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1 Introduction

Throughout the paper we work over a field k, occasionally specializing to a character-
istic zero field. We will often consider k—linear symmetric monoidal categories and
call them tensor categories. Note that this is different from the convention in [16],
where tensor categories are assumed to be abelian.

The Deligne category Rep(S;), where ¢ ranges over elements of k, interpolates
between categories of finite-dimensional representations Rep(S,) of the symmetric
group S, over kK, for various n [8, 10]. Itis arigid symmetric monoidal Karoubi-closed
k-linear category that depends on a parameter ¢ € k. The Deligne category is equipped
with a natural symmetric trace form tr that allows to form the ideal J; € Rep(S;) of
negligible morphisms. A morphism x : a — b is negligible if for any y : b — a the
trace tr(yx) = 0. The ideal J; is non-trivial only when ¢ = 7 is a non-negative integer,
and the quotient category

Rep(S,) = Rep(S,)/Jy M

is equivalent to the category of symmetric group representations in characteristic 0,
with some modifications needed in characteristic p [20]. For the other values of ¢ the
ideal J; is trivial and Rep(S;) is equivalent to Rep(S;).

As observed by Comes [7], there is a functor from the category Cob, of oriented
two-dimensional cobordisms between one-manifolds to the Deligne category. Modi-
fications of this functor, coupled with the universal construction of two-dimensional
topological theories [3, 22], lead to generalizations of the Deligne category Rep(S;)
and of its quotient Rep(S;) by the negligible ideal [29].

Objects in Cob, are non-negative integers 7 € Z and morphisms from 7 to m are
oriented two-dimensional cobordisms from the union of n circles to the union of m
circles, up to rel boundary diffeomorphisms [29].

Working over k, choose a rational function and its power series expansion (the
series of )
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P(T
Za(T):%:;anT”, oan €k, a = (ag, a1, ...), )

where polynomials P(T'), Q(T) € K[T] are relatively prime and
N =deg P(T), M =deg OQ(T), K :=max(N + 1, M). 3)

We may also write P, (T) and Qy(T) in lieu of P(T) and Q(T') to emphasize depen-
dence on «, and normalize so that

Po(T)

Za) =5 1)

=Y anT", (Pa(T), Qu(T) =1, Qu(0) = 1. “)

n>0

With this normalization, P,(T) and Q,(T) are uniquely determined by «. We may
refer to « as a (rational) sequence and to Z, (T') as its associated series. To keep track
of «, we may also denote

Ny =deg Py(T), My, =deg Qu(T), Ky := max(Ny + 1, M,,) @)

in place of (3).

One can “linearize” the category Cob; of two-dimensional cobordisms using the
sequence «. To do that, first allow linear combinations of cobordisms with coefficients
in k and also evaluate a closed connected oriented surface of genus g, when it is a
component of a cobordism, to g € K. This results in the Kk-linear tensor category
VCoby, which has the same objects n € Z as Cob, (this category is denoted Cob],
in [29]).

In the notation VCob,, letter V stands for viewable or visible. A 2D cobordism x is
called viewable or visible if it has no closed components, that is, any connected compo-
nent of x has non-empty boundary. The above evaluation of closed components allows
to reduce a morphism from » to m to a linear combination of viewable cobordisms.
Thus, morphisms in VCob,, are k-linear combinations of viewable cobordisms, with
the composition of morphisms given by composition of cobordisms and the above «-
evaluation applied to all closed components of the composition. Note that hom spaces
in VCob,, are infinite-dimensional, since a component of a cobordism can have any
number of handles.

A further reduction in the size of the category is given by considering the ideal
Jo C VCoby of negligible morphisms, relative to the trace form tr, associated with
« and forming the quotient category

Coby, := VCoby /Jy. (6)

In this paper we call Coby, the gligible quotient of VCob,. We choose this terminology
over more cumbersome non-negligible quotient and over radical quotient, for the latter
may be somewhat ambiguous.
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The trace form is given on a cobordism y from n to n by closing it via n annuli
connecting n top and n bottom circles of the boundary of y into a closed oriented
surface y and applying a,

tre (¥) := (), N

see formula (11) in [29]. It is shown in [29] that the hom spaces in Cob, are finite-
dimensional over k iff the generating function Z,(T) is rational, see formula (2),
although the category Cob,, is defined for any sequence «.

Notation

Aq(n) := Homcop, (0, n) (8)

is used in [22] to denote the state space of n circles in the theory associated to . Vector
space Ay (n) can be described as the quotient of the k-vector space with a basis {[S]}s
of viewable cobordisms S with n boundary circles modulo skein relations that hold in
the evaluation « for any closure of these n circles by a cobordism 7" on the other size,
so that T S are closed surfaces and evaluations « (7' S) make sense as elements of k.
These state spaces are finite-dimensional for rational sequences «.

Category Cob,, is a symmetric monoidal k-linear category with objects n € Z,
and finite-dimensional hom spaces (recall the assumption that « is rational). One can
form the additive Karoubi closure

DCob , := Kar(Cob?) )

by first allowing formal finite direct sums of objects in Cob,, and extending morphisms
correspondingly to get the finite additive closure Cob®, then adding idempotents to
get a Karoubi-closed category.

Category DCob , is the analogue of the gligible quotient of the Deligne category.
It is a k-linear additive idempotent-complete rigid symmetric monoidal category with
finite-dimensional hom spaces. It carries nondegenerate bilinear pairings on its hom
spaces

Hom(a, b) ® Hom(b, a) — k.
This category is the analogue of the category Rep(S;) above given by modding out
the Deligne category Rep(S;) by the ideal of negligible morphisms.
To recover the analogue of the Deligne category itself, one needs to insert an inter-

mediate category SCob,, (skein cobordisms) into the chain of categories and functors
below, in between categories VCob, and Coby,:

Cob, — VCob, — SCoby, — Cob, — DCob,,. (10)

In this additional intermediate step, instead of modding out by all negligible mor-
phisms, one can first form a skein relation (the handle relation) quotient of VCob,
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which reduces a component with K handles (K is given in formula (3)) to a linear
combination of components with fewer handles, using the relation

XK b x Ky x K2 (—m)Mpy KM (1n

where x denotes addition of a handle to a component, and x™ stands for adding m
handles.

Polynomial in the left hand side of (11) is the minimal polynomial of the handle
endomorphism x of the circle in the category Cob,. We call it the handle polynomial
of @ and denote

Up(x) i= xX = b x84 by x®2 = (= D)Mpy KM, (12)

The handle polynomial is monic. We use x to denote the handle operator, use formal
variable T in the power series, and switch between x and 7" as convenient throughout
the paper.

Coefficients b; of the handle polynomial are the coefficients of the polynomial in
the denominator of (2) in the reverse order:

Q) =1—=bT+bT?*+ ...+ (=D)Mby T, b; €k, (13)
also see [22, Sect. 2.4]. We have

Uy(x) = xX0/x) = xKMuM — by xM=1 4 by x K2 — 4 (=DMby).
(14)

Recall that denominator Q (7)) is normalized to have constant term 1, so that Q(0) =
1. Since Q(T) is a denominator of the power series Z,(T), it has a non-zero constant
term, which is rescaled to 1. Note that changing Z, (T) to AZy(T) for » € k* does
not change the above skein relation, but does change the evaluation and the resulting
categories VCob,, Cob, and DCob ,.

When P(T)/Q(T) in (2) is a proper fraction, that is deg P(T) < deg Q(T'), then
K =M and Uy (0) = (—1)Mby, #0.

We denote by SCob, the quotient of VCob, by the handle relation (11). This
category is denoted PCob,, in [29]. The quotient of SCob,, by the ideal of negligible
morphisms (the gligible quotient) is naturally isomorphic to Cob, (isomorphic and
not only equivalent, since objects of these categories are non-negative integers).

We see that SCob,, has a place in (10) as an intermediate category between the
two categories in the middle. The additive Karoubi envelope of SCob, is denoted
by DCob,. It is the analogue of the Deligne category. There is a natural equivalence
between the category obtained from SCob, by first forming the additive Karoubi
closure and then modding out by negligible morphisms (two consecutive right arrows
then the down arrow in the square below) and the category obtained from SCob,, by
first forming the quotient by negligible morphisms and then passing to the additive
Karoubi envelope (down arrow followed by two right arrows in the square below).

) Birkhauser
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We summarize the resulting collection of categories and functors between them in
the following diagram, with the square commutative.

Coby —> VCoby, —> SCoby —> SCob® ——— DCob,

[ N

Cob, —> Cob® ——— DCob,,

The four rightmost categories are additive, the three categories to the left of them
are k-linear and pre-additive (category Cobs is neither pre-additive nor k-linear). All
eight categories are rigid symmetric monoidal. The six categories on the right each
have finite-dimensional hom spaces. The bottom three categories are gligible quotients
of the respective categories above them (that is, quotients by the ideals of negligible
morphisms), and their hom spaces carry non-degenerate bilinear forms. The table
below provides brief summaries for most of these categories.

Notation Category
Coby Oriented 2D cobordisms
VCoby Viewable cobordisms; evaluate closed components via «
SCoby “Skein” category; quotient of VCoby
by the handle relation (11)
Coby “Gligible” quotient of SCoby

by the kernels of trace forms
(equivalently, by the negligible ideal)

DCoby Deligne category; additive Karoubi
completion of the skein category SCoby
DCob,, Gligible quotient of the Deligne category;

equivalent to the additive Karoubi completion of Cobg,

Category DCoby, is the analogue of the Deligne category Rep(S;) and specializes
to it when the sequence « is constant,

t
a(t)y =(t,t,...), Zop) = T , t ek (16)

T

Category DCob , is the analogue of the quotient Rep(S;) of Rep(S;) by negligible
morphisms. It specializes to Rep(S;) when « is the constant sequence «(t).

In this paper we study generalized Deligne categories DCoby, their quotients
DCob , as well as categories SCob, and Coby, for other rational series «. We refer to
these categories as tensor envelopes of «.

For particular key rational generating functions Z, (7)) we establish or recall the
connection between tensor envelopes of o and the known representation categories:

e Generating function /(1 — AT) relates to the Deligne category of representations
of symmetric group Rep(S;), t = By, see [29] and Sect. 6.1. For these series o
the category DCob,, is equivalent to Rep(S;), inducing an equivalence of gligible
quotient categories as well, DCob , = Rep(S;).

W Birkhauser
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e Tensor envelopes for the constant generating function Z(7) = 8, B € Kk, relate
to the representation category of the Lie algebra osp(1|2), see Sect. 5 and Theo-
rem 5.5.

e Categories for the linear generating function Bp+ 81 T relate to the Deligne category
Rep(O;) for the orthogonal group, also known as the unoriented Brauer category,
and to its gligible quotients, Sect. 7.1.

Below is a brief summary, section by section, of the constructions and results in the
paper.

e In Sect. 2 we discuss basic properties of tensor envelopes.

— Section 2.1 points out that the scaling Z(7T) — A~1Z(\T) for an invertible
A = u? does not change the categories we consider.

— In Sect. 2.2 we explain that any commutative Frobenius algebra object in a
pre-additive tensor category gives rise to a power series o with coefficients in
the commutative ring End(1) of endomorphisms of the unit object.

— In Sect. 2.3 we recall the universal property of Cob, and Proposition 2.4.

— Section 2.4 studies direct sum decompositions of commutative Frobenius
algebra objects mirroring partial fraction decompositions of their rational gen-
erating series.

e Section 3 contains key semisimplicity and abelian realization criteria for the tensor
envelopes of «, including Theorems 3.2 and 3.7. In particular, we classify series
a with the semisimple category DCob, .

e Section 4 reviews properties of the endomorphism ring of the one-circle object in
categories SCob, and Coby,.

e Section 5 describes the structure of the gligible quotient category Cob,, for the
constant function (seriesa = (8, 0, 0, ...)). Theorem 5.1 states that the dimension
of the state space A(n) of n circles for this function is the Catalan number, for k of
characteristic 0. A monoidal equivalence between the Karoubi envelope DCob ,
of Coby and a suitable category of finite-dimensional representations of the Lie
superalgebra osp(1]2) is established in Sect. 5.5.

e Section 6.1 studies Gram determinants of a natural spanning set of surfaces for
the function /(1 — y T'), where tensor envelopes correspond to the Deligne cate-
gory. These are rank one theories. Determinant computations for various rank two
theories are given in Sect. 6.2.

e Section 7 considers the case of a polynomial generating function, beyond the con-
stant function case studied in Sect. 5. When the function is linear, associated tensor
envelopes can be expressed via the unoriented Brauer category and its gligible quo-
tient, due to the presence of a commutative Frobenius object in the Brauer category
with a linear generating function, see Sect. 7.1. Section 7.2 provides numerical data
for the Gram determinants in categories when the generating function is a polyno-
mial of degree two or three. Section 7.3 considers arbitrary degree polynomials.
A conjectural basis in the state space of n circles for the theory is proposed there,
and some properties of the Gram determinant for that set of vectors is established.

e In Sect. 8 we explain how to enrich category Cob, of two-dimensional oriented
cobordisms by adding codimension two defects (dots). Presence of the handle
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cobordism allows one to add relations intertwining the handle cobordism with
dot decorations. Going from less general to more general examples, dots may be
viewed as fractional handles, elements of a commutative monoid, or elements of
a commutative algebra. Theory developed in the rest of this paper should extend
to least some of these generalizations.

We’d like to mention related papers [18, 33] that came out after this paper appeared
on arXiv.
2 Properties of a-theories
2.1 Scaling by invertible elements
Consider a theory « over k with generating function Z,(7T) and state spaces Ay (k)
of k circles. Choose an invertible element u € k*, denote A = ,uz, and change the
sequence ¢ = (xp, &1, ...) to
o = (T ag, ar, hag, Aas, L), (17)
that is, (a'),, = A" 'a,,. The generating function for o’ is
Zoy(T) = 27 Zg AWT) = A7ty + oy T + Aea T? + 223 T2 + ... (18)
Note that Z,(T') and Z,/(T) have the same linear term «.
Consider the k-vector space Fr(k) with a basis {[S]}s given by surfaces S without
closed components and with 3S = LiS!, one for each diffeomorphism class rel

boundary of such surfaces. Sequence « determines a k-bilinear symmetric form on
Fr(k) with the pairing (, ), given on generators by

([S1], [S2De = a((=S1) U $2) 19)

and extended by linearity, where (—S7) U S is the closed surface given by gluing S
and S, along the common boundary. Recall that the state space

Ag (k) = Fr(k)/ker((,)a) (20)
is the quotient of the free module by the kernel of this form.
Alternatively, consider the bilinear form on Fr(k) given by o’. The quotient of Fr (k)
by the kernel of this form is the state space for o’
Ay (k) = Fr(k)/ker((,)qo)- 21
Introduce the k-linear map

¢ : Fr(k) —> Fr(k), ¢S] = *S[s]. (22)

W Birkhauser
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This map scales [S] by w XS where x(S) is the Euler characteristic of S. It inter-
twines the bilinear forms on these spaces

([S1], [$2D)er = (@ (S1D), ¢ ([S2])er (23)

and induces an isomorphism of vector spaces
¢ Ay (k) — Ag(k), (24)

also denoted ¢. This isomorphism intertwines nondegenerate R-valued bilinear forms
(,)o and (, )¢ on these spaces and shows that o and &’ define equivalent topological
theories as defined in [22].

On the level of categories, the scaling map ¢ in (22) induces k-linear isomorphisms
between the morphism spaces in VCob,, and VCob,,

Homvcob,, (n, m) —> Homvcob, (1, m)

compatible with the composition in these categories and leading to an isomorphism
of categories VCob,, = VCob,. This isomorphism is compatible with the various
quotient and Karoubi envelope categories that follow and leads to isomorphisms or
equivalences of the corresponding categories, including isomorphisms SCob, =
SCoby, Cob, = Cob, and equivalences DCob,, = DCoby, DCob,, = DCob,,.
We see that scaling by A = u2, i € k*, gives isomorphic theories and isomorphic or
equivalent associated categories. This scaling changes the handle relation by rescaling

the handle.

2.2 Commutative Frobenius algebra objects in symmetric monoidal categories

Let C be a symmetric monoidal category. Let A = (A, m, () € C be a commutative
algebra object in C, i.e. an object A € C equipped with associative and commutative
multiplicationm : AQ A — Asuchthatt : 1 — A satisfies the unit axiom, seee.g[16,
Sections 7.8.1 and 8.8.1]. We say that A is a commutative Frobenius monoid in C if it is
equipped with a morphism € : A — 1 such that the compositionb : AR A 5 A51
is a non-degenerate pairing, i.e. there exists a morphism ¢ : 1 - A ® A such that the
morphisms b and c satisfy the axioms of evaluation and coevaluation maps, see e.g.
[16, 2.10.1]. Equivalently, the object A* exists and the morphism A — A* which is
the image of b under the natural isomorphism Hom(A ® A, 1) >~ Hom(A, A*) is an
isomorphism. We will often identify A and A* using this morphism. For example we
define the comultiplication morphism A : A — A ® A as dual to the multiplication
morphism. Clearly A is coassociative. It is easy to see that A is a morphism of A x A°P-
objects. One shows that the morphism ¢ equals to the composition of ¢ and A.

Given a Frobenius monoid A € C and n € Zso we get a morphism a,, : 1 N

A S a8 M4 S 1 where A, 0 A — A®" is n—fold comultiplication and

my : A®" — A is n—fold multiplication. Thus ag = € ¢ is the composition of € and
t,and a; = e m At = c b is the composition of ¢ and b, that is the dimension of A.

