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Abstract: As the quantitative hazard research, particularly stemming from the engineering fields, aims to move from component- and
building-level modeling into the interdisciplinary space of community-level modeling for resilience, the need to test, verify, and validate
community resilience algorithms becomes a critical challenge; virtual testbeds are an effective tool for such purposes. We define a virtual
testbed as an environment with enough supporting architecture and metadata to be representative of one or more systems such that the testbed
can be used to design experiments, examine model or system integration, and test theories. Testbeds enable researchers to assess multidis-
ciplinary integrated community resilience models, thereby helping decision makers to make better community hazard mitigation plans and
recovery decisions. This paper leverages the current momentum on using virtual testbeds for community resilience analysis to dissect what
testbeds are in practice. To obtain consensus on the presented definition of a testbed, the paper conducted a virtual survey with testbed experts.
The survey primarily explored how testbeds have been used across different disciplines, how testbeds differ from case studies, and what are
the minimum requirements for a testbed. The paper, then, presents findings from a systematic literature review on 22 identified existing
community resilience testbeds and 103 associated publications. According to the literature review and survey results, community resilience
testbeds should have both a hazard module and a community module that ideally includes physical, social, and economic systems. The
literature review concludes with a discussion on the available tools for testbed development, typical challenges testbed developers encounter,
and areas for future testbed research. The availability of existing testbeds for reuse by other researchers, standardization of the development
and publication process of new testbeds including obtaining, cleaning, and validating the required data, and verification of numerical algo-
rithms are the main detected issues that need to be addressed in future research. DOI: 10.1061/(ASCE)NH.1527-6996.0000582. © 2022
American Society of Civil Engineers.
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Introduction

Virtual testbeds are being developed and used across the com-
munity resilience literature to serve the purpose of verification and
validation (V&V) (Attary et al. 2019; Ellingwood et al. 2016a;
Fereshtehnejad et al. 2021; Loggins et al. 2019; Mazumder et al.
2021; Noori et al. 2017; Park et al. 2019; Shang et al. 2020). Test-
beds were first termed in the nuclear power (NP) industry to be used
as a means for NP plant process validation (OHara and Wachtel

1995). However, the idea of developing virtual testbeds at the com-
munity level dates back to the 1980s when water distribution net-
work designers were striving to optimally size water distribution
pipes, although those published works might have been imprecisely
termed as a test case or case study (Walski et al. 1987). Testbeds are
an essential part of the development and testing of community resil-
ience algorithms and serve the needs of training and educational
purposes as well. Testbeds enable multidisciplinary teams to design,
test, integrate, verify, and validate community resilience algorithms
and numerical models at different scales and resolutions, which is
critical when interdependencies across systems are of interest. V&V
of numerical models is an important step in model development en-
abled by testbeds (Sargent 2010). Validation is the process of de-
termining if a mathematical or computational model of an event
represents the actual event with sufficient accuracy. Whereas, veri-
fication is the process of determining that the model’s implementa-
tion accurately represents the developer’s conceptual description
and specifications of the model (CFDC 1998). As discussed herein,
the development and application of virtual testbeds: (1) enables
researchers to test their models that predict the performance of
interdependent physical, social, and economic systems and their
immediate and long-term impacts in an integrated community resil-
ience assessment; and (2) better support risk-informed decision
making by communities to optimize public and private investments.

This paper presents findings from a virtual survey administered
to testbed experts and a systematic literature review on commu-
nity resilience testbeds. The survey results provide insight on the
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minimum requirements for a testbed and how testbeds differ from
case studies. The results also help obtain consensus on the definition
of a testbed. Findings from the literature review include metadata for
how the identified testbeds have been developed and used. Of note,
this paper does not intend to criticize existing testbeds, point out
their shortcomings, or rate them, but rather to synthesize their exist-
ence given that testbeds are almost always indirectly presented in
papers. Finally, the available tools for testbed development, typical
challenges testbed developers encounter, and areas of future testbed
research are discussed. This review can be used to aid interdiscipli-
nary teams of hazards and disasters researchers in working together
on testbeds and in understanding where the state of knowledge is on
testbed development.

Testbeds as Real and Imaginary Communities

Communities are defined as places, such as towns, cities, or counties,
designated by geopolitical boundaries (NIST 2016). As such, com-
munities are complex systems comprising interconnected social,
economic, and physical systems and processes (Daniel et al. 2022;
Enderami et al. 2021) and can be very difficult to accurately model.
Testbeds can be designed to represent communities, including imag-
inary or real communities. Being real versus imaginary is different
from being virtual or physical. Virtual and physical refer to whether
the testbed itself is digitally simulated on a computer network or has
a material existence, whereas real and imaginary are terms used to
indicate whether the testbed is a representation of a real or hypo-
thetical community. As physical testbeds for community resilience
are neither feasible nor ethical, this paper only discusses virtual test-
beds. Imaginary testbeds can be entirely fabricated, including all
required data. For example, Gotham City was modeled after the
fictitious city from the comic Batman to be used for verifying com-
munity resilience models (Mahmoud and Chulahwat 2018). Imagi-
nary testbeds may be based on some sort of reality while still not
being a perfect representative and accurate model of an existing lo-
cation. The Centerville testbed is an example of such an imaginary
community, which models a typical midsize community using aver-
age statistics of several communities in the Midwest United States
(Ellingwood et al. 2016a).

Imaginary testbeds are often used when there are significant
data limitations, or when the research is intended to be highly gen-
eralizable for geographic areas with similar topology, population,
and infrastructure (Ellingwood et al. 2016a). Imaginary testbeds are
also particularly useful when a team is attempting to understand
how their algorithms fit together given that an imaginary testbed
can be modified for convenience and simplicity. For example, in-
stead of chaining numerical models for hundreds of thousands of
nodes and links in a given network with hundreds of thousands of
end-users, a simplified and smaller version of the models that use
dozens of nodes, links, and end-users can be tested and verified be-
fore scaling up. Imaginary testbeds enable simplified analysis and
verification. Imaginary testbeds are helpful as well when security is
of the utmost importance, such as identifying the location of key
infrastructure, as well as when the sensitivity of the results is im-
portant, such as simulating terrorist attacks so as not to scare people
living in an actual community. Thus, security and sensitivity con-
cerns could arise from the nature of the data or analytical results, as
well as from the potential trauma and alarm that could be garnered
from the publication of the simulation results.

Nonetheless, testbeds are not limited to imaginary communities
but can model a real world community too. How well the testbed
models the real community (e.g., the level of detail captured in the
testbed) varies depending on the availability and type of data, as

well as the analytical needs. For the latter, a testbed may need to
model a community on a building-level basis or on a larger scale
such as a census block basis. Some testbeds model real commun-
ities with high-resolution details. Take the Harris County testbed
for example, which was constructed using data from Harris County,
Texas. The Harris County testbed modeled power, gas, healthcare,
and transportation networks along with the regional topology to
simulate and measure the risk of flood hazard scenarios (Dong
et al. 2020b). This was done to mirror the real conditions of the
county in the testbed as best as possible. Upkeep of data can be a
pressing concern and is needed for testbeds modeling real commun-
ities. On the other hand, some testbeds, such as pseudo-Norman,
roughly model an existing community using only a few of its attrib-
utes. The pseudo-Norman testbed is a coarse replica of the city of
Norman, Oklahoma. Since the testbed includes only some aspects
of Norman and is not an exact representation of Norman, the origi-
nating authors named it pseudo-Norman (Masoomi and van de Lindt
2017).

As evident here, testbeds come in a variety of shapes and sizes.
To understand what it means to be a testbed, we designed and vir-
tually administered an expert survey and coupled these findings
with our synthesis from a systemic literature review.

