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Abstract

Genetic analyses of mammalian gametogenesis and fertility have the potential to inform about two
important and interrelated clinical areas: infertility and contraception. Here, we address the genetics
and genomics underlying gamete formation, productivity, and function in the context of reproductive
success in mammalian systems, primarily mouse and human. While much is known about the specific
genes and proteins required for meiotic processes and sperm function, we know relatively little about
other gametic determinants of overall fertility, such as regulation of gamete numbers, duration of
gamete production, and gamete selection and function in fertilization. Because fertility is not a binary
trait, attention is now appropriately focused on the oligogenic, quantitative aspects of reproduction.
Multiparent mouse populations, created by complex crossing strategies, exhibit genetic diversity
similar to human populations, and will be valuable resources for genetic discovery, helping to
overcome current limitations to our knowledge of mammalian reproductive genetics. Finally, we
discuss how what we know about the genomics of reproduction can ultimately be brought to the clinic,
informing our concepts of human fertility and infertility and improving assisted reproductive

technologies.

Box: Advocating developmental biology

This article is part of Development's Advocacy collection — a series of review articles that make
compelling arguments for the field's importance. The series is split into two: one set of articles
addresses the question 'What has developmental biology ever done for us?' We want to illustrate how
discoveries in developmental biology have had a wider scientific and societal impact, and thus both
celebrate our field's history and argue for its continuing place as a core biological discipline. In a
complementary set of articles, we asked authors to explore 'What are the big open questions in the
field?' Together, the articles will provide a collection of case studies that look back on the field's
achievements and forwards to its potential, a resource for students, educators, advocates and
researchers alike. To see the full collection as it grows, go to:

https://journals.biologists.com/dev/collection/59/Advocacy.
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Introduction

Gametogenesis and gamete function, which together encompass the developmental processes of
oogenesis and spermatogenesis, and gamete interactions in fertilization, are major determinants of
overall fertility and frequently impaired in cases of infertility or marginal fertility. For these reasons,
these processes have been the predominant focus of genetic studies of mammalian reproduction. In
mammals, the process of spermatogenesis is relatively accessible for experimental manipulation
because many of the events occur in post-natal and adult individuals (Griswold, 2016). In contrast,
important stages of mammalian oogenesis are restricted to fetal development (Bolcun-Filas and
Handel, 2018). Nonetheless, the defining events of gametogenesis are conserved in males and females,
albeit with sexual dimorphism in timing and regulation (Fig. 1). The key processes of gametogenesis
common to the sexes include the mitotic proliferation and specification of spermatogonia or oogonia
(Matzuk and Lamb, 2008), the intricate chromatin dynamics of meiotic prophase and the two meiotic
divisions (Bolcun-Filas and Handel, 2018), cytological differentiation of the germ cells, and specification
of oocyte and sperm structures integral to the gamete recognition processes of fertilization (Lu and
Ikawa, 2022) (Fig. 1). However, there is marked sexual dimorphism in the products of the meiotic
division, with four haploid spermatids in the case of the male, but unequal divisions in the female to
produce one haploid oocyte and small polar bodies (Fig. 1). Although not covered in detail in this
review, throughout gametogenesis there is cross communication between germ cells and their
surrounding somatic cells — the granulosa cells of the ovarian follicle (Su et al., 2009) and the Sertoli
cells of the testis seminiferous epithelium (Griswold, 2018). Thus genes that regulate gametogenesis
and gamete function could be expressed in either or both germ cells and gonadal somatic cells.

The past 2-3 decades of ‘infertility gene’ discoveries have provided an impressive parts list for
these aspects of gamete production and reproductive success. Nonetheless, neither fertility nor
gamete production are true binary traits and we frequently observe gradations of fertility (sub-fertility,
age-related decline in fertility, etc.) in both humans and model organisms, such as the mouse.
Moreover, impairment of fertility can occur at any of several levels of function, such as gametogenesis
(i.e. the ability to produce gametes at all), gamete morphology and function (e.g. sperm motility), and
fertilization (i.e. successful interaction between gametes). Here we provide an overview of methods

and progress toward unraveling genetic control of these processes. Although epigenetic effects no
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doubt play roles in gametogenesis, they are beyond the scope of this article, but reviewed elsewhere
(Ben Maamar et al., 2021). We conclude that our current gene discovery paradigms, which have
mostly focused on simple Mendelian inheritance (Schimenti and Handel, 2018), have provided
important but limited information relevant to understanding gametogenesis and gamete function as
complex traits. Mouse genetic diversity models can lead to better understanding of how individual
genes, each with perhaps small effects, interact and work together for reproductive success, providing
a more holistic view of the genomics of reproduction. Finally, we discuss how the genetic and genomic
insights into gametogenesis and gamete function derived from the laboratory mouse can help us
understand human infertilities and contribute to assisted reproductive technologies (ARTs), such as in

vitro fertilization (IVF).