) Birkhauser
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Equivalently, consider the handle endomorphism

x:AS A4 A, (25)

which has a topological interpretation as a tube with a handle on it. Iterating this
morphism yields x”, a tube with n handles. The map a, can be written as

a, =ex" . (26)

Elements a,, are endomorphisms of the unit object 1 of C.

We distinguish between the handle endomorphism x above and the handle mor-
phism. The latter is the morphism 1 — A given by x¢. Handle morphism corresponds
to a one-punctured torus, with the puncture circle on the target on the morphism, while
handle endomorphism corresponds to the twice-punctured torus, with one circle on
both the source and target cobordisms.

From here on we assume that C is a k—linear symmetric monoidal category and the
canonical map k — End(1) is an isomorphism. Then a,, = «;id; for some «;,, € k.
The sequence a = (a;)nez., Will be called a—evaluation or just the evaluation of A.

Example 2.1 LetC be an additive k—linear symmetric monoidal category andlet V € C
be an object equipped with a non-degenerate symmetric pairing V®V — 1. We define
a Z—graded commutative Frobenius algebra A = A(V) as follows: A = AgA1D Ay
where Ag = A} = 1 and A; = V; Ap is the image of the unit morphism, the
multiplication A1 ® A1 — A» is given by the symmetric pairing, and the linear form
€ : A — 1factors through the projection A — Ao @ A, and is nonzero when restricted
to As. It is easy to verify that the o —evaluation of the algebra A(V) has «; = 0 for
i > l;also; = dim(A) = 2+dim(V). Parameter « is the composition of € and the
unit morphism and can be chosen to be any element of k. The generating function is
then Zy(T) = ag + (2 + dim(V))T. Possible dimensions dim (V') of such objects V
depend on C. For instance, when C is the category of k-vector spaces, these dimensions
belong to the image of Z, € k. When C is the unoriented Brauer category Rep(O;)
with the parameter ¢ € k, dim(V) = ¢ for the standard generator V of C, see Sect. 7.1,
for instance, and references there.

Remark One can informally compare this setup with the problem of reconstructing
or understanding a system from observable data on it. Here one can imagine that the
system consists of an object A € C, handle endomorphism x of A (and, more generally,
endomorphisms of A associated to arbitrary cobordisms from a circle to itself). Object
A is unknown to us, but we can observe values of closed cobordisms, which are «;, for
a connected genus n cobordism. Then the universal pairing construction of [22, 29] in
dimension two (and its counterpart [3] in three dimensions) consists of recovering a
minimal model for x and C from the closed cobordism data. This toy example in two
dimensions can be compared to more complicated reconstructions in control theory.
We probe category C via evaluations of closed cobordisms, which allow us to fully
reconstruct it, in the universal pairing setup.

W Birkhauser



Two-dimensional topological theories. .. Page 110f68 71

Example 2.2 Given two commutative Frobenius algebra objects A1, A, in C, their sum
A| & Aj; is naturally a commutative Frobenius algebra in C. If sequences « and 8 are
evaluations of A and A», respectively, the evaluation of A; & A, is the sequence
a+ = (o + ,Bn)neZ_,_-

Example 2.3 Hadamard product of power series « and 8 is the series a8 with («f), =
o, B, that is, we multiply the two series term-wise. Hadamard product of rational
power series is rational [31]. The tensor product A; ® A, of commutative Frobenius
algebras in C is naturally a commutative Frobenius algebra in C. The evaluation of
A1 ® A» is the Hadamard product of evaluations of Aj and A5.

If chark = p, the p-th tensor power A®” of a commutative Frobenius algebra A
has evaluation «” equal to the application of the Frobenius endomorphism of k to
each term of «.

2.3 Universal property

It is well known (see e.g. [40, Theorem 0.1]) that the category Cob, has the following
universal property: for a symmetric monoidal category C an evaluation of symmetric
monoidal functors on the circle object gives an equivalence of categories

{tensor functors Cob, — C} — {commutative Frobenius algebras in C}.

One deduces easily a similar universal property of kCob, where the categories C and
functors are assumed to be k—linear. Likewise,category VCob,, has the following
universal property: for an k—linear symmetric category C an evaluation at the circle
object gives an equivalence of categories:

{k — linear tensor functors VCoby —> C} — commutative Frobenius algebras in C
“ with evaluation «

We pick an inverse equivalence of categories and for a commutative Frobenius
algebra A € C we will denote by Fy4 the corresponding tensor functor,

Fa: VCob, — C. Q27)

A sequence « is called linearly recurrent or homogeneously linearly recurrent if
Qk4ntl = Anlgtn + Ap—1Qk4n—1 - -+ + ajog4+1 for all k > N for some N and fixed
ai, ..., an, see [17]. In this paper we refer to such « as recurrent sequences.

Assume that the sequence « is recurrent. Functor F4 factors through the category
SCob,, if and only if F4 annihilates the handle polynomial in (12). If the category C
is Karoubian the functor F4 extends uniquely to the category DCoby,.

We will often use the following result, see [6, Lemma 2.6], specialized to DCob

Proposition 2.4 Assume that the category C is a k-linear additive Karoubian nonde-
generate symmetric monoidal category with finite-dimensional hom spaces and the
functor Fy4 satisfies the following properties:

) Birkhauser
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(1) Any indecomposable object of C is a direct summand of F 4 (n) for some object n
in VCoby,.
(2) The functor F4 is full (i.e. surjective on Hom’s).

Then the functor F induces an equivalence DCob , >~ C.

Here we say that C is nondegenerate if any negligible morphism is the zero mor-
phism between some objects.

2.4 Direct sums decompositions

Let A € C be a commutative Frobenius algebra object in a k—linear symmetric
monoidal category C. Then the multiplication in A induces a commutative algebra
structure on the vector space A := Hom(1, A); this algebra acts on A via left (equiv-
alently, right) multiplications, so we get a natural injective homomorphism

¢ : Ay — Endc(A). (28)

Let xo € A1 be the handle morphism; its image ¢ (xp) is the handle endomorphism of
A.Let Ap C A be the unital subalgebra generated by xp.

We assume that A is finite dimensional. Thus x( is annihilated by a nonzero
polynomial. We let U (T') € K[T] be the minimal polynomial of xo, which is assumed
monic. It factors

U(T) = TU(T), (29)
with U(0) # Oand a > 0.
We recall that the idempotents e € A are naturally labeled by factorizations

U(T) = U(T)U(T) such that the factors U1(T) and U,(T) are relatively prime.
Namely given such a factorization we can find a(T'), b(T') € K[T] such that

a(MU(T) +b(T)Ux(T) =1,
and then
e = a(xo)Ui(xo) € A (30)
is an idempotent. Conversely for an idempotent e € Ag let us choose a polynomial
s(T) such that e = s(x¢); then setting U(T) = ged(U(T), s(T)) and U>(T) =
gcd(U(T), 1 — s(T)) we get a factorization as above.
We furthermore assume that the category C is Karoubian. Let ¢ € A( be an idem-

potent; then it is easy to see that the image of ¢ (e), see (28), is a Frobenius subalgebra
of A in C; moreover there is a decomposition

A=¢p()ADPp(l —e)A
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of A as a direct sum of its Frobenius subalgebras (direct sum as objects in C and
direct product as algebras). Note that the unit elements of these subalgebras become
idempotents in A.

Let us compute o —invariants of subalgebras ¢ (¢) A and ¢ (1 — e¢) A in terms of the
a—invariant of A. Recall that the generating function of A can be written as a rational
function

Z(T) = L) (31)
o)
with Q(0) = 1, where Q(T) is the polynomial given by
o) =T4U(T™"), d=deg(U(T)). (32)

Here d is the degree of U (T'), and Q(T) is the reverse polynomial of U (T'). The orders
of the coefficients of Q(T) and U(T) are reversed. Note that Q(0) = 1 since U(T)
is monic.

Example2.5 Let U(T) = T +9T* — 6T3 thend = 5, U(T) = T*> + 9T — 6 and
O(T) = —6T> 49T + 1.

In particular, any factorization
U(T) =U(T)Ux(T) (33)
for U (T') as above into two relatively prime monic polynomials induces a factorization
Q(T) = Q1(T) Q2(T), (34

where Q1(T') and Q,(T) are determined from U (T) and U, (T), respectively, in the
same way as Q(T) is determined by U (T'), via relation (32).

Since polynomials U;(T) and U, (T) are relatively prime, at most one of them
is divisible by T. Thus we can and will assume that U,(T) is not divisible by T.
Polynomial Q(T) is divisible by T iff a # 0 in formula (29).

There is a unique partial fraction decomposition

2(T) = vi(T) n v2(T)

- . (35)
o1(T)  0(T)

where deg(vy) < deg(Q1). Denote the terms on the right hand side by Z;(T) and
Z>(T), respectively, and write

Z(T) = Zi(T) + Zo(T)
where v (T) = Z1(T)Q1(T) and vo(T) = Z(T) Q>(T) are polynomials and
degvi(T) = deg(Z(T)Q1(T)) < deg O1(T).
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Thus, Z;(T) is a proper fraction, but Z>(7") may not be proper. Recall idempotent e €
defined by (30).

Proposition 2.6 In the notations above, the generating functions of commutative
Frobenius algebra objects ¢ (e)A and ¢ (1 — e)A are Z1(T) and Z,(T) respectively.

Proof Let'xg and ”xg be the handle endomorphisms of the algebras ¢ (¢) A and ¢ (1 —
e)A, so that 'xg = exg and "xo = (1 — e)xg. The evaluation series a’ of ¢(e) A has
n-th coefficient

o, = €(('x0)") = e(exy) = e(s(x0)xy), (36)

where s(T) is a polynomial such that e = s(xg). This shows that the evaluation series
B and y of p(e)A and ¢ (1 — e) A are uniquely determined by the factorization (33) of
U (T). The expression (36) is somewhat implicit since we don’t write down a formula
for s(T).

Pick commutative Frobenius algebras A’ € C’ and A” € C” with generating func-
tions Z;(T) and Z(T), and such that their handle endomorphisms x;, and x have
minimal polynomials U;(T) and U,(T) respectively. Here C' and C” are k-linear
symmetric monoidal categories. Such algebras and categories exists in view of [22,
29].

Consider commutative Frobenius algebra

AR1IPINRA eC' R, 37)

where C’' X1 C” is the external tensor product of C" and C”, see [37, Sect. 2.2]. This is
the naive tensor product of k-linear monoidal categories.

A more sophisticated exterior tensor product was defined by Deligne for abelian
monoidal categories, subject to additional assumptions, see [ 16] and references therein,
but it is not used here.

Objects of the naive tensor product C' XIC” are finite direct sums of external tensor
products V' X V" of objects V' and V" of C" and C”. The tensor product ¢’ X C” is
additive but C’, C” do not have to be additive, only k-linear.

The generating function of this algebra is Z1(T) + Z2(T) = Z(T') and its handle
endomorphism X is x, @ x(;, where x/, and x are handle endomorphisms of A’ and
A", respectively. Hence, for any polynomial a(T'), we have a(Xo) = a(x}) ® a(xy).
Since the polynomials Uy (T') and U (T') are relatively prime, the minimal polynomial
of xXo is U1 (T)U2(T) = U(T). Moreover it is clear that the idempotents determined
by the factorization U (T) = U (T)U,(T) are precisely the unit elements of A’ X 1
and 1X1 A”. Thus, the o —invariants of the algebras A’X11 and 1XXX A” can be computed
via formula (36) applied to them. The result follows. O

Example 2.7 Assume that char k # 2 and the generating function of A is

T3 +1

ZeD) = 137 972"

(38)

W Birkhauser



Two-dimensional topological theories. .. Page 150f68 71

Then the handle polynomial U (T) = Uy (T) = T>(T?>—3T+2) = T*(T —1)(T —2).
Note that T2 — 3T + 2 is the reciprocal if 1 — 3T + 272, The degree of U(T) equals
Ky = max(deg P, + 1,deg Q) = max(3 + 1, 2) = 4, see (5).

Consider the factorization (33) with Q(T) = T%(T — 1) and O(T)=T — 2.
Then, see formula (30), ¢ = i(xg — x(%) and

9/4 —T?/)2-T/4—5/4
zmn:ﬁ, Z(T) = /1_; &S

Rational series f and y give rise to commutative Frobenius objects Ag and A,
in the skein categories SCobg and SCob,,, respectively. Consider the tensor product
category

SCobg,, := SCobg X SCoby (39)

with the Frobenius object

Agy = AgX1D1IXA,, (40)
see also (37). Let
_ Py(T) _ P(D)
w0 =%a T =0,m@m @D

be the standard presentations of rational series for 8 and y, see formulas (4), (13),
with Qg(0) = Q,(0) = 1 and co-prime numerators and denominators in each of
the two fractions. Polynomials Ug(x) and U, (x) describe handle skein relations for
series B and y, respectively. They are reciprocal polynomials of Qg(x) and Q, (x),
respectively, scaled by suitable powers of x when the fractions are not proper.

Lemma 2.8 The handle polynomial of the Frobenius object Ag ,, in SCobg ,, is
Ug,y(x) :==lem(Ug(x), Uy (x)), 42)

the least common multiple of Ug(x) and U, (x).

Proof The handle endomorphism of Ag ,, is the sum of handle endomorphisms of its
direct summands Ag W 1and 1X A,. O

To understand the handle polynomial for 8 + y, we convert the series for 8 and y
into sums of proper fractions and polynomial terms:

Pg(T _

Zp(T) = Q/ZET; + Rg(T), deg Pg(T) < deg Qp(T),
P, (T —

Z,(T) = QZETi + Ry(T), deg P, (T) < deg 0, (T),
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The handle polynomials for 8 and y are the reciprocals of Qg(T) and Q,, (T') multi-
plied by T to the exponent the degree of Rg(T') and R, (T'), respectively.
From the corresponding decomposition for the series of 8 + y,

Fﬂﬂ/ ()

2y (T) = Zg(T)+ Z,(T) =
p+y (T) p(T) + Z,(T) 05, (T)

+ Rg(T) + R, (T), (43)

with the reduced fraction

Ppiy(T) _ Pp(T)Qy(T) + Py (T)Qp(T)
Opy(T) Qp(T)Qy (T)

. (44)

one sees that Qpg,(T) is a divisor of lem(Qg(T), Q) (T)) and Rg,(T) =
Rg(T) + R, (T). Consequently, the handle polynomial Ugy, (x) is the reciprocal
of a divisor of lem(Qg(x), Oy (x)) times a power of x of degree deg(Rg + R,) <
max(deg Rg, deg R)).

Corollary 1 The handle polynomial Ug.,, (x) of B + y is a divisor of the polynomial
Ug,, (x) in (42).

Definition 2.9 A pair (8, y) of rational sequences is called regular if Ug,, (x) =
Ug,y (x).

Proposition 2.10 (B, y) is regular (and Ug ,, (x) = Ugy, (x)) iff there is a functor
Fj., : SCobgy, —> SCobg & SCob,, (45)

taking the circle object Agy, of SCobg, to the object Ag ,, see (40), and the Frobe-
nius structure of Agy, to that of Ag,,. In particular, the handle endomorphism of
Apy,, must go to that of Ag .

Proof The handle polynomial of Ag, is Ug, (x), while thatof Ag ,, is Ug ,, (x). For
the functor to exist, one needs Ug,, (xo) = 0, where x is the handle endomorphism
of A,B+]/ . O

If Ug4 (x) is a proper divisor of Ug ,, (x), then the handle endomorphism of Ag,
satisfies a stronger relation than that of the handle endomorphism of Ag ,, and such a
functor cannot be set up.

Note that the category SCobg., in (45) is not additive, while the target category is
additive. To remedy that, one can first pass to finite additive closures of these categories
to get an additive functor

: SCob?®

®
F, Bty

I — SCob K SCob = SCoby X SCob, . (46)

Proposition 2.11 If at least one of the fractions in (41) is proper and Qg(T), O, (T)
are relatively prime then the pair (B, y) is regular, so that Ugy, (x) = Ug,,, (x).
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Proof A fraction P(T)/Q(T) is proper if deg P(T) < deg Q(T). This is equiva-
lent to the condition that the handle polynomial U (x) for this rational series is not
divisible by x, that is, U (0) # 0. Proposition follows by considering partial fraction
decompositions for series Zg(T') and Z, (T). Then

U, (x) = lem(Ug(x), Uy (x)) = Up(x)Uy (x) = Upy, (x). (47)

]

Remark 2.12 The implication in the above proposition goes only one way, as one can
see by taking f = y when chark # 2. The pair (8, B) is regular then.

Proposition 2.11 gives a sufficient condition for the functor F' fiy in (45) to exist.

Now we will show that for any regular pair (8, y) functors F /SS»J/ and F, g?y are fully
faithful.

Proposition 2.13 For a regular (B, y), functor ngy, see (45), induces a fully faithful
functor

Cobg, —> Cobg X Cob, (48)

Proof Observe that the category Cobg X Cob,, is nondegenerate. Indeed let X XY and
ZXT be some objects of Cobg X Cob,, . The trace form Hom(XXY, ZXT') x Hom(ZX
T, XXY) — kis the tensor product of the trace forms Hom(X, Z) xHom(Z, X) — k
and Hom(Y, T) x Hom(T, Y) — k. Since the tensor product of non-degenerate
pairings is non-degenerate, we see that Hom(X XY, ZX T) has no nonzero negligible
morphisms and the result follows.