Expert Survey

An expert survey was developed in Qualtrics, a powerful online sur-
vey tool, to obtain a consensus definition for the term testbed; the
survey data and report are published on DesignSafe-CI (Sutley et al.
2021a; Enderami and Sutley 2021). A link to the survey was emailed
to 267 experts, where 90 responses were received for a response rate
of 34%. This human subject research was approved by the Univer-
sity of Kansas Institutional Review Board (STUDY00147164). Ex-
perts were identified in one of two ways. First, 153 experts were
identified as an author on one or more of the testbed publications
reviewed in the systematic literature review (inclusion/exclusion cri-
teria for the literature review are described later). Although there are
more authors than 153 on the papers included in the literature review,
the email addresses could be obtained online for only 153. Second,
based on our team’s experience and professional network, we were
aware of other ongoing projects that we are developing or using test-
beds; from that, we came up with a list of 114 additional experts.
This totaled 267 experts; however, in the recruitment email, respond-
ents were asked to share the link with any collaborators they con-
sidered as testbed experts. No personally identifiable information
was collected from respondents, so we do not know how many peo-
ple the survey was shared with outside of the 267 experts we directly
emailed. We suspect this number is quite low and that the overall
response rate is very near the calculated response rate of 34%.

The survey consisted of a series of questions to categorize re-
spondents, including position, disciplinary expertise, and whether
the respondent had used a testbed before or not. If the respondent
had used a testbed before, they were asked which testbed(s) they
had experience with, which hazards and types of systems they had
examined in their use of a testbed, where they obtained data or ar-
chitecture for the testbed(s), and if any validation had been per-
formed by them or otherwise on the testbed(s). The remainder of
the survey consisted of a series of questions intended to define what
a testbed is with explicit differentiation from a case study. Results
from selected questions are presented and discussed herein.

Fig. 1 provides responses from the first two survey questions on
the primary discipline and position of the 90 respondents. As shown
in Fig. 1(a), nearly two-thirds of respondents’ primary discipline
is the same as this paper’s authors, civil engineering. However, the
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remaining one-third span diverse disciplines in engineering, social
and physical sciences. Similarly, as shown in Fig. 1(b), nearly 75%
of respondents identified their position as academic-based, whether
faculty, retired faculty, postdoc, or student. However, 15% of re-
spondents work in government positions, and 7% work in industry.
Of the 90 completed surveys, 58 respondents indicated that they
personally had used a testbed before. Although we are not sure the
exact reasons behind the 32 identified experts who indicated they
had not personally used a testbed, we are anecdotally aware of many
cases where teams of people work together on a project and some
team members work directly with computational algorithms and
testbeds while other team members provide feedback, discussion,
idea generation, and the like. Thus, the latter category of team mem-
bers is very familiar with testbeds even if they personally had not
used one before.

Defining a Testbed

The term testbed has been used across many disciplines to test
scientific theories, computational tools, and new technologies.
Meriam-Webster (https://www.merriam-webster.com/) defines the
word “testbed” as “any device, facility, or means for testing some-
thing in development.” This definition does not fully align with how

testbeds have been applied in the literature, and it is insufficient in
capturing the specific needs for community resilience analysis. We
believe a testbed is more than a device or facility; so, we included
two open-ended questions in the survey to facilitate consensus on
the definition of a testbed. The questions provided our proposed
definitions of a testbed and a case study and requested the respond-
ent for any comments to refine the definitions. Based on the 96 com-
ments received from these two questions, along with comments
recorded from other open-ended questions, we made the required
revisions to form the following consensus definition for a testbed:

A testbed is an environment with enough supporting architec-
ture and metadata to be representative of one or more systems such
that the testbed can be used to (1) design experiments, (2) examine
model or system integration, and (3) test theories.

The concept of virtual community resilience overlaps with
some existing commercial catastrophe modeling software, publicly
available tools for hazard mitigation and preparedness planning
(e.g., HAZUS), or other modern high-tech simulation tools such as
a digital twin. But these tools do not fit into the proposed definition
of the testbeds, although they might be effective tools in commu-
nity resilience research. For example, existing risk assessment tools
do not provide the required architecture for designing experiments,
examining models that include social and economic aspects of a

Fig. 1. Primary (a) discipline; and (b) position of survey respondents (n ¼ 90).
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community, and integrating them into the other components. For
example, a digital twin of a community is a virtual environment
that represents the physical aspects of a community and does not
simulate the other dimensions of a community. In the survey, a
complementary open-ended question was also asked, “What, if any,
minimum requirements are necessary for something to be consid-
ered a testbed?”. Sixty-six responses were received. Qualitative
analysis revealed three categories of comments: (1) applicability
of the testbed to be applied to research questions; (2) requirements
of what must be modeled (e.g., systems, hazards); and (3) the
accessibility and documentation of the testbed for the research
community. The first category was coded into two themes. These
two themes were that the testbed must (1) represent reality, and
(2) be a real community. The second category was coded into three
themes: the testbed must include models of (1) multiple hazard op-
tions (e.g., type, level); (2) multiple systems; and (3) must have
humans. The third category was coded into eight themes, including
that the testbed must: (1) be developed and useable from a multi-
disciplinary team or perspective; (2) have broad applicability for
examining different community resilience algorithms to answer a
broad range of research questions relevant for the community at
hand; (3) have a defined purpose; (4) be accessible to other users
outside the original developers; (5) well-documented; (6) replicable
or reliable; (7) scalable; and (8) open-source or modifiable. Finally,
two other themes were not categorized: (1) that there are no mini-
mum requirements for something to be defined as a testbed; and
(2) other, which included comments not captured by the other
14 themes. The number of responses classified into each of the
15 themes is depicted in Fig. 2. The most common response was
that at a minimum, a testbed should represent reality (n ¼ 21).
Three of the 21 comments distinguished that the testbed must indeed
be real, as opposed to only a representation of reality. The second
most common response was that a testbed should be broadly appli-
cable (n ¼ 20); whereas 9 responses indicated a testbed must have a
defined, specific purpose.

Distinguishing a Testbed from a Case Study

Although distinct concepts and not synonymous terms, the words
testbed and case study are often used interchangeably (particularly
in community resilience studies), which has the potential to be mis-
leading. Both case studies and testbeds can be utilized at the com-
munity level, but testbed is not a term frequently used in conjunction
with a study of a specific past event or single system. Here, we de-
fine a case study as research performed to glean new insight from
the analysis of a specific situation or demonstrate analysis results.
This definition received consensus from the expert survey. A distin-
guishing feature between a testbed and a case study is that in a
testbed, the researchers have some level of control in the design of
a testbed and can project a range of scenarios or events, whereas this
is not true with a case study. To better illustrate ways to distinguish
a testbed from a case study, two examples are provided from the
literature.

Galveston, TX, is a community with a long history of hurricanes
and has been studied by many hazards and disasters researchers.
Hamideh and Rongerude (2018) studied the impacts of community
members’ social vulnerability in their participation in disaster re-
covery decisions using Galveston’s public housing after Hurricane
Ike as a case study. In another study, Fereshtehnejad et al. (2021)
developed a Galveston testbed for studying the cumulative impact
of hurricane-induced damages to civil infrastructure and evacuation
decisions of the population. The former was a specific study doc-
umenting what happened to a specific group of people following
Hurricane Ike. The latter consisted of multiple models chained to-
gether capable of simulating and assessing a range of hazard sce-
narios and subsequent impacts for Galveston.