The low-hanging fruit: single-gene reproductive phenotypes

At the outset, it is helpful to consider how we have discovered single-gene Mendelian reproductive
phenotypes. Many discoveries can be traced back to sharp eyes and diligence in the mouse room to
detect spontaneous mutations in genes affecting observable traits (Fig. 2). Interesting early examples
include research on coat-color traits, many of which were pleiotropic (where two or more seemingly
unrelated phenotypes arise from a single locus). Because a gene affecting stem cell proliferation can
affect both pigment cells contributing to coat color and germline stem cells, studying coat color led to
unexpected insights on the regulation of spermatogonial proliferation. These traits included the
dominant White spotting and coat-color dilution traits that we now know are caused by mutant alleles
of the Kit gene and Kit/ genes, encoding the KIT tyrosine kinase receptor and its ligand, KITL (Sette et
al., 2000). Genes, such as Kit and Kitl/, with many mutant alleles (forming allelic series) affecting
different regions of the protein allow the analysis of specific protein domains, important for dissecting
protein function (Sette et al., 2000). Although many of the initially discovered Mendelian reproductive
phenotypes (Handel, 1987) were not pursued because they were difficult to map, they are now more
tractable through whole-exome sequencing and similar techniques (Fairfield et al., 2015), stimulating
renewed interest and extending to the diagnosis of human reproductive phenotypes (Ghieh et al.,

2022).
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Although these serendipitously discovered reproductive phenotypes have been informative,
deliberate mutagenesis has been a more direct and productive approach. The biased ‘reverse’ genetics
approach of mutagenesis targeted to specific (known) genes (Fig. 2) has been greatly enhanced by the
relative ease of CRISPR editing (reviewed in Gurumurthy and Lloyd, 2019; Singh and Schimenti, 2015).
The unbiased ‘forward’ genetics strategy of chemical mutagenesis (Fig. 2), most frequently with ENU
(N-ethyl-N-nitrosourea), includes screening for specific reproductive phenotypes with follow-up to
identify the mutated causative genes (Schimenti and Handel, 2018). Productive insights into the

genetic regulation of gametogenesis have been reaped from both approaches.

Insights from targeted mutagenesis

With the advent of transcriptome sequencing and efficient gene editing technologies, deliberate
targeting of genes known to be uniquely and/or highly expressed in gonads has been especially
informative. Targeted mutation of such genes has identified new gene functions essential for
reproductive success, for example, genes encoding factors that function in sperm travel through the
female reproductive tract (Larasati et al., 2020) and in sperm-oocyte interaction (Noda et al., 2020). By
focusing on single proteins highly or uniquely expressed in the reproductive tract, such studies provide
new knowledge and show great promise in identifying potential contraceptive targets (Fujihara et al.,
2019; Lu and lkawa, 2022; Robertson et al., 2020).

These biased approaches of targeting known genes in known reproductive pathways have also
provided information about what may not be effective contraceptive targets. For example, some
evolutionarily conserved genes that are expressed in the reproductive tract have been demonstrated
by mutagenesis analysis to be nonessential for reproductive success (Miyata et al., 2016). Moreover,
some human mutations that are predicted to be deleterious have not resulted in infertility phenotypes
when modeled in the mouse (Singh and Schimenti, 2015). There are several possible explanations for
such genetic mutations that affect fertility in humans but not in mice (or vice versa). The phenotypic
differences might be due to species specific differences in relevant reproductive processes (e.g., So et
al., 2022). Also such findings could suggest inadequacy of predictive algorithms for estimating the
conservation of protein function (Ding and Schimenti, 2021). Finally, species differences in genetic

complexity (e.g., gene regulatory networks) might be resolved with better models (discussed below).
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Despite these puzzling findings, biased and targeted mutagenesis strategies can now be made
even more comprehensive and fruitful with longer gene lists emerging from high-throughput and
computational methods for analyzing transcriptomes of reproductive tissues at a single-cell level

(Robertson et al., 2020).