The functor F g v induces a full functor SCobg,, —> Cobg X Cob,,. Since the
category Cobg X Cob,, is nondegenerate, this functor factors through Cobg, and
gives rise to the fully faithful functor in (48) . O

Passing to additive Karoubi envelopes results in an equivalence of categories:
Proposition 2.14 For a regular pair (B, y) and upon passing to additive Karoubi

envelopes, functor F g y induces an equivalence of tensor categories

Fg, : DCobg,, ~ DCobg X DCob, . (49)

Further passage to gligible quotients produces a tensor equivalence
Fg., : DCobg,, =~ DCobs X DCob,,. (50)

Note that the tensor products X above are still the naive tensor products of additive
k-linear tensor categories.

Proof The category SCobg X SCob, has a commutative Frobenius algebra Ag ,,, see
(40), so there is a tensor functor SCob, — SCobg X SCob,, sending A, to Ag, by
the universal property from Sect. 2.3, witho = 8 + y.

) Birkhauser



71 Page 18 of 68 M. Khovanov et al.

Let U (T) be the polynomial representing the handle skein relation in the category
SCob,,. We have a factorization U (T) = U (T)U,(T) corresponding to factorization
of the denominator of Z(7T) into product of the denominators of Z;(T) and Z»(T) (in
particular we assume that U1 (T') is not divisible by T'). Thus we have a corresponding
idempotent ¢ € Hom(1, Ay ) and decomposition Ay, = ¢ (e)Ay D ¢ (1 — e) Ay where
the generating functions of the algebras ¢ (e) Ay and ¢ (1 — e) A, are precisely Z1(T)
and Z,(T).

By the universal property there are tensor functors SCobg — DCob, and SCob,, —
DCob, from the skein categories to the Deligne category (additive Karoubi closure
of the skein category) for o sending Ag to ¢(e)Ay and A, to ¢(1 — e)A,. Thus
by the universal property of the external tensor product, see e.g. [37, 2.2], there is a
tensor functor SCobg X SCob,, — DCob, sending Ag X 1to ¢(e)Ay and 1K A,, to
¢ —e)Aq.

Passing to the additive Karoubi closure of the source category gives a tensor functor

F : DCobg X DCob,, —> DCoby.

The composition of the above tensor functors

FD
DCob, —2% DCoby K DCob, —— DCoby,

sends A to itself and thus is isomorphic to the identity functor. Similarly, the com-
position

FD
DCobyg 5 DCob,, —— DCoby —% DCobg 5 DCob,,

sends Ag X1 and 1X A, to themselves and thus is also isomorphic to the identity
functor.

These functors intertwine the Frobenius structures of A, and Ag ,,, so the isomor-
phisms are that of tensor functors. This completes the proof. O

Remark 2.15 A similar argument can be applied in a slightly more general situation
where the polynomial relation U (x) = Oisreplaced by the polynomial relation U (x) =
0, with U(¢) a factor of the polynomial U(¢). This allows to generalize the skein
category SCoby, to a category §C0ba that maps onto SCob,,. Notice that such a skein
relation is still compatible with evaluation «.

Considering these categories SCob, with handle skein relations of a fixed degree n
gives a family of tensor categories that depend on 2n parameters, that is, the coefficients
of the polynomial U(T) = T" + l.o.t and the evaluations oy = a(1),...,@,—1 =
a(x"~1). This is a flat family of tensor categories, in a suitable sense.

Starting with Z, (T') as in (4), let us extract the polynomial term by writing

P _ m + R(T), R(T) €K[T], deg P(T) < deg Q(T),

2D =451 = o)

(G
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so that P(T)/Q(T) is a proper fraction. Factor Q(T') over k into

Q(T) = Qu(T) ... Qu(T), (52)

where each factor is a power of an irreducible polynomial over k, the factors are
mutually coprime, (Q;(T), Q;(T)) = 1fori # j and Q;(0) = 1 for all i. Each
Q;(T) is a power of an irreducible polynomial over k, with distinct polynomials for
different i. Now form the partial fraction decomposition

L

P (T)
Zo(T) =) Gy TR, deg PU(T) < deg Qi(T), (53)
i=1

with Q;(T) and R(T) as above. Denote by «[i] the sequence associated to the rational
function P;(T)/Q;(T), so that Z,[;1(T) = P;(T)/Q;(T), and by «[0] the sequence
of coefficients of R(T), so that Zy(01(T") = R(T). There is a functor

o

FS . SCOba —> SCOba[()] X SCOba[l] X..-X SCOba[g] = &f:() SCOba[,']

(54)
taking the circle object A, to the direct sum of objects 12¢~D Agli] ® 12¢=D for
i=0,...,¢

This functor induces an additive functor with the same target category from the
additive closure of the source category:

Fg : SCoby —> Kj_ SCob%; = Ki_ SCobyfiy, (55)

as well as functors

FP : DCob, —> K'_, DCobyy;] (56)
F, :DCob, —> X_ DCob,; (57)

Proposition 2.16 Functors FO? and F , are equivalences of categories for any rational
o over a field k.

Proof This follows by iteratively applying the previous proposition. O

3 Abelian realizations

Leta = {a;, i € Z=>¢} be asequence of elements of k. We say that a Frobenius algebra
A in a symmetric monoidal category C defined over some field extension L of k (not
necessarily a finite extension) is a realization of « if the evaluation of A is «, see [22].
Category C is then an L-linear category. We say that the realization of « is finite if the
Hom spaces in C are finite dimensional over L. Sequence « is called recognizable if
it admits a finite realization. The following result closely mirrors the one in [22].
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Theorem 3.1 A sequence a admits a finite realization if and only if it is recurrent.

Proof Let x = m o A be the handle endomorphism of A. Note that tr(x") = «,, € k
forn € Z=o. If Hom¢ (A, A) is finite dimensional over L then there exists a nonzero
polynomial U(X) € L[X] such that U(x) = 0. This implies x'U(x) = 0 for any
i € Z>0o. Computing the traces of all terms in this relation we get a recurrent relation
with constant coefficients in L satisfied by «; fori >> 0. Eventual recurrence property
can be written as vanishing of suitable Hankel determinants, see references in [22],
and computing a determinant made of «;’s gives the same answer in L and k. Thus,
the sequence « is recurrent over k.

Conversely, assume « is recurrent. Then the category C = SCob,, or its additive
Karoubi closure DCob,, see diagram (15), with Frobenius object A given by one circle
is a finite realization of «. O

We say that a realization of « is abelian if C is a symmetric abelian tensor category
in the sense of [16, 4.1.1] (the hom spaces are finite-dimensional, all objects have
finite length, Endc (1) = L and C is rigid).

In particular, an abelian realization is finite in the above sense.

Theorem 3.2 A sequence o admits an abelian realization if and only if the category
DCob , is semisimple.

Proof Assume that the category DCob , is semisimple. Then the object A € DCob |,
gives an abelian realization of «. Conversely, the existence of an abelian realization
implies that the quotient of DCoby, by the negligible morphisms is semisimple, see [1,
Theorem 1]. |

Remark 3.3 (i) The above theorem shows that if a sequence o admits an abelian
realization over a field extension L D k then it also admits an abelian realization
over k.

(i) Assume thatasequence o admits an abelian realization over field k andlet L D kbe
a finite separable extension of k. Then the sequence v admits an abelian realization
over L. This follows from the construction of scalars extension of a tensor category,
see [11, 5.3]. It is not clear, though, what can happen when L D Kk is inseparable.

The following result gives necessary conditions for a sequence « to admit an abelian
realizations in terms of its generating function Z(T) = Z,(T), see (2). Below, in
Theorem 3.6, it is shown that these conditions are also sufficient.

Theorem 3.4 Assume that a sequence o admits an abelian realization. Then

(1) The generating function Z(T) is rational, so Z(T) = % where P(T), Q(T) €
K([T] are relatively prime.

(2) The denominator Q(T) is separable, i.e., it has no multiple roots in an algebraic
closure of k.

(3) deg P(T) < deg Q(T) + 1.

(4) Assumethat chark = p > 0. Then all the residues of the form Z (T) ”;—5 (computed

over the algebraic closure k) lie in the prime subfield F » Ck
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Note that conditions (2) and (3) say that the form Z (T) has no poles of order
> 2 (including at T = 00) except, possibly, the point T = O

Proof Statement (1) is implied by Theorem 3.1 as any abelian realization is finite.

To prove (2) let us consider the morphism x = m o A € Endg(A) as in the Proof
of Theorem 3.1. Let p € k[X] be a nonzero polynomial such that p(x) = 0 (this
polynomial exists since the Hom spaces in the category C are finite dimensional). Let
po be the product of all irreducible factors of p, each appearing with multiplicity 1.
Then for any i € Z>¢ the endomorphism x! po(x) is a nilpotent element of Endg(A)
as some power of py is divisible by p. Thus we have tr(x’ po(x)) = 0 which gives a
linear recurrent relation with constant coefficients for ¢, with n sufficiently large. This
relation implies that the generating function Z(7') can be written as a fraction with
denominator po(7'). Thus we proved that the factorization of Q(7) into irreducible
factors is square free.

A related property is that in a rigid abelian k-linear tensor category the trace of a
nilpotent endomorphism is zero, see e.g. [10, Corollaire 3.6].

We still have to show that each irreducible factor of Q(T) is separable in the case
chark = p > 0. Observe that the tensor power A®? ¢ C is a commutative Frobenius
algebra object that gives an abelian realization of the sequence Fr(«) = {oz(‘;7 , af seihs
see Example 2.3. The generating function of the sequence Fr(«) is Fr(Z(T)) where
Fr(Z(T)) is obtained from Z(T') by applying the Frobenius endomorphism A +— A?
to all the coefficients of Z(T'). Now for the sake of contradiction assume that one of the
irreducible factors of Q(T) is not separable. We recall that a nonseparable irreducible
polynomial is of the form r(T) = Zf:o ¢; TP, Thus, one of the factors of Fr(Q(T))
is Fr(r(T)) = Zf:() cf’Tpi = (Zfzo ¢;THP and Fr(Q(T)) is not square free. This
is a contradiction (note that the polynomials Fr(P (7)) and Fr(Q(T)) are relatively
prime). Thus (2) is proved.

Recall that the relation tr(x’ po(x)) = 0 holds for any i € Z=(, where the polyno-
mial pg = po(T) is square free. In particular the multiplicity of factor T in po(T) is
< 1. It follows that the sequence o3, @3, . .. satisfies a linear recurrent relation with
constant coefficients, which implies (3).

Let us prove (4). We can assume that the denominator Q(7') = [[;_, (1 —y; T) for
distinct nonzero constants y; € L, where L is a finite separable field extension of k.
Let Z(T) = + + Z' where f; € L and Z’ has no poles at T = y; ll1<i<r
Let us con51der an abelian realization of « over L, see Remark 3.3(2). For a suitable
idempotent e the algebra ¢ (e) A will have the generating function —— ﬂ , see Sect. 2.4.
Thus B;y; = dim(¢(e)A) must be an element of the prime subfield IF p» C L, see [14
Lemma 2.2]. Observe that —fB;y; is precisely the residue of the 1-form Z (T)4L 77 at

T = y;~!. Thus the statement (4) is proved for all finite nonzero poles of Z(T'). The
residue at 7 = 0 is oy = dim(A), and we can apply [14, Lemma 2.2] again. Finally in
the remaining case T = oo we use the Residue Theorem, which holds in characteristic
p as well [19, Corollary 2.5.4]. O

Example 3.5 Sequence« = (1, 2,3, 4,5, ...) describing the function Z(T) = 1/(1 —
T)2 does not admit an abelian realization over any field, see condition (2) of the above
theorem. More explicitly, the handle endomorphism x satisfies (x — 1)2 = 0 in Coby
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for this a. However, tr(x — 1) = ap —a1 =3 —2 =1 # 0. This is a contradiction: in
any abelian category trace of a nilpotent endomorphism is zero [16, Proposition 4.7.5].

If k is algebraically closed, decomposition (53) can be refined to

4
Pi(T
Zy(T) =) ﬁ + R(T), deg Pi(T) < m;, (58)
i=1

with distinct 1, . .., y¢ € k and polynomial R(T"). Conditions (2)-(4) of Theorem 3.4
translate to

e m; =1foralli,1 <i <.

e deg R(T) < 1, that is, the polynomial R(T) is at most linear, R(T) =ro +r| T,
and ry; € IFp if chark = p.

e Due to m; = 1 we restrict to a constant polynomial P;(T) = p; € k, simplifying

the residue to
pidT o
res, - (m) = —DiVi- (59)

Thus, condition (4) can be rewritten as p;y; € IF,.

Summarizing, over an algebraically closed k, a rational function Z(7") admits an
abelian realization iff

14

i
Zo(T) = Z 1 ;‘T +ro+nT, pivieF,, rielF,, (60)
- /i

i=1
for distinct y1, ..., Ye.

In characteristic 0, one can use Remark 3.3(i) to pass from k to its algebraic closure.
In characteristic p, irreducible inseparable factors in the denominator also constitute
an obstruction to existence of an abelian realization, by condition (2) of Theorem 3.4.

Theorem 3.6 Assume that a sequence « satisfies conditions (1)—(4) from Theorem 3.4.
Then o admits an abelian realization.

Proof By Remark 3.3 (i) we can and will assume that the field k is algebraically closed.
We start by giving abelian realizations for some special sequences.

(1) Assume Z(T) = ap + o1 T and chark = p > 0 with a1 € F,. Then we can
choose C = Vecy and use Example 2.1 with vector space V of suitable dimension.

(2) Assume Z(T) = ap + o1 T and char k = 0. Again we use Example 2.1; however
in all cases when dim(V') ¢ Z>( we use the abelian specialization of the Deligne
category C = Rep(0;) (see e.g. [10, 9]) with t = dim(V).

(3) Assume Z(T) = % with 8y = 1. We choose C = Veck and A = K such that
(1) = B.
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(4) Assume Z(T) = 17’3},T and chark = p > 0, with By € FF,\{0}. We choose
C = Veck and take A to be a direct sum of several copies of the algebra from (3).
(5) Assume Z(T) = 1—€/T and chark = 0, with r = By # 0. We take A to be the
standard Frobenius algebra in the semisimple quotient of the Deligne category

C = Rep($;), see [10, Théoremes 2.18, 6.2].

Any sequence o satisfying the conditions (1)—(4) from Theorem 3.4 is a sum of
sequences considered in (1), (2), (4), (5) above. Thus the following result completes
the Proof of the Theorem. O

The last two theorems together are equivalent to the following result.

Theorem 3.7 A sequence a over a field kK admits an abelian realization if and only if
it satisfies conditions (1)—(4) in Theorem 3.4.

Lemma 3.8 Assume that sequences o’ and " admit abelian realizations over an alge-
braically closed field K. Then the sequence o' + &' also admits an abelian realization
over k.

Proof By Theorem 3.2 there are semisimple categories C’ and C” with Frobenius
algebras A’ € C’ and A” € C” giving the realizations of o’ and «”. Then the algebra

AR1Ie1IXKA" eC'KC”

gives a realization of @ in a semisimple (and hence abelian) category C’' X C”. O

Remark 3.9 The Proof of Theorem 3.6 shows that in the case of algebraically closed
field k of positive characteristic the sequence o admits an abelian realization if and
only if it admits a realization with C = Vecy.

Example 3.10 (a) Let @ = (1,1,2,3,5,8,...) be the Fibonacci sequence, with the
generating function Z(T) = 1/(1 — T — T'?). Then « admits an abelian realization
in characteristic zero. It admits an abelian realization in positive characteristic p
if p # 5 and 5 is a quadratic residue modulo p, i.e., p = 2 or p = +1(mod 5).
Indeed, in characteristic 5 the denominator is (1 + 2T)2, hence has a multiple root
and is not separable. If 5 is not a quadratic residue modulo p, the differential form
residue of condition (4) in either of the two roots of the denominator does not lie
in the prime subfield.

(b) Let B = (—1,2,1,3,4,7,11,...) be the (shifted) Lucas sequence. It satisfies
the Fibonacci relation f,+2> = B,+1 + B, for n > 0 but with a different initial

condition. The generating function Z(7T') = % + o where ¢ = # is the

1—¢T
golden ratio and ¢ = 1_2‘/3 its Galois conjugate. Both residues of the one-form in
Theorem 3.4 (4) equal 1 in this case. Thus, 8 admits an abelian realization in any

characteristic.
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4 Endomorphisms of object 1
4.1 Algebras Bs and B

Define the rank K of a rational theory « by formula (3). Rank is the maximum of
the degree of the numerator P(T) of Z(T) plus one and the degree of the denomi-
nator Q(7). For a theory of rank K, elements 1, x, ..., xX=1 of Ay(1) are linearly
independent and there is a linear relation (11), reproduced below

Ug ) = xX — by xX by x X2 — 4+ =DMpy x¥"M =0, (61)

where b;’s are the coefficients of the denominator Q(T'), see (13), normalized so that
0(0) = 1, and po(x) = xX Q(x 7).

Recall that category Cob,, is the quotient of the skein category SCob,, by the ideal
of negligible morphisms. In the category SCob,, we evaluate closed components via
a and reduce K handles on a connected component via (12). In Cob,, we further mod
out by all negligible morphisms.