Similarly, after Lumberton, NC, was flooded following 2016
Hurricane Matthew, a team of researchers began a longitudinal field
study to collect cross-disciplinary data on impact and recovery
(van de Lindt et al. 2018). Many analyses use this data taking the
form of case studies [see (Aghababaei et al. 2019)]. However, the

Fig. 2. Expert-identified minimum requirements for a testbed.
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larger research team is also building a virtual testbed of Lumberton
for model validation purposes. Nofal and van de Lindt used the
Lumberton testbed as both a case study to look at the specific one-
time scenario of the 2016 flooding (Nofal and van de Lindt 2020c)
and a testbed to evaluate the vulnerability to flooding and the effec-
tiveness of different mitigation strategies (Nofal and van de Lindt
2020a, b). This has become common to develop testbeds of com-
munities that are rich in case studies.

The expert survey asked respondents one open-ended question to
help distinguish a case study from a testbed. Sixty-nine responses
were received to the question, “How do you describe the differences
between a testbed and a case study?” Responses pointed to differ-
ences in the scale of the analysis, being able to simulate predictions
and interventions with testbeds and the broader use of testbeds.
Whereas case studies must be real, apply a predesigned methodology
by the researcher(s), and be limited to a particular study objective.

Five prompts followed that requested respondents to categorize
each prompt as describing a testbed, a case study, both, or neither.
The prompts were based on statements identified during the liter-
ature review describing testbeds or case studies, as well as through
informal conversations with colleagues about testbeds and case
studies. The five prompts read as follows:
1. A zipped folder containing geospatial data of building footprints,

road networks, hazard probability, and population demographics
all for a particular community.

2. A zipped folder containing geospatial data of building footprints,
road networks, hazard probability, population demographics all
for a particular community, along with the algorithm script for
simulating hazard occurrence, physical damage, and restoration
processes.

3. The script file and results from a regression analysis performed
on damage and disruption data collected in the field using sur-
vey methods after a specific hurricane.

4. A paper presenting a “proof of concept” test for risk assessment
involving 1. Assessment of seismic hazard and ground motions
for City-A; 2. Definition of the inventory for buildings, bridges,
and utility lines in City-A; 3. Development of vulnerability curves
for buildings and bridges in the area; 4. Evaluation of economic
impact on property owners and businesses, disruption of social
services, and factors influencing local decision making; 5. Rec-
ommendation of mitigation measures for improved seismic
safety; 6. Creation of decision support tools for comparing
solutions for seismic mitigation.

5. On-the-ground investigation into the failure sequence of a
particular building damaged during a tornado.
Fig. 3 provides the classifications from these five prompts,

where each prompt was classified in multiple categories by differ-
ent respondents. Prompt ii received 70 responses, whereas the other
four prompts all received 71 responses. As evident in Fig. 3, there
was fair variability across the five prompts, where prompt v got the
most consistent responses (86% categorizing as a case study). Of
note, 18 of the 70 and 19 of the 71 were from respondents who
indicated they had not used a testbed before, and there was still
proportional variability in classification from respondents who had
used a testbed before. An open-ended question followed the five
prompts requesting respondents to share any comments about the
classification; 19 responses were recorded. Comments were mostly
in line with our team’s intention in the ill-defined prompts in that
prompt i is considered data and would be classified as other, prompt
ii is essentially a testbed, prompt iii describes the components of an
analysis that is likely enabled because of a case study and would be
classified as other, prompt iv is a paper presenting an analysis and
would be classified as other, and prompt v is a field-based case
study. As shown in Fig. 3, the highest agreement between our team

and the respondents were with classifying prompt ii as a testbed
(63% of respondents), and prompt v as a case study (86% of respond-
ents). Prompt ii is a good example of a real testbed (since it is for a
particular community) that provides metadata (i.e.; geospatial data of
building footprints, road networks, population demographics, haz-
ard probability) and supporting architecture (i.e. algorithm script
for simulating hazard occurrence, physical damage, and restoration
processes). The testbed can be used to design and examine various
community resilience models to answer a broad range of research
questions such as assessing physical vulnerability, postdisaster
accessibility, and social service disruptions.

Furthermore, despite many respondents also identifying prompt
iv as a testbed, the open-ended responses following these prompts
indicated that most respondents overlooked the fact that testbeds
are inherently virtual environments, while prompt iv is limited to
just a paper. A soft copy (e-version) of the script defined in prompt
ivwould be essentially a testbed, a virtual environment with enough
supporting architecture and metadata that it can be applied to ex-
amine different community resilience algorithms to answer a broad
range of research questions regarding City-A. This means despite
the agreement between researchers on the definition of the testbed
and case study, there are still some discrepancies in how these terms
are distinguished and used in practice.

Existing Virtual Testbeds

This section presents findings from a systematic literature review
on testbeds used for community resilience analysis. Papers were
identified using specific keywords, including “testbed,” “test bed,”
“case study,” “test case,” “virtual city,” and “Benchmark City.”
Three inclusion/exclusion criteria were used for categorizing iden-
tified papers in the literature review. First, the paper had to use the
testbed for studying the impact of hazards on the community. Even
though some of the testbeds included in our review were initiated
for purposes other than community resilience research, they are
included here if they otherwise fit the consensus definition of a
testbed and have been extended later by incorporating a hazard
module or social and economic systems into the testbed. As an
example, Mazumder et al. (2020) added a hazard module to the
Anytown testbed (Walski et al. 1987), which had not been used
previously for community resilience analysis. Of note, the applica-
tion of virtual testbeds for community-level analyses has been
popularized among researchers from different disciplines such as
environmental science, meteorology, engineering, sociology, urban

Fig. 3. Classifying five descriptions as a testbed, case study, both,
or other.
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planning, and disaster science. The NOAA Hydrometeorology
Testbed (HMT) was developed by the Office of Oceanic and
Atmospheric Research and the National Weather Service to im-
prove and advance extreme precipitation and hydrologic predic-
tions (Schneider et al. 2010). Although HMT represents a novel
and important testbed, associated publications were excluded from
this review since HMT does not meet the first inclusion criteria for
a community resilience testbed.

Second, the paper had to develop or use a testbed, as opposed to
a case study; the criteria for this are fully described in the expert
survey sections of this paper. As a rule of thumb, in a case study, the
researcher examines the impacts of the specific event(s) on the in-
tended community. Whereas, the goal of developing a testbed is to
provide an environment with the potential of being used for evalu-
ating different community resilience algorithms and models under
different events. Third, the paper had to otherwise align with the
proposed definition of a testbed. Papers utilizing the ASCE Struc-
tural Control Benchmarks (Dyke et al. 2003), Virtual Supervisory
Control and Data Acquisition (Dayal et al. 2015), and Southern
California Planning Model (RICHARDSON and DAVIS 1998)
testbeds were excluded from this review given that they do not have
enough components to be used for the specified purposes in the
testbed definition.

Considering the aforementioned criteria, 22 testbeds including
12 imaginary and 10 real communities are identified and incorpo-
rated into this review. Table 1 provides a comprehensive list of the
22 testbeds reviewed, including a short description of their develop-
ment timeline and identified publication inventory. Although the
identified testbeds differ in terms of development level, all of them
meet the designated inclusion/exclusion criteria. The testbeds in
Table 1 are introduced through their hazard module, building and
infrastructure inventory, and socioeconomic systems, if any. Also,
Table 1 provides a summary of each testbed’s V&V process (if any),
introduces the testbed’s data resources (if known), and explains
how to access the testbed’s data (if available). The sections that
follow describe commonalities, gaps, and other observations on
hazard modules and community modules across testbeds with com-
parisons to the expert survey responses where possible.

