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Abstract— This paper presents regression and classification
methods to estimate wind direction in a wind farm from
operational data. Two neural network models are trained using
supervised learning. The data are generated using high-fidelity
large eddy simulations (LES) of a virtual wind farm with
16 turbines, which are representative of the data available
in actual SCADA systems. The simulations include the high-
fidelity flow physics and turbine dynamics. The LES data used
for training and testing the neural network models are the rotor
angular speeds of each turbine. Our neural network models
use sixteen angular speeds as inputs to produce an estimate
of the wind direction at each point in time. Training and
testing of the neural network models are done for seven discrete
wind directions, which span the most interesting cases due to
symmetry of the wind farm layout. The results of this paper are
indicative of the potential that existing neural network models
have to obtain estimates of wind direction in real time.

I. INTRODUCTION

Knowledge of wind direction within wind plants is critical
for their operation. Real-time estimates of wind direction
are required to properly orient a single wind turbine for
power maximization (greedy control). Recently proposed
wake steering control methods, which seek to jointly op-
timize the yaw angles (orientation of rotor planes) of two
or more turbines also require wind direction information
[1]-[3] in real time. Current technology uses meteorological
towers and/or local wind turbine sensors to determine wind
direction. Meteorological towers, when available, provide
point measurements that may not represent the local wind
direction affecting the power production of an entire wind
farm. Local wind turbine sensors may suffer from yaw
calibration errors, reliability and local wind flow effects
reducing accuracy [4]. Thus, it is desirable to find alternative
methods to identify changes in wind direction that have
significant impact on the power production of an entire wind
plant.

A consensus-based approach to predict local wind direc-
tion that uses the wind measurements from nearby turbines
has been proposed by Annoni et al. [S] and applied to control
large wind farms [6] and to forecast the short term power
production [7]. The use of this consensus approach can
mitigate the errors from the wind turbine vanes that measure
wind directions and it can run in real time. Bernardoni et
al. [8], [9] have developed a method to identify clusters
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of turbines in wake interaction and optimized their power
production with a coordinated approach. Other researchers
have applied machine learning methods to estimate wind
directions [10]-[12].

Our research group is also developing machine learning
tools for the estimation of wind directions in a wind farm. In
this paper we present preliminary results using the simplest
possible wind direction estimation problem. That is, to
estimate, in real time, the direction of the wind entering the
wind farm using readily available SCADA data only.

Machine learning concepts have been around for decades.
The availability of significant amounts of data, inexpensive
computing power, and tools to develop and train machine
learning models are making their application widespread.
From a theoretical point of view, it has been shown that ma-
chine learning can be used to estimate non-linear functions
[13], [14]. In essence, our problem is to find a model that
represents the mapping between appropriate and available
data from wind turbines and the direction of the wind in real
time. Two major machine learning models are classification
(e.g., when a label, amongst a discrete set of choices, needs
to be estimated from data) and regression (e.g., when a con-
tinuous variable needs to be estimated from data). These two
approaches require supervised learning to train the machine
learning models [15]. Artificial neural networks [16], [17]
provide a useful representation to implement regression and
classification models for non-linear functions. In addition,
there is a plethora of tools available to develop and train
neural networks [18], [19].

The objective of this work is to find a data-driven method
for wind direction estimation using data typically available in
SCADA systems. Our hypothesis is that the direction of the
wind flow traveling across a wind farm can be determined
using the spatial distribution of the rotor angular velocity of
the turbines. The intuition behind this hypothesis is that when
the wind speed is below the rated values for the turbines, the
spatial distribution of the rotor angular velocity may contain
enough information to infer the direction of the wind at one
or more locations in the wind farm. In this exploratory study,
we focus on estimating the direction of the flow at the inlet
of a wind farm (incoming wind direction).

The incoming wind direction changes during the day due
to variations in atmospheric conditions. Thus, wind direction
is a continuous variable. As a result, it seems natural to
infer its value (i.e., heading angle) using a regression neural
network with the rotor angular velocities as the input data. In
practice, it may suffice to know the incoming wind direction
at discrete values within a specified range. In this case, it
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is also possible to use a classification neural network to
estimate the wind direction among a discrete and finite set
of labels (predefined wind directions).

This paper presents regression and classification methods
to estimate wind direction in a wind farm from opera-
tional data. Two neural network models are trained using
supervised learning. The data are generated using high-
fidelity large eddy simulations (LES) of a wind farm with
16 turbines. These simulations include the high-fidelity flow
physics and turbine dynamics, as such they are representative
of the data available in actual SCADA systems [8]. The
LES data used for training and testing the neural network
models are the rotor angular speeds of each turbine. Our
neural network models use sixteen angular speeds as the
input vector to produce an estimate of the wind direction at
each point in time. Training and testing of the neural network
models are done for seven wind directions, which span the
most interesting cases due to symmetry of the farm layout.