Consider the endomorphism algebras

Bs := Endscop, (1) = Homgcop, (0, 2), (62)
B = Endcop, (1) = Ag(2). (63)

Both algebras are commutative unital k-algebras, under the pants cobordism multipli-
cation. Isomorphisms on the right are those of k-vector spaces, given by moving the
bottom circle of a (1, 1)-cobordism to the top. Algebra B is the quotient of Bg by the
two-sided ideal J;,.¢ of negligible endomorphisms,

B = Bg/Jyeg- (64)

Elements u, x in Fig. 1 generate the algebra Bg.
It is easy to write down a basis in each hom space of the category SCob,, see [29].
Abasisin B = Endscop, (1) is given by the set of tube cobordisms with at most K — 1
dots on them and the cup-cap cobordisms u decorated by at most K — 1 dots on each

connected component.

Proposition 4.1 Elements
X", 0<n<K, X"ux¥, 0<n k<K (65)

constitute a basis of B, and dim(Bs) = K> + K.

Fig.1 Generators u and x of Bg

=
=
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Fig.2 One of the defining
relations in Bg

ur™u =

x = @ e A(l) z= @eB(l)ch

Fig.3 Elementx of A(1) onthe leftis a one-holed torus (or a handle with one hole). Element x of B(1) C Bg
on the right is a two-holed torus (a handle with two holes). Both have the same defining relation Uy (x) = 0
in A(1) and B(1), respectively. Left x is obtained from the right x by capping off the bottom circle with a
disk

:an@ = Qpu
D

DA

Proposition 4.2 The following is a set of defining relations in Bs on generators u, x:

ux"u = ay,u, n>0, (66)

Uu(x) = 0. (67)

Defining relations of the first type are shown in Fig. 2.
Algebra Bg has the bar anti-involution a —— a given by the identity on the gener-
ators, X = x, # = u, and x"ux* = xkux".
The trace form on By is defined by closing up a (1, 1)-cobordism and evaluating it
via «. The trace is given in the above basis by

tr(x") = apy1, tr(x"ux) = Atk -
Recall the hom space
A(1) = Homcop, (0, 1) = Homgcob, (0, 1) = K[x]/(Uq (x)) (68)
of dimension K, with the commutative algebra structure given by the pants cobordism.

Denoteby B(1) C Bg the subalgebra of Bg generated by the handle endomorphism.
There is an algebra isomorphism

B(1) = A(D) (69)

given by taking the handle endomorphism in B(1) to the corresponding handle ele-
ment of A(1), see Fig. 3. The skein relation on powers of the handle holds on linear
combinations of powers of handle on a disk as well as on an annulus. For this reason
the algebras are isomorphic. The geometric definitions of multiplications in the two
algebras are slightly different: in A(1) it is given by the pants cobordism, while in
B(1) and Bg it is the composition of (1, 1)-cobordisms.
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Relatedly, we maintain a slight abuse of notation, also shown in Fig. 3, where x
is used to denote handle cobordisms with either one or two boundary components,
respectively, generating algebras A(1) and B(1) C Bg.

The two-sided ideal (1) of By is

(u) = BuB = B(uB(1) = B(1) @ B(1)?, (70)

where the second isomorphism is that of B(1)-bimodules. It is spanned by cobordisms
with two connected viewable components, and there is a split exact sequence of this
2-sided ideal of Bg and the quotient ring

0 — B(1)uB(l) — Bs — B(1) — 0. (71)

The quotient by the 2-sided ideal is spanned by powers of x and is naturally isomorphic
to the subring B(1) spanning by cobordisms with one connected component, via the
inclusion B(1) C Bg, which is a section of the surjection above.

Recall that B is the quotient of Bg given by (64). Bg acts on the space A(1) by
left multiplication by cobordisms, see isomorphisms (68) for equivalent descriptions
of that space. The action takes a cobordism from 0O to 1 (that can be assumed to be
connected and of genus less than K) and composes with a cobordism from 1 to 1.
Closed components that may result are removed via «-evaluation and the genus is
reduced to at most K — 1. The action factors through that of B, since negligible
endomorphisms act by 0.

Passing to gligible quotients results in a short exact sequence

0 — B(HuB(1) -%> B —> B/im(¢) —> 0, (72)

of a two-sided ideal, algebra, and the quotient algebra. Map ¢ is injective, and the
quotient B/im(¢) is trivial iff « is multiplicative, that is, if the product map A(1) ®
A(l) — A(2), which corresponds to ¢, is an isomorphism, also see [22].

4.2 Examples

Example: K = 1. In this case a handle on a component reduces to a multiple of the
component without the handle and Z(T) is either the constant function, Z(7T') = «y,
or

Z(T) = =g +aoyT +aoy’T> + ... (73)

1—yT

The ring By has a basis {1, u} with u? = agu. The trace on By is tr(1) = ooy, tr(u)
.

The only possible functions in this case are Z, = «g,0 # 0 and Z, =
o7 0. Y #0.
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The quotient map Bs —> B is an isomorphism iff the Gram matrix

<ag ap ) (74)
@y oy
of the basis {1, u} of By is nondegenerate. It has determinant aé (apy — 1). We see that
the quotient map Bs — B is an isomorphism (and the theory is not multiplicative)
iffy # o'

Example: Linear function. Let Z(T) = o+ 1T, 1 # 0. Then Bg has a spanning
set {1, x, u, xu, ux}, which is a basis iff 81 # 2, see Sect. 7.1 and [22]. Let us assume
the latter case. The multiplication rules in Bg follow from the relations

uxu = Bru, xux = PBix, u? = Bou, %2 = 0,
and the quotient of Bg by the 2-sided ideal Bu B is one-dimensional. The action of B
on the left ideal Bu = ku @ kxu = B(1) surjects B onto the matrix algebra Mat; (k)
and leads to the direct product decomposition
B = Maty (k) x k. (75)
It is given explicitly as follows. Let z = xu + ux — fox — B1. Then z> = —B;z and

-Br 17 is a central idempotent splitting off k from B. The complementary factor is
given by the (non-unital) homomorphism Mat; (k) — B,

(5 8) — B lux, (8 (1)) — B — oy ).

<(1) 8) — X, (8 ?) — ,Bfl(xu — Box).

On the other hand, if g1 = 2, the map ¢ in (72) is an isomorphism, the theory is
multiplicative (A(2) = A(1)®2), and B is isomorphic to the matrix algebra of size 2
over k, see [22].

5 Constant generating function 8
5.1 State spaces, partitions, and Catalan numbers
Consider the evaluation corresponding to the series

Z(T) =8, Bek”, (76)
which is just the constant function, so the associated sequence @ = (5,0,0,...).
Scaling invariance explained in Sect. 2.1 allows us to set 8 = 1 without “changing”

any categories. We keep B arbitrary, but this is just a matter of preference.
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ﬂ’ :Ov :0,

N

Fig.4 Constant series evaluations

For o describing a constant function, see Fig. 4, any closed surface S which has
a component of genus greater than zero evaluates to 0. Otherwise, S (which is then
necessarily the disjoint union of 2-spheres) evaluates to

S — a(s) — ﬂ dimH()(S,k)’

that is, S to the power the number of components of .

Define the genus of a connected surface with boundary as the genus of a surface
obtained by attaching 2-disks to all boundary components.

Consider the space state of n circles A(n) = Ay (n) in this theory « as discussed in
[22, Sect. 2.7]. For an arbitrary « the state space is defined by the formula (20), also
see [22]. Recall from the latter reference that the circles are ordered and numbered
by 1,2, ..., n; their union is denoted |_|,,S]. All surfaces with a component of genus
greater than zero are in the kernel of the bilinear form, so that A(n) is spanned by
diffeomorphism classes of viewable surfaces S, with each component of genus 0, and
the boundary diffeomorphic to the disjoint union of n circles.

Such surfaces can be canonically identified with partitions of the set {1, 2, ..., n}.
Denote the set of partitions by D(n). Cardinality of D(n) is known as the Bell number
B, and it has the following generating function:

By,
E —'t" = exp(exp(t) — 1).
n!

n>0

To a partition A € D(n) there is associated a viewable surface S as above, with each
component of genus 0. Recall that by viewable surface we mean a surface without
closed components.

Consider the vector space k™ with a basis of vectors v;, over all partitions
A € D(n). Form the linear map

kP s Am), vy [Si] (77)

into the state space of n circles which takes basis vectors to corresponding surfaces
S).. This map is surjective, as follows from the discussion above.

For n < 3 the map (77) is an isomorphism, that is, the induced bilinear form is
nondegenerate on kP™  gee [22, Sect. 2.7].

However, starting from n = 4 map (77) has a nontrivial kernel, and the dimension
of the state space (if char k = 0) is equal to the Catalan number

1 /2
) = ™). (78)
2n+1\n
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n 0 1 2 3 4 5 6 7
By 1 1 2 5 15 52 203 877
cp = dim A(n) 1 1 2 5 14 42 132 429

Theorem 5.1 Over a field k of characteristic zero the state space A(n) for the theory
with the constant generating function (76) has dimension equal to the Catalan number
Cpt

dim A(n) = ¢,.

It has a basis PS" of crossingless surfaces, as described below in Sect. 5.2.

One proof of this theorem is given starting here and through Sect. 5.3. Another
proof is contained in Sect. 5.5, via a connection to representations of osp(1]2).

Recall notations from [22], where y;; denotes a surface that consists of a tube
connecting circles i and j and n — 2 disks that cap off the remaining circles. More
generally, for 1 < iy < ...i, < ndenote by y; = yi,.i....;, the surface that consists
of a 2-sphere with r holes bounding circles iy, iz, ..., i, and n — r disks capping off
the remaining n — r circles. Here J = {iy, ..., i, }. Figure 5 shows examples of these
surfaces for n = 3 and Fig. 6 shows examples for larger n. Note also that A(n) is
naturally a commutative associative unital algebra under the multiplication given by
composing two diagrams via the disjoint union of n pants cobordisms.

Fifteen elements of this spanning set for A(4) can be separated into five types, as
follows and see Fig. 7:

(1) Unit cobordism 1.

(2) Six cobordisms y;;,i < j.

(3) Three cobordisms y;;yx with i, j, k,[ distinct: y12y34, Y13Y24, Y14Y23, €ach a
disjoint union of two tubes.

(4) Four cobordisms y;j, each a union of a 3-holed sphere and a disk.

(5) Cobordism y1234, which is a 4-holed sphere.

099 . TO9. Y @@@

1 Y12 Y13 Y123

Fig.5 A spanning set (in fact, a basis) of A(3): the unit element, tubes y;;, and connected surface yjp3 =
Y12Y13

1 i ) ik i1 io 13 . iy
Yij Yijk yr

Fig.6 Examples of surfaces yy
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@@@@,@@,@@,

Y12Y34

Y134 Y1234

Fig.7 Elements 1, y1234 and examples of elements of types y;;, ¥ijYki» Yijk in A(4)

Fig.8 Two tubes in the diagram
of y13y24 overlap

Y13Y24

Recall from [22, Sect. 2.7] that there is an S4-invariant skein relation on the eight
vectors of the last three types:

(1234 + y13y24 + y14¥23) — (V123 + Y124 + Y134 + ¥234) + By123a =0 (79)

Among these eight vectors, only yj3y24 has a diagram with an “intersection” of its
surfaces, see Fig. 8. In fact, the remaining fourteen elements of this spanning set all
have “planar” diagrams without overlapping components, see examples in Fig. 7.

Consequently, element yj3y24 of the spanning set for A(4) can be written as a
linear combination of “crossingless” cobordisms. Informally, we call a surface with
n boundary circles crossingless if it can be drawn such that the components do not
interlace.

5.2 Planar partitions, crossingless matchings, and crossingless surfaces

Planar partitions and crossingless matchings. Recall that B” denotes the set of cross-
ingless matchings of 2n points on a horizontal line. It has cardinality c,, the n-th
Catalan number, see formula (78).

Consider the set PD" of planar partitions of an n-element set. These are decom-
positions of {1, ..., n} into non-empty subsets such that the configuration of these
subsets can be drawn in the lower half-plane by connecting points in each subset by
arcs and without arcs from different subsets intersecting. Equivalently, there should
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Fig.9 Diagram of the planar 1 2 3 4 5 6
partition ({1, 4, 6}, {2, 3}, {5}) in
PPD. Points in the lower
half-plane where the arcs end are
shown in red

NS yay, NSy

Fig. 10 Left: non-crossing partition X as in Fig. 9, here shown in red, and its regular neighbourhood N (1),
shaded in yellow. Right: Arcs on the boundary of N (1) constitute a crossingless matching ®¢ (1)

exist no quadruple of numbers 1 < i1 < i» < i3 < ig < n with iy, i3 in one subset
and i, i4 in another.

Given a planar partition A € PD", it can be depicted by connecting points in
each m-element subset (these points lies on the horizontal line with » marked points
P1s - - ., pn) by m arcs to a central point somewhere in the lower half-plane. In this con-
figuration there are n non-intersecting arcs connecting n points on the horizontal line
to k points in the lower half-plane, where k is the number of sets in the planar partition.
Figure 9 shows an example of the diagram for the planar partition ({1, 4, 6}, {2, 3}, {5})
in PDP.

To a planar partition A € PD", also called a non-crossing partition, we assign a
crossingless matching ®o (1) € B" as follows. Take a planar diagram of A and form
a standard retract closed neighbourhood in R? of the configuration of n arcs and k
inner points. This neighbourhood N (A) consists of k connected components. Each
component deformation retracts onto the corresponding tree of the diagram of A. The
intersection of N (1) with the horizontal line R consists of n closed intervals, one for
each point pp, ..., py.

The boundary of these intervals constitute 2n points pi,..., p5,, with points
Ph;_1» Py; being the boundaries of the interval that contains the point p;. Bound-
ary of N(X) consists of these n intervals together with n arcs that lie in the lower
half-plane and constitute a crossingless matching of points p/, ..., pj,. Denote this
matching by ®¢(A). This map

dy : PD" — B" (80)

is a bijection between planar partitions and crossingless matchings.

An example of the bijection ®¢ is depicted in Fig. 10. To construct the inverse
bijection & ! start with a crossingless matching b. The matching decomposes the
lower half-plane R? into n + 1 connected regions. Label these regions by colors 1 and
2 in a checkerboard fashion so that the outer region (the unique unbounded region)
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Fig. 11 Checkerboard coloring in the complement of a crossingless matching

2R — )

Fig. 12 Bijection between (isotopy classes of) crossingless surfaces and matchings

is labelled 1, see Fig. 11. Each region colored 2 has a boundary that is a union of
horizontal intervals and inner arcs in R? . Given a region that contains m horizontal
intervals, choose a point inside each interval, a point « inside the region, and connect
the m points to the point u# by m non-intersecting arcs. The region deformation retracts
onto the union of these arcs. Taking these unions over all regions of b colored 2 gives
a diagram of planar partition. This is the planar partition ® Y.

Crossingless surfaces and crossingless matchings. For an accurate definition, posi-
tion n circles, each of diameter 1, on the x y-plane IR2 so that their centers are located on
the x-axis, at points with the x-coordinate 2, 4, . .., 2n, respectively, and denote this
collection of circles C,,. The circles intersect the x-axis at 2n points 2 + %, ., 2nt %

Place R? in R3 in the usual way, by adding the third coordinate z and taking R? to be
the plane z = 0. This plane splits R3 into half-spaces ]Ri and R3 . We consider surfaces
S properly embedded in R? with the boundary C,,. Form the intersection S N R}%Z of
S with the xz-coordinate plane. Upon a slight deformation of S while keeping its
boundary on the xy-plane fixed we can assume that the intersection S N R)% . s aone-
manifold which is the union of circles and n arcs with boundary the above 2n points
onthe x-axis: 2+ 1,4+ 1, ... 2nt 1.

These n arcs in the lower half-plane R% -
of 2n points.

Vice versa, to a crossingless matching b € B" we can associate a 2-manifold
S(b). First, color the regions of the lower half-plane R? = R)ZCZ’_ which contains the
matching by colors 1 and 2 in a checkerboard fashion so that the outer color is 1.
Regions of R? colored 2 are bounded. Each one has a boundary that is a union of

constitute a crossingless matching b € B”

horizontal intervals and inner arcs in R . Horizontal intervals connect points 2i = %
for various i, 1 < i < n. To associate a surface S(b) to b we thicken each region V
colored 2 into a 3-dimensional region in R> = R x R. One way to do that is by
forming V x [0, 1] € R? and then smoothing its corner arcs to get a region bounding
a smooth surface in R3 . Each horizontal interval [2i — % 20 + %] in V first gets
multiplied by I = [0, 1] and then smoothed out to a circle of diameter one. In this way
n pairs of consecutive points on the boundary of the matching b turn into n circles on
the plane R? = 3R> . Each region V of b colored 2 turns into a 3-dimensional region
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that bounds the union of disks, each of diameter 1, in R? and a surface S (V) in R3.
Now to b assign the union S(b) of surfaces S(V') over all regions V labelled 2. The
boundary of S(b) consists of the union C,, of n circles.

We refer to S(b) as a crossingless surface associated to the matching b. Denote by
PS" the set of crossingless surfaces associated to matchings b € B" and by @ the
corresponding bijection

®, : B" — PS". (81)

This assignment is inverse to the map depicted in Fig. 12.

Isotopy classes of surfaces S(b) = W (b) that result from this construction are in a
bijection with planar partitions of n. These surfaces are determined by their intersection
with the lower half-plane R> C R3 . This intersection is a crossingless matching b.