Inclusion of Hazard Module in Community
Resilience Testbeds

The hazard module in the majority of the reviewed testbeds com-
prises natural hazard scenarios such as earthquake, hurricane-
induced flood and wind, tornado, and tsunami. However, manmade
hazards including contamination, cyber-physical attack, and urban
fire are modeled in Micropolis, Mesopolis, and C-Town testbeds.
CLARC is the only testbed with a hazard module including both
natural and manmade hazard models together. Little et al. (2021)
employed the CLARC testbed to investigate the effects of a global
pandemic on a community recovery time following a hurricane.
A few of the reviewed testbeds such as Harris County, CLARC,
Galveston, Centerville, Seaside, and Atlantic County employ a
hazard module with multihazard models and provide the opportu-
nity to assess the cumulative impacts of the cascading hazards. The
hurricane models in CLARC, Galveston, and Atlantic County test-
beds enable researchers to study the consequences of both flood-
and wind-induced disruptions together. The hazard module of
the Seaside testbed consists of a tsunamigenic earthquake model
that considers both earthquake shakings and tsunami inundation
(Fereshtehnejad et al. 2021; Little et al. 2020; McKenna et al.
2021; Park et al. 2019). Other than Galveston, Mesopolis, and Sea-
side testbeds that benefit from probabilistic approaches to simulate
future events and predict their impacts; the other reviewed testbeds

employ scenario events (either one single event or a suite of syn-
thetic scenarios that happened in the past) in their hazard modules
(Fereshtehnejad et al. 2021; Park et al. 2019; Torres et al. 2009).
Fig. 4 compares the number of testbeds with a particular hazard
module across different hazard types with the number of identified
publications applying those hazard modules and the number of
survey respondents who indicated they personally had examined
such hazard type in a testbed. In Fig. 4, the number of testbeds with
earthquake hazard models is significantly higher than that of other
hazard types. On the other hand, tsunami hazard is rarely included
in testbeds. Of note, the Seaside testbed that models tsunami haz-
ard has been used in nine different studies (González et al. 2009;
Kameshwar et al. 2019; Mostafizi et al. 2017; Park et al. 2019;
Park and Cox 2016; Park et al. 2017; Priest et al. 2015; Wang et al.
2016; Wiebe and Cox 2014). Anytown, C-Town, and unnamed
water network were initiated without a hazard module; however,
Anytown, unnamed water network, and C-Town were supplemented
later by appending a hazard module (Mazumder et al. 2022, 2020;
Nikolopoulos et al. 2020; Taormina et al. 2016). As evident in Fig. 4,
there is a direct relationship between the number of existing test-
beds and identified publications across every hazard type except
hurricane-induced floods with the number of respondents who in-
dicated they had examined that hazard type to a testbed. The greater
number of respondents who have personal experience of applying
flood hazards to a testbed compared to the other types of hazards
may result in a slight bias in the survey results, however, there is
still fair variability in the experience of the respondents.

Inclusion of Community Module in Community
Resilience Testbeds

The community module of a testbed is a geospatial model of one or
preferably more interconnected physical, social and economic sys-
tems; however, including either of the three systems is adequate to
initiate the community module of a testbed. As identified in the
literature review, most papers to date have focused initially on mod-
eling physical systems, whereas in a community resilience study, it
is important to also capture the community’s social and economic
systems and cascading effects of their failure. Also, in the existing
testbeds, researchers have resorted to simplifying their physical
system models to reduced order physical models (such as Turin
Virtual City) or fragility-based statistical models. However, along
with advances in computational science and technologies, classical
finite element models and data-driven machine learning models are
likely to be applied in future testbeds.

Physical System: The physical system of the existing testbeds
includes the community’s building inventory and/or infrastructures-
asset inventory such as water, electric power, gas, transportation,
communication, wastewater, and drainage networks. Of note, all of
these infrastructures are not modeled for every existing testbed; only
6 out of the 22 reviewed testbeds (namely, Shelby County, Bench-
mark City, CLARC, Gotham City, Centerville, and Seaside) include
more than three infrastructure types besides their building inventory.
The physical system in four testbeds, including Anytown, C-Town,
the unnamed water network, and Mesopolis consists of water net-
works only (Alvisi and Franchini 2011; Islam et al. 2011; Johnston
and Brumbelow 2008; Walski et al. 1987). Turin Virtual City,
Atlantic County, and Lumberton solely included the community’s
building inventory to create their physical system (Lindt et al.
2020; McKenna et al. 2021; Noori et al. 2017). The physical sys-
tems in the UW Power Systems Test Case Archive only consider
electrical power networks (Didier et al. 2015). Of the testbeds that
do incorporate more than one type of infrastructure, many remain
uncoupled and are presented in independent analyses in separate
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Table 1. Summary of existing virtual testbeds included in the review

Testbed Description Identified publications

CLARC The Customizable Artificial Community (CLARC) is a virtual imaginary testbed based
on the scaled data inventory of New Hanover County, North Carolina. The CLARC
testbed was initiated by Loggins and Wallace (2015) to demonstrate the benefits of
modeling interdependencies among a community’s infrastructure assets when estimating
disruptions arising from hurricanes. Later, Little et al. (2020) and Loggins et al. (2019)
advanced the testbed to study the interdependencies between a community’s civil and
civic infrastructure and to validate their novel proposed model (CRISIS) for community
recovery following a hurricane. The CLARC testbed represents a coastal community with
a population of approximately 500,000 located in 77 census blocks. The testbed’s
community module consists of residential building inventory (at the census block level),
power, water, wastewater, transportation, communication networks, and a few civic
infrastructures (such as public safety, healthcare, fuel, and banking) and demographic
data. The CLARC dataset is developed as a GIS database that is housed in Microsoft
Access and is available via https://doi.org/10.17603/DS2FX2D (Little et al. 2020).
During the COVID-19 pandemic, Little et al. (2021) employed the CLARC testbed and
CRISIS model to investigate the effects of a global pandemic on community recovery
time following a hurricane.

Loggins and Wallace (2015), Loggins et al. (2019), Little et al. (2020, 2021)

Centerville The Centerville Virtual Community is an imaginary testbed initiated by Ellingwood et al.
(2016a) to be used for developing community-level resilience assessment approaches that
consider the cumulative impacts of natural hazards to the community’s physical, social,
and economic systems. The testbed represents a middle-class Midwestern State city in the
US with a population of about 50,000 which is situated approximately 50 miles from the
New Madrid Seismic Zone and close to tornado alley (Ellingwood et al. 2016a). So far,
the testbed has been mostly applied to study the consequences of earthquakes and
tornados. (Cutler et al. 2016; Daniel et al. 2022; Lin andWang 2016; Lin andWang 2017;
Sutley and Hamideh 2020; van de Lindt et al. 2016; Zhang and Nicholson 2016).
However, the testbed has the potential to be used in other hazard scenarios. For instance,
Zou and Chen (2020) applied a hurricane hazard scenario on the Centerville testbed. The
infrastructures considered in the testbed include the buildings (13 building occupancy
types in 16 building archetypes), water, electrical power, and transportation networks
(Ellingwood et al. 2016a). The testbed’s social system consists of hypothetical
demographics (such as the number of households, households mean income, owner or
renter status, population number, diversity, sex, and age range), population dislocation
(Ellingwood et al. 2016a), social vulnerability level assignment to households and
housing recovery models (Sutley and Hamideh 2020). Also, a dynamic spatial
computable general equilibrium (CGE) model is incorporated into the community
module to establish the testbed’s economic system. (Cutler et al. 2016). The testbed
datasets have been fully incorporated into IN-CORE (interdependent networked
community resilience modeling environment (Gardoni et al. 2018)) and its datasets are
accessible for the researchers.

