sT
(for arbitrary β0 and char k = 0).

Remark 7.10 By definition, the bilinear form on the space kA (n) has a null space
of dimension an − dim Aα(s)(n). Thus, a standard argument (see e.g. [21, Lemma
8.4]) implies that the exponent of the factor β1 − s in detn is greater or equal to
an − dim Aα(s)(n).
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Note that, according to Theorem 7.6, the dimensions dim Aα(s)(n) are given by the
dimensions of invariants of the (super) groups G = O(k), Sp(2k), OSp(1|2k) in the
representation (12 ⊕V )⊗n where V is the defining representation of G and s = k+2,
2− 2k, 3− 2k, respectively. We tabulated the exponents predicted by Conjecture 7.9
in Table 8. Here are some observations about Tables 8 and 7:

• The exponents for β1 − 1 and β1 − 5 coincide. The same applies to the exponents
forβ1+1 andβ1−7 and to the exponents forβ1+3 andβ1−9 etc. This is explained
by the coincidence of the multiplicities for tensor products for OSp(1, 2k) and
O(2k + 1), see [38].

• The irreducible factors of det2n and det2n+1 coincide for any n ≥ 0.
• The irreducible factors which appear in det2n and do not appear at det2n−1 are

β1 − n − 1 (for n ≥ 1), β1 + 2n − 4 (for n ≥ 3), and β1 + n − 5 (for even n ≥ 4).

Conjecture 7.9 does not predict the exponent of the factor β1 in detn . We propose
the following

Conjecture 7.11 The exponent of the factor β1 in detn is given by

2nan−1 + an − cn+1

where cn is the Catalan number.

It would be interesting to find a categorical interpretation of this conjecture. The
numerical data for it are given in the last row of Table 8. Term nan−1 in the above
conjecture is the total number of connected components of genus one in the set of
cobordisms A (n).

Table 7 suggests that the leading coefficient of the polynomial detn is (−1)n . Using
this together with Conjectures 7.9 and 7.11 we can predict the polynomials detn . For
example, the prediction for det8 is

(β1−5)14(β1 − 4)630(β1−3)3912(β1 − 2)6937(β1 − 1)14β31931
1 (β1 + 2)133(β1 + 4).

One verifies that the degree of this polynomial agrees with Corollary 5 below.

7.2 Polynomials of degree two and three

Consider a polynomial generating function of degree two,

Z(T ) = β0 + β1T + β2T
2 (113)

The dimension of A(n) is bounded from above by B(3)
n , since all surfaces with a

component of genera at least 3 are in the kernel of the bilinear form. However the
computation shows that the actual dimension is strictly less than B(3)

n starting from
n = 2, see the data in Table 9 for the quadratic Z(T ).

Table 10 shows the determinants for a generic polynomial of degree three.
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Table 9 Computation of
dimensions and the determinant
for Z(T ) = β0 + β1T + β2T

2

n B(3)
n dim det

0 1 1 1

1 3 3 −β3
2

2 12 11 −β20
2

3 57 46 β118
2

4 309 213 β696
2

5 1866 1073 −β4225
2

Table 10 Computation of
dimensions and the determinant
for Z(T ) = β0 +β1T +β2T

2 +
β3T

3

n B(4)
n dim det

0 1 1 1

1 4 4 β4
3

2 20 19 −β35
3

3 116 102 −β266
3

4 756 604 β2007
3

5 5428 3884 β15540
3

7.3 Polynomials of arbitrary degree

Now consider the case of an arbitrary polynomial generating function:

Z = β0 + β1T + . . . + βmT
m, m ≥ 1.

Let A m(n) be the set of viewable cobordisms with n boundary circles such that for
each component S of genus g with � boundary circles the following inequality holds:

g + � ≤ m + 1. (114)

Note that A 1(n) is precisely the set A (n) from Proposition 7.1. Let us consider
the matrix of the bilinear form on the space A(n) computed at the elements of the set
A m(n), and let det(m)

n denote its determinant. It is clear that det(m)
n is a polynomial in

variables β0, β1, . . . , βm . In the next Proposition we are going to compute the leading
term of this polynomial. Let d(m)

n be the total number of connected components of all
elements of the set A m(n).