Composing the two bijections above results in the bijection ® from the set PD” of
non-crossing partitions to the set of crossingless surfaces:

®: PD" 2% B 2 psr (82)

Any oriented surface S with a component of genus greater than 0 and 85 = 1,,S!
evaluates to the zero vector, [S] = 0 in A(n) for our series «. Relation (79) allows
to reduce yj3y24, which can be viewed as a crossing, to a linear combination of
crossingless diagrams. Inductive application of this relation shows that A (n) is spanned
by vectors [S(b)] associated to crossingless surfaces S(b), for b € B”. In particular,

dimA(n) <c, (83)
for any field k and 8 € k*.

5.3 Meander determinants and size of A(n)

To prove the opposite inequality to (83) when k has zero characteristic, it is enough
to show that the bilinear form is nondegenerate on the subspace with a basis {[S(b)]},
b e B".

It turns out that the matrix of this bilinear form in the spanning set of crossingless
matchings is the same as one of the auxiliary matrices appearing in [25], namely, the
matrix for the deformed meander determinant.

Consider two matchings a, b € B", their surfaces S(a), S(b) and the closed surface
S(a, b) := Sb)S(a) given by reflecting the surface S(b) about the horizontal plane
R? and composing with S(a) along the common 7 circles.

To matchings a, b there is also associated a collection ba of circles in the plane,
which has a unique checkerboard coloring of its connected components (regions) by
{1, 2} with the outer component colored 1. Define /1 (a, b), ha(a, b) as the number of
connected components of colors 1 and 2 respectively.(Fig. 13).
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Fig. 13 Diagram ba with h 1(a, b) = 1. Note that regions colored 2 have no “holes”, that is, each one is
homeomorphic to a disk

A component of the closed surface S(a, b) has genus 0 if and only if the correspond-
ing region of the planar diagram ba colored 2 is a disk. All components of S(a, b) have
genus 0 iff no region of ha of color 2 contains a region of color 1 inside. Equivalently,
all color 2 regions are non-nested disks and there is a unique region of color 1 (the
outer region). This happens iff /1 (a, b) = 1.

The number of color 2 components is /2 (a, b). The bilinear form on A(n) for the
constant series Zy(T) = B in the spanning set of crossingless surfaces [S(b)] is given
by

IS@1, SO = 81.n@np™*?, a,beB, (84)

where

s _lti=
"o, i £

Denote by D, (B) this matrix of size B" x B".
In [25] the authors study the determinant of B” x B” matrix M (y;, y2) with the
(a, b)-entry

hi(a,b) ha(a,b
yll(u )yzz(a )’

where y1, y» are formal variables, and show that it can be expressed in terms of
Chebyshev polynomials of the second kind. Namely, let

n
My (y) = l_[ Up (y)cmh=cmh+t - where
h=1

2n 2n sin(h + 1)6
_ _ . UpQeos) = 0T 7
Cnih (n - h) <n h— 1) w(2c0s6) Sin 6
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Chebyshev polynomial Uy, (y) of the second kind is a polynomial of degree 4 in y
with integer coefficients. Then (see [25])

det(M (y1, y2)) = 01y2) B2 M, (/y172). (85)
For any a, b
hi(a, b), ha(a, b) > 1,

so that
. 1
Dy(B) = lim —M(y;, B). (86)
y1i—0 y1

We need to prove that the following limit is nonzero, when the ground field has
characteristic 0:

det(M(y1. B))

lim , 87
RECN ®7)
so that the determinant below does not vanish:
B B"|/2
det(D,(B)) = ylliglo (;) My (/18)- (83)

At the point y = 0 even-indexed Chebyshev polynomials U (y) do not vanish,
while odd-indexed polynomials Uzp+1(y) have simple poles, when chark = 0:

y—=>0=Up(y) ~1, Upgr1(y) ~y.

The order of vanishing of M, (y) is

" . . _ 2n ) 2n ) 2n 12 2n
Z (Cn,t_cn,l+l)—<n_1>_ <I’l—2>+ (n_3)++(_) (O)

i=1,0dd

Lemma 5.2

2n\ - it 2n
()=25(2)

Proof The lemma follows from the identity

(1402 = <2nn>tn +3 (nz_”k> (tnfk n tn+k)’
i=1
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evaluated atr = —1.
It follows from the lemma that the order of vanishing can be rewritten as

2n 2n
n n—1)
which equals the Catalan number ¢,,. O

This completes the Proof of Theorem 5.1. Note that, over a field k of characteristic
p, dim A(n) = ¢, if p does not divide the corrresponding product of the values of
even Chebyshev polynomials U,y (0) for 4 < n/2 and derivatives of odd Chebyshev
polynomials U/2h+1(0) for h < (n — 1)/2. Otherwise, dim A(n) < cj,. O

5.4 Graded case and the Narayana numbers
5.4.1 Non-crossing partitions and Narayana numbers

Consider points 1, 2, ..., n placed in this order on a circle. A partition of them into a
disjoint union

L2y =fin i G-
is called non-crossing (or planar, see earlier) if the parts avoid interlaps, when drawn
via trees in the disk. Instead of the circle and the disk it bounds one can use the x-axis
and the lower half-plane, see earlier.

The number of non-crossing partitions of n points on a circle with exactly k parts,
1 <k < n, is called the Narayana number [35]:

1
wn= 1))

Narayana numbers provide a distinguished refinement of Catalan numbers

ey = ZN(n, k)
k=1

and have the following generating function

Z N(n, k) ntk—l_1—Z(l+1)—\/1—2z(t+1)+z2(t_1)2
, K)Z = T .

n>0,1<k<n
5.4.2 Graded dimensions of A(n)

The vector space A(n) is spanned by diffeomorphism classes of viewable surfaces
(elements of PS”, see formula (81)) with the boundary diffeomorphic to the disjoint
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union of n disks and each component of genus 0. Assume that chark = 0. Then
surfaces in IPS” constitute a basis of A(n) and carry a natural degree. The degree of
[S] € A(n), for S € PS", is

deg[S] = n — x(S), (89)

where x (S) is the Euler characteristic of S. In this way A(n) becomes a 27, -graded
vector space and even a 27 -graded commutative associative algebra. The unit element
of A(n), viewed as an algebra, is given by the union of n disks and has degree 0. Other
basis elements [S] of A(n) have positive even degrees.

This can be written via the action of the grading operator

"% A(n) — A) @klgT'], ¢S] = ¢" XS]

It is natural to consider the trace of ¢g” % as a Laurent polynomial in g. Since the
homogeneous summands have non-negative gradings, the trace of ¢”" % is a genuine
polynomial in ¢? rather than a Laurent polynomial. This polynomial depends on n
and describes the graded dimension of A(n) with the above grading.

Proposition 5.3 [f chark = 0, the space A(n) is naturally graded. Dimensions of
its homogeneous components (i.e. the coefficients of the polynomial tr o, q" ™) are
Narayana numbers:

n—1

tragmq" % = Z N(n,n —k)g*.
k=0

Proof Crossingless surfaces correspond to non-crossing partitions. The connected
components of a crossingless surface provide a partition of the set of the boundary
components. From the discussion in earlier subsections, crossingless surfaces form
a basis of the set A(n). A crossingless surface S € PS” with kK components gives a
decomposition

n=iy+...+ig.
The Euler characteristic of a component with i boundary circles is 2 — i. Thus,
k
n—x(S) =n—Z(2—ij) =2(n — k).
j=1
O

Remark 5.4 Commutative algebra A(n) is naturally a Frobenius algebra, via the trace
map of capping off a surface S by n disks and evaluating the resulting closed surface.
The trace map does not respect the grading. To make the trace map homogeneous,
one can make 8 a formal variable with deg(8) = —2 and change from a field k to a
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polynomial ring k[B]. The resulting pairing on A(n), defined over k[S], is not perfect,
though.

5.5 A commutative Frobenius algebrain Rep(osp(1]2))

In this Section we give an alternative derivation of Theorem 5.1 and relate the category
DCob , for the constant series @ with the representation category of Lie superalgebra
osp(1]2).

Start with the category C’ of finite-dimensional representations of osp(1|2), viewed
as a Lie superalgebra over a field k of characteristic 0, see [4, 5, 13, 30, 38, 41] and
[15, Theorem A.3]. An object of C’ is a Z/2-graded representation of U (osp(1]2)).
The defining representation V = k'I> generates a Karoubi-closed tensor subcategory
C of C'. One can think of C as “one-half” of the category C’. An irreducible object of
C' is either isomorphic to an irreducible object of C or to such an object tensored with
the odd one-dimensional representation of osp(1]2). Both C and C" are semisimple
k-linear categories.

Category C is similar to the category of representations of the Lie group SO (3).
Namely, it has one irreducible representation V5, in each odd dimension 2n + 1,
n=0,1,...,justlike SO(3), and the tensor product decomposition

Vo @ Vo, = V2|n—m| @ V2\n—m|+2 ®---D V2(n+m)

has the same multiplicities as for the corresponding representations of SO (3). In par-
ticular, taking W = V@ V5, the dimension of the space of invariants Hom¢ (Vy, W®™)
equals to the corresponding multiplicity for representations of S O (3). In the latter case,
the analogue of W is the four-dimensional representation V W of S O (3) isomorphic, as
a representation of s/ (2) to V1 ® V1 = Vo @ V», where Vl is the fundamental repre-
sentation of s/(2), and V is the irreducible representation of s/(2) of dimension n + 1.
Multiplicities for these representations are the same in the categories of SO (3) and
sl(2) representations. The identity representations 1 in these categories are isomorphic
to Vp and VO, respectively. One obtains that

dim Homc(l, ®n) = dim H0m50(3) (1 ®n) = dim Homyl(z) (1 ®2”) = Cp,
(90)

where ¢,, is the n-th Catalan number.
Let E be a 2-dimensional k-vector space with the basis {a, b}. Consider the exterior
algebra
A=AE,
thus,a> = b> = 0andab = —ba in A. Algebra A has the following super-derivations:

x = (ab+ 1)d,, y=(ab+ 1)0p.
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These super-derivations act on the left in the basis {l,a,b,ab + 1} of A as
follows:

x y [x, x] = 2x2 [x,y] = xy + yx [y, y] =2y2
1 0 0 0 0 0
a ab+1 0 2b —a 0
b 0 ab+1 0 b —2a
ab+1 b —a 0 0 0

Thus, x and y generate an action of the Lie super-algebra osp(1]2) on A. As an
osp(1|2)-module, A = 1 @ V,, where 1 is the trivial module spanned by 1 € A and
V5 = k' is irreducible of dimension (1|2) spanned by a, b, ab + 1. In particular, A
is an object of C.

The multiplication A ® A — A is a map of osp(1|2)-modules, since osp(1]2)
acts by super-derivations. The unit map ¢ : 1 — A is an osp(1]2)-module map as
well. Being the exterior algebra, the algebra A is a commutative algebra object in the
category of super-vector spaces and, consequently, in the category C.

The algebra object A € C is Frobenius with respect to the linear form A — 1
sending 1 € A to a non-zero constant 8 € 1 and a, b, ab + 1 to zero.

Assume B = 1. Then the Frobenius comultiplication A — A ® A is given by

l—1Q®ab—a®b+b®a+ab® (1+ ab)
ar—>a®ab+ab®a

b—b®ab+ab®a
ab v+ ab ® ab 1)

Composing with the multiplication, we see that the composition mA : A — A,
which is the handle endomorphism, is the zero map. One computes immediately that
ap =B =1, =0fori > 0, so that the generating function for A is Z(T) = 1.
For arbitrary invertible 8 one should insert ! after the arrow in each line in the map
(91) above. Then og = B and o; = O fori > 0, with Z(T) = B.

Consider the skein category SCob,, for the constant series Zy (T) = B, its gligible
quotient Coby, and the Karoubi envelope DCob , of the latter. The skein category has
the relations that the handle is equal to 0 while the 2-sphere evaluates to .

There is a functor F4 : SCob, — C taking the circle object 1 to A as explained
in Sect. 2.3, see (27). To apply Proposition 2.4, note that C is semisimple and that any
object of C is a direct summand of A®" for some n. To show that F is surjective on
homomorphisms, it suffices to check that the maps

Hom(n, m) —% Home(A®", A%™)

induced by Fy4 are surjective. Furthermore, by duality, it is enough to establish surjec-
tivity of maps
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Hom(0, n) % Home (1, A®™). (92)

The image F4(Hom(0, n)) is a subspace of dimension bounded from below by the
rank of the matrix D, (f) from Sect. 5.3, see (84),

dim(Fa(Hom(0, n))) = rk(Dn(B)).

We proved in that section that D, () has nonzero determinant over a characteristic
zero field and has rank equal to the Catalan number c,. Therefore,

dim(F4 (Hom(0, n))) > c,. (93)

From Eq. (90) we know that dimension of Hom¢ (1, A®") is also ¢,. Consequently,
the inequality in (93) is equality and the map (92) is an isomorphism. We conclude
that F'4 is surjective on homomorphisms. By Proposition 2.4 it induces an equivalence
from the Karoubi completion of the negligible quotient Cob,, of SCob,, to C.

Theorem 5.5 Over a field k of characteristic zero, the category DCob , is equivalent,
as a symmetric monoidal category, to the above category C of representations of
osp(1]2):

DCob,, = C. (94)

This gives an alternative proof that dim A(n) = ¢, over a characteristic zero field,
which is part of Theorem 5.1 .

Remark 5.6 (Vera Serganova) Let G be a supergroup and g = g(G) = go D g1, where
g1 is the odd part of the corresponding Lie superalgebra. Assume that the top exterior
power A'Pg) = Adim(g1) g1 is the trivial representation Vy of go. Then the ring of
functions A = Spec(G/Gyp) on G/Gy is a super-commutative Frobenius algebra
isomorphic to the exterior algebra A*g;. A is a commutative Frobenius algebra object
in the category of G-modules (the category of super vector spaces with an action of
G).
As a G-module, A is isomorphic to the induced representation Indgo(Vo),

A= A*gp = Indg, (Vo). (95)
The G —invariant trace map € : A —> Kk comes from the Frobenius reciprocity via
the identity map of go-modules from the trivial representation Vj to itself.
For our case of G = OSp(1/|2) and Gy = SL(2) this gives an alternative construc-
tion of the commutative Frobenius algebra as considered in this section.

6 Gram determinants for theories of rank one and two

Recall that the rank K = dim A(1) of the theory with Z(T) = P(T)/Q(T) is
max(deg P + 1, deg Q).
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Fig. 14 Handle relation for the
generating function in (98)

6.1 Generating function B/(1 — yT) and the Deligne category

Generating function of a rank one theory has the form

p =B+ ByT + By°T?* + ... (96)

Zo(T) = 1 =

with B € k* and y € k. When y = 0, the generating function is constant and the
theory is studied in Sect. 5.

Assume now y # 0. Rescaling T —— AT and Z(T) —> VAN S by invertible
A leads to isomorphic theories, see Sect. 2.1. Rescaling 7 to y~'T and Z(T) to
¥ Z(y~1'T) reduces the theory to that for the generating function

By
Z(T)= —— 97
(1) = = 97)
and allows us to restrict to the case y = 1 and generating function
__ _ 2
Z(T)—m—ﬂ-i-ﬁT-i-ﬂT +..., (98)

with the handle relation in this case shown in Fig. 14 (note that the rescaling above
changes the handle relation, in general, by rescaling x).

The skein category SCob,, for this sequence o = (B, B, B, . ..) is equivalent to the
partition category Pag, the category DCob,, to the Deligne category Rep(Sg), and the
gligible quotient DCob , is equivalent to the gligible quotient Rep(Sg).

Going back to the rational function in (96) with y # 0, we obtain three equivalences
of categories and a commutative diagram

SCoby —— DCob, —— DCob,

.| .| .| o

Pag, —— Rep(Sgy) —— Rep(Spy)

where in the bottom row appear the partition category, the Deligne category, and its
gligible quotient, respectively, going from left to right, for the parameter t = Sy, and

a=(B, By, By* ...).
When chark = 0 and By ¢ Z C Kk, the negligible ideal is zero, the quotient does
not change the category, and there are equivalences

DCoby, = DCob,, = Rep(S,) = Rep(Spy), (100)
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Table 1 Determinants of the bilinear form on A(n) for the generating function Z(7') = 17’3}/T

n B, det

1 1 B

2 2 B> By -1

3 5 BBy —-D*By -2

4 15 BBy By -DH By -2 By -3)

5 52 BBy DBy -2F By - By -9

6 203 BBy BBy =122 By - By =38 By - By -5

7 877 BETy40 By — 10 By — 233 By =312 By -2 By —522(By —6)

between the four categories in the middle and on the right of the diagram (99), see
[10, Théoreme 2.8].

When By = n and char k = 0, the category DCob , is equivalent to the category of
finite-dimensional representations of the symmetric group S, over k. If chark = p,
one should replace S, by S,,, where m is the remainder after the division of n by p.

For the generating function in (96) the handle relation is obtained from that in
Fig. 14 by replacing 8 by y.

The n-circle state space Ay (n) of that theory is spanned by visible cobordisms
with every connected component of genus zero. Diffeomorphism classes of these
cobordisms are in a bijection with set-theoretic partitions of n. Properties of the Deligne
category imply that for y # 0 and By not the image of an integer in k the set of these
genus zero surfaces is a basis of Ay (n), so that in this case

dim Ay(n) = By, (101)

where B, is the Bell number, see Sect. 5.1. Recall from Sect. 5 that for y = 0 genus
zero surfaces span A, (n) and constitute a basis of the latter when chark = 0 and
B # 0, leading to the formula (101) in this case as well.