Ellingwood et al. (2016a, b), Lin andWang (2016), van de Lindt et al. (2016), Cutler et al.
(2016), Zhang and Nicholson (2016), Guidotti et al. (2016), Lin andWang (2017), Sutley
and Hamideh (2020), Zou and Chen (2020), Daniel et al. (2022)

Benchmark
City (China)

A GIS-based virtual imaginary testbed named Benchmark City was created by Shang
et al. (2020) based on a common midsize city located in the southeastern coastal region of
China. The testbed is used for evaluating existing resilience assessment frameworks for
Chinese cities. The required information such as demographics, site condition, land-use
class, potential hazard (i.e.; earthquake hazard), infrastructure inventory (including
power, transportation, water, drainage, and natural gas distribution networks), and
location of hospitals, emergency shelters, and schools are hypothetically considered by
Shang et al. (2020). Jichao et al. (2021) applied the Benchmark City testbed to assess the
seismic functionality of the city’s water distribution network.

Shang et al. (2020), Jichao et al. (2021)
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Table 1. (Continued.)

Testbed Description Identified publications

Shelby County Shinozuka et al. (1998) initiated the Shelby County, Tennessee testbed in 1998 for
investigating the effects of seismic damages to the electrical power system on the local
community’s economy. Since then, the testbed’s hazard module has been developed
slightly by adding more earthquake scenarios, whereas its community module has been
developed significantly by multiple research groups for different research purposes
(Adachi and Ellingwood 2009; Chang and Shinozuka 2004; Dueñas-Osorio et al. 2007;
Hwang et al. 2000; Johansen and Tien 2018; Lin and El-Tawil 2020; Roohi et al. 2021;
Wu and Dueñas-Osorio 2013; Zhang et al. 2018). So far, the community module’s
physical system includes data on the community’s building inventory (Roohi et al. 2021;
Zhang et al. 2018), water (Chang and Shinozuka 2004), power (Shinozuka et al. 1998),
gas (Adachi and Ellingwood 2009; Dueñas-Osorio et al. 2007; Johansen and Tien 2018;
Wu and Dueñas-Osorio 2013), and transportation networks (Hwang et al. 2000).
Shinozuka et al. (1998) initially applied a classic input-output impact model to build the
community module’s economic system for regional impact analysis; afterward, Roohi
et al. (2021) incorporated a CGE model into the testbed’s economic system. A population
dislocation model is also employed by Roohi et al. (2021) to establish the testbed’s
social system.

Shinozuka et al. (1998), Hwang et al. (2000), Chang and Shinozuka (2004),
Adachi and Ellingwood (2009), Dueñas-Osorio et al. (2007), Wu and Dueñas-Osorio
(2013), Johansen and Tien (2018), Zhang et al. (2018), Lin and El-Tawil (2020), Roohi
et al. (2021)

Seaside Seaside, OR is a small low-lying coastal city with a population of approximately
6,000 residents in the US Pacific Northwest. The city is susceptible to tsunamigenic
earthquakes originating from the Cascadia Subduction Zone (CSZ) (González et al. 2009;
Park and Cox 2016). The testbed hazard module includes multi-hazards cascading
seismic and tsunami scenarios. The testbed’s community module has been developed in
multiple phases; as yet, building inventory (Park et al. 2017; Wiebe and Cox 2014), water
(Rosenheim et al. 2021) and power (Kameshwar et al. 2019) networks, roads (Wang et al.
2016), and bridges (Priest et al. 2015) are the physical systems that have been
incorporated into the testbed’s community module. A multihazard damage analysis
model that combines the earthquake- and tsunami-induced damages is also appended to
the testbed’s community model (Park et al. 2019). A set of demographic data such
as population density (Wang et al. 2016) and a community evacuation model
(Mostafizi et al. 2017) build the testbed’s social system. The testbed datasets have been
incorporated into IN-CORE (Gardoni et al. 2018) and its datasets are accessible to
the researchers.

González et al. (2009), Wiebe and Cox (2014), Priest et al. (2015), Wang et al. (2016),
Park and Cox (2016), Mostafizi et al. (2017), Park et al. (2017), Rosenheim et al. (2021),
Kameshwar et al. (2019), Park et al. (2019)

Galveston The city of Galveston is a barrier island located off the coast of Texas in the Gulf of
Mexico. The main motivation for creating the Galveston testbed was to use it for studying
community resilience metrics of coastal communities under hurricane-induced hazards
such as surge, wave, inundation, and wind. The Center for Risk-Based Community
Resilience Planning released Galveston Testbed as a library in the IN-CORE (Gardoni
et al. 2018). So far, the testbed’s hazard module encompasses wind, riverine and
storm-surge flooding models (Czajkowski et al. 2013; He and Cha 2018). A residential
building portfolio (Czajkowski et al. 2013), an electric power network (He and Cha
2018), and transportation-related datasets (Gardoni et al. 2018) create the community
module’s physical systems. To estimate hurricane-induced damages, parametrized
fragility models for buildings, coastal bridges, and coastal roadways are incorporated into
the community module (Fereshtehnejad et al. 2021). The social system of the community
module includes a population dislocation and a housing unit allocation model that
enables using US Census household-level data for assessing the social impacts of the
hurricane hazards (Gardoni et al. 2018).

Islam et al. (2010), Czajkowski et al. (2013), He and Cha (2018), Hamideh and
Rongerude (2018), Fereshtehnejad et al. (2021)
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Table 1. (Continued.)

Testbed Description Identified publications

Gotham City Gotham City is a virtual imaginary testbed created by Mahmoud and Chulahwat (2018)
to be used for demonstrating and verifying community resilience models. The city is
divided into four regions which are connected through bridges only. The testbed’s
community module consists of hypothetical social, economic, and physical systems.
The physical system encompasses data on water, power, communication, transportation
infrastructures, as well as residential and health building inventories for each region.
Mahmoud and Chulahwat (2018) used the hypothetical attribute of social and economic
systems to compute the social vulnerability index and infrastructure stability matrix for
each region. The testbed’s hazard module is capable of accommodating various types of
hazards that cause physical disruptions, economic downtimes, and even social disorders
(Mahmoud and Chulahwat 2019).

Mahmoud and Chulahwat (2018, 2019)

Harris County Harris County, TX, is a hurricane-prone county located near the Gulf Coast in the United
States. The testbed has been advanced in multiple phases for different research purposes.
So far, the community module’s physical system consists of models for the power and
gas transmission infrastructure and their cascading failure effects (Ouyang and
Dueñas-Osorio 2012, 2014, 2011; Ouyang et al. 2012; Ouyang and Wang 2015) as
well as transportation networks (Dong et al. 2020a, b; Fan et al. 2020). The traffic data of
the transportation network are collected from INRIX (https://inrix.com), a private
company providing location-based data and analytics, and so are not publicly
available. The testbed’s hazard module encompasses a series of pre-generated
hurricane scenarios that can cause floods and inundation (Fan et al. 2020;
Ouyang and Dueñas-Osorio 2012, 2014, 2011; Ouyang et al. 2012; Ouyang and
Wang 2015).

Ouyang and Dueñas-Osorio (2011, 2012), Ouyang et al. (2012), Ouyang and
Dueñas-Osorio (2014), Ouyang and Wang (2015), Dong et al. (2020a, b),
Fan et al. (2020)

Gilroy The Gilroy testbed is modeled after the real city of Gilroy, CA; a moderate-size town
located approximately 6 miles from the San Andreas Fault. The testbed was initially
created by Nozhati et al. (2018a) to study the relationship between specific community
resilience metrics (e.g.; food security, post-earthquake recovery) and interdependent
critical infrastructure (such as energy, transportation, and water systems) following a
seismic event. A scenario earthquake with a magnitude of 6.9 (similar to the Loma Prieta
Earthquake 1989) builds the testbed’s hazard module (Nozhati et al. 2018a). The
community module’s physical system comprises data on electrical power networks, water
systems, highway bridges, and food retailers. The community module’s social system
consists of a set of demographic data (such as population density) from the 2010
census database (Nozhati et al. 2018a, b, c, 2019a, b, c, 2020a, b; Sarkale et al.
2018).