New gene discovery through unbiased chemical mutagenesis

Unlike gene targeting, chemical mutagenesis is unbiased (no a priori knowledge of which genes will be
mutated) and thus phenotype-driven (Fig. 2). Since the early studies of Bill and Lee Russell at the Oak
Ridge National Laboratory, ENU has been a mutagen of choice for mice (Justice et al., 1999, Fig. 2).
Several successful ENU mutagenesis programs in the late 1990s and early 2000s identified reproductive
phenotypes and the underlying causal genes (Kennedy et al., 2005; Schimenti and Handel, 2018; Weiss
et al., 2012). Interestingly, most of the infertility phenotypes discovered in these screens affected
males but not females. Moreover, as commonly is the case with new discoveries, the identification of
causal genes frequently led to new questions and avenues to explore.

One illustrative example was the ‘repro8’ mutation, which produced a phenotype of arrest of
spermatogenesis at the end of the meiotic phase, similar to human ‘maturation arrest’ syndromes.
Positional cloning identified the causative gene mutation as a single base-pair change in Eif4g3,
encoding a ubiquitously expressed protein translation initiation factor (Sun et al., 2010). Why mutation
of this ubiquitous protein should seemingly impact only male reproduction is not clear. Even more
curiously, given that protein translation generally occurs in the cytoplasm, the EIF4G3 protein is
expressed in the nuclei of spermatocytes, localized to a specialized heterochromatin domain, the XY
body (Hu et al., 2018; Sun et al., 2010).

Another puzzling example was a single-base-change mutation affecting a splice site in the
Brwd1 gene, encoding a dual bromo-domain protein thought to epigenetically regulate transcription.
The Brwd1 splicing mutation caused both male and female infertility, but the arrest points in female
and male gametogenesis were quite different (Philipps et al., 2008). Follow-up studies demonstrated
pleiotropic roles for BRWD1 in oocyte chromosome stability and the oocyte-embryo transition, as well
as regulation of post-meiotic spermiogenic transcription in male gametogenesis (Pattabiraman et al.,

2015; Philipps et al., 2008). Clearly, both the phenotypes and the genes discovered in these and other
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examples of unbiased reproductive gene discovery revealed new and unexpected gene regulatory

interactions crucial to successful gametogenesis.

Deleterious gene-gene interactions: the oligogenic basis of infertility

Epistatic mutations affecting gametogenesis

Although we have learned much from single-gene causes of infertility, interactions among alleles at
two or more loci can also result in deleterious fertility and sub-fertility phenotypes. Such allelic
interactions can be informative about human male infertility or subfertility phenotypes. For example,
multiple malformations of the flagellum (MMAF) syndromes (Martinez et al., 2022) encompass
multiple abnormal phenotypes of sperm flagella morphology. Four genes (Cfap43, Cfap44, Armc2 and
Ccdc146) were demonstrated to contribute to MMAF by genetic knockout in mice, and these four
mouse models were used to produce multiple different compound heterozygotes. The results
indicated allelic interactions, with increased deterioration of sperm morphology and motility produced
by increasing numbers of heterozygous mutations among the four genes (Martinez et al., 2022). These
results strongly suggested that oligogenic determination of these complex gametic morphological
phenotypes can contribute to overall fertility. Although mechanisms are not yet understood, these
findings implicate the importance of proteins potentially acting at different cellular levels and/or in
multiprotein complexes.

