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Abstract

Meiotic recombination is an important evolutionary force and an essential meiotic process. In many species, recom-
bination events concentrate into hotspots defined by the site-specific binding of PRMD9. Rapid evolution of Prdm9’s
zinc finger DNA-binding array leads to remarkably abrupt shifts in the genomic distribution of hotspots between
species, but the question of how Prdm?9 allelic variation shapes the landscape of recombination between populations
remains less well understood. Wild house mice (Mus musculus) harbor exceptional Prdm9 diversity, with >150 alleles
identified to date, and pose a particularly powerful system for addressing this open question. We employed a coales-
cent-based approach to construct broad- and fine-scale sex-averaged recombination maps from contemporary pat-
terns of linkage disequilibrium in nine geographically isolated wild house mouse populations, including multiple
populations from each of three subspecies. Comparing maps between wild mouse populations and subspecies reveals
several themes. First, we report weak fine- and broad-scale recombination map conservation across subspecies and
populations, with genetic divergence offering no clear prediction for recombination map divergence. Second, most
hotspots are unique to one population, an outcome consistent with minimal sharing of Prdm?9 alleles between sur-
veyed populations. Finally, by contrasting aggregate hotspot activity on the X versus autosomes, we uncover evidence
for population-specific differences in the degree and direction of sex dimorphism for recombination. Overall, our
findings illuminate the variability of both the broad- and fine-scale recombination landscape in M. musculus and
underscore the functional impact of Prdm9 allelic variation in wild mouse populations.
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near the telomeric ends of chromosomes (Kong et al.
2002; Paigen et al. 2008). These sex differences in recom-
bination rate and distribution are also observed in most in-
bred lab strains of house mice (Dumont and Payseur
2011a). Intriguingly, however, a select number of inbred
mouse strains have recently been identified that exhibit
a reversal in the usual direction of the sex dimorphism.
In strains PWD/Ph) and MSM/Ms], females have lower re-
combination rates than males (Peterson and Payseur
2021). These discordant findings suggest that the direc-

Introduction

Recombination is an important evolutionary mechanism
for generating genetic diversity and a crucial meiotic pro-
cess. At least one crossover per chromosome is required
for proper synapsis and segregation of homologous chro-
mosomes during the first meiotic division, with too few,
too many, or improperly positioned crossovers resulting
in the production of aneuploid gametes (Hassold and
Hunt 2007; Ferguson et al. 2007). Despite its critical im-

portance for faithful genome transmission, recombination
rates show extreme variation between species, between
populations, and among individuals. Recent studies have
demonstrated that a significant proportion of this vari-
ation is under genetic control and have also identified en-
vironmental variables that contribute to recombination
rate plasticity (Hunt et al. 2003; Hunter et al. 2016;
Henderson and Bomblies 2021; Belmonte-Tebar et al.
2022). However, the evolutionary forces that shape recom-
bination rate variation in nature remain largely enigmatic.

In many mammals, including mice and humans, recom-
bination is sexually dimorphic. For example, in humans, fe-
males have higher average crossover counts than males,
whereas males exhibit stronger enrichment of crossovers

tionality of the sex dimorphism for recombination rate
can also evolve rapidly, potentially driven by sex-specific
selection for distinct recombination rates in male and fe-
male meiosis (Dumont and Payseur 2011b). However, as
no studies have yet surveyed male and female recombin-
ation rates in outbred wild mouse populations, it remains
unclear whether the higher male recombination rates ob-
served in strains like PWD/Ph) and MSM/MsJ are mere ar-
tifacts of inbreeding.

In addition to varying between genomes, recombin-
ation rates are also heterogeneous within genomes. On
the scale of megabases, mammalian recombination rates
tend to be elevated near telomeres and suppressed in het-
erochromatic  centromeric regions (Nachman and
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Churchill 1996; Kong et al. 2002; Jensen-Seaman et al.
2004). On broad scales, recombination rates also co-vary
with respect to numerous genomic features, including
gene density, GC content, proximity to transcription start
sites (TSSs), and repetitive DNA (Kong et al. 2002;
Jensen-Seaman et al. 2004; Buard and de Massy 2007;
Brick et al. 2012). In many species, including mammals,
the fine-scale recombination landscape is dominated by
the positioning of small 1-5 kb recombination “hotspots”.
Virtually all recombination events concentrate into hot-
spots, meaning that most of the genome is recombination-
ally inert and never participates in recombination
(McVean et al. 2004).

In many mammals, the location of recombination hot-
spots is defined by the zinc finger protein Prdm9 (Baudat
et al. 2010; Myers et al. 2010; Parvanov et al. 2010). PRDM9
localizes to specific DNA-binding sequences recognized by
its zinc finger domain. Once bound, PRDM9 trimethylates
local histones at both H3K4 and H3K36 (Powers et al.
2016). This epigenetic signature is sufficient to recruit
the double-strand break (DSB) machinery to the site to ini-
tiate a cascade of DNA repair events that culminate in the
formation of crossovers or non-crossover gene conversion
events (Diagouraga et al. 2018). Comparative genomic in-
vestigations have revealed that the zinc finger array of
Prdm9 evolves rapidly, leading to abrupt changes in the
suite of PRDM9 binding sequences across the genome
and concomitant shifts in the fine-scale genomic distribu-
tion of recombination hotspots (Oliver et al. 2009; Baker
et al. 2017). As a result, recombination hotspots exhibit
minimal conservation between species (Stevison et al.
2016), although there are appreciable levels of hotspot
sharing between human populations (Spence and Song
2019; Alleva et al. 2021).

While recent investigations in lab mice have shed light
on the molecular mechanisms of PRDM9 action and de-
fined strain differences in PRDM9-dependent recombin-
ation hotspot distribution (Brick et al. 2012; Powers et al.
2016; Grey et al. 2018), the question of how Prdm?9 allelic
variation shapes the landscape of recombination in wild
populations remains less well understood. More than
150 Prdm9 alleles have been characterized in wild mice
to date, with most alleles restricted to single populations,
few shared between subspecies, and no single-dominant
allele (Buard et al. 2014; Kono et al. 2014; Vara et al.
2019). These aspects of the population genomic distribu-
tion of Prdm9 allelic variation largely contrast with
PRDM9 diversity in human populations, which is domi-
nated by a few alleles that are broadly shared across popu-
lations (Alleva et al. 2021). The unique landscape of mouse
Prdm?9 variation predicts substantial population and sub-
species level diversity in the fine-scale distribution of re-
combination hotspots, beyond that observed in humans.