Proposition 7.12 The polynomial det(m)
n is of the form

±(βm)d
(m)
n + lower terms

where each lower term monomial has either less than d(m)
n factors or precisely d(m)

n
factors but involves some βi with i < m.
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Proof The expansion of the determinant det(m)
n is a sum over all permutations π of

the set A m(n) of terms

tπ = ±
∏

a∈A m (n)

ba,π(a),

where ba,π(a) is the pairing of a and π(a), hence some monomial in βi ’s. The number
of factors in the monomial ba,π(a) is precisely the number of connected components
of the surface obtained from a and π(a) by gluing along the boundary. Thus it is clear
that the number of factors is less or equal to the number of connected components of
a. Moreover, we have equality only if the partition of the boundary circles determined
by the connected components of π(a) is a refinement of the partition determined by
a.

Thus, the total number of factors in tπ is less or equal than the total number of
connected components of all elements a ∈ A m(n), and every monomial in the poly-
nomial det(m)

n has ≤ d(m)
n factors. The term tπ has precisely d(m)

n factors if and only if
the permutation π has the following property:

(*) for any a the partition of the boundary circles determined by the connected
components of π(a) is a refinement of the partition determined by a.

Note that there exists r > 0 such thatπr (a) = a. Thus the condition (*) is equivalent
to the following property:

(**) for any a the partition of the boundary circles determined by the connected
components of π(a) coincides with the partition determined by a.

Now let π0 be the following permutation:
π0(a) is obtained from a by replacing each connected component of genus g with

l boundary circles by the connected component of genus g′ = m + 1− g − l with the
same boundary circles. This transformation preserves inequality (114) and defines an
involution π0 on A m(n).

Then every connected component of the closed surfaceaπ0(a)given bygluinga and

π0(a) along the boundary has genus g+g′+l−1 = m, and the term tπ0 = ±(βm)d
(m)
n .

It is also clear that for any other π satisfying (**) the term tπ will be either zero (if
one of the components of aπ0(a) has genus greater than m) or will involve βi with
i < m (if one of the components of the gluing has genus < m). This completes the
proof of the proposition. ��
Remark 7.13 The sign of the leading term is the sign of the permutation π0; since π0
is an involution, the sign can be computed from the number of fixed points.

Corollary 4 The setA m(n) is linearly independent in A(n), for generic values of βi ’s.

Using the standard methods one computes the exponential generating functions for
the sizes of the sets A m(n) and for the sequence d(m)

n :
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∑

n≥0

|A m(n)|
n! tn = exp

⎛

⎝
m∑

g=0

tm+1−g

(m + 1 − g)! (g + 1)

⎞

⎠ ,

∑

n≥0

d(m)
n

n! tn =
⎛

⎝
m∑

g=0

tm+1−g

(m + 1 − g)! (g + 1)

⎞

⎠ exp

⎛

⎝
m∑

g=0

tm+1−g

(m + 1 − g)! (g + 1)

⎞

⎠ .

In particular, for m = 1 we get

Corollary 5 The degree dn = d(1)
n of the polynomial detn = det(1)n satisfies

∑

n≥0

dn
n! t

n =
(
2t + t2

2

)
exp

(
2t + t2

2

)
.

Equivalently, dn = 1
2n(an + 2an−1).

Conjecture 7.14 A m(n) spans A(n).

Proposition 7.15 Assume that Conjecture 7.14 holds for some m > 1. Then

det(m)
n = ±(βm)d

(m)
n .

Thus A m(n) is a basis of A(n) for any β0, β1, . . . , βm with βm 
= 0 and in any
characteristic.

Proof The set of zeroes of det(m)
n should be invariant under the scaling (β0, β1, β2, . . . ,

βm) �→ (λ−1β0, β1, λβ2 . . . , λm−1βm)(see Sect. 2.1). Now the result follows from

Proposition 7.12 since the leading term is multiplied by (λ)d
(m)
n (m−1) under the scaling

and the potential lower terms are multiplied by lower power of λ. ��
Remark 7.16 The argument above does not work for m = 1 since β1 does not change
under the scaling. However it gives an alternative proof to the known fact that detn =
det(1)n does not depend on β0.

Theorem 7.17 The Conjecture 7.14 holds for m ≤ 2.

Proof Form = 1 it was established earlier. To prove it form = 2, let us first introduce
the following notation.