Nozhati et al. (2018a, b, c), Sarkale et al. (2018), Nozhati et al. (2019a, b, c, 2020a, b)

pseudo-Norman The pseudo-Norman testbed is a simplified coarse model after the real city Norman, OK.
The testbed was initially created by Masoomi and van de Lindt (2017) to investigate the
community-level risk and recovery modeling after a tornado. The testbed takes only a few
attributes of the Norman community into account; therefore, it is called pseudo-Norman.
The testbed’s community module includes data on households and businesses, residential
and school buildings, and water and electric power networks. A few aspects of
demographics such as the population, the number of students, and employees are
also appended to the community module (Masoomi and van de Lindt 2017). The
testbed datasets have not been published separately, but, the primary parameter
that has been used for developing community and hazard modules can be found in
the published works on the testbed (Masoomi et al. 2018; Masoomi and van de Lindt
2017).

Masoomi and van de Lindt (2017), Masoomi et al. (2018)
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Table 1. (Continued.)

Testbed Description Identified publications

Joplin The Joplin testbed represents the city of Joplin located in the southwest of the
Missouri State. The testbed was created following the EF5 Joplin tornado in
2011 to assess the disruptions due to hurricane-induced damages to interdependent
infrastructures (particularly buildings and power networks) and the socioeconomic
impacts of such disruptions on community recovery (Attary et al. 2019). However, the
testbed has been further used to verify and validate building inventory damage models
and recovery trajectories (Aghababaei et al. 2020; Pilkington et al. 2021; Pilkington and
Mahmoud 2020). The building inventory and power network dataset are the only two
components of the testbed’s physical system (Attary et al. 2019; Pilkington et al. 2021).
The testbed’s economic system includes a model that can estimate the economic
impacts of scenario tornado-induced disruptions. Also, a population dislocation model at
the household level builds the community module’s social system (van de Lindt
et al. 2019). The testbed’s accuracy and validity of social and economic models were
verified using results from several case studies on Joplin after the 2011 tornado
(Kuligowski et al. 2014). The testbed has been incorporated into IN-CORE (Gardoni
et al. 2018) and its datasets are accessible to the researchers. Simulating the tornado
event in IN-CORE (Gardoni et al. 2018) allows the researchers to model different
tornado scenarios by generating random tornado paths across the community to get
a full risk profile (Attary et al. 2019; Pilkington et al. 2020; van de Lindt et al.
2019).

Attary et al. (2019), van de Lindt et al. (2019), Pilkington et al. (2021, 2020),
Aghababaei et al. (2020), Pilkington and Mahmoud (2020)

ASCE First
Generation
Testbed

ASCE First Generation Testbed is an imaginary testbed that has been initiated
based on the ASCE Sub-Committee on Disaster Resilience of Structures and
Infrastructures proposal. Cimellaro et al. (2014) applied the testbed to compare
the pros and cons of different resilience-based design strategies available in the
literature. The testbed consists of two critical structures (including a Town Hall
and Hospital), a University Campus, and the water distribution network of a
small town.

Cimellaro et al. (2014)

Lumberton Lumberton is a small city in North Carolina, hugely impacted by the Lumber
River flooding in 2016 after Hurricane Matthew. After the flooding, comprehensive
longitudinal field studies and interdisciplinary technical investigations have collected
cross-disciplinary data on impact and recovery (van de Lindt et al. 2020, 2018).
The Lumberton testbed was created to investigate the building- and community-level
flood vulnerability, and V&V of different community resilience models (Nofal and
van de Lindt 2020d). The testbed’s hazard module consists of a flood scenario
based on a flooding event after Hurricane Matthew in 2016. So far, a building
inventory including 15 building archetypes and building damage analysis
models using flood fragility functions are incorporated into the testbed’s community
module (Nofal and van de Lindt 2020a, b, 2021a, b; Nofal et al. 2020, 2021e, f).
Also, to assess the social impacts of the flood hazard, a housing unit allocation and a
population dislocation model comparable to the Galveston testbed’s social models
(Gardoni et al. 2018) are appended to the testbed’s community module (Rosenheim et al.
2021). The testbed has been incorporated into IN-CORE (Gardoni et al. 2018)
and its datasets are accessible to the researchers. Of note, multiple researchers are
still working on case studies of business interruption and recovery models that can be
used for establishing the testbed’s economic system later (Aghababaei et al. 2021;
Watson et al. 2020).

van de Lindt et al. (2018), Lindt et al. (2020), Nofal and van de Lindt (2020a, b, d),
Nofal et al. (2020), Nofal and van de Lindt (2021a, b), Nofal et al. (2021e, f),
Rosenheim et al. (2021), Aghababaei et al. (2021), Watson et al. (2020),
Sutley et al. (2021b), Helgeson et al. (2021)
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Table 1. (Continued.)

Testbed Description Identified publications

Atlantic
County

Atlantic County, NJ is a county with three adjacent barrier islands that lie along
the Atlantic Coastal Plain on the east coast of the United States. The county is
prone to hurricane-induced hazards, such as strong wind, riverine flooding, and
storm surge on the ocean-facing coastline (NJOEM 2019). The SimCenter, in
collaboration with a team of researchers from different universities, developed the
Atlantic County testbed to be used for introducing the implementation of
SimCenter’s Hurricane Regional Loss Modeling Workflow (McKenna et al. 2021).
However, the testbed can be used for other regional studies. Wind and storm surge
models are incorporated into the testbed’s hazard module (McKenna et al. 2021).
The testbed’s building inventory encompasses the required attributes of community
buildings at the parcel level (McKenna et al. 2021). The Building Footprint Data obtained
from the New Jersey Department of Environmental Protection, Microsoft Footprint
Database (Microsoft 2020), New Jersey Tax Assessor Database (NewJerseyOfficeofGIS
2021), and computer vision methods (Wang et al. 2021) were utilized to create the
testbed’s building inventory. Although such attempts can partially validate the
accuracy of the building inventory dataset, the quality of the data has not been
guaranteed by the developers. The testbed datasets can be downloaded from https://nheri
-simcenter.github.io/R2D-Documentation/common/testbeds/atlantic_city/index.html
(McKenna et al. 2021).

McKenna et al. (2021)

San
Francisco
Bay Area

The San Francisco Bay Area is a region in Northern California with a population of
more than 7.7 million and three large cities including San Francisco, Oakland, and
San Jose. The Bay Area is located close to the San Andreas and Hayward faults which are
capable of magnitude 8.0 and 7.0 earthquakes, respectively (Aagaard et al. 2016).
The risk from such earthquakes to the built environment has always been of
interest to researchers, practitioners, and policymakers. From our research, Kiremidjian
et al. (2007) initiated San Francisco Bay Area testbed to assess the risk of a magnitude 7.0
scenario event on the Hayward fault to the Bay’s transportation network. Later, the
San Francisco testbed was demonstrated in the guise of an example in SimCenter’s
regional Workflow for Hazard and Loss Estimation of buildings (Elhaddad et al. 2019).
The testbed’s hazard module comprises a magnitude 7.0 Hayward earthquake scenario
(Rodgers et al. 2019). The testbed’s community module encompasses a building
inventory of 1.8 M buildings located in the Bay Area (except Alameda County and
fSan Francisco Tall Building) (Elhaddad et al. 2019). The accuracy and quality of the
inventory were verified by cross-referencing the input datasets. A sample dataset of the
San Francisco Testbed is available at DesignSafe-CI Data Depot or by submitting a
request to https://simcenter-messageboard.designsafe-ci.org/smf/index.php?board=8.0
(Elhaddad et al. 2019).