Local variation in recombination—and in particular the
location of hotspots—within a population can exert pro-
found effects on population evolution and diversity. For
one, recombination influences haplotype diversity within
populations by shuffling alleles between homologous
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chromosomes. In addition, by breaking down associations
between high fitness alleles and linked deleterious variants,
recombination can reduce selective interference and ex-
pedite the fixation of adaptive alleles (Crow and Kimura
1965; Maynard Smith 1971). All else being equal, an adap-
tive variant that arises in a high recombination rate region
is expected to reside on a shorter haplotype and encounter
less selective interference than a high fitness allele that
emerges in a recombination coldspot (Hey 2004).
Conversely, the extent of the reduction in flanking diver-
sity accompanying selection against a deleterious allele de-
pends on the local recombination rate and the precise
positioning of hotspots (Charlesworth et al. 1993). Thus,
knowledge of the fine-scale recombination landscape is es-
sential for a holistic interpretation of standing patterns of
population diversity.

Multiple approaches for measuring fine-scale recombin-
ation rates have been developed, each offering distinct
strengths and weaknesses. Bulk genotyping of sperm
from single individuals can reveal the frequency of recom-
binant haplotypes at targeted loci (Jeffreys et al. 2001,
2004). While this approach is highly sensitive and can be
readily scaled to multiple samples, it cannot be used to
comprehensively interrogate fine-scale recombination
rates genome-wide, nor can it be adapted to probe female
recombination rates. Modern single-cell technologies can
be used to ascertain the recombination landscape in
sperm and oocytes from single individuals (Wang et al.
2012; Hou et al. 2013; Ottolini et al. 2015; Dréau et al.
2019; Hinch et al. 2019; Bell et al. 2020). However, these
methods remain prohibitively expensive to apply to large
numbers of samples, barring their application at the popu-
lation scale. Bulk sequencing of DNA fragments bound to
recombination-associated proteins provides a third strat-
egy for surveying the fine-scale landscape of meiotic re-
combination (Smagulova et al. 2011; Khil et al. 2012;
Lange et al. 2016). However, this approach is similarly
cost- and time-prohibitive at scale. A fourth strategy uti-
lizes dense genotype data from parent and offspring trios
to identify crossovers between generations (Halldorsson
et al. 2019; Li et al. 2019). This approach requires a very
large number of samples related through known pedigrees,
again presenting cost and feasibility limitations.

A fifth approach for defining the fine-scale recombin-
ation landscape relies on population genomic analyses of
whole-genome sequences or dense SNP data from popula-
tion samples. This approach is premised on the insight that
the level of linkage disequilibrium (LD) between two loci in
a given population offers a read-out of the historical rate of
recombination between those sites (McVean et al. 2004).
Thus, by surveying patterns of genetic variation in contem-
porary populations, one can obtain estimates of the
population-scaled recombination rate, rho (p), between
every pair of segregating sites in the genome, yielding the
finest possible recombination map resolution. These esti-
mates reflect the cumulative recombination activity of all
individuals in the population and over the history of the
population, and therefore provide a time- and sex-averaged
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portrait of fine-scale recombination activity. However, as
non-pseudoautosomal regions (PAR) of the X chromosome
only engage in recombination in the female germline, con-
trasts between recombination rates on the non-PAR X
and autosomes, which recombine in both sexes, may be
especially informative about sex differences in meiotic
recombination.

Here, we use the program LDhelmet (Chan et al. 2012) to
generate broad- and fine-scale genome-wide recombination
maps from patterns of LD in whole-genome sequences
of wild-caught mice from nine geographically isolated
locations (Davies 2015; Harr et al. 2016). Our surveyed
populations include multiple populations from each of the
three principal house mouse subspecies: M. m. domesticus
(Germany, Iran, two populations from France), Mus musculus
musculus (Kazakhstan, Afghanistan, Czech Republic), and
M. m. castaneus (India, Taiwan). We then use these maps
to address several outstanding questions. First, do levels of
broad-scale recombination rate divergence scale with popu-
lation and subspecies divergence? Second, what is the extent
of fine-scale recombination rate variation and hotspot
sharing among wild house mouse populations and subspe-
cies? Third, is there evidence for population differences in
the polarity of sex dimorphism for recombination rate?
Taken together, our findings provide a window into the evo-
lutionary history of fine- and broad-scale recombination rates
in wild house mice, extending insights gleaned from inbred
mouse strains and exposing the functional consequences of
the exceptional Prdm9 diversity in M. musculus.

Results

Sequencing Data Summary, Switch-error Rates, and
Method Validation

We utilized publicly available whole-genome sequences
from wild-caught mice from nine geographic locations
to derive population-specific recombination maps and in-
fer hotspot locations (Davies 2015; Harr et al. 2016). We re-
fer to the nine populations as: mAfghanistan, mCzechia,
mkKazakhstan, diran, dGermany, dFrance_1, dFrance_2,
cTaiwan, and cIndia, with the leading letter denoting the
primary subspecies designation of each population (m:
musculus; d: domesticus; c: castaneus). After quality control
filtering, 7,908,349 (mAfghanistan) to 40,890,538 (cIndia)
SNPs were identified per population (mean: 17,427,800
SNPs), corresponding to approximately one SNP per
~60-300 bp, on average (Table 1).

SNPs were computationally phased into haplotypes (see
Materials and methods). Errors in haplotype inference will
masquerade as recombinants and may artificially inflate
estimates of the population-scaled recombination rate, p.
To assess the incidence of such haplotype “switch-errors”
in our data, we randomly paired the phase-known X
chromosome haplotypes from sequenced males to gener-
ate pseudo-females which we then used to directly bench-
mark the switch-error rate in most populations (see
Materials and methods). On average across populations,

the switch-error rate is 0.25%, and ranges from 0.04% to
0.79% between populations (Table 1). These error rates
are comparable to or lower than those reported in prior
investigations (Booker et al. 2017; Shanfelter et al. 2019).

The nine surveyed mouse populations have experienced
unique evolutionary histories and differ in sample size
(6-20 samples). Prior studies have demonstrated that re-
combination rate estimation may be biased when simplify-
ing assumptions about population demographic history
are not met and when sample sizes are small (Reed and
Tishkoff 2006; Zaitlen et al. 2017; Dapper and Payseur
2018; Raynaud et al. 2022; Samuk and Noor 2022). We
performed a series of simulation analyses and confirm
that p estimation and recombination hotspot inference
are not significantly biased by distinct features of each
population’s demographic past (Supplementary Text,
Supplementary Material online). Further, results from si-
mulations indicate that differences in sample size have lim-
ited impact on the variance and accuracy of p estimates
(Supplementary Text, Supplementary Material online).
Taken together, these analyses provide solid justification
for the use of LD-based methods of recombination rate es-
timation in these mouse populations.