The symmetric group Sn acts on A(n) via the permutation cobordisms that permute
n circles. Suppose given a cobordism y which is stabilized by a parabolic subgroup
Sλ ⊂ Sn , for a decomposition λ = (λ1, . . . , λk) of n, so that σ y = y for y ∈ Sλ. To
y and λ assign the element

∑
λ y of A(n) given by

∑

λ

y :=
∑

σ∈Sn/Sλ

σ y. (115)

That is, pick a representative τ in each coset Sn/Sλ, form τ y and sum over cosets.
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Fig. 20 Relation in A(3) for Z(T ) = β0 + β1T + β2T
2. Numbers 1 and 2 show the number of handles

(dots) on the component. Summation means symmetrization with respect to permutations of boundary
components parametrized by cosets of the stabilizer of the surface in S3. Sums A, B,C have 3, 3, 1 terms
respectively (7 terms in the right hand side in total)

For m = 2, the following relations hold in A(3) and A(4), see Figs. 20 and 21.
Figure 20 relation reduces a 3-holed torus to a linear combination of other cobordisms,
with each summand A, B,C also invariant under the permutation action of S3. Each
of these three terms is associated to a surface that has an obvious Sλ-invariance, for
the decomposition λ shown under the sum sign. The term is the sum over surfaces in
its orbit, as described above in (115).

Figure 21 relation has a similar presentation. For term B there the stabiliser of the
surface is the dihedral group D(4) ⊂ S4 generated by the permutations (12), (34),
and (13)(24). The corresponding subgroup is denoted (2, 2)′, it contains S(2,2) as an
index two subgroup. This relation implies Fig. 20 relation by capping off a circle by
a handle. Capping off by a disk results in a trivial relation.

We can exclude components with four boundary circles (� = 4) using Fig. 21
relation. To obtain the relations that simplify a genus i surface with 4 − i boundary
components for i = 1, 2, see inequality (114), cap i boundary components by handles
(one-holed tori) in Fig. 21 relation, resulting in Figs. 20 and 22 left relations. For
i = 3, there is also the relation that a one-holed connected surface of genus three is 0
in A(1), see Fig. 22 right.

These relations show that any connected component of genus g with � boundary
circles and g+ � > 2+ 1 (since m = 2) simplifies to a linear combination of surfaces
in the set A 2(n). Consequently, this set spans A(n), establishing Conjecture 7.14 for
m = 2. ��

Remark 7.18 Originally, relation (21) was computed in Sage by finding the kernel
of the (|A 2(4)| + 1) × (|A 2(4)| + 1)-matrix of the quadratic form restricted to the
elements of A 2(4) and the four-holed sphere.
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Fig. 21 Relation in A(4) for Z(T ) = β0+β1T +β2T
2. Numbers 1 and 2 show the number of handles (dots)

on the component. Summation means symmetrization with respect to permuting the boundary components,
as described in the proof. Sums A, B,C1,C2,C3, D1, D2, D3, D4 have 4, 3, 6, 12, 6, 4, 6, 4, 1 terms
respectively (46 terms in the right hand side in total)

Fig. 22 Relations in A(2) and A(1) for Z(T ) = β0 + β1T + β2T
2. Numbers 2 and 3 show the number of

handles (dots) on the component

8 Cobordisms of fractional genus and other decorations

Fractional genus. Recall the defining relations in Proposition 4.2 on generators x and
u of the algebra BS . If αn 
= 0 for some even n ≥ 0, then the element

α−1
n xn/2uxn/2 (116)

is an idempotent in BS . This is an obvious way to get an idempotent in BS unless the
power series Z(T ) has nontrivial coefficients only at odd powers of T . With a minor
effort, a version of the above idempotent can be produced in the latter case as well.
Namely, for odd n and with αn 
= 0, we can try to make sense of the expression (116).
For that one needs “cobordism” x1/2, which should be a “genus 1/2” surface, with
some boundary components. Let us consider an even more general case of a “genus
1/�” surface for some � > 1. We simply introduce a fractional dot x1/� with the
relation that its �-th power is the handle, see Figs. 23 and 24.
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Fig. 23 Dot of fractional order
m/�

Fig. 24 Top: Fractional dot x1/� can freely float along a connected component. Its �-th power is the handle.
Bottom: examples of relations on dots and handles

Fractional dots a/� and b/�, a, b ∈ Z+, floating on the same component, canmerge
into the fractional dot (a + b)/�. Vice versa, the latter can split into a/� and b/� dots.
Dot �/� = 1 converts into x and equals a handle on the component.