This paper provides evidence that both regression and
classification neural networks can provide real-time esti-
mates of the incoming wind direction using the rotor speeds
on the turbines as the input data, which is readily available
from a SCADA system.

The paper is organized as follows. Section II introduces the
wind farm layout, visualizations of the flow for various wind
directions, and the LES data used for training and testing the
neural networks. Sections III and IV present the regression
and classifier models respectively. The resulting estimates of
incoming wind direction using the test data are presented in
Section V, and conclusions are given in Section VI.

II. CASE STUDY

The wind turbine data to train and test the neural networks,
is obtained from Large Eddy Simulations (LES). The data
used is from [8]. The simulated wind farm consists of 16
NREL-5MW reference turbines [20], arranged in a 4 x 4
layout. The turbines are all identical with rotor diameter D =
126 m, rated wind speed U, 4t.q = 11.4 m/s, rated rotor speed
Qrated = 12.1 RPM, and rated power Prgteq = 5 MW.

The wind farm layout is depicted in Figure 1a. The turbine
spacing in the transversal direction (West-East) is 3D, while
in the longitudinal direction (South-North) the spacing is 5D.
The color-coded plot in Figure 1b depicts the time-averaged
hub-height wind speed as a function of spatial coordinates.
This flow visualization corresponds to an assumed prevailing
wind direction (South-North), which we take as the reference
angle for the wind direction # = 0°. The wind turbines
are controlled in a classical fashion, where the rotor-plane
normal is aligned with the local wind direction and the rotor
angular speed is proportional to the local wind speed in order
to track the optimal tip-speed ratio for power maximization
at the turbine level [21]. The spatial and temporal average
of the hub-height wind speed at the inlet of the wind farm is
set at U = 0.8U,q4¢eq, With 11% turbulence intensity, which
implies (in theory) that all turbines operate below-rated wind
speeds, where wind farm power maximization is a key goal
and there is variability in the power and rotor angular speed

of each turbine to potentially infer wind direction. Testing
this loosely-stated hypothesis is the main objective of this
conference paper.

Due to the symmetry of the wind farm layout, wind
directions between 6§ = 0° and 6 = 90° suffice for this study.
For several wind directions in this range, LES simulations
were conducted for 1600 seconds. The LES simulation data
include the generated power and rotor angular speed of each
turbine. A full account of the LES simulations and their
theoretical background can be found in [8], [9].

In this paper, the neural networks are trained and tested us-
ing angular rotor speeds operating below rated wind speeds.
The motivation for this choice is the proportionality between
wind speed and rotor angular speed, coupled with the fact
that reductions in wind speed (i.e,, rotor speed) are indicative
of downstream turbines operating in the wake of upstream
turbines, which may help establish the wake direction and
hence the wind direction (when rotor-plane normal directions
align with the local wind). In Figure 2 and Figure 3, the time
series of the rotor angular speed for the first and third rows of
the wind farm are shown when the wind direction is 6 = 0°
(Figure 1b). As expected, higher rotor speeds occur in the
upstream turbines (Figure 2), which produce more power
than the third row (Figure 3) due to wake interaction that
reduces the wind speed in front of the trailing turbine rotors.

In order to provide more information on the role of wakes
(reduced velocity regions) for other wind directions, the color
contours of the time-averaged wind velocity at the hub height
are shown in Figure 4 through Figure 6 for prevailing wind
directions 8 = 30°, 8 = 60° and 6 = 90°, respectively. The
instantaneous values of the rotor angular speeds for a discrete
number of prevailing wind directions shall be used to train
and test the neural network models explained subsequently.

III. REGRESSION MODEL

We built a neural network for the regression problem
of estimating wind direction using the spatial relationships
between the rotor angular speeds of the wind turbines at each
point in time. That is, the input of the regression model is
a vector with 16 scalar components containing the angular
rotor speed of each turbine at each instant. The output
of the network is a wind direction estimate at each point
in time. The model consists of an input layer, three fully
connected hidden layers, and an output layer. The hidden
layer 1, 2, and 3 have 64, 32, and 16 neurons respectively.
The actuation function for hidden layers is tanh(-). The
output layer with a single neuron have a linear activation
function. The architecture of the developed network is shown
in Figure 7.