Kiremidjian et al. (2007), Elhaddad et al. (2019)

Micropolis Micropolis is a small, virtual, imaginary city of approximately 5,000 residents initiated as
a testbed for the development of infrastructure models, particularly water distribution
systems. The testbed’s community module has been supplemented by adding a power
distribution network layout (Bagchi 2009). To provide the required information for
replicating the infrastructures of a real typical small city in a historical rural region, a
timeline spanning 130 years is created. This hypothetical timeline was used for the design
of infrastructure systems, mapping roads and buildings (Brumbelow et al. 2007). The
testbed has been applied for manmade hazards such as water supply contamination and
urban fire (Bagchi 2009; Torres et al. 2009).

Brumbelow et al. (2007), Bagchi (2009), Torres et al. (2009)
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Table 1. (Continued.)

Testbed Description Identified publications

Turin Virtual
City

The Turin Virtual City was created after the city of Turin, Italy, for predicting the physical
impacts of a seismic hazard scenario on the building inventory of an urban area (Noori
et al. 2017). The testbed’s hazard module consists of a seismic hazard scenario recorded
during the 2016 Central Italy earthquake. The testbed’s community module encompasses
a building inventory consisting of 30,122 buildings with different occupancy types and
socioeconomic roles.

Noori et al. (2017)

Anytown The Anytown virtual water distribution network is an imaginary testbed initiated by
Walski et al. (1987) for the ‘Battle of the Network Models’ workshop. The testbed
represents a water distribution network of a hypothetical old town in the United States
with common characteristics and issues of real water distribution systems. The primary
objective of developing Anytown was determining an economically effective design
approach for reinforcing the existing system to meet projected demands. Researchers
further applied the testbed for the purpose of water system design optimization (Atkinson
et al. 2014; Farmani et al. 2005; Herstein and Filion 2011; Prasad and Tanyimboh 2008)
and resilience analysis (Mazumder et al. 2020; Salehi et al. 2018).

Walski et al. (1987), Farmani et al. (2005), Prasad and Tanyimboh (2008), Herstein and
Filion (2011), Atkinson et al. (2014), Salehi et al. (2018), Mazumder et al. (2020)

Unnamed
water
network

The unnamed water network is a virtual simplified water distribution system that has
been constructed to serve as a testbed for research on water distribution systems (Islam
et al. 2011, 2014; Shuang et al. 2017, 2014). The testbed has not been named although it
has been applied in several studies. The testbed did not have a hazard module until
Mazumder et al. (2022) developed a scenario earthquake model to implement a
post-earthquake analysis on the testbed.

Islam et al. (2011, 2014), Shuang et al. (2014, 2017), Mazumder et al. (2022)

UW Power
Systems
Test Case
Archive

The UW Power System Test Case Archive is a website that provides required datasets for
modeling common 1960s power systems in the Midwestern United States. The website
(https://labs.ece.uw.edu/pstca/) (Christie 1999) has been maintained voluntarily by the
participation of multiple researchers and faculty since the 1990s. The testbed datasets
have been used in multiple studies by Didier et al. (2018, 2017, 2015) to evaluate the
application of various seismic resilience frameworks for electrical power networks.

Christie (1999), Didier et al. (2015, 2017, 2018)

C-Town The C-Town water distribution network is an imaginary testbed initially applied for the
Battle of the Water Calibration Network (BWCN) competition and introduced in the 12th
Water Distribution Systems Analysis Symposium in 2010 (Alvisi and Franchini 2011;
Kim et al. 2011; Ostfeld et al. 2012). The testbed was also used for water network design
optimization purposes (Creaco et al. 2014) and investigating the consequences of
cyber-physical attacks on a water distribution system (Nikolopoulos et al. 2020;
Taormina et al. 2016). The data files describing the C-Town water distribution network
and its EPANET input files are available online in the ASCE Library (Ostfeld et al. 2012).

Alvisi and Franchini (2011), Kim et al. (2011), Ostfeld et al. (2012), Creaco et al. (2014),
Taormina et al. (2016), Nikolopoulos et al. (2020)

Mesopolis Mesopolis is a midsize virtual imaginary city created for research in water distribution
systems following disaster scenarios (Johnston and Brumbelow 2008). The city has a hot
and humid Texas climate and a geography layout combining aspects of the East, West,
and Gulf Coast geography. A hypothetical history is assumed for mapping roads, land-
use distribution, and infrastructure design purposes. The testbed’s community module
includes water, power, and communication network models and its hazard module
consists of water contamination scenarios only (Shafiee and Zechman 2010; Shafiee and
Berglund 2014; Shafiee and Zechman 2011).

Johnston and Brumbelow (2008), Shafiee and Zechman (2010, 2011), Shafiee and
Berglund (2014)
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publications since they are modeled by more than one team of re-
searchers, as is the case for Shelby County (Adachi and Ellingwood
2009; Chang and Shinozuka 2004; Dueñas-Osorio et al. 2007;
Hwang et al. 2000; Shinozuka et al. 1998), Harris County (Dong
et al. 2020a; Fan et al. 2020; Ouyang and Dueñas-Osorio 2012,
2014, 2011; Ouyang et al. 2012; Ouyang and Wang 2015), Microp-
olis (Bagchi 2009; Brumbelow et al. 2007), and San Francisco Bay
Area (Elhaddad et al. 2019; Kiremidjian et al. 2007). Fig. 5 com-
pares the number of testbeds modeling a particular physical system
component with the number of identified publications applying that
component and the number of survey respondents who indicated

they personally had examined such components in a testbed. As
shown in Fig. 5, the building inventory and water network are
the most common components included in the modeling of the
existing testbed’s physical system, followed by power and transpor-
tation networks. The number of publications for testbeds with an
incorporated water network is more than that of testbeds with build-
ing inventory. However, the number of expert survey respondents
with personal experience of modeling a testbed’s physical system
using a building inventory is greater than the water network, show-
ing a slight chance of bias in the survey results. It is also remarkable
that the Harris County testbed and UW Power Systems Test Case

Fig. 4. Dispersion of different hazard types in the reviewed testbeds.

Fig. 5. Dispersion of different physical systems in the reviewed testbeds.
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Archive are the only two testbeds that have not included either
building portfolio or water networks in modeling the testbed’s
physical systems. On the other hand, the communication network
is modeled in Gotham City only (Mahmoud and Chulahwat 2018).

Social and Economic Systems: Physical systems are only useful
if they serve people. Thus, it is critically important to include the
social and economic systems in community resilience analyses.
Few testbeds incorporate predictive simulation models for social
and economic systems, as opposed to static estimates of demo-
graphics, social vulnerability, or postdisaster economic impacts. The
social system captured in existing testbeds includes one or more so-
cial models such as population evacuation (Wang et al. 2016), pop-
ulation dislocation (Roohi et al. 2021; van de Lindt et al. 2019),
housing unit allocation (Gardoni et al. 2018), and housing recovery
model (Sutley and Hamideh 2020). The economic system of the re-
viewed testbeds comprises either classic input-output impact mod-
els (Shinozuka et al. 1998), computable general equilibrium (CGE)
models (Chen and Rose 2018; Cutler et al. 2016; Roohi et al. 2021),
or business interruption and recovery models (Aghababaei et al.
2021; Attary et al. 2019; Watson et al. 2020; Yang et al. 2016).
However, as identified in our review, most testbeds limit social
and economic system consideration to socioeconomic indicators.
The indicators are either a composite indicator such as the social
vulnerability index (Little et al. 2020; Mahmoud and Chulahwat
2018) or a set of census data including age, race, ethnicity, housing
vacancy rates, population density, the number of households, house-
hold mean annual income, owner or renter status, and the number of
students and employees (Masoomi and van de Lindt 2017; Nozhati
et al. 2018a; Shang et al. 2020). The degree of social and economic
data and resolution of such models in a testbed, either imaginary or
real, depends on the data available, and the skillset of the researchers
involved with the testbed. The availability of high-resolution social
and economic data is difficult to obtain and cannot be made publicly
available due to ethical and security-related issues in real testbeds.