Population-scaled Recombination Rates Reflect the
Demographic History of House Mouse

Across the nine surveyed populations, the mean p/bp esti-
mate for all chromosomes ranged ~12-fold (fig. 1), from a
low of 0.0010037 p/bp (dGermany) to a high of 0.01233 p/
bp (cIndia). The average p value across autosomes ranged
from 0.001032 (dGermany) to 0.012766 (cIndia) p/bp,
while the p estimate for the X chromosome ranged from
0.00114 (dGermany) to 0.0043 (mKazakhstan) p/bp.
The mean p/bp for individual chromosomes from each
population is provided in supplementary Table S1,
Supplementary Material online.

House mice evolved from a common ancestral source
population in the Indo-lranian valley approximately 0.5
MYA (Boursot et al. 1993). Mean p/bp estimates were
2-12 times higher in mice collected from regions closest
to this ancestral region (India, Iran, and Afghanistan) com-
pared to more derived populations. These trends reflect, in
large part, the higher historical effective population sizes of
these ancestral populations (Lawal et al. 2021). Given the
slight tendency to over-estimate population-scaled recom-
bination rates when the true p/bp is low (<0.002) and when
switch-error rates are moderately high (>0.46%) (Booker
et al. 2017), estimates for several populations may be weak-
ly inflated (mCzechia, dGermany, dFrance_1, dFrance_2,
cTaiwan). Thus, the magnitude of reported population
differences in p/bp is potentially conservative.

Weak Conservation of Broad-scale Recombination
Maps Across Mus musculus Populations and
Subspecies

To compare recombination rates across these nine popu-
lations of mice, we first translated recombination rate
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Table 1. Whole-Genome Sequence Data Summary.

SubSpecies Population Source # Samples # Males # SNPs SNP density (bp/SNP) Switch-error Rate (%)
Castaneus India 2 10 3 40,890,538 60 0.24
Castaneus Taiwan b 20 1 25,549,656 96 na
Domesticus Iran 2 8 8 17,877,283 138 0.039
Domesticus Germany 2 11 9 11,930,888 206 0.056
Domesticus France_1 a 8 8 11,108,085 222 0.081
Domesticus France_2 b 20 10 14,120,193 174 0.18
Musculus Afghanistan 2 6 5 7,908,349 311 0.79
Musculus Czechia 2 8 2 10,208,203 241 na
Musculus Kazakhstan 2 8 4 10,937,288 225 0.34

®Harr et al. 2016.
®Davies 2015.

estimates from p/bp to cM/Mb units and averaged the re-
sulting rate estimates over windows ranging in size from 1
to 10 Mb (1 Mb increments; LDhelmet block penalty = 100;
see Materials and methods). We observe the highest correl-
ation between maps computed using 6 Mb intervals
(supplementary fig. S1, Supplementary Material online), im-
plying maximum population-level conservation of recom-
bination rates at this physical scale. Subsequent analyses
focus on these 6 Mb broad-scale maps.

We next assessed the similarity of recombination rates in
6 Mb windows between each pair of wild mouse populations.
Map correlations are expected to decline with genetic diver-
gence (Stevison et al. 2016), and we anticipated that recom-
bination maps would exhibit greater similarity between
populations of the same M. musculus subspecies, relative to
populations from different subspecies. Average map correla-
tions were 0.4 (Range: 0.36-0.48), 0.31 (Range: 0.29-0.32), and
0.40 for comparisons within domesticus, musculus, and casta-
neus, respectively (Spearman’s p; all comparisons, P=1X
10> fig. 2). However, in contrast to our expectations, the
average correlation between recombination maps for inter-
subspecies comparisons was of identical magnitude (mean
Spearman’s p = 0.35, all with P=1x 107> fig. 2). The map
comparisons between diran and cIndia yielded the highest
correlation (Spearman’s p= 0.61, P=1x 10" '%), potentially
reflecting the ancestral identity of these populations.
Examples of the magnitude of spatial and population vari-
ation in broad-scale recombination rates are presented in
figures 3A-E. Correlations for individual chromosome com-
parison at 6 Mb intervals are presented in supplementary
Table S2, Supplementary Material online.

To determine if these inter-population correlations in
broad-scale recombination rates are higher than expected
by chance, we randomly permuted p/bp estimates in 6 Mb
windows across the whole-genome and re-assessed corre-
lations between populations. The mean permutation-
based correlation across population pairs ranged from
—0.01 to 0.007. In 100 permutation replicates per compari-
son, correlations never exceeded the values recovered
from the actual maps (P < 0.01). In summary, the strength
of observed correlations between M. musculus broad-scale
maps do not scale with population and subspecies diver-
gence, but nonetheless remain significantly higher than ex-
pected by chance.

4

To ensure the robustness of our approach for broad-
scale map construction, we compared our 6 Mb
chromosome-level map for cIndia to a previously generated
recombination map for this population (Booker et al. 2017).
Despite differences in methodology (see Materials and
methods) and use of different genome builds (mm9 vs.
mm10), concordance between these autosome broad-scale
maps is excellent (mean Spearman p across chromosomes
=0.9; per chromosome range 0.78-0.99; P < 0.05; fig. 3F).
The X chromosome was only weakly correlated between
these maps (p=0.28; P =0.2), potentially reflecting signifi-
cant changes to the X between reference genome builds.

Finally, we assessed the impact of the specified block pen-
alty parameter on the magnitude of map correlations. The
block penalty determines the granularity of spatial recombin-
ation rate variation in LDhelmet, with a high block penalty
yielding a more smoothed map. We constructed “fine-scale”
maps for each population by invoking a low block penalty
(block penalty = 10) to allow for the detection of increased
local recombination rate heterogeneity. Due to the rapid evo-
lutionary turnover of recombination hotspots, we expected
to recover reduced correlations in these fine-scale map com-
parisons relative to comparisons between our broad-scale
maps (block penalty =100). In line with these predictions,
most inter-population fine-scale map comparisons exhibited
weaker correlation than the corresponding broad-scale map
comparisons (28/36 comparisons), although the difference in
correlation magnitude is modest (fig. 2). Correlation magni-
tudes are similar for all within subspecies fine-scale map com-
parisons (Spearman’s p = 0.37, 0.36, and 0.39 for domesticus,
musculus, and castaneus, respectively; all P=1x107"%), and
comparable to the strength of observed correlations for inter-
subspecies fine-scale map comparisons (average Spearman’s
p=037alP=1x10"").