In many organisms, including the mouse, such negative epistatic interactions are particularly
apparent in the context of hybridization between divergent taxa. During the independent evolutionary
trajectories of isolated populations or subspecies, distinct combinations of fitness-associated variants
can emerge and become common in each population. Hybridization between isolated populations or
subspecies provides the opportunity for such diverged alleles to be brought together in a single
genome (Fig. 2); in such cases these new allelic combinations may manifest as multi-locus genetic
incompatibilities that reduce fertility parameters compared to either parent population. These so-
called Dobzhansky-Muller incompatibilities (DMls) are theorized to play a major contributing role to
the genesis of new species. One example of a DMl is seen in hybrids between two closely related house
mouse subspecies, M. m. domesticus and M. m. musculus. Male hybrids sired by M. m. musculus

females and M. m. musculus males are typically sterile or subfertile. Gene mapping led to the
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identification of one of the genetic partners in this interaction: the gene encoding a histone
methyltransferase that defines the positions of genomic recombination events through DNA sequence-
specific binding guided by its zinc-finger domain, Prdm9 (Grey et al., 2018; Mihola et al., 2009; Paigen
and Petkov, 2018). Genetic analysis of the sub-fertile offspring also implicated interaction of Prdm9
with a still unknown X-linked locus, Hstx2 (Forejt et al., 2021). It is hypothesized that females are
safeguarded from infertility in this system due to the heterozygous, diploid state of the chr X locus, in
contrast to the hemizygous M. m. musculus derived X chromosome in M. m. musculus x M. m.
domesticus male hybrids.

Although considerable research attention has focused on unraveling the complex molecular
mechanisms by which Prdm9 disrupts fertility in intersubspecific house mouse hybrids (Baker et al.,
2014; Brick et al., 2012; Imai et al., 2020; Powers et al., 2016), the extent to which this model may be
informative for mechanisms of human infertility is unclear. PRDM9-associated infertility is background
and species-dependent; some mammalian genomes lack the Prdm9 gene (Mihola et al., 2019; Powers
et al., 2020) and there are reports of a fertile woman with mutant PRDM9 (Narasimhan et al., 2016).
Further, the scale of divergence between house mouse subspecies vastly exceeds that between
evolutionarily young human populations. DMIs causing sterility are not likely segregating between
populations, but negative interactions among alleles may well contribute to the genetic landscape of

human infertility (Cutter, 2012; Martinez et al., 2022).

Epistatic mutations dffecting fertilization

Fertilization provides a second milieu for the manifestation of protein interactions associated with
infertility. However, unlike canonical cases of negative epistasis, the process of fertilization involves
interactions between proteins produced by two independent genomes — that of the sperm and oocyte
— rather than a single genome. For example, IZUMO1 is expressed on the mouse sperm membrane
surface, where it must interact with a cognate receptor on the oocyte, JUNO, to enable sperm-egg
adhesion, one of the first crucial steps in fertilization (Bianchi et al., 2014; Wassarman, 2014). Similarly,
zonadhesion (ZAN) is expressed on the surface of the sperm acrosome, where it must interact with an
unknown partner expressed in the female to achieve species-specific binding to the zona pellucida (Lea

et al., 2001). Intriguingly, many of the proteins expressed on the sperm and oocyte surfaces are rapidly
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evolving and highly polymorphic (Gasper and Swanson, 2006; Swanson and Vacquier, 2002; Swanson
et al., 2001; Turner and Hoekstra, 2008). While the rapid accumulation of new variants may serve to
prevent fertilization between species, such variants may also create gamete incompatibilities among
individuals (Springate and Frasier, 2017). Such incompatible sperm-egg receptor-ligand pairs may
account for instances of unexplained fertilization failure in IVF cycles and partner-dependent infertility

in humans.

Quantitative traits, multiparent populations and surveys of diversity

While conceptually simple and often experimentally convenient to categorize fertility as a binary trait
(i.e. an individual is fertile or infertile), this scheme artificially dichotomizes trait variations that lie
along a continuum. Many cases of infertility may be traced to mutations in one or a few genes, but
fertility is itself a complex trait influenced by variants in numerous coordinately regulated and
interacting genes. Indeed, approximately 90% of all protein-coding genes are expressed in the mouse
testis (Schultz et al., 2003), and more than 25% of all protein-coding genes are expressed in the mouse
ovary (Wang et al., 2020), underscoring the complexity of the resultant biological networks required
for spermatogenesis and oogenesis, respectively. Moreover, variants in genes affecting fertility can
have strong fitness effects and are often under strong selection (Gardner et al., 2022). An important
consideration in this context is that most of the successful gene-discovery studies cited above have
been based on investigations of inbred strains of mice exhibiting homozygosity at most genetic loci.
Inbred mice are experimentally advantageous, allowing repetition of observations over periods of
time; however, they do not model the genetic diversity of human populations. Below, we highlight
insights into the quantitative aspects of gamete production and fertility that have emerged from
studies of genetically diverse mouse populations. These include not only the many different and
unique inbred strains (Fig. 2), but also the combinations that are created by interbreeding among
inbred strains to form so-called “multiparent” populations, derived from complex breeding schemes
that have input of several different genetic backgrounds (Figs. 2 and 3). Such mouse populations more

accurately model the genetic complexity apparent among human individuals.