Next Steps in Testbed Development

Based on our findings from the literature review, we have identified
four aspects of community resilience testbeds that warrant addi-
tional research, including (1) data needs, data collections, and data
security concerns; (2) testbed visualization; (3) testbed V&V; and
(4) testbed availability and reuse; each is discussed herein.

Data Needs, Data Collections, and
Data Security Concerns

In the development of virtual testbeds, a major limitation is access
to data due to availability, security issues, and ethical considera-
tions, particularly as it relates to accessing and publishing data for
reuse. Researchers have often resorted to modeling major simplifi-
cation of real communities as testbed communities, using aggregate
data, a suite of archetypes to represent all buildings in a community,
and limiting the scope of their analyses. For example, roof shape is
an important building attribute for testbeds with wind hazard mod-
ules but is often not provided in public data. In these cases, Artificial
intelligence (AI) and computer vision methods (Wang et al. 2021)
can be employed to capture the required information from Google
Street View and satellite images. For example, leveraging recent
developments in AI (particularly in deep learning) and computer
vision techniques, Microsoft Building Footprint Database created
nationwide building footprint maps (Microsoft 2020) that are very
useful for community resilience testbeds. Similarly, Wang et al.
(2021) developed a machine learning-based framework for gener-
ating building inventory of a community to support regional hazard

analysis; the framework has been applied for the development of
the Atlantic County testbed (McKenna et al. 2021).

Private data can fill these needs but sometimes can be too expen-
sive for academic researchers and, again, cannot be published for
reuse by the research community. For example, insurance data are
not publicly available at a household level, and even OpenFEMA
data is aggregated to the zip code level. Without access to high-
resolution social and economic data, those types of systems will
always lag behind physical models in testbed development.

The other challenge that testbed developers encounter is merg-
ing different datasets with different spatial and temporal units. For
example, Building Footprint, Land Use, and Tax Parcels are the
common public datasets that are used for compiling the building
inventory of a testbed. However, each of these datasets uses different
identifiers, including individual building, map block number, and
parcel number, respectively. Additionally, different data sources gen-
erate their data differently and handle missing data differently. For
example, McKenna et al. (2021) reported that Microsoft Footprint
Database sometimes lumps the footprints of closely spaced build-
ings together.

Testbed Visualization

Any geographic information system (GIS) software can be used to
visualize a testbed. The GIS provides the opportunity to integrate
both the attribute and spatial data for all of the components in a
testbed’s community module to be stored in a single database. The
community resilience analysis outcomes can also be mapped into
GIS. The ESRI ArcGIS and Q-GIS are the most popular software
for testbed visualization but require other software to chain algo-
rithms and simulate disasters. Open-source libraries, such as Leaflet
and Folium, are also recently used widely to visualize testbed inter-
actively in Python environments.

Testbed Verification and Validation

The process of V&V of testbeds is an important step to be able to
apply results from a testbed analysis to the real world. This is a
challenging process that is often considered but not fully discussed
in publications. Such a complex computational environment must
be validated with each component being verified as a single or in-
tegrated module or system. The accuracy of the data (particularly
the public data) that are used for the testbed creation can initially
be verified using online tools and comparing the mutual attributes
between datasets from different resources. For example, in the San
Francisco testbed, Elhaddad et al. (2019) verified the accuracy and
quality of UrbanSim datasets by comparing its information on lo-
cation and building geometry with the Microsoft Building Footprint
database. After verifying the accuracy of integrated datasets, the
testbed’s numerical simulation models should be validated to en-
sure that it results in the desired outputs. There are various existing
techniques to verify and validate a testbed. In the CLARC testbed,
the V&V were performed by involving stakeholders and local ex-
perts in comparison between the analysis results and past storm
events (Loggins and Wallace 2015). Attary et al. (2019) and van de
Lindt et al. (2019) used the building damage assessment report of
the Joplin 2011 tornado as well as power outage reports by the res-
idents after the tornado to validate their testbed model. Even if an
individual researcher validates their model contributions, as test-
beds grow and expand, who performs validation and how will re-
main an important challenge.

The expert survey asked, “Are you aware of, or did you perform,
any validation of the testbed(s) you used?” and gave additional guid-
ance that “Validation could have consisted of testing accuracy of
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assets, locations, properties, matching information to prior events,
etc.” It should be noted that besides the importance of a testbed’s
V&V itself, the documentation of the V&V process and making the
documentation of the V&V process available to testbed’s users are
two essential steps in a testbed’s development process to make the
testbed functional for researchers other than the testbed’s develop-
ment team. 51 responses were recorded to this question, where 32
reported YES and 19 reported NO, which illuminates that almost
37% of respondents neglected this important step. Of the 32 re-
spondents indicating they had performed or were otherwise aware
of validation of the testbed(s), 28 provided comments. Through the
comments, 15 validated results using postdisaster data; 5 used ex-
pert knowledge, 8 used other secondary data comparisons, such as
census data and google maps; 2 performed sensitivity analysis; and
3 made a comparison with other published work. This provides a
guide for how future testbed developers and users can verify and
validate their work.

Testbed Availability and Reuse

After the creation of a testbed, most testbeds are reused by the re-
searchers who created them. At this time, testbeds are not frequently
reused by other researchers, but through the creation of recent plat-
forms such as DesignSafe-CI and IN-CORE, datasets can be shared
and used by others. Data collection and validation are extensive and
time-consuming processes. The sharing and reuse of testbeds that
have already been verified and validated push forward the progress
of community resilience research.

Conclusions

Virtual testbeds are being developed and used across the commu-
nity resilience literature to serve the purpose of V&V. We identified
22 community resilience testbeds and 103 publications that use
community resilience testbeds. There is no shortage of testbeds,
but their accessibility for use by the research community and avail-
ability of their development documents remains a major challenge.
There is no apparent standardized process for testbed development,
testbed publication, or testbed reuse. It is no trivial effort to develop
a testbed, including obtaining and cleaning data, developing, val-
idating, and chaining algorithms, and verifying simulation results.
Such standardizations may help improve the accessibility of test-
beds to the research community, which can have important impli-
cations for advancing knowledge on community resilience analysis
where every next researcher does not have to reinvent the wheel by
developing a new testbed. A secondary outcome of this review is to
aid interdisciplinary teams of hazards and disasters researchers in
working together on testbeds and in understanding where the state
of knowledge is on testbed development.

Community resilience testbeds should have both a hazard module
and a community module. Ideally, the community module in a fully
developed testbed includes one or more interconnected models of the
desired community’s physical, social, and economic systems; how-
ever, only one of the three is required to initiate a testbed. The concept
of virtual community resilience overlaps with some common classic
risk assessment tools or modern high-tech simulation instruments
such as a digital twin. However, these tools do not meet the proposed
definition of the testbeds and do not provide the required architecture
and ample metadata that testbeds are supposed to provide.

Aside from the fact that none of the existing testbeds are fully
developed, the majority of them have been created with a focus on
earthquake hazards and physical infrastructure systems. Even if
a testbed intends to include social and economic systems, these
models are primarily population-based, and the other dimensions

of the social and economic systems, such as social services and
organizational preparedness, are consistently overlooked. This leads
to ample opportunity to advance knowledge with other hazard types,
and social and economic systems, which requires multi-, inter-, and
transdisciplinary collaborations.

Data Availability Statement
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