Recombination Events Consolidate into a Highly
Restricted Subset of the Genome

In humans and great apes, the majority of recombination
events (~80%) occur in roughly 20% of the genome in hu-
mans (McVean et al. 2004). This inequality can be summar-
ized by the Gini coefficient, with values of 0 corresponding
to uniform distribution of recombination, and a Gini coeffi-
cient of 1 indicating the extreme situation where all
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Fic. 2. Heat map of mean Spearman’s rank correlation values for all inter-population whole-genome recombination map comparisons.
Correlations between maps constructed with a block penalty of 10 presented above the diagonal (less stringent map; “fine-scale”), and correla-
tions between maps constructed under a block penalty of 100 shown below the diagonal (more conservative map; “broad-scale”). Correlations

within the black boxes are within subspecies comparisons.

recombination occurs at a single locus. Gini coefficients for
human recombination maps range from 0.688 to 0.771
(Stevison et al. 2016), depending on population, indicating
that recombination events are indeed highly skewed towards

a small fraction of the genome. We find that M. musculus re-
combination events are distributed even more nonrandomly
across the genome, with Gini coefficients ranging from 0.79
to 0.95 across populations (fig. 4). The two M. m. castaneus
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populations exhibit the lowest Gini coefficients, with cIndia
presenting a notable outlier. However, it should be noted
that larger effective population sizes are typically associated
with smaller Gini coefficients (Auton et al. 2013). It is thus un-
clear whether this trend reflects a true difference in recom-
bination distribution between populations or is an artifact
of the large effective population size of the cIndia population
(Lawal et al. 2021).

Hotspot Identification

We used two approaches to comprehensively identify his-
torical recombination hotspots in each surveyed wild
mouse population (see Materials and methods). Briefly,
the “sliding window” hotspot method, which has been
used in prior analyses (Booker et al. 2017; Shanfelter
et al. 2019), tests whether the p estimate of every genomic
window of a pre-defined, fixed length is significantly great-
er than the population-scaled recombination rate of the
flanking regions. If so, such regions are identified as hot-
spots. This approach fails to fully leverage the high density
of SNPs in whole-genome sequencing datasets and may
over-estimate hotspot size. To circumvent these potential
shortcomings, we developed a second approach (the “fil-
tering” method) which identifies hotspots as inter-SNP in-
tervals with p/bp estimates at least 10-fold higher than the
chromosome-wide mean p/bp. Adjacent intervals meeting
these criteria are merged into a single candidate hotspot,
with hotspots defined by >2 SNPs and <5 kb in length re-
tained. We note that this approach bears conceptual simi-
larity to at least one previously developed method of
hotspot identification (Wall and Stevison 2016).

Using the sliding window method, we identified a total of
225,605 hotspots across all wild mouse populations, with a
mean of 25,067 hotspots per population (Table 2). Using
the filtering method, we identified 214,717 total hotspots,
with an average of 23,857 hotspots per population (see
supplementary Table S3, Supplementary Material online).
These numbers align with prior experimental and LD-based
estimates of hotspot number in Mus musculus (Brunschwig
et al. 2012; Smagulova et al. 2016; Booker et al. 2017).

We next evaluated the extent of hotspot overlap be-
tween our two hotspot calling methods and defined key
features of hotspots identified by these two approaches
(Table 2). Of the 225,605 hotspots identified by the sliding
window approach, 115,978 (51.4%) were not called using
our filtering method (minimum 1 bp overlap; 109,627 hot-
spots (48.6%) are shared between the two methods). Of
the 214,717 filtered hotspots, 100,061 (46.6%) are uniquely
ascertained by this approach (114,656 filtered hotspots
(53.4%) were also identified by the sliding window meth-
od). Of the 114,656 filtered hotspots that overlap with a
sliding window hotspot, 9,808 (8.6%) showed only partial
overlap. Conversely, all sliding window hotspots overlap-
ping a filtered hotspot showed complete overlap with
the filtered hotspot.

Mean hotspot length was 1,851 bp for all sliding win-
dow hotspots versus 637 bp for filtered hotspots.

Discounting hotspots detected by both methods, the
mean length of sliding window hotspots was reduced to
1,795 bp and to 384 bp for filtered hotspots. The average
recombination rate for the sliding window hotspots was
0.16 p/bp, but only 0.08 p/bp for hotspots uniquely called
by this method. Hotspots identified by the filtering meth-
od were considerably “hotter” and averaged 0.38 p/bp (0.2
p/bp for hotspots unique to this method). This distinction
is likely due to the smaller size of filtered hotspots, which
excludes the dampening impact of recombinationally inert
flanking sequences, as well as the strict threshold for detec-
tion (p/bp >10 X the entire chromosome).

Assessing Hotspot Conservation Between
Populations

The rapid evolution of Prdm9 can lead to wholesale shifts
in the fine-scale distribution of recombination hotspots
between populations and species. Thus, in species with
PRDM9-directed hotspots, geographically isolated popula-
tions with distinct Prdm?9 alleles are expected to have rela-
tively few shared hotspots.

We first combined our sliding window and filtered hot-
spots into a single dataset per population by merging adja-
cent hotspots and those overlapping by >1 bp. We then
analyzed how many hotspots were conserved between
the nine surveyed wild M. musculus populations.
Remarkably, only 3.26—-15% of hotspots overlap in pairwise
population-level comparisons (>1 bp overlap; mean 5.95%;
fig. 5). Similarly, only 1.49-6.23% of hotspots had at least
50% overlap in the pairwise population-level comparisons
(mean 2.9%), indicating that very few hotspots share any
substantial overlap. Comparisons of any combination of
the dGermany, dFrance_1, or dFrance_2 mice yielded the
highest hotspot conservation, potentially reflecting the
presence of currently or previously shared Prdm9 alleles
in these recently diverged populations (Buard et al. 2014;
Lawal et al. 2021). However, while overlap between popula-
tions was always numerically low, the number of observa-
tions is greater than chance expectation (Chi-square test
compared with randomly simulated “hotspots”, P <1 X
107"°). Thus, a minor proportion of hotspots is conserved
between populations from the same subspecies.

Very few hotspots are conserved at the subspecies or
species levels (using >50% overlap as the criterion). A total
of 633 hotspots were shared among all four M. musculus
domesticus populations, and 617 were shared across the
three M. m. musculus populations. The two surveyed M.
musculus castaneus populations share 4,653 hotspots.
Only four hotspots were common to all populations and
subspecies.