Recombinant-inbred strains
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Recombinant inbred (RI) strains capture high levels of genetic diversity while maintaining the
experimental advantages of inbred strains (Fig 2). They are generated by intercrossing fully inbred
strains, followed by at least 20 generations of subsequent inbreeding, creating homozygous and
reproducible sets of genetically distinct but closely related strains (Peirce et al., 2004). Because
infertility is complex with multiple etiologies, crossing strains with different evolutionary backgrounds
can yield new multi-locus gene combinations and enable the discovery of variants associated with
reproductive capacity (Flurkey et al., 2007; Langhammer et al., 2014; Schwahn et al., 2018). To date,
recombinant-inbred lines in model species have been used to study sperm quality and morphology
(Golas et al., 2003; Golas et al., 2010; Krzanowska et al., 1995; Shukri et al., 1988) and oocyte
maturation (Polanski, 1997), but their full potential for reproductive genomics discovery remains
unrealized.

The Collaborative Cross (CC) mouse population is a panel of Rl strains derived from eight
founder strains, including three wild-derived strains (Chesler et al., 2008; Churchill et al., 2004;
Churchill et al., 2012) (Fig. 2 and 3). These strains represent three subspecies and capture nearly 90%
of the total genetic variation and diversity observed in Mus musculus (Roberts et al., 2007; Saul et al.,
2019; Yang et al., 2011). The CC strains are valuable to reproductive biologists because there is
considerable variation in reproductive traits across the founder strains (Odet et al., 2015) and, due to
the recombination of alleles from distinct strain backgrounds, these lines can display variation and
traits not found in the parental inbred strains via recombination of founder alleles into new, multi-
locus genotypes (Chesler, 2014; Wahlsten et al., 2003). Unexpectedly, nearly 95% of CC lines became
extinct during the inbreeding process (Fig. 3). This is markedly higher than other less diverse Rl
populations (Shorter et al., 2017) and opens avenues for identifying gene variants and incompatibilities
that affect gametogenic success. For example, multiple variants influencing reproductive success and
sperm quality have been successfully detected in these strains (Philip et al., 2011; Shorter et al., 2017;
Shorter et al., 2019). Continued maintenance of the CC strains (e.g. at the Jackson Laboratory) provides
further opportunity to identify variability in reproductive success and subfertility phenotypes.
Historical high-resolution breeding data allow for the determination of strain-level reproductive
metrics that are relevant to normal and clinical human reproductive histories, including lifetime fertility

and reproductive aging, variability in litter sizes, inter-litter intervals, and relationships between
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reproductive success and behavioral, molecular and morphological traits. For example, a subset of
these data was used to document pervasive sex-ratio distortion in the CC lines, a phenomenon

intricately associated with infertility across species (Haines et al., 2021).

Outbred mouse models of fertility
In contrast to the reduced infertility of some inbred strains, outbred individuals have the potential to
reveal genetic variants at the productive end of the fertility spectrum. Mice from several outbred
populations are commercially available and have been widely employed in experimental studies (Chia
et al., 2005), including investigations of environmental impacts on mammalian fertility (e.g. Cabaton et
al.,, 2011; Hannon et al., 2015; Niermann et al., 2015). However, few studies have profiled the genetic
determinants of fertility in outbred mammalian systems, in large part due to the complexities of their
unidentified genetic background. Among currently available outbred mouse populations, the most
diverse and genetically well-defined is the Diversity Outbred (DO) population (Fig. 3). DO mice were
derived from early generation CC strains and have been maintained by pseudo-random intercrossing
through generations to produce outbred individuals (Churchill et al., 2012; Svenson et al., 2012). Unlike
Rl strains, the DO mating approaches avoid mating closely related individuals to produce outbred,
highly recombinant populations that more closely model human diversity (Chesler, 2014). Each DO
individual is unique and amenable to high-resolution genotype analysis using dense, commercially
available SNP arrays (Morgan et al., 2015). The high genetic diversity of DO individuals, and a mosaic of
heterozygous and homozygous alleles across individuals, allow for high-powered, extremely precise
mapping of complex traits as well as assessing the influence of allele states. Furthermore, whereas
inbreeding funnels reduce the influence of selection on deleterious alleles, outbreeding can stabilize
and buffer deleterious alleles, offering alternative insight into multigenic features of fertility.