Formally, one can introduce the category of fractional cobordisms Cob�
2. Its objects

are non-negative integers n ≥ 0 and morphisms from n to m are the diffeomorphism
classes rel boundary of oriented cobordisms from n to m circles with dots floating on
the components and labelled by elements of the commutative semigroup H = 1

�
Z+ =

{0, 1/�, 2/�, . . . }. Dots can merge, adding their labels, and the label 1 dot equals the
handle. Dot 0 can be erased. A connected closed cobordism of genus g with a dot m

�

reduces to a 2-sphere decorated by the dot m+g�
�

∈ H .
Universal constructions for 2-dimensional cobordisms, as described here and in

[22, 29], extend in a straightforward way to Cob�
2 for any � ≥ 2 (the original theory

corresponds to � = 1). Parameters of the theory are αn/� ∈ k, over all n ≥ 0,
encapsulated by the power series in T 1/�,

Zα(T 1/�) =
∑

n≥0

αn/�T
n/�. (117)

State spaces Aα(k) of k circles are defined as in [22], and the rationality result is
proved in the same way.

Proposition 8.1 Vector spaces Aα(k) are finite-dimensional for all k ≥ 0 iff Aα(1) is
finite-dimensional iff Zα(T 1/�) is a rational function,

Zα(T 1/�) = P(T 1/�)

Q(T 1/�)
, (118)
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Fig. 25 Dots a and b merge into a + b dot; dot 0 can be erased; handle equals the dot labelled ψ(1)

for coprime polynomials P and Q, with Q(0) 
= 0.

Generalizations of the Deligne category extend to this case as well, and each rational
function as in (118) gives rise to several categories by direct analogy with [29]. These
categories havefinite-dimensional homspaces and include the analogue of the partition
category, the Deligne category, and their quotients by ideals of negligible morphisms.

We should warn the reader that cobordisms of fractional genus, as above, are simply
decorated surfaces that are morphisms of Cob�

2. They don’t carry any of the rich
structure associated with the usual surfaces, such as the mapping class group, moduli
spaces of complex structures, and so on.

Commutative monoid decorations. More generally, one can take any commutative
monoid H (with the binary operation written additively as+), together with a monoid
homomorphism ψ : Z+ −→ H . To ψ one can assign the category Cobψ

2 of oriented
decorated 2D cobordisms. As before, objects of this category are non-negative integers
n ∈ Z+, while the morphisms are oriented 2D cobordisms (modulo rel boundary
diffeomorphisms) decorated by dots labelled by elements of H . Dots labelled a, b ∈ H
floating on the same component can merge into a dot labelled a + b, see Fig. 25. Dot
labelled 0 ∈ H can be erased. A handle on a component equals a dot on that component
labelled by ψ(1).

Closedψ-cobordisms are disjoint unions of their connected components, classified
by their genus, which is an element of H . The analogue of evaluation is a map of sets
α : H −→ k which can be written via formal power series

Zα =
∑

h∈H
αh h (119)

and viewed as an element of the dual vector space (kH)∗.
In Cobψ

2 connected cobordisms from 0 to 1 are parametrized by elements h ∈ H
and correspond to a 2-disk with a dot labelled H . Consequently, the space Aα(1) is
the kH -submodule of (kH)∗ generated by the functional Zα . It is finite-dimensional
iff α is a representative function on H , see [22].

Notice that ψ does not have to be injective. However, one can specialize to the
case when H is a free monoid and ψ is injective, and then get any desired defining
relations on generators of H by restricting to suitable subspaces of (kH)∗. Taking
large H , however, may move the emphasis from 2D cobordisms and representative
functions on them to, for the most part, studying representative functions on kH , with
only a meagre input from cobordisms.

Another potentially interesting specialization is to the periodic genus. For that spe-
cialization genus does not need to be fractional. Consider the quotient of the cobordism
category by the relation that the M-th power of the handle is identity, that is, can be
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removed. This corresponds to working with the monoid and map

H = Z/MZ, ψ;Z+ −→ H , ψ(1) = 1, (120)

that is, modding out Z+ by MZ+. In the language of α-evaluations, one is looking at
“M-periodic” power series, that is, αM+n = αn for all n ≥ 0. Equivalently, the power
series

Zα(T ) = P(T )

1 − T M
, deg(P(T )) < M, (121)

is determined by the coefficients of P(T ). Such evaluations necessarily extend to the
category of cobordisms with integral genus, see the next remark. Fractional version
of (121) also makes sense, with the power series

Zα(T 1/�) = P(T 1/�)

1 − T M/�
, deg(P(x)) < M, (122)

and not necessarily integralM/�. In this theoryM/gcd(M, �) handles on a component
can be erased.