Hotspot Overlap With Lab Strain DSB Hotspots

Our analyses reveal minimal hotspot sharing between wild
house mouse populations and subspecies. Classical lab in-
bred strains were initially derived from a limited number of
wild-caught founder animals and therefore capture a nar-
row range of the Prdm9 allelic diversity present in nature
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Hotspot Conservation by Hotspot Type
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mAfghanistan 1 1.83 2.76 1.59 215 1.78 1072 4.68 5.97
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§ diran 1 1.76 3.22 3.7 4.29 3.69 3.67 3.43 3.78
% deermany{| 148 = 543 | 843 1069 553 3.3 42 366 L
@
% dFrance_2 1 1.8 6.44 9.45 13.24 6.22 3.46 4.03 3.62 7
dFrance_1 1 1.12 4.18 14.49 10.51 6 3.28 3.64 342
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cIndia 4 4.64 271 3.01 LT 3.22 3.36 3.05 319
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Sliding Window Hotspots

Fic. 5. Few hotspots are shared between any two populations. The percentage of hotspots conserved between each population pair is shown as a
heat map, with filtered hotspots displayed above the diagonal and sliding window hotspots below the diagonal. Comparisons within the black

boxes are intra subspecies comparisons.

conservative focus on only those hotspots detected by
both calling methods, four of the nine populations
(mAfghanistan, mCzechia, dFrance_1, and cIndia) had
greater hotspot overlap with TSSs than could be expected
by chance (P<0.05). The remaining five populations
showed no hotspot enrichment with TSSs (P> 0.05).
These results appear to contradict previous investigations
using direct, empirical approaches for detecting meiotic
double-strand breaks (the precursors to recombination),
which have concluded that hotspots are directed away
from TSSs in house mice (Brick et al. 2012). Methodological
differences and inevitable false-positive hotspots in our data-
set may account for these discrepancies. Regardless, we note
that the proportion of hotspots that overlap TSS in wild
house mice is significantly lower than the 20-30% observed
in species that lack PRDM9-mediated hotspots (Auton
et al. 2013; Singhal et al. 2015; Kawakami et al. 2017).

Analysis of sex-specific Recombination Rate
LDhelmet vyields sex- and time-averaged estimates of re-
combination rate. However, because most of the X
chromosome only recombines in females, recombination
rate comparisons between non-pseudoautosomal por-
tions of the X (chrX:1-169Mb) and autosomes may pro-
vide a glimpse into sex differences in recombination.
Assuming wild mouse populations are at Hardy-
Weinberg equilibrium (HWE), the mean p/bp of the non-
pseudoautosomal X chromosome is expected to be
two-thirds the recombination rate of the autosomes, (as
the X chromosome spends two-thirds of its time in fe-
males). Remarkably, eight of the nine populations deviated

from this expectation by more than 10% (fig. 7). In mice
from cTaiwan, mCzechia, dGermany, dFrance_1,
dFrance_2, and mKazakhstan, chrX recombination rates
are higher than expected, suggesting that (i) overall recom-
bination rates are elevated in females or (ii) that sex-
specific demographic or selective histories have led to
departures from HWE assumptions in these populations.
Intriguingly, an opposite pattern is observed in the
cIndia and dlran populations, with chrX recombination
rates (p/bp) falling below the expected value relative to
the autosomes. Only the mAfghanistan population had a
chrX recombination rate similar to the expectation
(69%). These findings suggest that variation in the polarity
of sex dimorphism for recombination rate may exist in
wild mouse populations.

Discussion

For decades, lab inbred mice have been used as models to
understand the molecular mechanisms and extent of vari-
ability in meiotic recombination. Indeed, studies in house
mice helped lead to the initial discovery of Prdm9 and its
roles in hotspot specification (Parvanov et al. 2010).
However, despite this progress, very little is known about
how fine-scale recombination landscapes vary or evolve
in non-inbred, wild M. musculus. Here, we used a popula-
tion genomic approach to construct recombination maps
for nine diverse populations of wild mice. Through simula-
tions, we demonstrate that our maps are largely robust to
known departures from neutrality in these populations.
Comparisons of both broad- and fine-scale recombination
rate divergence between populations and subspecies
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indicate that the recombination landscape evolves rapidly
in M. musculus populations.

We show that relative genetic divergence does not predict
broad-scale recombination rate divergence. Broad-scale map
comparisons between populations of the same subspecies
versus comparisons between populations from distinct M.
musculus subspecies yielded correlation values of similar mag-
nitude. Our findings stand in contrast to predictions based on
prior work. For example, Stevison et al. (2016) found that cor-
relations between broad-scale recombination maps decline
with sequence divergence between great ape species. The
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map correlations between house mouse populations are
weaker than those reported between great apes, even
though M. musculus subspecies and humans and chimpan-
zees diverged similar numbers of generations in the past
(~500,000-1,000,000 generations) (Geraldes et al. 2011;
Langergraber et al. 2012; Amster and Sella 2016;
Phifer-Rixey et al. 2020). Taken together, these findings sug-
gest that the broad-scale recombination landscape evolves
more quickly in house mice than in great apes. This out-
come may be attributable to taxon-specific differences in
the chromosomal and chromatin-based constraints that

€20z Aeniga4 Lo uo 1senb Aq GGE6889//9Z08SW/ | /0f/31018/aqW/Wwod dno-olwapeoe//:sdny WwoJj papeojumoq


https://doi.org/10.1093/molbev/msac267

Rapid Evolution of the Fine-scale Recombination Landscape

- hteps://doi.org/10.1093/molbev/msac267

MBE

shape the broad-scale distribution of recombination
events (Dumont 2017; Jabbari et al. 2019; Vara et al.
2021), potential species differences in the intensity and dis-
tribution of selection on recombination (Ritzet al. 2017), or
differences in the environmental sensitivity of recombin-
ation rates between great apes and mice. However, we
also acknowledge that methodological differences be-
tween studies, including sample sizes and SNP densities,
could inflate the apparent differences between taxa ob-
served here.

We also uncover potential evidence of population differ-
ences in the magnitude and direction of sex dimorphism
for recombination rate. Under a neutral Wright-Fisher
model of evolution, mean X chromosome p is expected
to equal two-thirds of the mean autosomal p. Only the
mAfghanistan population matches this neutral expect-
ation (fig. 7). For most surveyed populations (cTaiwan,
mKazakhstan, mCzechia, dGermany, and dFrance_1 and
2), the chrX p estimate exceeds neutral expectations based
on the corresponding autosomal estimate. This result
aligns with the common observation of higher global re-
combination rates in mouse females compared with males
(Paigen et al. 2008; Dumont et al. 2009). However, the p es-
timates for chrX in the cIndia and diran populations were
less than expected based on the autosomal p estimates in
these populations. Although higher female recombination
rates present the dominant trend in inbred mouse gen-
omes, cytogenetic investigations in inbred house mice
have identified a select number of strains with higher
male than female recombination rates (Peterson and
Payseur 2021). Evidently, the polarity of sex dimorphism
for global recombination rates can evolve rapidly.
However, differences in demographic and selective history
between males and females could bias X chromosome p es-
timates, leading to incorrect inferences about relative re-
combination rates between the sexes. Future work is
needed to develop sex-specific models of evolutionary his-
tory for the populations investigated here and rigorously
evaluate this potential interpretation. However, our results
raise the possibility that the direction of the sex dimorph-
ism for recombination rate varies between wild M. muscu-
lus populations, and that previous observations of variation
in the directionality of this dimorphism in inbred strains
are not simply oddities of inbreeding.