Due to hybrid vigor, DO mice have high fertility, with average first litter sizes between 7 and 9
pups (Churchill et al., 2012). The high fertility of outbred mouse populations (Langhammer et al., 2014)
is in marked contrast to the prevalence of sub- or infertile phenotypes obtained by the more
traditional approaches discussed above and in reviews of mutations affecting humans (Jamsai and
O’Bryan, 2011; Matzuk and Lamb, 2008). Therefore, examining high-fertility models, such as the DO,

has the potential to provide unique insights into the complex dynamics of gametogenesis and provide
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targets for improving or extending human reproductive lifespans or treating infertility. For example,
the DO mice were used to map genetic determinants of testis weight, a trait with a significant genetic
component that substantially affects reproductive success (Le Roy et al., 2001; Yuan et al., 2018),
leading to the discovery of five high-probability candidate genes, all with human orthologs. The success
of this study demonstrates the potential utility of the DO for investigating other fertility-related

phenotypes to identify causal genes and gene networks.

What have we learned and how can we apply it?

Both studying single-gene effects on gamete production and function as well as evaluating the
guantitative aspects of fertility in diversity populations are valuable for unraveling genetic control of
these processes and show promise of translation to the biology of human fertility and infertility and
beyond. Indeed, single-gene analyses have given us an impressive list of gametogenesis genes and
potential clinical targets. However, it is also clear that many genes, some probably with small effects,
cooperate in complex and overlapping pathways and the totality of this ‘reproductive interactome’ is
not yet fully appreciated. But the successes have been significant, and we address below several of the

most translationally relevant areas of these endeavors.

Potential contraceptive targets and important mechanisms have been identified

The search for gametogenesis genes is founded on curiosity about basic biology but also the
need for contraceptive targets. Both goals are being realized more or less simultaneously. One early
example is the mouse protein BRDT, a tissue-restricted protein found in developing spermatocytes and
spermatids and demonstrated by gene targeting to be essential for chromatin remodeling. Pharmaco-
structural analyses led to the development of a small-molecule inhibitor that had effective
contraceptive action in mice (Matzuk et al., 2012), providing proof of concept. As detailed above, this
approach of strategic targeting of genes known to be expressed in the reproductive tract has enriched
our knowledge of the development of sperm structures and their roles in fertilization. For example,
one study identified multiple genes encoding proteins that regulate sperm travel through the oviduct,
a process ripe for contraceptive targeting (Fujihara et al., 2019). Newly validated sperm tail proteins

expressed post-meiotically and in epididymal sperm in both mouse and human (Touré et al., 2021)
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might be particularly amenable to contraceptive targeting, particularly as new methods for rapid
screening of druggability of protein variants become more common (Modukuri et al., 2022).
Mechanisms of gametogenic pathways are being elucidated by gene mutations even when
contraceptive targets are not revealed. In this context, meiosis is not only the defining event of
gametogenesis but its sequential steps form the most thoroughly understood process of mammalian
gamete differentiation (Li et al., 2020). Meiotic prophase of male germ cells, which is accessible for
experimental analysis in the adult, is particularly well understood, but informative sex-based
differences are emerging (Bolcun-Filas and Handel, 2018). Importantly, advances clarifying mechanisms
of meiotic recombination have relevance not only for understanding gametogenesis, but also have far-
reaching implications for mechanisms of DNA repair and basic aspects of chromatin biology in somatic

cells (Alavattam et al., 2021).