Bilinear form data. We next compute the bilinear form on this spanning set, keeping
B, v as formal variables, for small values of n. Table 1 below describes determinants
of Gram matrices G, of size B, x B,, with rows and columns enumerated by set
partitions A and p of n. To each set partition A we assign a surface S(A) that matches
n boundary circles into genus zero connected components via parts of the partition.
These surfaces span A, (n) for all values of B8,y € k and constitute a basis in the
generic case.

Two surfaces S(1), S(u) share the common boundary of # circles and can be glued
into a closed surface S()S(%). Evaluating this surface via the generating function
Zy(T) in (96) gives a monomial in 8 and y that we put as the (X, p)-entry of the
matrix G, and then compute its determinant. )

For instance, for n = 2 there are two partitions, and the Gram matrix is (’B B >,

B By
with the determinant 8%(By — 1).
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Exponents of y. The main surprising feature of the above table is given by
terms that are powers of y. Nonzero powers of y in the above determinant for
B/(1 — yT) start on line four. Adding zero as the power of y on line three gets us
the sequence (0, 1, 10, 73, 490) matching the Sloan sequence A200580, see https://
oeis.org/A200580. It relates to the supercharacters of the finite group of unipotent
upper-triangular matrices over the 2-element field [2, 9] and can also be expressed as
the combination —2B,,+2 4+ (n + 4) B, 1 of two Bell numbers.

Exponents of determinant factors By — k. The exponents of factors of det G,, are
related to representation theory of the symmetric group. Namely, for n shown in the
table, the difference between the Bell number B,, (the dimension of A (n) in the generic
case) and the exponent by, of By — k in det G, for k > 1, is equal to the dimension
of invariants in V®”, where V is the natural k-dimensional representation of Si:

By — by, = dim (V&)™ (102)
We expect this pattern to hold for all n, see Fig. 2.

The dimension of invariants can be calculated via characters. Conjugacy classes in
Sy are parametrized by cycle types of permutations, which are in a bijective corre-
spondence with Young diagrams with k boxes. The diagram A = (A1, A2, ..., A;n))
corresponds to the conjugacy class of permutations with cycle lengths given by A. The
trace of such permutation on V equals to n —(}). Hence, the multiplicity of the trivial
representation in V®" is

inv 1
dim (VE)™ = 3" — mi(W)",
Ik 4

where
A= (1M Mpma@)
For k = 1 representation V of S is trivial, and (102) specializes to
B, — by, =dim(VE)™ =1, n > 0.

Exponents of . Denote by by , the exponent of B in det G,, see Table 1. The
sequence (1,2, 5, 15, 52, 203, 877) of exponents of 8 in that table is the Bell numbers
sequence A000110, see https://oeis.org/A000110, and we expect this pattern to hold
for all n, so that by ,, = B,,. Furthermore,

bow —bin=1 n>0.

which matches the data in Table 1 (difference in exponents of 8 and By — 1 is 1), so
we expect

bop,=b1,+1=8B,, n>0.
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Table 2 Prediction for the exponents of linear factors are given in the last three columns, for n = 8,9, 10

factor Group A0) A(l) AQR) AQB) AM@ AGB) A®G) AT A®) AQO) A(10)

By —1 8 0 0 1 4 14 51 202 876 4139 21146 115974
By -2 S 0 0 0 1 7 36 171 813 4012 20891 115463
By —3 $3 0 0 0 0 1 11 81 512 3046 17866 106133
By —4 S4 0 0 0 0 0 1 16 162 1345 10096 72028
By —5 S5 0 0 0 0 0 0 1 22 295 3145 29503
By —6 Sg 0 0 0 0 0 0 0 1 29 499 6676
By —71 87 0 0 0 0 0 0 0 0 1 37 796
By —8  Sg 0 0 0 0 0 0 0 0 0 1 46
By —9 Sy 0 0 0 0 0 0 0 0 0
By —10 S;9 0 0 0 0 0 0 0 0 0 0
Table 3 Two-colored Bell 2
p n B det
numbers and Gram determinants n
for the function
2 1 —B2

Z(T)=p/A—yT)

2 _ploy12

3 2 50,66

4 94 _/3266V376

5 454 _p1522,,2270
6.2 Gram determinants for rank two theories
1. Consider the generating function

p "
Z(T)= ———5. B,y k™. (103)
(1—yT)

This theory has K = 2 and the handle relation (x — y)> = 0. Sequence « for this
theory has no abelian realizations (Table 2).

The space A(n) has a spanning set consisting of viewable surfaces with L,S! as
the boundary and each component of genus at most one. Elements of the spanning set
are set partitions of n carrying labels 0, 1 (the genus of a component), and their count
is the generalized (two-colored) Bell number B,(lz), see [32, 36], with the generating
exponential function

3 B,(,z):;, = exp (2(exp(x) — 1). (104)

n>0

The first few values of B,(lz) are listed in Tables 3 and 7.
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Table 4 Dimensions and

determinants for the function , dim det

’%}E? zii;fe(rfgct vﬂvlit]lwl)t/h(el preZ/iTozls. ! — (Boy + A1) 2

table is By + By taking place of 2 -y Boy + B 1°
3 2 —r'%Boy + B
4 94 "% Boy + B1) >
5 454 ™8 (Boy + B1) 152

Values of the determinant of the Gram matrix for this spanning set, from computer
computations, are shown in Table 3. For each n < 5 the determinant is the negative
product of powers of B and y.

The following guess works for the powers of 8 in the table: it is the total number
of components of all elements of the spanning set, that is, of two-colored partitions of
n. More explicitly, the exponent of 8 matches the sequence BY — 23,52).

Consider a sequence with the terms given by half of the power of 8 in the n-
th Gram determinant plus B,(,z), see Table 3. The sequence of exponents has the form
(1,3,11,47,227, 1215, .. .), with the first few terms matching the sequence A035009
in the Sloan encyclopedia, see https://oeis.org/A035009. Multiplying terms of the
latter sequence by 2 recovers the sequence (B,(,z))n, with the index shifted by one.

The degree of y in the table matches the product of numbers in the first two columns
of the table, that is, nB,(,z).

2. Table 4 below shows the Gram determinants of the same spanning set of cobor-
disms with components of genus at most one for the generating function

_ Bot+ /T

D=1y

(105)

that deforms the function in (103) without changing the parameter K = 2 = dim A(1)
of the theory, that is, its rank.
3. Gram determinants for the generating function

Z(T) = s (106)

(1-T)dA—-yT)
are given in Table 5.
4. Consider the most general generating function, over an algebraically closed k,
for a theory of rank two (K = 2):

Bo+ BT

Z(T) = .
(I =nT)A —=yT)

(107)

Its partial fraction decomposition is given by

Bovi + B1 1 Boy2 + Bi 1
vi—v l=wT  y—y =T’

Z(T) =
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Table 5 Determinants of the bilinear form on A(n) for the generating function Z(7') = (l—]‘)(ﬁ%ﬂ')

n det

I -y B?

2 VB +B-D(BrE -y +1)

3 B BT (B2 -y 1) B2y -2 (Br? -2y +2)

) BB 4 p - 12 (By2—y +1) T B2y~ (Br2 -2y +2)
(B+3y =3 (Br -3y +3)

. B g S (By2 1) B2y 2 (B2 -2y +2)

(B+37 =31 (8y? 3y +3) " B4ay —4) (B2 — 4y +4)

Table 6 Dimensions and determinants for the function Z(7) = (Bg + B17)/((1 — 1 T)(1 — y»T))

n dim det

1 2 —(Bov1+ B (Bora + B1)
_ 4 2 _ 4 2 _
26 —@on+B0*(BorE+ B —vi+ ) Bova+ B0 (Bovd + Biva -2+ 1)
3 - —Bov1 +BDY ﬁoyf +Bini—ri+w)’ (/301/12 +B1y1 —2v1 + 202
Bova+ 8017 (Bovd +Biva = va+ )7 (Bovd + B =2 + 211
vz Bovt +B1) "0 (/301/12 +Bivi—n+ )’2) 42 (ﬁoylz + Byt —2n +2) 1
4 94 (ﬂoyf +B1v1 =3y + 31/2) (Bov2+ B (ﬁo)’zz +Biv—yv2t+n)*?

(ﬂoyzz +Biv2—2m+ 27/1) 1 (ﬂoyzz +B1v2 =3+ 37/1)
—Vlls)’zls (Boy1 + B1) 40 (ﬂo)’lz +Bivi—n+ Vz) »l (ﬂoylz + By —2n + 2)/2) o1
(ﬂoyf +B1v1 =3+ 31/2) 16 (ﬁoylz +Bivi —4n + 4}/2)
(Bova + B 4% (/30)/22 +Bire—r+ 71) =l (ﬁo)/zz +B1v2 —2n + 27/1) ot
(,30}’22 +B1v2 =3+ 3)/1) 16 (ﬁoyf +B1v2—4m+ 471)

5 454

Table 6 shows values of the Gram determinant for the same spanning set of A(n).

Powers of Boy; + B1,i = 1, 2 are given by the sequence (1, 4, 17, 79, 402), which
matches the beginning of the Sloan sequence A289924, see https://oeis.org/ A289924.
The differences between total dimensions, shown in the middle column, and these
exponents, for the simplest factors Boy; + Bi, give the sequence (1, 2,5, 15, 52),
matching Bell numbers.

For the factor (ﬁo)/l2 +Bivi—v1 + yz) and its image under the index transposition
y1 <> y» the differences are given by the sequence (2, 5, 15, 52, 203) matching the
shifted sequence of Bell numbers.

For the factor (,30 y12 + B1y1 — 21 + 27/2) and its transposition under y; <> y», the
sequence of differences is (2, 6, 21, 83, 363), which can be represented as %(B,,H —
Byy1 + By).
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We expect that various patterns observed above hold for all n.

7 Polynomial generating functions

In this section the categories DCob , are investigated for polynomial generating func-
tions Z(T) = Z4(T), i.e. @; = 0 for i > 0. The case of the constant function
Z(T) = B was studied in Sect. 5, so we will assume that the degree of the polynomial
Z(T) is at least one. There are two main cases:

e Function Z(T) is linear. Its tensor envelopes are closely related to the unoriented
Brauer category Rep(O;).

e Function Z(T') has degree at least two. Its series « has no abelian realizations, see
condition (3) in Theorem 3.4. Experimental data, discussed below, indicates that
dim A, (n) depends only on the degree of the polynomial Z(T').

Note that a theory of degree K has a skein relation that reduces the K-th power
of a handle to a linear combination of lower degree powers. Consequently, the state
space A(n) has a spanning set given by partitions with an integer between 0 and K — 1
(inclusive) assigned to each component.

Generalized Bell numbers B,(,k) count set partition of n together with an assign-
ment of an integer between 0 and k — 1 (inclusive) to each part of the partition [32,
36]. Elements of the latter set are in a bijection with diffeomorphism classes of view-
able surfaces with n fixed boundary components and at most k£ — 1 handles on each
component.

For a given k, generalized Bell numbers have the following exponential generating
function:

exp(k(exp(r) — 1)) = Z B,(lk);—n'. (108)
n=0 :

When Z(T) is a polynomial P(7T'), rank K of the theory is 1 + deg P.
7.1 Linear generating function and the unoriented Brauer category
Here we consider the case
Z(T) =po+piT (109)
of a linear generating function, with By, 81 € k and 81 # 0. Evaluations of connected
surfaces for this o are shown in Fig. 15. Alternatively, one can treat this theory as
defined over a ring that contains k[ S, f1], in which case §; may not be invertible.

Scaling by A = 12 as in Sect. 2.1 changes Z(T') to =!8y + 1T . Consequently, if
every invertible element of k is a square, we can reduce to one of the two cases:

(1) Zo(T) =puT, () Zi(T)=1+pT.
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',Bo @ﬁﬁéo (o =)=0

g =2

Fig. 15 Evaluation is zero beyond genus one, 1 # 0

o

Fig. 16 Two or more dots on a connected component evaluate to zero, so for a spanning set one can reduce
to each connected component carrying at most one dot. Handles in diagrams can be converted to dots for
convenience

099.99.99.99

1T
Y

1y

Fig. 17 Six vectors that span Ay (2). Notation x; denotes a dot on the i-th cup, while y stands for the tube

7 U+ - &T-wl O

Fig. 18 Skein relation on diagrams with two boundary circles. One can either exclude two cups with dots
or exclude a tube with dots. If not working over a field, only transformation on the left may be allowed

Skein relations. For now, consider the general case, with both By, 81 € k, 81 # 0.
Recall that a dot on a connected component is a shorthand for a handle. Due to the
particular evaluation we are considering, two or more dots on a component evaluate
the entire diagram to zero, see Fig. 16.

The state space of two circles A(2) = Ay (2) for this theory was considered in [22,
Sect. 6.2]. It has a spanning set of six vectors, shown in Fig. 17: a pair of disks, each
with no dots or a single dot, and a tube, either dotless or with a dot.

One skein relation on these six vectors, shown in Fig. 18, holds for all values of the
parameters and allows to exclude the vector xx2 from the list. To verify this relation
observe that the pairing of the both sides with any vector from Fig. 17 except for the
vector 1 is zero; and it is easy to see that the pairings of both sides with vector 1 are
,312. Thus the difference of the left hand side and the right hand side is a negligible
morphism, so it vanishes in categories Cob, and DCob, .
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T O -0 T T+0) +

3 terms

(S5 9:0)

3 terms

Fig. 19 Sphere with 3 holes as a linear combination of seven terms. The expression on the RHS is invariant
under the permutation action of S3 and terms permuted under the action are grouped together into sets of
three. Terms in the first group of 3 differ in dot placement

The Gram determinant for the remaining five vectors is ,6?(/31 — 2). In particular,
if B1 # 2, these five vectors constitute a basis of A(2) and dim A(2) = 5.

The case f1 = 2 gives a multiplicative theory discussed at the end of [22, Sect.
2.5]. Note that when 81 = 2, we have chark # 2 since 81 # 0.

Let us now assume that 81 # 2. Figure 18 relation allows to reduce a component
of genus one with more than one boundary circle to components of genus one with
just one boundary circle each.

Consider the state space A(3) = Ay (3) for three circles. These reductions give a
spanning set of cobordisms with each component of genus at most one (equivalently,
of genus 0 with at most one dot), and genus one components with only one boundary
circle each. Furthermore, a direct computation shows that a genus zero component
with three boundary circles is a linear combination of other cobordisms from this
spanning set, see Fig. 19.

Relation in Fig. 19 implies the relation in Fig. 18 by capping off one of the three
boundary circles with a one-holed torus. Inductive application of these relations,
together with the one in Fig. 16, allows to reduce any connected component with
three or more boundary circles to a linear combination of surfaces where

e cach component has at most one boundary circle,
e all components have genus zero or one,
e cach genus one component bounds one circle.

Proposition 7.1 The space A(n) has a spanning set <7 (n) that consists of viewable
cobordisms with n boundary circles, with each connected component having one or
two boundary circles, all genus one components with one boundary circle and no

components of genus two or higher. The cardinality a, of the above set <7 (n) of
cobordisms satisfies the following recurrent relation

ay =2ap—1 + (n — Day—2, (110)

and has the following generating function

00 2
t

Za—"t” =exp |2+ —
n! 2

n=0 "
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Table 7 Determinants of the bilinear form on A(n) for the generating function Z(T') = B + BT . Notice
the appearance of the term B + 2 in the last two lines

n B dim A(n) det

1 2 -B?

2 5 B1-2) B}

3 » 14 —(B1 —2) 0870

4 94 43 Br—-32%p -2 B

5 454 142 —(B1 —3)20 (B —2) 11040

6 2430 499 B =43 (B1 =313 (B —2)*PB]T (B +2)

7 14214 1850 — (B =970 (B —3)T0 (B —2) 17228749 () +2) 14

Proof Using the relations in Figs. 18 and 19 we can express any cobordism as a
linear combination of the elements of &7 (n). Let us show that the relation (110) holds.
Consider the first boundary circle of a cobordism from .7 (). If it is the only boundary
circle of its connected component C then the cobordism is a union of this component of
genus zero or one and an element of <7 (n — 1), giving 2a, | possibilities. Otherwise,
C has genus zero and two boundary circles. There are n — 1 options for the second
circle, giving (n — 1)a,_; possibilities in this case and proving (110). The derivation
of the generating function from the recurrence relation is standard. O

Corollary 2 dim A(n) < a, for a, as above, for any field k and By € k, B € k*.

Remark 7.2 The sequence (a,),>0 is the Sloan sequence A005425, see https://oeis.
org/A005425,

(ag,ay,az,...) =(1,1,2,5, 14,43, 142, 499, 1850, 7193, .. .).

Numerical data for dim A (n) for generic values of By, 81 and the Gram determinant
for the spanning set .o/ (n) with n < 7 is given in Table 7. The third column shows
dim A(n) for generic values of By, B1. The last column shows the values of the Gram
determinant for the set of vectors in the above spanning set .o (n). Observe that the
determinants do not depend on By and can vanish only when g is in the image of Z in
k. Note that non-vanishing of the determinants implies that dim A(n) = a, forn <7
and generic 8’s. We are going to show that the same is true for any n.