Remark Paper [28] discusses several rank two Frobenius extensions R∗ ⊂ A∗ used in
various flavors of SL(2) link homology. Here R∗ is a ground commutative ring and A∗
is a Frobenius R∗-algebra, which is, in particular, free of rank two over R∗. Extension
(RD, AD) considered in [28] makes use of the anti-handle, a formal inverse of the
handle cobordism, denoted by �−1 in that paper. This extension essentially describes
Lee’s homology theory and also gives a monoidal functor from the category Cobψ

2 to
the category of free RD-modules, where

H = Z, ψ : Z+ −→ Z (123)

is the usual homomorphism from themonoid of non-negative integers (under addition)
to integers. The functor assigns A⊗n

D to the union of n circles and the structure maps
of that Frobenius algebra (unit, counit, multiplication, comultiplication) to the basic
cobordisms: cup, cap, pants, copants. Multiplication by the handle endomorphism of
AD is invertible and allows to introduce the antihandle (dot labelled−1) as the inverse
of the handle endomorphism.

A similar localization appears in [27] in the context of evaluations of unoriented
SL(3) foams,where one can invert the discriminant andworkwith suitable decorations
on foams.

Allowing connected sums of cobordisms in Cob2 withRP2 (which results in unori-
entable cobordisms) corresponds to working with the monoid and the map

H = 〈1, b〉/(3b = b + 1), ψ : Z+ −→ H , ψ(1) = 1, (124)

with dot labelled b corresponding to the connected sum with RP
2. In this monoid

there is no cancellation, and b + b 
= 1 although b + b + b = b + 1. Topologically,
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Fig. 26 Skein relations in category Cobψ
2 . Note that a, b are elements of an algebra B rather than of a

monoid H (where the binary operation is denoted +), which leads to the addition in Fig. 25 becoming
multiplication here

connected sum with three copies of RP2 is diffeomorphic to the connected sum with
one RP2 and the torus, but connected sum with two copies of RP2 (equivalently, with
the Klein bottle) is not diffeomorphic to adding a handle, when applied to an orientable
connected component. Monoid H surjects onto 1

2Z+ by sending b to 1
2 , intertwining

homomorphisms ψ for these monoids.
Extending to commutative algebras. Decorations of two-dimensional cobordisms

by elements of a commutative monoid can be further generalized. Observe that a map
ψ as above from the “genus” semigroup Z+ into a commutative monoid H , together
with the “trace” or evaluation α : H −→ k gives rise to two maps, that we still denote
ψ and α,

k[x] ∼= kZ+
ψ−→ kH

α−→ k. (125)

The first map is a homomorphism of commutative k-algebras, the second (evaluation)
map is k-linear. One can generalize from kH to a commutative k-algebra B together
with a homomorphism ψ and a k-linear trace map

kZ+ ∼= k[x] ψ−→ B
α−→ k. (126)

Instead of the set-theoretic category Cob2 which does not have a linear structure one
starts with the k-linear category kCob2 with the same objects as Cob2 and morphisms
– finite k-linear combinations of morphisms in Cob2. One then modifies kCob2 to the
categoryCobψ

2 as follows.CategoryCobψ
2 has objects n ∈ Z+.Morphisms arek-linear

combinations of oriented 2D cobordisms as before with dots labelled by elements of
B floating on components and the following relations, see also Fig. 26:

• Dots are subject to the obvious addition and product rules for elements of B,
• A handle on a cobordism can be replaced by a dot labelled ψ(x),
• A closed surface of genus g with dot labelled b evaluates to α(bψ(x)g) ∈ k.

In thisway, a surface of genus gwith dots labelleda1, . . . , ak floating on it reduces to
a genus zero surface with the same boundary and a single dot labelled ψ(x)ga1 . . . ak .
A closed connected component reduces to a 2-sphere with a dot b. It then evaluates
to α(b) ∈ k. Thus, any closed component evaluates to an element of k. In this way a
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dotted cobordism reduces to a viewable cobordism with all components of genus zero
and at most a single dot on each connected component, labelled by some element of
B.

Pick a basis {b}b∈C of B that contains 1 ∈ B. A morphism from n to m in Cobψ
2

reduces to a linear combination of genus zero viewable cobordisms with dots on each
components labelled by elements of the basis C of B. In fact, such dotted cobordisms
constitute a basis in the hom space Hom

Cobψ
2
(n,m). Vice versa, category Cobψ

2 can be

defined via these bases and multiplication rules that come from composition of cobor-
disms, converting a handle to ψ(x), multiplication in the basis C of B and evaluation
map α ∈ B∗. Basis elements are parametrized by a choice of a set-theoretical partition
λ ∈ Dm

n of n + m boundary circles together with an assignment of an element of the
basis C of B to each component.