Events surrounding fertilization are being revealed

The requirements for the various events immediately surrounding mammalian fertilization have been
historically difficult to determine, which is crucial gap because millions of couples turn to IVF for a
variety of reasons (an estimated 1% of all births being from offspring conceived by IVF). Related ARTs
include intracytoplasmic sperm injection (ICSl), procedures for injection of immature sperm cells, and
in vitro recombination of maternal and paternal, and mitochondrial, genomes. These procedures are
important not only for mitigating infertility, but for maintenance and distribution of genetic resources
(e.g. inbred mouse strains, mutation recovery, etc.), technologies that stand to benefit from what can
be learned about genetic variability and mechanisms underpinning the fertilization process. In
fertilization following natural mating, key events include epididymal maturation of sperm, sperm
capacitation and transport through the female reproductive system, sperm penetration of the cumulus
complex, sperm-zona and sperm-egg recognition, sperm-egg fusion, and transport of the zygote to the
uterus. As complex as this process is, ARTs involving fertilization in vitro are arguably even more
fraught, because the developmental stage of donor sperm may not be well-defined and the natural
barriers that normally act to select ‘good’ sperm are absent. Targeted gene approaches have been
helpful in addressing some of the open questions. As discussed above, we now know that IZUMO

(Inoue et al., 2005) and TMEM95 (Lamas-Toranzo et al., 2020; Noda et al., 2020) are essential sperm
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proteins. In addition, JUNO (Bianchi et al., 2014; Jean et al., 2019) is an essential egg protein in mice
and humans for sperm-egg fusion, while ZAN (Tardif et al., 2010) is involved in the species-specificity of
sperm-zona recognition. This knowledge might possibly lead to contraceptive approaches and could
provide diagnostics for genetic incompatibilities, thereby ultimately improving application of various
ARTs. However, evidence that there may be selection among interacting gametes in vivo (Nadeau,
2017) suggests that there is far more yet to learn. Finally, both natural fertilization and IVF require
robust production of oocytes in response to hormonal stimuli, modifications to the sperm surface
during their transport through the male and female reproductive tracts, and acquisition of competence
to support normal development. Because inbred strains of mice differ significantly in numbers of
ovulated oocytes and overall IVF success, multiparent populations are proving to be facile resources to

address issues such as super ovulatory responses, IVF success, and zygotic development.

Proving causality of human reproductive gene variants is difficult

These successes have not immediately translated to better understanding of human reproductive
genetics, where, because we cannot apply mutagenesis strategies, we must rely on discovery of
infertility variants in the clinic. Given that such genetic variants cause infertility, they are rare in the
population and require large case-control populations for statistical validation, although more and
more information is coming from whole-exome and whole-genome sequencing (Houston et al., 2021).
The strategies mentioned above have led to an ever-expanding list of human gene variants associated
with but not yet proven to be involved in the genetic regulation of gamete production and function,
particularly in cases of male infertility (Houston et al., 2021). For example, there is now detailed
knowledge of the ultrastructure and list of proteins involved in the assembly of the human sperm tail,
with examples of mutant phenotypes (Touré et al., 2021). Nonetheless, for most putative human
infertility variants, the challenge of validating causality remains (Ding and Schimenti, 2021). As
mentioned, CRISPR modeling in the laboratory mouse of some human variants predicted to be
deleterious has, in some cases, yielded no evidence for infertility (Tran and Schimenti, 2019; Tran et al.,
2019). Even when there is some correspondence between human and mouse phenotypes for a gene,
evidence can suggest species-specific differences in function (Hu et al., 2019; So et al., 2022). Thus, the

ability to predict phenotypes or explain causality by cross-species comparisons is imperfect, and
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caution is required for clinical inferences.

Future perspectives

Despite the remarkable advances and insights into mechanisms of gamete production and function,
there are still many aspects of gametogenesis that are poorly understood. For example, the number of
oocytes and follicles present in the ovary at birth and the continued maintenance of that ovarian
reserve are crucial for female reproductive life span, and are fundamental issues in the face of cell-
damaging treatments for cancer, particularly pediatric cancers, because the ovarian reserve maintains
ovarian function and the hormonal environment crucial for health and wellbeing (Woodard and
Bolcun-Filas, 2016). As the age at reproduction continues to advance to later in life in societies across
the globe, understanding the sources of ovarian aging will empower women to make informed
decisions about their reproductive health and optimize strategies for family planning. On the male side
of this issue, genetic determinants of sperm number and reproductive life span are largely not known,
but work treating fertility as a quantitative trait may be a promising route to candidate regulators (Hsu
et al., 2010). The adoption of multiparent populations for the study of such quantitative aspects of
fertility is still in its infancy. However, early work is quite promising and suggests that resources such as
the DO and CC harbor significant segregating, heritable variation influencing reproductive performance
(Morgan and Welsh, 2015; Saul et al., 2019; Threadgill and Churchill, 2012). Multiparent populations
can be used to estimate genetic effects (heritability), gene-by-environment interactions, correlations
between reproductive traits, and will enable the discovery of novel candidates through the high
statistical power and high mapping precision.