The dataset is split randomly between a training dataset
consisting of 41,804 samples, corresponding to 80% of the
entire dataset, and 17,917 test samples representing 20%
of the dataset. This split helps us mitigate overfitting by
assesing the performance of the model over an unseen
dataset. We considered 7 wind directions, from 6 = 0°
to & = 90° with 15° increments, with equal numbers of
samples. Tensorflow is used for implementing the model
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Fig. 1: a) Wind farm layout with sixteen SMW wind turbines.
b) Color contour of the time-averaged wind velocity at the
hub-height; 8 = 0° prevailing wind direction.
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Fig. 2: Time series of rotor angular speed for turbines 1, 2, 3
and 4 with wind direction 6§ = 0°. The horizontal dash line
indicates the rated rotor speed.

in Python. For training the model, Adam optimizer with
a learning rate of 0.001 is used [22]. Training is done by
minimizing the mean squared error (MSE) loss function.
That is, the mean of squared difference between the predicted
and true values on the training samples given by [15]
N
1 N

MSE = N;(yi ~ i)’ ()

where N is the number of training samples, y; is the true
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Fig. 3: Time series of rotor angular speed for turbines 9, 10,
11 and 12 with wind direction 6 = 0°. The horizontal dash
line indicates the rated rotor speed.
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Fig. 4: Color contour of the time-averaged wind velocity at
the hub-height; § = 30° prevailing wind direction.

Fig. 5: Color contour of the time-averaged wind velocity at
the hub-height; § = 60° prevailing wind direction.

output of the i*” sample and §; is the estimated value for
the same sample. The model is trained in 100 epochs with
a batch size of 64.

IV. CLASSIFICATION MODEL

The problem of estimating the wind direction from the
instantaneous rotor angular velocities can also be posed as
a classification problem, where the labels are the discrete
wind directions we wish to estimate [23]. This approach
requires that we select the labels apriori. For consistency
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Fig. 6: Color contour of the time-averaged wind velocity at
the hub-height; § = 90° prevailing wind direction.
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Fig. 7: Regression model neural network architecture.

with the regression model, the labels are the seven wind
directions, from 6 = 0° to § = 90°, defined in the previous
section. We selected the LSTM model as our classifier. The
LSTM model is an advanced neural network architecture.
For consistency with the training of the regression neural
network, the training of the classifier is done by splitting
randomly between a training dataset consisting of 80% of
the entire data and the remaining 20% assigned to the test
dataset. The classifier architecture is shown in Figure 8.
There is one single hidden layer containing 512 neurons and
one output layer estimating the wind direction. The output
label is the estimated wind direction, whose value can only
be one of the wind direction labels used for training (seven
directions in this case).
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Fig. 8: Classification model neural network architecture.

Pytorch library is used for implementing the model. The
Stochastic Gradient Decent (SGD) optimizer [24] is used
with a learning rate of 0.001 for minimizing the loss function,
which is defined as negative log-likelihood loss. The follow-
ing expression shows the definition of this loss function [15]

where pj is the true probability of sample ¢ belonging to
class k, py is the probability predicted by the model, N is
the number of training samples, and K is the number of
classes.

V. RESULTS

In this section, the results from the developed models are
presented and discussed.

A. Regression results

To evaluate the performance of the regression model, we
calculate the mean absolute error (MAE) on the test dataset.
The following expression shows its mathematical expression

[15].
Z ly: — 4l 3)

where N; is the number of test samples, and S; is the test
dataset, y; is the true output of the i*" sample and §; is
the model output for the same sample.

A summary of the results, including the MAE, and the
mean and standard deviation of the estimation error, is shown
in Table I. The table shows these error metrics for each wind
direction angle. Note that the maximum MAE is 0.26° (for
0 = 90°), while the minimum MAE is 0.08° (for § = 15°).
The achieved average MAE on the test dataset (all seven
wind directions) is 0.1709°.

MAE (S;) =

Wind Direction | MAE (deg) | Error Mean (deg) | Error STD (deg)
0° 0.1641 -0.0774 1.6385
15° 0.0752 -0.0241 0.1193
30° 0.1573 -0.1136 0.7543
45° 0.0901 0.0319 0.1627
60° 0.2582 0.1011 1.0020
75° 0.1869 0.0084 0.2657
90° 0.2643 0.2330 2.4420

TABLE I: Accuracy and error statistics of regression model
for each wind direction.