Next, assume that α ∈ B∗ = Homk(B,k) is a representative function and exclude
the trivial case α = 0. This means that the hyperplane ker(α) ⊂ B contains an ideal
I ⊂ B of finite codimension, dim(B/I ) < ∞, see [34], for instance. Assume that
I is the largest such ideal. Element α generates B-subrepresentation Bα ⊂ B∗ that
factors through the action of B/I and is isomorphic to a free rank one B/I -module.

Remark Algebra B ′ = B/I is a commutative Frobenius k-algebra, with the nonde-
generate traceα and a preferred element, which is the image ofψ(x) under the quotient
map B −→ B/I . The constructions that follow can alternatively be done with such
a commutative algebra B ′ (necessarily finite-dimensional over k), equipped with a
nondegenerate trace and a preferred element.

Next, we quotient Cobψ
2 by the relations that a dot labelled by z ∈ I is zero. Such

a dot can be expanded as a linear combination in the basis C . A possible convenient
basis can be formed by choosing a basis a basis CI of I and extending it to a basis of
B that contains 1 (the latter condition is also for convenience). Let us denote such a
basis by C = CI �C ′, with 1 ∈ C ′ and C ′ descending to a basis of the quotient B/I .
Set C ′ is finite.

Denote the quotient category by SCobψ
α . It is the analogue of the category PCobα

from [29]. One can check that a basis of Hom
SCobψ

α
(n,m) is given by choosing a

set-theoretic partition λ ∈ Dm
n for n + m boundary circles and assigning an element

of C ′ to each component of the partition. In particular, hom spaces in the category
SCobψ

α are finite-dimensional. The space of homomorphisms

Aψ
α (1) := Hom

SCobψ
α
(0, 1) (127)

is a commutative algebra under the pants cobordism, naturally isomorphic to the
Frobenius algebra B/I above. Now form the additive Karoubi closure

DCobψ
α := Kar(SCobψ

α ) (128)

to get a k-linear idempotent-complete rigid symmetric monoidal category with finite-
dimensional hom spaces. This is the analogue of the Deligne category for the data
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(B, ψ, α) as in (126), with a representative functional α (trivial case α = 0 gives the
zero category).

Categories Cobψ
2 , SCob

ψ
α , and DCobψ

α have a trace map given on a decorated
(n, n)-cobordism x representing an element in Hom(n, n) by closing x via n annuli
into a closed cobordism x̂ and evaluating via α:

tr(x) = α(̂x). (129)

Denote by Jψ
α the two-sided ideal in SCobψ

α of negligible morphisms for the trace tr.
Let

Cobψ
α = SCobψ

α /Jψ
α (130)

be the quotient category by this ideal. Likewise, let DCobψ
α be the quotient of the

Deligne category DCobψ
α by the negligible ideal for tr.

For a representativeα, as before, these categories canbeorganized into the following
diagram of categories and functors, with a commutative square on the right.

Cob2 −−−−→ kCob2 −−−−→ Cobψ
2 −−−−→ SCobψ

α −−−−→ DCobψ
α

⏐⏐�
⏐⏐�

Cobψ
α −−−−→ DCobψ

α

(131)

This diagrams of categories is fully analogous to the ones described in (15) above and
in [23, 26, 29]. The four categories in the commutative square have finite-dimensional
hom spaces. The two categories on the far right are idempotent complete.

Remark The construction above is likely to be more interesting when the algebra B
is not very large. One may, for instance, take B = k[x, y]/(g(x, y)), the quotient of
the ring of polynomials in two variables by a polynomial that depends nontrivially on
both x and y, and define ψ : k[x] −→ B by ψ(x) = x .

Remark The category of thin flat 2-dimensional cobordisms in [26] has commuting
hole and handle cobordisms. Similar to the discussion above, dot-decorated version of
that category can be introduced, with elements of a commutative monoid H floating
on components of cobordism. One fixes two elements of H , to equate to a handle and
a hole, respectively. Equivalently, a homomorphismψ : Z+ ×Z+ −→ H can be fixed
for that.

If, instead, elements of a commutative k-algebra B aremade to float on cobordism’s
components, one should choose two elements of B, to equate to the handle and the hole,
respectively. In the version of the thin cobordism category [26] where side boundaries
are colored by colors {1, . . . , r}, there are r different holes, one for each color of its
boundary. Then to combine B with the handles and holes, one chooses r + 1 elements
in B.
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