We know that gametogenesis and fertility are significantly influenced by environmental
conditions, contaminants and exposures (Hruska et al., 2000; Ma et al., 2019; Woodruff et al., 2010) in
both males (Mima et al., 2018; Skakkebaek et al., 2016; Wong and Cheng, 2011) and females (Mendola
et al., 2008). Genetics likely mediates many of these responses through gene-by-environment
interactions, and inbred mouse diversity panels, including Rl strains, can reveal gene effects under
various environmental conditions (Williams et al., 2001).

Gaining recent attention, considerable epidemiological evidence suggests that in humans,

impaired fertility can be associated with later-in-life detrimental health consequences or co-
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morbidities, including cancer (Cedars et al., 2017; Chen et al., 2022; Choy and Eisenberg, 2018). Thus,
fertility status could be an early and actionable biomarker to mitigate the risk of future adverse health.
However, human findings on fertility status and overall health have been confounded by high genetic
diversity in populations, which poses a crucial limitation to translating these emerging relationships
into clinical prognostics.

The future is exciting, in spite of the challenges remaining in the study of the genetics of
mammalian gametogenesis. With facile and rapid CRISPR editing technologies and precise populations
of mice incorporating genetic diversity equivalent to that of humans, the tools and resources are
available to uncover the molecules, mechanisms and ‘reproductive interactome’ that determine
gamete production and function. Rapid testing using ex vivo and in vitro cellular systems, as well as in
vitro derivation of gamete-like cells and germ-cell transplantation techniques, will facilitate bringing
the new knowledge to the clinic for ARTs and to couples for fertility preservation and as

contraceptives.
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Figure Legends

Figure 1. Schematic of female (left panel) and male (right panel) gametogenesis and fertilization

(bottom panel). lllustrated are the post-mitotic events of gametogenesis, beginning with the pre-
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meiotic oocyte and spermatocyte, each shown with two pairs of chromosomes, blue and orange (for
simplicity, the obligatory recombination events on each chromosome are not illustrated here). The
reductional division of Meiosis | is followed by the equational division of Meiosis Il, with sexual
dimorphism in both timing and products. Fertilization involves species-specific recognition of the zona
pellucida followed by sperm-egg fusion, which is temporally associated with completion of the Meiosis

Il division of the oocyte.

Figure 2. Genetic strategies in mouse fertility research. The left panel illustrates the single-gene
strategies discussed in the main text. These include exploiting spontaneous mutant phenotypes (a.,
where the black extremities represent a visible morphological phenotype); targeted mutagenesis
strategies, including CRISPR editing (b) (middle); and unbiased random ENU mutagenesis (c) (bottom).
The right panel illustrates strategies that take advantage of genetically diverse strains of mice to detect
genes controlling reproductive parameters. As discussed in main text, the standard inbred strains (a)
exhibit considerable diversity in quantitative parameters of gamete production and function. These
strains can be interbred to form F1 hybrids (b), which often can identify dominant traits. Further
intercrossing of hybrids (c) leads to bi-parental recombinant inbred strains (left), and the multiparent
strains with representation of several input genomes (right), e.g., the Collaborative Cross inbred strains

illustrated in more detail in Fig. 3.

Figure 3. Schematic of production of genetically diverse Collaborative Cross (CC) and Diversity
Outbred (DO) strains. (Top) Homozygous genotypes of the eight progenitor strains are with
standardized color codes for each strain in the upper left. All combinations of mating are performed,
each one leading to an inbreeding ‘funnel’ (middle) to produce inbred CC strains (bottom). During the
inbreeding process, roughly 95% of CC strains became extinct (see main text for details). The horizontal
bands on the chromosomes represent regions from the founder strains that are in new combinations
due to recombination events during the breeding process. CC strains have been further subjected to
randomized outbreeding, continued over generations, which is producing the DO individuals (right)
that have many more new gene and allele combinations and thus model human individuals in the

extent of genetic diversity.
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