In addition to these conceptual advances, we also pre-
sent a new method for the identification of hotspots in
population data that fully utilizes the high density of
SNPs in modern genome sequencing datasets. This “filter-
ing” method is simple to implement and detects hotspots
at a finer resolution than the sliding window approach
that has been used in prior studies (Booker et al. 2017;
Shanfelter et al. 2019). Implementing this new method al-
lowed for identification of an additional ~11,000 new hot-
spots per population, and a total of more than 100,000
new hotspots for all nine populations combined.
However, the filtering method failed to identify 115,978
hotspots called by the sliding window method, which sug-
gests that both methods should be used in tandem to

comprehensively identify hotspots in population data.
The filtering method’s failure to detect these hotspots is
potentially attributable to two reasons. First, the filtering
method requires that a hotspot be comprised of at least
three SNPs, while the sliding window method has no min-
imum SNP number requirements. In areas of the genome
with lower SNP density, the sliding window method may
be more likely to detect hotspots than the filtering meth-
od. Second, our implementation of the sliding window
method required that hotspots be 10 times hotter than
only the flanking 40 kb regions, while the filtering method
identified hotspots 10 times hotter than the mean of the
entire chromosome. Differences in the recombination
rate between the immediate flanking region and the entire
chromosome undoubtedly allowed for some differential
detection. Intriguingly, the mean p/bp of the filtered hot-
spots was on average nearly double the mean of the sliding
window hotspots, and the same trend was also found
when hotspots unique to the filtering method were com-
pared to hotspots unique to the sliding window method.
This indicates that the sliding window method misses a
significant number of “very hot” hotspots, likely because
these hotspots are markedly smaller than the sliding win-
dow. These two approaches for hotspot identification are
complementary. Whereas the sliding window method will
detect hotspots in lower SNP density areas and is sensitive
to the detection of weaker hotspots, the filtering method
can pick up signals of hotspots in regions of high SNP dens-
ity, which may be missed when using a fixed window size.

We show that the number of detected hotspots
per population scales with effective population size. This
trend is expected if larger populations harbor greater
Prdm?9 diversity, and thus a broader repertoire of recom-
bination hotspot positions. Based on previous work,
M. m. musculus is expected to have the smallest effective
population  size  (N,=100,000), followed by
M. m. domesticus (160,000) (Salcedo et al. 2007), and
with M. m. castaneus having the largest N, (580,000)
(Geraldes et al. 2008). On average, about 30,000 hotspots
were detected for M. m. musculus, 34,000 for
M. m. domesticus, and 51,000 for M. m. castaneus. Within
subspecies, hotspot numbers also varied between popula-
tions in a manner consistent with effective population
sizes. The most dramatic example is the 1.6-fold difference
in total number of hotspots detected between the India
and Taiwan populations of M. m. castaneus (62,879 vs.
38,778 for cIndia and cTaiwan, respectively). This discrep-
ancy again reflects known features of population history:
the Taiwan population experienced a strong founding
bottleneck that reduced its effective population size rela-
tive to ancestral populations of M. m. castaneus (Lawal
et al. 2021). This bottleneck led to a genome-wide loss of
diversity, including, presumably, a loss of allelic variation
at the Prdm9 locus, narrowing the suite of potentially ac-
tive hotspot locations. Intriguingly though, this phenom-
enon of hotspot number scaling with population size is
largely limited to hotspots detected by the filtering meth-
od, rather than the sliding window method. For the filtered
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hotspots, we detected on average 16,000, 20,000, and
43,000 hotspots for M. m. musculus, M. m. domesticus,
and M. m. castaneus, respectively, while the sliding window
method always detected an average of 24,000-25,500 hot-
spots per subspecies.

Hotspot location also varied greatly between popula-
tions, regardless of the hotspot calling method. These re-
sults extend prior observations of limited hotspot
sharing between species (Stevison et al. 2016; Shanfelter
et al. 2019) to the mouse model system. Remarkably, how-
ever, our work suggests that hotspot location varies greatly
even between populations from the same M. musculus
subspecies. This finding is at odds with significant hotspot
sharing between human populations (Auton et al. 2012;
Spence and Song 2019), but is consistent with the overall
reduction in hotspot sharing observed between great ape
species with higher Prdm9 diversity (Stevison et al. 2016).
Population genetic surveys of Prdm9 allelic variation in
wild-caught mice across the globe indicate an extensive
number of Prdm9 alleles segregating in nature (>150),
with <10 alleles shared between subspecies of M. musculus
(Buard et al. 2014; Kono et al. 2014; Vara et al. 2019). In
contrast, the human recombination landscape is domi-
nated by a small number of Prdm9 alleles (Berg et al.
2010, 2011; Pratto et al. 2014; Alleva et al. 2021).
Additionally, PRDM9 is known to interact epistatically
with a locus on the X chromosome to cause hybrid male
sterility in some intersubspecific experimental mouse
crosses (Forejt et al. 2021). The entanglement of PRDM9
in a genetic incompatibility presumably restricts Prdm9
gene flow in the wild and contributes to limited hotspot
sharing between mouse populations. Although the
Prdm?9 genotype status of the individuals used to generate
these LD recombination maps is not known and cannot be
determined from short-read genome sequences, the lack
of hotspot overlap between subspecies is consistent with
the high levels of population-private Prdm?9 allelic diversity
in wild mouse populations.

Although there is limited conservation of hotspots be-
tween wild populations, we observe appreciable levels of
hotspot overlap between some wild mouse populations
and hotspots in inbred mouse strains of the same subspe-
cies, or originating from a similar location, possibly due to
past or present Prdm9 allele sharing (Smagulova et al.
2016). In fact, sliding window hotspots in dGermany and
dFrance overlapped more than 25% of DSB hotspots iden-
tified in C3H/He mice (a strain of M. m. domesticus back-
ground). A similar proportion of hotspot sharing was
observed between DSB hotspots in PWD, a wild-derived in-
bred strain of M. m. musculus developed from wild-caught
mice in the Czech Republic, and wild mice from the
mCzechia population. Elevated hotspot sharing was also ob-
served between CAST, a M. m. castaneus wild-derived in-
bred strain originating from Taiwan, and the wild-caught
cTaiwan mice. However, it should be noted that the DSB
hotspot information we compared to was derived only
from male mice, and some differences in DSB hotspots
have been found between the sexes (Smagulova et al.
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2016; Brick et al. 2018). Our recombination maps effectively
integrate over the historical Prdm?9 allelic diversity in each of
our populations, but these trends suggest that several
Prdm9 alleles present in contemporary lab mice have left
detectable footprints in the recombination landscape of
wild mouse populations.