Consider the Deligne orthogonal category Rep(O;), t € Kk, see e.g. [10, Sect. 9].
Let V € Rep(O;) be the generating object corresponding to one element set in [10,
Definition 9.2]. By definition, we have

inv (v®2") = dim Homgep(o,) (1, V&) = 2n — D),

inv (v®2"+1) = dim Hompgep(o,) (1, VO = 0,
where 2n — 1)!! = 2n — 1)...3 - 1 is the odd factorial.
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Proposition 7.3 a,, is the dimension of invariants of the n-th tensor power of the object
1®1dV € Rep(0y),

a, = dimHomgep(o,) (1, (17 @ V)®"). (111)

Proof Let us compute the exponential generating function of dimensions of invariants

" dim (inv ((12 o V)®")) ”—‘ — dim(inv expQu + Vi)

n
n>0

= dim(inv exp(2u)) exp(Vu)

u u2n
_ - . . ®n _ - _ ”
= expCu) Z 0 dim(inv V") = expQu) Z ] 2n — D!
n=0 n>0
u2
= exp <2u + 7) . (112)
Here for a G-representation V we denote by
un
exp(Vu) = Z — V& e K(G)[[ull.
n!
n>0
where K (G) is the representation ring (tensored with Q) of the group G. O

Proposition 7.3 motivates the following construction. Let A € Rep(O;) be the
commutative Frobenius algebra obtained from a symmetrically self-dual object V €
Rep(O;) by the construction in Example 2.1 in Sect. 2.2. The generating function of
the a—invariant of algebra A is o9 + o1 T where «( can be chosen arbitrarily and
a =t + 2. Itis also easy to see that the skein relation x> = 0 holds for the handle
morphism of the algebra A. Thus by the universal property from Sect. 2.3 there is a
symmetric tensor functor F, : DCob, — Rep(Og,—2) sending the circle object to
A =12 @ V (we assume here that 81 # 0 since the skein relation is different in the
case 1 = 0). The following simple result is crucial:

Proposition 7.4 Assume B # 0. Then the functor Fy, is full and essentially surjective.

Proof By definition, the image of the functor F, contains A = 1> @ V. This implies
the essential surjectivity, as any object of Rep(0;) is a direct summand of a direct sum
of tensor powers of V.

Let us show that the functor F, is full. Since the object A is self-dual it is sufficient
to show that any morphism from Hom(1, A®") is in the image of the functor F,. Using
the decomposition

n

2 S

A®n =1 V)®n — ®Xl
Scll,...,n] i=1
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where XlS =1%ifi € S and Xl.s =V ifi ¢ S, we see that the space Hom(1, A®M) is
spanned by the tensor products of morphisms from Hom(1, A) and the pairing 1 —
V ®V — A® A. Thus it is sufficient to check that F, is surjective on Hom(1, A®")
for n = 1, 2. This is clear for n = 1 since the space Hom(1, A) is two dimensional
and the image of the functor F, is at least two dimensional (by the first row of Table
7), as Fy does not annihilate non-negligible morphisms. The same argument (based
on the second row of Table 7) works for n = 2 provided that g1 # 2. Finally in the
case n = 2, 1 = 2 and chark # 2 one verifies by an explicit computation that the
unique up to scaling negligible morphism in Hom(1, A®?) is not annihilated by F,. 0

Remark 7.5 One verifies that the functor F, annihilates relations in Figs. 18 and 19.
Let DCoby, be the quotient of DCob,, by these relations. It is clear that the inequality
from Corollary 2 holds in the category DCob,. Thus Proposition 7.4 implies that the
functor DCob, — Rep(0Og,—2) is also faithful. Hence, there is an equivalence of
tensor categories DCob$, ~ Rep(Opg,_2).

Combining Propositions 7.4 and 2.4 results the following:

Theorem 7.6 Assume Zo, = Bo + B1T with 81 # O. The functor Fy induces an
equivalence of tensor categories DCob, =~ Rep(Op,—2), where Rep(Op, —2) is the
gligible quotient of the Deligne category Rep(Og, _2).

Here is a special case. Assume that chark = 0. By a theorem of H. Wenzl (see
e.g. [10, Théorem 9.7]) we have Rep(Op,—2) = Rep(Op,—2) when B ¢ Z. It follows
from Proposition 7.3 that in this case dim A(n) = a,, and the set .o/ (n) is linearly inde-
pendent. We have the following implications for the determinant det,, of the bilinear
form on A(n):

Proposition 7.7 The polynomial det, is nonzero and depends only on 1 (and not on
Bo); moreover its irreducible factors are of the form 1 — s, s € Z.

Proof 1t is clear that det,, is a polynomial in variables By and B; with integer coeffi-
cients. As explained above this polynomial can vanish only when f; € Z, so that det,,
does not depend on By, by elementary algebraic geometry. O

In the case chark = 0 and 7 € Z, the gligible quotients Rep(O;) are computed in
[10, Théorem 9.6]. Recall that

Rep(0;) = Rep(G, &),

where G is one of the super groups O(n) (if t = n > 0), Sp(2m) (if t = —2m is
negative and even), O Sp(1l,2m) (if t = 1 — 2m is negative and odd) and ¢ € G is a
suitable involution. Thus we get the following examples illustrating Theorem 7.6:

Example 7.8 (chark = 0)

(1) Assume Z, = Bo + 2T. Then DCob , is the category Vec and the circle object
corresponds to the Frobenius algebra k[x]/ (x2) with €(1) = Bo and €(x) = 1.
Note that in this case dim A(n) = 2".
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(2) Assume Z, = Bo+3T.ThenDCob , is the category Rep(Z/2) and the circle object
corresponds to the Frobenius algebra A = K[x]/ (x3) with €(1) = Bp, €(x) =0,
€(x?) = 1, and the group Z/2 acting on A via x — —x. Thus the character of
the Z/2—representation A takes values 3 and 1 on the elements 0, 1 € Z/2, and
dim A(n) = 35

(3) Assume Z, = Bp—2T. Then DCob , is the category Rep(Sp(4)) (with the modi-
fied commutativity constraint), and the circle object corresponds to the Frobenius
algebra H*(3,, k), where X; is a oriented closed connected surface of genus
two. Here Sp(4) acts trivially on H¢"*" (%,, k) and via the natural representation
on H'(2,, k). The commutativity constraint in Rep(Sp(4), €) is modified in a
way making the natural representation into an odd vector space, so the algebra
H*(X;, k) is commutative in the category Rep(Sp(4), ¢).

We will see later (Proposition 7.12) that the leading coefficient of the polynomial
det, is £1. It follows that det,, is nonzero even if char k > 0; moreover its roots lie in
the prime subfield of k. Thus there is an equivalence DCob , = Rep(0Og, —2) provided
that B; is not an element of the prime subfield. Note that in this case the category
Rep(0p,—2) is not semisimple by [14, Lemma 2.2].

Corollary 3 Assume chark > 0 and t is not in the prime subfield of k. Then the
category Rep(O;) is non-degenerate (i.e. has no nonzero negligible morphisms) and
non-semisimple.

In the case chark > 0 and g is in the prime subfield we expect that the categories
DCob , are equivalent to the fusion categories associated with super groups (G, €) as
above (i.e. gligible quotients of suitable tilting modules categories). In particular, the
categories DCob , should have finitely many simple objects up to isomorphism.

We discuss now the multiplicities of the roots of polynomials det,,. Here are some
patterns that can be observed in Table 7:

e The differences dim A(n) — u,,, where u,, is the exponent of 8; — 2, are given by
powers of two: (2, 4, 8, 16, 32, 64).

e The differences dim A (n) — w,, where w, is the exponent of 81 — 3, are given by
(2,5, 14,41, 122, 365). These exponents match the sequence (3" + 1)/2.

Comparing this patterns with Example 7.8 (1) and (2) we arrive at the following

Conjecture 7.9 Let s # 0 be an integer. The exponent of the factor f1 — s in the
polynomial det,, is given by

ay — dim Aa(s) (n)

where a(s) = (Bo, s,0,0, ...), so that the generating function Zy)(T) = Bo + sT
(for arbitrary By and chark = 0).

Remark 7.10 By definition, the bilinear form on the space k.o (n) has a null space
of dimension a, — dim Ay s)(n). Thus, a standard argument (see e.g. [21, Lemma
8.4]) implies that the exponent of the factor 8; — s in det, is greater or equal to
a, — dim Aa(s) (n)
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Note that, according to Theorem 7.6, the dimensions dim A 5) (1) are given by the
dimensions of invariants of the (super) groups G = O (k), Sp(2k), O Sp(1]2k) in the
representation (12® V)®" where V is the defining representation of G and s = k+2,
2 — 2k, 3 — 2k, respectively. We tabulated the exponents predicted by Conjecture 7.9
in Table 8. Here are some observations about Tables 8 and 7:

e The exponents for 81 — 1 and 81 — 5 coincide. The same applies to the exponents
for 1+ 1 and 81 —7 and to the exponents for 81 +3 and 81 —9 etc. This is explained
by the coincidence of the multiplicities for tensor products for OSp(1, 2k) and
Ok + 1), see [38].

e The irreducible factors of dety, and dety, 4 coincide for any n > 0.

e The irreducible factors which appear in dety;, and do not appear at dety,_; are

B1—n—1(forn > 1), 81 4+2n—4 (forn > 3),and B; +n — 5 (foreven n > 4).

Conjecture 7.9 does not predict the exponent of the factor 8 in det,,. We propose
the following

Conjecture 7.11 The exponent of the factor B in det,, is given by
2nay—1 + ay — Cuy1

where ¢, is the Catalan number.

It would be interesting to find a categorical interpretation of this conjecture. The
numerical data for it are given in the last row of Table 8. Term na,_; in the above
conjecture is the total number of connected components of genus one in the set of
cobordisms <7 (n).

Table 7 suggests that the leading coefficient of the polynomial det,, is (—1)". Using
this together with Conjectures 7.9 and 7.11 we can predict the polynomials det,,. For
example, the prediction for detg is

(Bi1=5)"*(B1 — H%0(B1 —3)12(81 — 20 (B — DMBI1P (B +2) (B + 4).

One verifies that the degree of this polynomial agrees with Corollary 5 below.

7.2 Polynomials of degree two and three
Consider a polynomial generating function of degree two,

Z(T) = o+ BiT + BaT? (113)
The dimension of A(n) is bounded from above by B,(f), since all surfaces with a
component of genera at least 3 are in the kernel of the bilinear form. However the
computation shows that the actual dimension is strictly less than B,S3) starting from
n = 2, see the data in Table 9 for the quadratic Z(T).
Table 10 shows the determinants for a generic polynomial of degree three.

W Birkhauser



Page 550f68 71

Two-dimensional topological theories. ..

LTETOOYT 978€0€ €089 7981#1 1€61€ 90¥L YLLT oty €Il 0€ 8 4 é Ig
0 0 0 0 0 0 0 0 0 0 0 0 9Ddso ¢+ 1g
43 0 0 0 0 0 0 0 0 0 0 0 ¥ Ddso I+ 1d
0S€L0T #009¢C 798¢ [4Y4 71 0 0 0 0 0 0 0 (T'Ddso -1
I 0 0 0 0 0 0 0 0 0 0 0 (onds g+ 1g
61¢ (44 I 0 0 0 0 0 0 0 0 0 (8)ds 9+ 1g
0LE81 Tlie 91¢ 81 I 0 0 0 0 0 0 0 (9)ds v+ 1g
96LETE 9TT0S 16VL 0501 €el y1 1 0 0 0 0 0 () ds t+ 1y
0 0 0 0 0 0 0 0 0 0 0 0 9o g—1g
(43 0 0 0 0 0 0 0 0 0 0 0 ©o L=1¢
soLet 726 w 0 0 0 0 0 0 0 0 0 ®o 9-—1g
0S€L0T #009¢C 798¢ (454 71 0 0 0 0 0 0 0 ©o s—1¢
62T9L01 8EEH8I 6120€ 0297 0£9 0L S 0 0 0 0 0 @0 r—1g
¥€9¥91¢C Y0S67 #86€6 ¥e6l TI6¢ 9GL vel 0C 4 0 0 0 Mo e—1g
6ST9THT 0£09€S S802CI ¥L98¢ LE69 TeLl Sev 011 LT 9 I 0 o g

((49)4 anv onv (914 (€)% wv v (9% v ©v v v dnoip JIojoey

9[qe) Ay} JO SMOI IS0 )
UIdA0F PINoyYs 18y} () = § 0} PAPUIIX3 JI) 'L 21M)3[UO)) UBY) MOI ST} JO SILNUD Y} J0F sA[NI pajedrdwod axour sAIS |17/ amyoafuo)) ng ‘(7)ds £q paoerdar oq Aew 131 oY)
U0 MOI W0)30q dY) UT Iew uonsanb oy ‘vonejodiour dATeU B 10, A[UO SOIOZ SUTBIUOD JT “UMOYS JOU ST (()) |/ JOJ UN[0)) *SI0JOB] JBaul Jo sjuauodxa ay) J0J uonoIpald gajqel

) Birkhauser



71  Page 56 of 68 M. Khovanov et al.

Table9 Computation of

dimensions and the determinant n 3’23) dim det
for Z(T) = po + H1T + foT7 ) | 1
1 3 3 -3
2 12 11 -p30
3 57 46 pis
4 309 213 S
5 1866 1073 -2
Table 10 Computation of () .
dimensions and the determinant n Bn dim det

for Z(T) = fo + B1 T + o T* +

B3 73 0 1
4
1 4 4 B3
2 20 19 —p3
3 116 102 —p3%6
4 756 604 B30
5 5428 3884 pI3340

7.3 Polynomials of arbitrary degree
Now consider the case of an arbitrary polynomial generating function:
Z=PBo+BT+...+B,T", m=>1.

Let .o/ (n) be the set of viewable cobordisms with n boundary circles such that for
each component S of genus g with £ boundary circles the following inequality holds:

g+l<m+1. (114)

Note that <7 ! (n) is precisely the set <7 (n) from Proposition 7.1. Let us consider
the matrix of the bilinear form on the space A(n) computed at the elements of the set
/™ (n), and let det!™ denote its determinant. It is clear that det"™ is a polynomial in
variables Bo, B1, - . ., Bm. In the next Proposition we are going to compute the leading

term of this polynomial. Let d,ﬁ’") be the total number of connected components of all
elements of the set &/ (n).

Proposition 7.12 The polynomial detﬁm) is of the form

(m)
:I:(ﬁm)d" + lower terms

where each lower term monomial has either less than d,(lm) factors or precisely d,(,m)
factors but involves some B; withi < m.
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Proof The expansion of the determinant det,({") is a sum over all permutations 7 of
the set &7 (n) of terms

I = + 1_[ ba,n(u)a
ae./™(n)

where b, 7 (4) is the pairing of a and 7 (a), hence some monomial in ;’s. The number
of factors in the monomial b ;) is precisely the number of connected components
of the surface obtained from a and 7 (a) by gluing along the boundary. Thus it is clear
that the number of factors is less or equal to the number of connected components of
a. Moreover, we have equality only if the partition of the boundary circles determined
by the connected components of 7 (a) is a refinement of the partition determined by
a.

Thus, the total number of factors in 7, is less or equal than the total number of
connected components of all elements a € /" (n), and every monomial in the poly-
nomial det!™ has < d\™ factors. The term ¢, has precisely d\™ factors if and only if
the permutation 7 has the following property:

(*) for any a the partition of the boundary circles determined by the connected
components of 7 (a) is a refinement of the partition determined by a.

Note that there exists r > Osuchthatz” (a) = a. Thus the condition (*) is equivalent
to the following property:

(**) for any a the partition of the boundary circles determined by the connected
components of 7 (a) coincides with the partition determined by a.

Now let g be the following permutation:

mo(a) is obtained from a by replacing each connected component of genus g with
[ boundary circles by the connected component of genus g’ = m + 1 — g — [ with the
same boundary circles. This transformation preserves inequality (114) and defines an
involution g on &/ (n).

Then every connected component of the closed surface awg(a) given by gluing a and
7o(a) along the boundary has genus g+ g’+/—1 = m, and the term t,;, = :I:(,Bm)d'gm).
It is also clear that for any other 7 satisfying (**) the term ¢, will be either zero (if
one of the components of amg(a) has genus greater than m) or will involve B; with
i < m (if one of the components of the gluing has genus < m). This completes the

proof of the proposition. O

Remark 7.13 The sign of the leading term is the sign of the permutation 7¢; since g
is an involution, the sign can be computed from the number of fixed points.

Corollary 4 The set </™ (n) is linearly independent in A(n), for generic values of B;’s.

Using the standard methods one computes the exponential generating functions for
the sizes of the sets &7 (n) and for the sequence d,i’”):
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™ (n m tm+17g
W n e CRM §
= = m )
d,gm) m fmtl—g m fmtl-g
RLPTR (o L g+
HZ(:)n! gX_(:)(m+1—g)!(g )| exp gX_(:)(m—i-l—g)!(g )

In particular, for m = 1 we get

Corollary 5 The degree d,, = d,(,l) of the polynomial det,, = detﬁ,l) satisfies

Zd"z" 2 + e 2t + e
—t = — |ex — .
! 2 )P 2

n>0

Equivalently, d,, = %n(an + 2a,_1).
Conjecture 7.14 o/ (n) spans A(n).

Proposition 7.15 Assume that Conjecture 7.14 holds for some m > 1. Then

(m)
det'™ = £(B,)" .

Thus </™(n) is a basis of A(n) for any Bo, Bi, ..., Bm with B, # 0 and in any
characteristic.

Proof The set of zeroes of detﬁlm) should be invariant under the scaling (B, B1, B2, - - -,

Bm) ()F]ﬁo, B, \Ba. .., Am’lﬁm)(see Sect. 2.1). Now the result follows from

Proposition 7.12 since the leading term is multiplied by ()»)d'('m) (m=1 ynder the scaling
and the potential lower terms are multiplied by lower power of A. O

Remark 7.16 The argument above does not work for m = 1 since 8 does not change
under the scaling. However it gives an alternative proof to the known fact that det,, =

det,(ll) does not depend on fy.
Theorem 7.17 The Conjecture 7.14 holds for m < 2.