To gain further insight into the performance of the re-
gression neural network, we study the distribution of the
wind direction estimates using the test data for the best
and worst cases according to the MAE values reported in
Table 1. These empirical distributions are shown in Figure 9
and Figure 10 for the best and worst case, respectively. For
each wind direction, the regression model gives estimations
well-centered around the ground truth. The distributions of
the estimation error for these cases are shown in Figure 11 for
the best case (f = 15°) and in Figure 12 for the worst case
MAE (# = 90°). These plots exhibit a tight and symmetric
distribution around zero indicating a good performance of
the regression model. From these preliminary results, we
expect that using instantaneous values of rotor angular speed,
processing these data to obtain an instantaneous estimate of
wind direction and taking an appropriate time average (as
commonly reported in wind plant SCADA systems) would

N K
CL = L Zzpk In(pr) (2) provide a more accurate indicator of the incoming wind
N i—1 hel direction to a wind farm.
2459

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 01,2023 at 15:59:56 UTC from IEEE Xplore. Restrictions apply.



200y

150
100
50

19.007 1425 14550 1475 15.00 1525 1550 15.75 16.00

Number of Test Samples

Wind Direction (deg)

Fig. 9: Distribution of wind direction estimation with the
regression neural network for test data corresponding to 6 =
15°
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Fig. 10: Distribution of wind direction estimation with the
regression neural network for test data corresponding to 6 =
90°
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Fig. 12: Distribution of wind direction estimation error with

the regression neural network for test data corresponding to
0 =90°

B. Classification results

In this section, we present test accuracy results of the
classification model. We use accuracy score as our metric
for this model. The accuracy score is defined as follows:

[15]

Y e e =1ify; =y

pll
where N; represents the number of samples in the test
dataset, y; is the predicted label (wind direction angle),
and y; is the true label. The numerator in this definition
denotes the number of instances where 1; = ;. Note that
Accuracy = 1 means a perfect classification. The accuracy
of estimation results with the classification model are shown
in Table II. The distribution of estimated wind directions for
the best and worst accuracy values from Table II are shown
in Figure 13 and Figure 14, respectively.

The test results suggest that classification neural networks
can be used to estimate discrete wind directions given instan-
taneous rotor angular speed values of the wind turbines. Note
that the output of the classifier is a discrete wind direction
that has already been seen during the training phase.

4)

Accuracy =
e; = 0 otherwise

Wind Direction | Accuracy
0° 0.9527
15° 0.9779
30° 0.9162
45° 0.8382
60° 0.7423
75° 0.9020
90° 0.9756

TABLE II: Accuracy of classification model for each wind
direction
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Fig. 13: Distribution of estimation results in the classification
model with 15° wind direction
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Fig. 14: Distribution of estimation results in the classification
model with 60° wind direction
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C. Inference Speed

Tables III and IV show the response time for both regres-
sion and classification models. All cases are run on a laptop
with Intel Core i7-3840QM @ 2.80GHz and 32 GB RAM.
Due to the simplicity of our model networks, the calculations
are very fast, which enable the real-time application. The re-
gression model runs around 10x faster than the classification
model because of the network structure differences between
two models. Our classification model implements the LSTM
architecture and it has heavier operations than the multi-layer
neuron network used in the regression model.

Wind dir. (deg) | Samples | Total time (sec) | msec/sample
0 1504 0.15 9.90e-2
15 1904 0.10 5.36e-2
30 1338 0.06 4.86e-2
45 1948 0.07 3.70e-2
60 1313 0.05 3.50e-2
75 2575 0.08 3.28e-2
90 1359 0.06 4.27e-2
Total 11941 0.57 4.77e-2

TABLE III: Response time for the regression model

Wind dir. (deg) | Samples | Total time (sec) | msec/sample
0 1504 0.76 0.50
15 1904 0.98 0.52
30 1338 0.70 0.52
45 1948 1.03 0.53
60 1313 0.84 0.64
75 2575 1.39 0.54
90 1359 0.74 0.55
Total 11941 6.44 0.54

TABLE IV: Response time for the classification model

VI. CONCLUSION

This exploratory study has evaluated the possibility of
estimating incoming wind direction into a wind farm from
the time samples of rotor speed of the turbines. Two neural
network models (regression and classification) have been
trained and tested using data from high-fidelity large eddy
simulations. These simulation data is representative of the
data available in actual SCADA systems. The numerical
results provide evidence on the ability of these neural net-
work models to estimate wind direction from the information
contained in the spatial distribution of the rotor speeds across
the wind farm (the time samples of a 16 x 1 vector for our
case study). The neural network models can run very fast;
thus, enabling real-time estimation and control.

Future work will consider developing a statistical frame-
work to gain further insight into the relation between rotor
speed distributions and wind directions within a wind farm.
We shall also use data from actual wind farms and plan on
customizing these results to neural networks that can estimate
local incoming wind speeds entering clusters of turbines in a
wind farm. A problem of importance to power optimization
via wake steering (a.k.a. yaw control).
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