Overall, our findings expose remarkable divergence in
the fine- and broad-scale recombination landscape be-
tween wild M. musculus populations and subspecies.
Evidently, the vast Prdm9 allelic variation present in wild
mouse populations has defined unique sets of genomic
hotspots that have remained largely private to single po-
pulations for sufficiently long to render population-
specific footprints in even broad-scale patterns of LD.
These results carry important practical implications for
mouse genetics. Only a small subset of the Prdm9 alleles
found in wild mice are present in inbred mouse strains, a
prospect that undoubtedly constrains mapping resolution
in experimental crosses (and especially crosses between
strains with identical Prdm9 genotypes). Our fine-scale
hotspot maps, combined with knowledge of the common
Prdm? alleles in individual populations, stand to inform in-
novative experimental strategies for engineering diverse
wild Prdm9 alleles into lab strain genetic backgrounds.
Such approaches could enable deliberate genetic manipu-
lation of the crossover landscape and expedite efforts to
fine map loci contributing to complex traits and disease.

Materials and Methods

Single-Nucleotide Polymorphism Data

We analyzed whole-genome sequences from 99 wild M.
musculus (Davies 2015; Harr et al. 2016). These mice
were trapped in nine different geographic locations on
two continents. A basic summary of the data, including
trapping location, sex, and subspecies identity, can be
found in Table 1. This dataset features four populations
of M. musculus domesticus, three populations of
M. m. musculus, and two populations of M. m. castaneus.
Two of the M. m. domesticus populations sample mice
from distinct locations in France; these populations were
analyzed separately and are designated as dFrance_1
(Harr et al. 2016) and dFrance_2 (Davies 2015).

Variants were called from whole-genome sequences
using the GATK best practices pipeline and GATK
v.4.1.8.1 (Van der Auwera and O’Connor 2020), as previ-
ously outlined (Lawal et al. 2021). Single-nucleotide poly-
morphisms (SNPs) were then filtered using a multistep
process. First, the original VCF file containing all samples
was split into nine files containing only samples and segre-
gating sites from each population. Variants were then fil-
tered using Vcftools v.0.1.16 (Danecek et al. 2011). We
retained diallelic sites with the Filter flag “PASS”, a min-
imum Quality score of 30, a minimum Genotype Quality
score of 15, a minimum allele count of 2, and those that
passed the Hardy-Weinberg equilibrium test (P>
0.0002). Additionally, SNPs were filtered based on the
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population’s mean read depth, and any sites with a read
depth less than half or greater than double the population
mean were excluded. This filter was applied to eliminate
potential false-positive calls due to read mismapping in
structurally variable genomic regions.

Estimating Phase and Switch-error Rates

Shapelt4 was used to infer haplotypes for each sample
using standard parameters (Delaneau et al. 2019). To esti-
mate the switch-error rate in our data, we paired phase-
known X chromosomes from male samples to generate
“pseudo-females”, as previously described (Booker et al.
2017). Briefly, reads mapping to the X chromosome from
three to four males per population were merged to create
all possible phase-known diploid combinations. Attempts
to utilize only two males (therefore one pseudo-female)
failed because Shapelt4 requires multiple samples to infer
phase. Only seven of the nine populations had sufficient
male samples to be used for this analysis (mCzechia and
cTaiwan had <3 males and could not be used). Variants
were then called using GATK and filtered as described
above. From each pseudo-female, we removed sites that
were heterozygous in the true males (corresponding to
SNPs located in the PAR), homozygous in the pseudo-
female, or had missing data. After filtering, the pseudo-
females were phased using Shapelt4, and the resulting
haplotypes converted into fasta format using bcftools (v
1.9.1) consensus and the mm10 reference sequence
(Danecek et al. 2021). These whole chromosome fasta se-
quences were then pared down to include only sites segre-
gating in the pseudo-female. The inferred haplotypes from
a pseudo-female were next compared to the phase-known
sequences of the two donor male chrX sequences. The
switch-error rate was defined as the number of switch-
errors that occurred, divided by the total number of op-
portunities for a switch to occur (i.e, the total nhumber
of SNPs minus 1).

LD-based Recombination map Construction

Multiple software programs have been developed for re-
combination rate estimation from population genomic
data (reviewed in Penalba and Wolf 2020). Here, we use
LDhelmet as this program has been widely used (e.g,
Chan et al. 2012; Singhal et al. 2015; Shanfelter et al.
2019; Schield et al. 2020), including in prior studies with
house mice (Booker et al. 2017), and has been bench-
marked by simulation studies (Chan et al. 2012; Raynaud
et al. 2022). LDhelmet v1.10 was used to estimate the
population-scaled recombination rate for each chromo-
some in each of the nine M. musculus populations (Chan
et al. 2012). Parameters were set based on developer re-
commendations and previously published work (Chan
et al. 2012; Booker et al. 2017), with a few modifications.
Briefly, before running the rjmcmc, haplotype configur-
ation files were generated using a window size of 50.
Likelihood lookup tables were constructed across a grid
of population-scaled recombination rates (0.0 0.1 1.0

10.0 100.0) and using subspecies-specific population muta-
tion rates, assuming a common genomic mutation rate of
0.5 % 10~® bp/generation (Uchimura et al. 2015) and ef-
fective population sizes of 160,000, 580,000, and 100,000
for domesticus, castaneus, and musculus, respectively
(Salcedo et al. 2007; Geraldes et al. 2008). To improve ac-
curacy of sampling, we computed 11 Pade coefficients
using the same population-scaled mutation rate estimates.
Once these preparatory files were generated, the rjmcmc
was run using a window size of 50, a subspecies-specific
mutation matrix, ancestral priors (see below), a partition
length of 50,000 SNPs, and either a block penalty of 100
(broad-scale map) or 10 (fine-scale map). The rjmcmc pro-
gram was run for 1,000,000 iterations for each block pen-
alty, with the first 100,000 iterations discarded as burn-in.
Ancestral priors were calculated using M. caroli, M. spre-
tus, and M. pahari, where alleles matching all three species,
or matching in two but missing in the third, were consid-
ered the ancestral allele. To account for potential allele
misspecification, the presumed ancestral allele was as-
signed a weight of 0.91, and the other three possible states
were assigned a weight of 0.03. If the ancestral allele state
could not be inferred, the overall frequency of that particu-
lar nucleotide in the mm10 reference genome was used.