Proof Form = 1 it was established earlier. To prove it for m = 2, let us first introduce
the following notation.

The symmetric group S, acts on A(n) via the permutation cobordisms that permute
n circles. Suppose given a cobordism y which is stabilized by a parabolic subgroup
S, C Sy, for a decomposition A = (Ay, ..., r) of n,sothatoy = y for y € §,. To
y and A assign the element ), y of A(n) given by

Zy = Z oy. (115)
x

o €Sy/S).

That is, pick a representative t in each coset S, /S, form Ty and sum over cosets.
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33 @ =A+B+C
(2,1) (1,2)

5000

Fig. 20 Relation in A(3) for Z(T) = Bo + A1 T + ﬁsz Numbers 1 and 2 show the number of handles
(dots) on the component. Summation means symmetrization with respect to permutations of boundary
components parametrized by cosets of the stabilizer of the surface in S3. Sums A, B, C have 3, 3, 1 terms
respectively (7 terms in the right hand side in total)

For m = 2, the following relations hold in A(3) and A(4), see Figs. 20 and 21.
Figure 20 relation reduces a 3-holed torus to a linear combination of other cobordisms,
with each summand A, B, C also invariant under the permutation action of S3. Each
of these three terms is associated to a surface that has an obvious S -invariance, for
the decomposition A shown under the sum sign. The term is the sum over surfaces in
its orbit, as described above in (115).

Figure 21 relation has a similar presentation. For term B there the stabiliser of the
surface is the dihedral group D)y C S4 generated by the permutations (12), (34),
and (13)(24). The corresponding subgroup is denoted (2, 2)’, it contains S(2 2) as an
index two subgroup. This relation implies Fig. 20 relation by capping off a circle by
a handle. Capping off by a disk results in a trivial relation.

We can exclude components with four boundary circles (¢ = 4) using Fig. 21
relation. To obtain the relations that simplify a genus i surface with 4 — i boundary
components for i = 1, 2, see inequality (114), cap i boundary components by handles
(one-holed tori) in Fig. 21 relation, resulting in Figs. 20 and 22 left relations. For
i = 3, there is also the relation that a one-holed connected surface of genus three is 0
in A(1), see Fig. 22 right.

These relations show that any connected component of genus g with ¢ boundary
circles and g +¢ > 2+ 1 (since m = 2) simplifies to a linear combination of surfaces
in the set <7%(n). Consequently, this set spans A(n), establishing Conjecture 7.14 for
m=2. O

Remark 7.18 Originally, relation (21) was computed in Sage by finding the kernel
of the (|&7%(4)| + 1) x (|.«/*>(4)| 4+ 1)-matrix of the quadratic form restricted to the
elements of <72(4) and the four-holed sphere.
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Fig.21 Relationin A(4) for Z(T) = Bo+B1 T+ B2 T2. Numbers 1 and 2 show the number of handles (dots)
on the component. Summation means symmetrization with respect to permuting the boundary components,
as described in the proof. Sums A, B, C1, Cp, C3, D1, Dy, D3, Dg have 4, 3, 6, 12, 6, 4, 6, 4, 1 terms
respectively (46 terms in the right hand side in total)

$0-00 ©-

Fig.22 Relations in A(2) and A(1) for Z(T) = Bo + B1T + B> T2, Numbers 2 and 3 show the number of
handles (dots) on the component

8 Cobordisms of fractional genus and other decorations

Fractional genus. Recall the defining relations in Proposition 4.2 on generators x and
u of the algebra Bg. If o, # 0 for some even n > 0, then the element

oz;l)c"/zuxn/2 (116)

is an idempotent in Bg. This is an obvious way to get an idempotent in Bg unless the
power series Z(7') has nontrivial coefficients only at odd powers of 7. With a minor
effort, a version of the above idempotent can be produced in the latter case as well.
Namely, for odd n and with «,, # 0, we can try to make sense of the expression (116).
For that one needs “cobordism” x1/2, which should be a “genus 1/2” surface, with
some boundary components. Let us consider an even more general case of a “genus
1/¢” surface for some ¢ > 1. We simply introduce a fractional dot x'/¢ with the
relation that its £-th power is the handle, see Figs. 23 and 24.
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Fig. 23 Dot of fractional order
m/e _ xm/l

Fig.24 Top: Fractional dot x1/¢ can freely float along a connected component. Its £-th power is the handle.
Bottom: examples of relations on dots and handles

Fractionaldotsa/¢ andb/€,a, b € Z,floating on the same component, can merge
into the fractional dot (a + b) /€. Vice versa, the latter can split into a /¢ and b /¢ dots.
Dot £/¢ = 1 converts into x and equals a handle on the component.

Formally, one can introduce the category of fractional cobordisms Cobg. Its objects
are non-negative integers n > 0 and morphisms from 7 to m are the diffeomorphism
classes rel boundary of oriented cobordisms from n to m circles with dots floating on
the components and labelled by elements of the commutative semigroup H = %ZJF =
{0,1/¢,2/¢,...}. Dots can merge, adding their labels, and the label 1 dot equals the
handle. Dot O can be erased. A connected closed cobordism of genus g with a dot %
reduces to a 2-sphere decorated by the dot %ﬂ € H.

Universal constructions for 2-dimensional cobordisms, as described here and in
[22, 29], extend in a straightforward way to Cobg for any ¢ > 2 (the original theory
corresponds to £ = 1). Parameters of the theory are «,, e € K, overalln > 0,
encapsulated by the power series in 7'1/¢,

Zo(TVY) = Za,,/ﬂ"/@. (117)

n>0
State spaces Ay (k) of k circles are defined as in [22], and the rationality result is
proved in the same way.
Proposition 8.1 Vector spaces Ay (k) are finite-dimensional for all k > 0 iff Ay (1) is

finite-dimensional iff Ze,(T'/%) is a rational function,

P(T'/")
1ty —
Za(T') = 5 ity (118)
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Fig.25 Dots a and b merge into a + b dot; dot O can be erased; handle equals the dot labelled ¥ (1)

for coprime polynomials P and Q, with Q(0) # 0.

Generalizations of the Deligne category extend to this case as well, and each rational
function as in (118) gives rise to several categories by direct analogy with [29]. These
categories have finite-dimensional hom spaces and include the analogue of the partition
category, the Deligne category, and their quotients by ideals of negligible morphisms.

We should warn the reader that cobordisms of fractional genus, as above, are simply
decorated surfaces that are morphisms of Cobﬁ. They don’t carry any of the rich
structure associated with the usual surfaces, such as the mapping class group, moduli
spaces of complex structures, and so on.

Commutative monoid decorations. More generally, one can take any commutative
monoid H (with the binary operation written additively as +), together with a monoid
homomorphism ¢ : Z; — H. To v one can assign the category Coblzp of oriented
decorated 2D cobordisms. As before, objects of this category are non-negative integers
n € Z4, while the morphisms are oriented 2D cobordisms (modulo rel boundary
diffeomorphisms) decorated by dots labelled by elements of H. Dots labelleda, b € H
floating on the same component can merge into a dot labelled a + b, see Fig. 25. Dot
labelled 0 € H canbe erased. A handle on a component equals a dot on that component
labelled by ¥ (1).

Closed 1r-cobordisms are disjoint unions of their connected components, classified
by their genus, which is an element of H. The analogue of evaluation is a map of sets
o« : H — k which can be written via formal power series

Zoy = Z anh (119)

heH

and viewed as an element of the dual vector space (kH)*.

In Cobgf connected cobordisms from O to 1 are parametrized by elements h € H
and correspond to a 2-disk with a dot labelled H. Consequently, the space Ay (1) is
the k H-submodule of (kH)* generated by the functional Z,. It is finite-dimensional
iff o is a representative function on H, see [22].

Notice that ¥y does not have to be injective. However, one can specialize to the
case when H is a free monoid and ¥ is injective, and then get any desired defining
relations on generators of H by restricting to suitable subspaces of (kH)*. Taking
large H, however, may move the emphasis from 2D cobordisms and representative
functions on them to, for the most part, studying representative functions on k H, with
only a meagre input from cobordisms.

Another potentially interesting specialization is to the periodic genus. For that spe-
cialization genus does not need to be fractional. Consider the quotient of the cobordism
category by the relation that the M-th power of the handle is identity, that is, can be

W Birkhauser



Two-dimensional topological theories... Page630f68 71

removed. This corresponds to working with the monoid and map
H=7Z/MZ, ¥;Zy — H, y(1) =1, (120)

that is, modding out Z by MZ. . In the language of w-evaluations, one is looking at
“M -periodic” power series, that is, op;+, = o, for all n > 0. Equivalently, the power
series

P(T
Zal) =

deg(P(T)) < M, (121)
is determined by the coefficients of P (7). Such evaluations necessarily extend to the
category of cobordisms with integral genus, see the next remark. Fractional version
of (121) also makes sense, with the power series

P(T'/")

/ey —

deg(P(x)) < M, (122)
and not necessarily integral M /£. In this theory M /gcd(M, £) handles on a component
can be erased.

Remark Paper [28] discusses several rank two Frobenius extensions R, C A, used in
various flavors of SL(2) link homology. Here R, is a ground commutative ring and A,
is a Frobenius R,-algebra, which is, in particular, free of rank two over R,.. Extension
(Rp, Ap) considered in [28] makes use of the anti-handle, a formal inverse of the
handle cobordism, denoted by ! in that paper. This extension essentially describes
Lee’s homology theory and also gives a monoidal functor from the category Cob‘zb to
the category of free Rp-modules, where

H=7, v:7, — 7 (123)

is the usual homomorphism from the monoid of non-negative integers (under addition)
to integers. The functor assigns A%" to the union of n circles and the structure maps
of that Frobenius algebra (unit, counit, multiplication, comultiplication) to the basic
cobordisms: cup, cap, pants, copants. Multiplication by the handle endomorphism of
Ap is invertible and allows to introduce the antihandle (dot labelled —1) as the inverse
of the handle endomorphism.

A similar localization appears in [27] in the context of evaluations of unoriented
S L(3) foams, where one can invert the discriminant and work with suitable decorations
on foams.

Allowing connected sums of cobordisms in Cob, with RP? (which results in unori-
entable cobordisms) corresponds to working with the monoid and the map

H=(1,b)/Bb=b+1), ¥:Z, — H,y(1) =1, (124)

with dot labelled b corresponding to the connected sum with RP2. In this monoid
there is no cancellation, and b + b # 1 although b + b + b = b + 1. Topologically,
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Fig. 26 Skein relations in category Cobzw . Note that a, b are elements of an algebra B rather than of a

monoid H (where the binary operation is denoted +), which leads to the addition in Fig. 25 becoming
multiplication here

connected sum with three copies of RP? is diffeomorphic to the connected sum with
one RP? and the torus, but connected sum with two copies of RP? (equivalently, with
the Klein bottle) is not diffeomorphic to adding a handle, when applied to an orientable
connected component. Monoid H surjects onto %Z+ by sending b to %, intertwining
homomorphisms s for these monoids.

Extending to commutative algebras. Decorations of two-dimensional cobordisms
by elements of a commutative monoid can be further generalized. Observe that a map
Y as above from the “genus” semigroup Z. into a commutative monoid H, together
with the “trace” or evaluation &« : H —> Kk gives rise to two maps, that we still denote
Y and «,

K[x] = kZ, -5 kH - k. (125)

The first map is a homomorphism of commutative k-algebras, the second (evaluation)
map is k-linear. One can generalize from kH to a commutative k-algebra B together
with a homomorphism ¥ and a k-linear trace map

KZ, = k[x] -5 B - k. (126)

Instead of the set-theoretic category Cob, which does not have a linear structure one
starts with the k-linear category kCob, with the same objects as Cob, and morphisms
— finite k-linear combinations of morphisms in Cob;. One then modifies kCob, to the
category Cobzw as follows. Category Coblzp has objectsn € Z..Morphisms are k-linear
combinations of oriented 2D cobordisms as before with dots labelled by elements of
B floating on components and the following relations, see also Fig. 26:

e Dots are subject to the obvious addition and product rules for elements of B,
e A handle on a cobordism can be replaced by a dot labelled ¥ (x),
e A closed surface of genus g with dot labelled b evaluates to o (b (x)8) € k.

In this way, a surface of genus g with dots labelled ay, . . ., ax floating on it reduces to
a genus zero surface with the same boundary and a single dot labelled v (x)%aj .. . ag.
A closed connected component reduces to a 2-sphere with a dot b. It then evaluates
to a(b) € k. Thus, any closed component evaluates to an element of k. In this way a
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dotted cobordism reduces to a viewable cobordism with all components of genus zero
and at most a single dot on each connected component, labelled by some element of
B.

Pick a basis {b}pcc of B that contains 1 € B. A morphism from n to m in Cobg
reduces to a linear combination of genus zero viewable cobordisms with dots on each
components labelled by elements of the basis C of B. In fact, such dotted cobordisms
constitute a basis in the hom space HomCOb;p (n, m). Vice versa, category Cobf can be

defined via these bases and multiplication rules that come from composition of cobor-
disms, converting a handle to ¥ (x), multiplication in the basis C of B and evaluation
map o € B*. Basis elements are parametrized by a choice of a set-theoretical partition
A € D) of n 4+ m boundary circles together with an assignment of an element of the
basis C of B to each component.

Next, assume that @ € B* = Homg (B, k) is a representative function and exclude
the trivial case o = 0. This means that the hyperplane ker(«) C B contains an ideal
I C B of finite codimension, dim(B/I) < oo, see [34], for instance. Assume that
I is the largest such ideal. Element o generates B-subrepresentation Ba C B* that
factors through the action of B/I and is isomorphic to a free rank one B/I-module.

Remark Algebra B’ = B/I is a commutative Frobenius k-algebra, with the nonde-
generate trace « and a preferred element, which is the image of v (x) under the quotient
map B — B/I. The constructions that follow can alternatively be done with such
a commutative algebra B’ (necessarily finite-dimensional over k), equipped with a
nondegenerate trace and a preferred element.

Next, we quotient Cobzw by the relations that a dot labelled by z € I is zero. Such
a dot can be expanded as a linear combination in the basis C. A possible convenient
basis can be formed by choosing a basis a basis C; of I and extending it to a basis of
B that contains 1 (the latter condition is also for convenience). Let us denote such a
basis by C = C; U C’, with 1 € C’ and C’ descending to a basis of the quotient B/I.
Set C’ is finite.

Denote the quotient category by SCobaw . It is the analogue of the category PCob,,
from [29]. One can check that a basis of HomSCObaw (n, m) is given by choosing a
set-theoretic partition A € D] for n 4+ m boundary circles and assigning an element
of C’ to each component of the partition. In particular, hom spaces in the category
SCobg are finite-dimensional. The space of homomorphisms

AY (1) := Hom 0,1) (127)

SCob? (

is a commutative algebra under the pants cobordism, naturally isomorphic to the
Frobenius algebra B/I above. Now form the additive Karoubi closure

DCob! := Kar(SCobY) (128)

to get a k-linear idempotent-complete rigid symmetric monoidal category with finite-
dimensional hom spaces. This is the analogue of the Deligne category for the data

) Birkhauser



71  Page 66 of 68 M. Khovanov et al.

(B, ¥, o) as in (126), with a representative functional « (trivial case « = 0 gives the
Zero category).

Categories Cobzw , SCobZ , and DCobg have a trace map given on a decorated
(n, n)-cobordism x representing an element in Hom(n, n) by closing x via n annuli
into a closed cobordism X and evaluating via o:

tr(x) = a(®). (129)

Denote by Jf the two-sided ideal in SCobf of negligible morphisms for the trace tr.
Let

CobY = SCob? / 1V (130)

be the quotient category by this ideal. Likewise, let M‘g be the quotient of the
Deligne category DCobf by the negligible ideal for tr.

For arepresentative «, as before, these categories can be organized into the following
diagram of categories and functors, with a commutative square on the right.

Coby ——> kCoby —— Cobj —— SCoby ———> DCoby

l l (131)

Cob! —— DCob?

This diagrams of categories is fully analogous to the ones described in (15) above and
in [23, 26, 29]. The four categories in the commutative square have finite-dimensional
hom spaces. The two categories on the far right are idempotent complete.

Remark The construction above is likely to be more interesting when the algebra B
is not very large. One may, for instance, take B = Kk[x, y]/(g(x, y)), the quotient of
the ring of polynomials in two variables by a polynomial that depends nontrivially on
both x and y, and define ¢ : kK[x] — B by ¥ (x) = x.

Remark The category of thin flat 2-dimensional cobordisms in [26] has commuting
hole and handle cobordisms. Similar to the discussion above, dot-decorated version of
that category can be introduced, with elements of a commutative monoid H floating
on components of cobordism. One fixes two elements of H, to equate to a handle and
ahole, respectively. Equivalently, a homomorphism ¢ : Z4 x Zy —> H can be fixed
for that.

If, instead, elements of a commutative k-algebra B are made to float on cobordism’s
components, one should choose two elements of B, to equate to the handle and the hole,
respectively. In the version of the thin cobordism category [26] where side boundaries
are colored by colors {1, ..., r}, there are r different holes, one for each color of its
boundary. Then to combine B with the handles and holes, one chooses r + 1 elements
in B.
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