Conversion Between Population-scaled and Genetic
map Distance

LDhelmet outputs estimates of recombination between
adjacent SNPs in p/bp units. To convert this quantity
into more readily interpretable cM/Mb units, we first
summed the p/bp estimates across each chromosome to
determine the total population-scaled recombination
rate. For each pair of adjacent SNPs on the map, we
then calculated the proportional contribution to total p.
This percentage was then multiplied by the length of
each chromosome in cM units, as estimated from the cur-
rent gold-standard mouse genetic linkage map (Cox et al.
2009).

Map Comparisons

Spearman’s correlation was used to assess similarity of the
recombination distribution (in terms of cM/Mb) between
each wild mouse population. Correlations were assessed
for whole-genome comparisons (1-10 Mb intervals), as
well as for individual chromosomes. To gauge the strength
of the correlation between two maps that could be ex-
pected due to chance, we generated 100 random permu-
tations of p estimates in 6 Mb segments across each
population’s genome. An empirical P value was estimated
as the fraction of simulated comparisons greater than the
observed Spearman’s p-statistic.

A prior study used different methodology to create
LD-based recombination maps for the cIndia population
studied here (Booker et al. 2017). Specifically, our maps
are distinguished from those of Booker et al. by differences
in the stringency of SNP filtering, use of different versions
of Shapelt and LDhelmet, use of different outgroups to
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infer ancestral alleles, and reliance on different genome
builds (mm9 vs. mm10). To compare our cIlndia maps to
the prior map for this population, SNP positions on the
Booker et al. map were converted from the mm9 to
mm10 coordinate system using LiftOver from the UCSC
tool suite (Hinrichs et al. 2006).

Genomic Distribution of Recombination Rates

We summarized the genomic distribution of recombin-
ation rates across each population using the Gini coeffi-
cient (Dorfman 1979; Kaur and Rockman 2014). First, we
calculated the physical distance between each pair of
SNPs, then sorted these distances by their associated
population-scaled recombination rate, p/bp. Both physical
distance and recombination rates were rescaled to sum to
one. These data were then plotted as a Lorenz curve, and
the area under the curve (AUC) was calculated using the
trapz function in the R package “pracma”. The Gini coeffi-
cient was calculated for each population with the formula
2 * (0.5—AUC).

Identification of Hotspots

The fine-scale recombination map from each population
was used to identify putative recombination hotspots
using two approaches. We first identified hotspots using
a conventional “sliding-window” approach (Shanfelter
et al. 2019), with minor modifications. In brief, the mean
p of each 1kb window (0.5 kb slide) was compared to
the mean p of the flanking 40 kb regions. If p in the 1 kb
target segment was greater than 10 times the population-
scaled recombination rate of the flanking regions, the re-
gion was deemed to be a hotspot.

To fully leverage the high SNP density in our dataset
(1 SNP every ~60-300 bp), we developed and implemen-
ted a new method for hotspot detection. Briefly, a segment
of DNA between adjacent SNPs was labeled a putative hot-
spot if p/bp was >10X the chromosome-wide mean p.
Putative hotspots with shared SNPs were then merged
into a single candidate hotspot. Only candidate hotspots
with >2 SNPs and <5 kb in length were retained. We set
a minimum requirement of 3 SNPs contained in a hotspot
to reduce the risk of false-positive hotspots due to geno-
typing or haplotype switch-errors. A maximum hotspot
length of 5 kb was invoked based on prior estimates of like-
ly hotspot size (Paigen et al. 2008; Altshuler et al. 2010; Tsai
et al. 2010). The majority (72.27%) of putative hotspots
passed each filtering step (Supplementary Table 3,
Supplementary Material online). Most putative hotspots
that were filtered out were removed for having only 2
SNPs (24.71% of total putative), while 4,800 hotspots
>5 kb were removed (1.62%).

This new method, which we term the “filtering” ap-
proach, yielded some pairs of adjacent hotspots separated
by only 2 SNPs. These cases may reflect two independent
closely positioned hotspots, but it is also plausible the two
hotspots are actually a single hotspot that was erroneously
split in two, potentially due to genotyping error. We took a
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conservative approach and merged any hotspots sepa-
rated by 2 SNPs and that were <1 kb apart. Hotspots sepa-
rated by 2 SNPs and positioned >1 kb apart were retained
as independent hotspots. Hotspots separated by 3 or more
“cold” SNPs were always treated as individual hotspots.

Bedtools intersect (v2.29.2) was used to create a set of
hotspot regions jointly detected by both the “sliding-
window” and “filtering” approaches (Quinlan and Hall
2010). To create a comprehensive set of hotspots for
each population, hotspots from the two calling ap-
proaches were merged with bedtools merge (minimum
overlap requirement of 1 bp).

Identification of Coldspots

We used a method similar to the filtering hotspot ap-
proach outlined above to identify coldspots, or areas of
comparatively low recombination. Specifically, a segment
was inferred to be a coldspot if p/bp was less than
1/10th the chromosome average and if it contained at
least 3 SNPs. No minimum or maximum length require-
ments were imposed on coldspots. The number of cold-
spots detected, as well as their mean length and p/bp is
provided in Supplementary Table 6, Supplementary
Material online

Generation of “randomspots”

To assess various outcomes expected by chance, we gener-
ated 100 sets of random, size-matched genomic segments
to mimic both the filtered and sliding window hotspots
detected on each chromosome in each population using
a custom Python script (Supplementary File 1,
Supplementary Material online). We refer to these simu-
lated regions as “randomspots.”

Characterizing the Genomic Distribution of Hotspots
We analyzed our hotspots for proximity to TSS and repeat
elements. Bedtools intersect was used to find hotspots
overlapping at least 1 bp of an annotated TSS (refTSS) or
repetitive element (repeatmasker) (Smith et al. 2013;
Abugessaisa et al. 2019). Bedtools closest was used to
find the closest hotspots to each TSS, along with the dis-
tance between them. Fisher’s Exact tests were used to
identify repetitive elements with differential enrichment
between hot and coldspots.

We also analyzed our hotspots for overlap with previ-
ously published DSB hotspots ascertained using ChIP-seq
against DMC1, a protein that binds to the ends of DNA
DSB breaks (Smagulova et al. 2016). Overlap was assessed
using bedtools intersect, with a requirement for at least
1 bp overlap.

Comparison of Hotspots Between Populations

We analyzed each population-specific set of hotspots (fil-
tered or sliding window) for overlap between populations
within each subspecies, as well as across subspecies. When
comparing populations within a subspecies, bedtools
intersect was used to find hotspots with at least 1 bp of
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overlap, at least 50% overlap (-f 0.5 and -F 0.5 -e; partial
overlap), or 100% overlap (-f 1.0 -F 1.0 -e; complete over-
lap). When comparing across subspecies, only hotspots
with at least 50% overlap were examined (-f 0.5 and -F
0.5 -e).

Supplementary material

Supplementary data are available at Molecular Biology and
Evolution online.
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